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Summary. An extension of [19]. In this article, the basic properties of
complex linear spaces which are defined by the set of all complex linear opera-
tors from one complex linear space to another are described. Finally, a complex
Banach space is introduced. This is defined by the set of all bounded complex
linear operators, like in [19].

MML Identifier: CLOPBAN1.

The articles [24], [6], [26], [27], [4], [5], [17], [22], [21], [2], [1], [20], [11], [7],
[25], [23], [18], [15], [13], [14], [12], [16], [3], [9], [10], [8], and [19] provide the
terminology and notation for this paper.

1. COMPLEX VECTOR SPACE OF OPERATORS

Let X be a set, let Y be a non empty set, let F' be a function from [ C, Y |
into Y, let ¢ be a complex number, and let f be a function from X into Y. Then
F°(c, f) is an element of YX.

We now state the proposition

(1) Let X be anon empty set and Y be a complex linear space. Then there
exists a function M; from [C, (the carrier of Y)¥ ] into (the carrier of
Y)X such that for every Complex ¢ and for every element f of (the carrier
of Y)X and for every element s of X holds Mj({c, f))(s) = c- f(s).

Let X be a non empty set and let Y be a complex linear space. The functor
FuncExtMult(X,Y) yields a function from [ C, (the carrier of Y)X ] into (the
carrier of Y')X and is defined by the condition (Def. 1).

(Def. 1) Let ¢ be a Complex, f be an element of (the carrier of Y)X, and x be
an element of X. Then (FuncExtMult(X,Y))({(c, f))(z) = ¢ f(z).
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We follow the rules: X is a non empty set, Y is a complex linear space, and
f, g, h are elements of (the carrier of Y)¥
We now state the proposition
(2) For every element x of X holds (FuncZero(X,Y))(z) = Oy.
In the sequel a, b are Complexes.
Next we state several propositions:
(3) h = (FuncExtMult(X,Y))({(a, f)) iff for every element = of X holds
h(z) =a- f(x).
(4) (FuncAdd(X,Y))(f, g) = (FuncAdd(X,Y))(g, f).
(5) (FuncAdd(X,Y))(f, (FuncAdd(X,Y))(g, h)) =
(FuncAdd(X,Y))((FuncAdd(X,Y))(f, 9), h).
(6) (FuncAdd(X,Y))(FuncZero(X,Y), f) = f.
(7)  (FuncAdd(X,Y))(f, (FuncExtMult(X,Y))({—1c, f))) =
FuncZero(X,Y).
(8) (FuncExtMult(X,

Y)
(9) (FuncExtMult(X,Y))({a, (FuncExtMult(X,Y))(({b, f)))) =
(FuncExtMult(X,Y))({a - b, f)).

)
(10) (FuncAdd(X,Y))((FuncExtMult(X,Y))((a, f)),
(FuncExtMult(X,Y))({b, f))) = (FuncExtMult(X,Y"))({a + b, f)).

(11) {(the carrier of V)X, FuncZero(X,Y), FuncAdd(X,Y),
FuncExtMult(X,Y)) is a complex linear space.

(e, ) =7

Let X be a non empty set and let Y be a complex linear space. The functor
ComplexVectSpace(X,Y) yielding a complex linear space is defined as follows:

(Def. 2) ComplexVectSpace(X,Y) = ((the carrier of V)X, FuncZero(X,Y),
FuncAdd(X,Y), FuncExtMult(X, Y)).

Let X be a non empty set and let Y be a complex linear space. Observe that
ComplexVectSpace(X,Y) is strict.

Let X be a non empty set and let Y be a complex linear space. Observe that
every vector of ComplexVectSpace(X,Y) is function-like and relation-like.

Let X be a non empty set, let Y be a complex linear space, let f be a vector
of ComplexVectSpace(X,Y), and let x be an element of X. Then f(z) is a vector
of Y.

We now state three propositions:

(12) Let X be a non empty set, ¥ be a complex linear space, and f, g, h
be vectors of ComplexVectSpace(X,Y). Then h = f + g if and only if for
every element = of X holds h(x) = f(x) + g(z).

(13) Let X be a non empty set, Y be a complex linear space, f, h be vectors
of ComplexVectSpace(X,Y), and ¢ be a Complex. Then h = ¢ - f if and
only if for every element x of X holds h(z) = ¢+ f(x).
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(14) For every non empty set X and for every complex linear space Y holds
OComplexVectSpace(X,Y) =X — Oy.

2. COMPLEX VECTOR SPACE OF LINEAR OPERATORS

Let X be a non empty CLS structure, let Y be a non empty loop structure,
and let I; be a function from X into Y. We say that I; is additive if and only
if:

(Def. 3) For all vectors z, y of X holds I1(z +y) = I1(x) + L1 (y).

Let X, Y be non empty CLS structures and let I; be a function from X into
Y. We say that I; is homogeneous if and only if:

(Def. 4)  For every vector x of X and for every Complex r holds I (r-x) = r-Ii(z).

