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Summary. We present a formalization of Witt’s proof of the Wedderburn
theorem following Chapter 5 of Proofs from THE BOOK by Martin Aigner and
Glinter M. Ziegler, 2nd ed., Springer 1999.

MML Identifier: WEDDWITT.

The notation and terminology used in this paper have been introduced in the
following articles: [23], [31], [20], [8], [12], [24], [3], [29], [14], [32], [6], [7], [4], [5],
Fq, [16], [[9]i [15], [2], [28], [18], [10], [26], [13], [1], [17], [25], [30], [33], [19], [22],
21|, and [11].

1. PRELIMINARIES

The following propositions are true:

(1) For every natural number a and for every real number ¢ such that 1 < ¢
and ¢* =1 holds a = 0.

(2) For all natural numbers a, k, r and for every real number x such that
1 <z and 0 < k holds z@k+7 = go . ga-(k="D+r,

(3) For all natural numbers ¢, a, b such that 0 < @ and 1 < g and ¢* —' 1|
¢®* —'1 holds a | b.

(4) For all natural numbers n, ¢ such that 0 < ¢ holds ¢™ = ¢".

1This work has been supported by NSERC Grant OGP9207.

@ 2004 University of Bialystok
69 ISSN 1426-2630



70 BRODERICK ARNESON et al.

(5) Let f be a finite sequence of elements of N and i be a natural number. If
for every natural number j such that j € dom f holds i | f;, then i | ) f.
(6) Let X be a finite set, Y be a partition of X, and f be a finite sequence
of elements of Y. Suppose f is one-to-one and rng f = Y. Let ¢ be a finite
sequence of elements of N. Suppose lenc = len f and for every natural

number ¢ such that ¢ € dome holds ¢(i) = f(i). Then card X = c.

2. CrLASS FOrRMULA FOR GROUPS

Let us observe that there exists a group which is finite.

Let G be a finite group. Observe that Z(G) is finite.

Let G be a group and let a be an element of G. The functor Centralizer(a)
yields a strict subgroup of G and is defined by:

(Def. 1) The carrier of Centralizer(a) = {b;b ranges over elements of G: a - b =
b-a}.

Let G be a finite group and let a be an element of G. Observe that
Centralizer(a) is finite.

Next we state two propositions:

(7) For every group G and for every element a of G and for every set = such
that x € Centralizer(a) holds z € G.

(8) For every group G and for all elements a, x of G holds a -z =z - a iff ©
is an element of Centralizer(a).

Let G be a group and let a be an element of G. One can verify that a® is
non empty.

Let G be a group and let a be an element of G. The functor a-con_map
yields a function from the carrier of G into a® and is defined by:

(Def. 2) For every element z of G holds (a-con_map)(z) = a”.
One can prove the following propositions:

(9) For every finite group G and for every element a of G and for every
element x of a® holds card((a-con_map)~!({z})) = ord(Centralizer(a)).

(10) Let G be a group, a be an element of G, and x, y be elements of a®. If
x # vy, then (a-con_map)~*({z}) misses (a-con_map)~*({y}).

(11) Let G be a group and a be an element of G. Then {(a-con_map)~!({z}) :
x ranges over elements of a®} is a partition of the carrier of G.

(12) For every finite group G and for every element a of G holds

{(a-con_map)~1({z}) :  ranges over elements of a®*} = card a®.

(13) For every finite group G and for every element a of G holds ord(G) =
card a® - ord(Centralizer(a)).
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Let G be a group. The functor conjugate_Classes(G) yielding a partition of
the carrier of G is defined by:

(Def. 3) conjugate_Classes(G) = {S; S ranges over subsets of G: \/
a®}.

The following two propositions are true:

GS:

a:element of

(14) For every group G and for every set x holds = € conjugate_Classes(G)
iff there exists an element a of GG such that a® = x.

(15) Let G be a finite group and f be a finite sequence of ele-
ments of conjugate_Classes(G). Suppose f is one-to-one and rngf =
conjugate_Classes(G). Let ¢ be a finite sequence of elements of N. Sup-
pose lenc = len f and for every natural number ¢ such that ¢ € domc

holds ¢(i) = f(i). Then ord(G) =) c.

3. CENTERS AND CENTRALIZERS OF SKEW FIELDS

We now state the proposition

(16) Let F be a finite field, V' be a vector space over F, and n, ¢ be na-
tural numbers. Suppose V is finite dimensional and n = dim(V) and

q = the carrier of F'. Then the carrier of V = ¢".
Let R be a skew field. The functor Z(R) yielding a strict field is defined by
the conditions (Def. 4).
(Def. 4)(i)  The carrier of Z(R) = {x;z ranges over elements of R:
Ns:clement of R T 5= 52},
(ii)  the addition of Z(R) = (the addition of R)[[the carrier of Z(R), the
carrier of Z(R) ],
(iii)  the multiplication of Z(R) = (the multiplication of R)[[the carrier of
Z(R), the carrier of Z(R) {,
(iv)  the zero of Z(R) = the zero of R, and
(v)  the unity of Z(R) = the unity of R.
The following proposition is true
(17) For every skew field R holds the carrier of Z(R) C the carrier of R.