Let X be a non empty CLS structure and let Y be a complex linear space.
One can verify that there exists a function from X into Y which is additive and
homogeneous.

Let X, Y be complex linear spaces. A linear operator from X into Y is an
additive homogeneous function from X into Y.

Let X, Y be complex linear spaces. The functor LinearOperators(X,Y) yiel-
ding a subset of ComplexVectSpace(the carrier of X, Y') is defined by:

(Def. 5) For every set « holds = € LinearOperators(X,Y) iff x is a linear operator
from X into Y.

Let X, Y be complex linear spaces. Note that LinearOperators(X,Y) is non
empty.
Next we state two propositions:

(15) For all complex linear spaces X, Y holds LinearOperators(X,Y) is line-
arly closed.

(16) Let X, Y be complex linear spaces. Then (LinearOperators(X,Y),
Zero_(LinearOperators(X, Y'), ComplexVectSpace(the carrier of X, Y)),
Add_(LinearOperators(X, Y'), ComplexVectSpace(the carrier of X, Y)),
Mult_(LinearOperators(X, Y'), ComplexVectSpace(the carrier of X, Y)))
is a subspace of ComplexVectSpace(the carrier of X, Y).

Let X, Y be complex linear spaces. One can check that

(LinearOperators(X, Y'), Zero_(LinearOperators(X, Y'), ComplexVectSpace(the
carrier of X, Y')), Add_(LinearOperators(X,Y), ComplexVectSpace(the carrier
of X, Y)), Mult_(LinearOperators(X,Y'), ComplexVectSpace(the carrier of X,
Y'))) is Abelian, add-associative, right zeroed, right complementable, and com-
plex linear space-like.

Next we state the proposition

(17) Let X, Y be complex linear spaces. Then (LinearOperators(X,Y),
Zero_(LinearOperators(X,Y), ComplexVectSpace(the carrier of X, Y)),
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Add_(LinearOperators(X, Y'), ComplexVectSpace(the carrier of X, Y)),
Mult_(LinearOperators(X, Y'), ComplexVectSpace(the carrier of X, Y)))
is a complex linear space.
Let X, Y be complex linear spaces. The functor CVSpLinOps(X,Y') yielding
a complex linear space is defined as follows:
(Def. 6) CVSpLinOps(X,Y) = (LinearOperators(X, Y'), Zero_(LinearOperators
(X,Y), ComplexVectSpace(the carrier of X, Y')), Add_(LinearOperators(X,
Y'), ComplexVectSpace(the carrier of X, Y)), Mult_(LinearOperators(X,Y),
ComplexVectSpace(the carrier of X, Y))).
Let X, Y be complex linear spaces. Note that CVSpLinOps(X,Y) is strict.
Let X, Y be complex linear spaces. One can check that every element of
CVSpLinOps(X,Y) is function-like and relation-like.
Let X, Y be complex linear spaces, let f be an element of
CVSpLinOps(X,Y), and let v be a vector of X. Then f(v) is a vector of Y.
Next we state four propositions:
(18) Let X, Y be complex linear spaces and f, g, h be vectors of
CVSpLinOps(X,Y). Then h = f + g if and only if for every vector x
of X holds h(z) = f(x) + g(x).
(19) Let X, Y be complex linear spaces, f, h be vectors of
CVSpLinOps(X,Y), and ¢ be a Complex. Then h = ¢ - f if and only
if for every vector x of X holds h(z) = c- f(x).
(20) For all complex linear spaces X, Y holds Ocysprinops(x,v) = (the carrier
of X ) — Oy.
(21) For all complex linear spaces X, Y holds (the carrier of X) —— 0y is a
linear operator from X into Y.

3. CoMPLEX NORMED LINEAR SPACE OF BOUNDED LINEAR OPERATORS

One can prove the following proposition
(22) Let X be a complex normed space, s; be a sequence of X, and g be a
point of X. If s is convergent and lim s; = g, then ||s1]| is convergent and
lim||s1 | = llgll-
Let X, Y be complex normed spaces and let I; be a linear operator from X
into Y. We say that [ is bounded if and only if:
(Def. 7) There exists a real number K such that 0 < K and for every vector x of
X holds ||I1(z)|| < K - ||z
We now state the proposition
(23) Let X, Y be complex normed spaces and f be a linear operator from X
into Y. If for every vector z of X holds f(z) = Oy, then f is bounded.
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Let X, Y be complex normed spaces. Observe that there exists a linear
operator from X into Y which is bounded.

Let X, Y be complex normed spaces. The functor BdLinOps(X,Y") yielding
a subset of CVSpLinOps(X,Y’) is defined as follows:

(Def. 8) For every set x holds x € BdLinOps(X,Y) iff x is a bounded linear
operator from X into Y.