Let R be a finite skew field. Note that Z(R) is finite.
We now state several propositions:

(18) Let R be a skew field and y be an element of R. Then y € Z(R) if and
only if for every element s of R holds y-s=s"-1y.

(19) For every skew field R holds O € Z(R).
(20) For every skew field R holds 1 € Z(R).
(21) For every finite skew field R holds 1 < card (the carrier of Z(R)).
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(22) For every finite skew field R holds card (the carrier of Z(R)) = card (the
carrier of R) iff R is commutative.

(23) For every skew field R holds the carrier of Z(R) = (the carrier of
Z(MultGroup(R))) U {Og}.

Let R be a skew field and let s be an element of R. The functor centralizer(s)
yields a strict skew field and is defined by the conditions (Def. 5).

(Def. 5)(i)  The carrier of centralizer(s) = {x; z ranges over elements of R: z-s =
s},
(ii)  the addition of centralizer(s) = (the addition of R)[fthe carrier of
centralizer(s), the carrier of centralizer(s) ],
(iii)  the multiplication of centralizer(s) = (the multiplication of R)[] the
carrier of centralizer(s), the carrier of centralizer(s) ],

(iv)  the zero of centralizer(s) = the zero of R, and
(v)  the unity of centralizer(s) = the unity of R.
Next we state several propositions:

(24) For every skew field R and for every element s of R holds the carrier of
centralizer(s) C the carrier of R.

(25) For every skew field R and for all elements s, a of R holds a € the carrier
of centralizer(s) iff a- s =s-a.

(26) For every skew field R and for every element s of R holds the carrier of
Z(R) C the carrier of centralizer(s).

(27) Let R be a skew field and s, a, b be elements of R. Suppose a € the
carrier of Z(R) and b € the carrier of centralizer(s). Then a - b € the
carrier of centralizer(s).

(28) For every skew field R and for every element s of R holds O, is an element
of centralizer(s) and 1g is an element of centralizer(s).

Let R be a finite skew field and let s be an element of R. Observe that
centralizer(s) is finite.
Next we state three propositions:

(29) For every finite skew field R and for every element s of R holds 1 <
card (the carrier of centralizer(s)).

(30) Let R be a skew field, s be an element of R, and t be an element of
MultGroup(R). If t = s, then the carrier of centralizer(s) = (the carrier
of Centralizer(t)) U {Or}.

(31) Let R be a finite skew field, s be an element of R, and ¢ be an element
of MultGroup(R). If t = s, then ord(Centralizer(t)) = card (the carrier of
centralizer(s)) — 1.
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4. VECTOR SPACES OVER CENTERS OF SKEW FIELDS

Let R be a skew field. The functor VectSp_over Z(R) yielding a strict vector
space over Z(R) is defined by the conditions (Def. 6).
(Def. 6)(i)  The loop structure of VectSp_over Z(R) = the loop structure of R,
and
(ii)  the left multiplication of VectSp_over Z(R) = (the multiplication of
R) [} the carrier of Z(R), the carrier of R .
We now state two propositions:

(32) For every finite skew field R holds card (the carrier of R) = (card (the
carrier of Z(R)))dim(VectSp,over Z(R))

(33) For every finite skew field R holds 0 < dim(VectSp_over Z(R)).

Let R be a skew field and let s be an element of R. The functor
VectSp_over Z(s) yields a strict vector space over Z(R) and is defined by the
conditions (Def. 7).

(Def. 7)(i)  The loop structure of VectSp_over Z(s) = the loop structure of
centralizer(s), and

(ii)  the left multiplication of VectSp_over Z(s) = (the multiplication of

R)[[ the carrier of Z(R), the carrier of centralizer(s) ].

The following propositions are true:

(34) For every finite skew field R and for every element s of R holds card (the
dim(VectSp_over Z(s))

carrier of centralizer(s)) = (card (the carrier of Z(R))) .

(35) For every finite skew field R and for every element s of R holds 0 <
dim(VectSp_over Z(s)).

(36) Let R be a finite skew field and r be an element of R. Suppose r is an
element of MultGroup(R).

Then (card (the carrier of Z(R)))dim(VectSpover Z(r)) _ 1 | (card (the carrier
of Z(R)))dim(VectSp,over Z(R) _ 1.

(37) For every finite skew field R and for every element s of R such
that s is an element of MultGroup(R) holds dim(VectSp_over Z(s)) |
dim(VectSp_over Z(R)).

(38) For every finite skew field R holds
card (the carrier of Z(MultGroup(R))) = card (the carrier of Z(R)) — 1.

5. WI1TT’S PROOF OF WEDDERBURN’S THEOREM

One can prove the following proposition

(39) Every finite skew field is commutative.
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