Let X, Y be complex normed spaces. One can check that BdLinOps(X,Y")
is non empty.
One can prove the following two propositions:

(24) For all complex normed spaces X, Y holds BdLinOps(X,Y") is linearly
closed.

(25) For all complex normed spaces X, Y holds (BdLinOps(X,Y),
Zero_(BdLinOps(X,Y), CVSpLinOps(X,Y)), Add_(BdLinOps(X,Y),
CVSpLinOps(X,Y)), Mult_(BdLinOps(X,Y), CVSpLinOps(X,Y))) is a
subspace of CVSpLinOps(X,Y).

Let X, Y be complex normed spaces. Observe that (BdLinOps(X,Y),

Zero_(BdLinOps(X,Y),CVSpLinOps(X,Y)), Add_(BdLinOps(X,Y),

CVSpLinOps(X,Y)), Mult_(BdLinOps(X, YY), CVSpLinOps(X,Y))) is Abe-
lian, add-associative, right zeroed, right complementable, and complex linear
space-like.

Next we state the proposition

(26) For all complex normed spaces X, Y holds (BdLinOps(X,Y),
Zero_(BdLinOps(X,Y), CVSpLinOps(X,Y')), Add-(BdLinOps(X,Y),
CVSpLinOps(X,Y)), Mult_(BdLinOps(X,Y), CVSpLinOps(X,Y))) is a
complex linear space.

Let X, Y be complex normed spaces. The functor CVSpBdLinOps(X,Y")
yielding a complex linear space is defined by:

(Def. 9)  CVSpBdLinOps(X,Y) = (BdLinOps(X,Y), Zero_(BdLinOps(X,Y),
CVSpLinOps(X,Y)), Add_(BdLinOps(X,Y), CVSpLinOps(X, Y)),
Mult_(BdLinOps(X,Y), CVSpLinOps(X, Y))).

Let X, Y be complex normed spaces. One can check that CVSpBdLinOps(X,Y)
is strict.

Let X, Y be complex normed spaces. Note that every element of
CVSpBdLinOps(X,Y) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of

CVSpBdLinOps(X,Y), and let v be a vector of X. Then f(v) is a vector of
Y.

One can prove the following propositions:

(27) Let X, Y be complex normed spaces and f, g, h be vectors of
CVSpBdLinOps(X,Y). Then h = f + g if and only if for every vector
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x of X holds h(z) = f(z) + g(x).
(28) Let X, Y be complex normed spaces, f, h be vectors of
CVSpBdLinOps(X,Y), and ¢ be a Complex. Then h = ¢ f if and only if
for every vector x of X holds h(z) = c¢- f(x).
(29) For all complex normed spaces X, Y holds Ocvsppdrinops(x,y) = (the
carrier of X) —— Oy
Let X, Y be complex normed spaces and let f be a set. Let us assume that
f € BdLinOps(X,Y"). The functor modetrans(f, X,Y") yields a bounded linear
operator from X into Y and is defined as follows:
(Def. 10) modetrans(f, X,Y) = f.
Let X, Y be complex normed spaces and let u be a linear operator from X
into Y. The functor PreNorms(u) yielding a non empty subset of R is defined
as follows:

(Def. 11) PreNorms(u) = {||u(t)||; t ranges over vectors of X: [|t]] < 1}.
We now state three propositions:

(30) Let X, Y be complex normed spaces and g be a bounded linear operator
from X into Y. Then PreNorms(g) is non empty and upper bounded.

(31) Let X, Y be complex normed spaces and g be a linear operator from X
into Y. Then ¢ is bounded if and only if PreNorms(g) is upper bounded.

(32) Let X, Y be complex normed spaces. Then there exists a function
N; from BdLinOps(X,Y) into R such that for every set f if f €
BdLinOps(X,Y), then N;(f) = sup PreNorms(modetrans(f, X,Y")).

Let X, Y be complex normed spaces. The functor BdLinOpsNorm(X,Y)
yields a function from BdLinOps(X,Y) into R and is defined by:
(Def. 12) For every set x such that z € BdLinOps(X,Y’) holds
(BdLinOpsNorm(X,Y))(x) = sup PreNorms(modetrans(z, X,Y)).
We now state two propositions:

(33) For all complex normed spaces X, Y and for every bounded linear ope-
rator f from X into Y holds modetrans(f, X,Y) = f.

(34) For all complex normed spaces X, Y and for every bounded li-
near operator f from X into Y holds (BdLinOpsNorm(X,Y))(f) =
sup PreNorms(f).

Let X, Y be complex normed spaces. The functor CNSpBdLinOps(X,Y")
yields a non empty complex normed space structure and is defined by:
(Def. 13) CNSpBdLinOps(X,Y) = (BdLinOps(X,Y), Zero_(BdLinOps(X,Y),
CVSpLinOps(X,Y)), Add_(BdLinOps(X, Y), CVSpLinOps(X,Y)),
Mult_(BdLinOps(X,Y), CVSpLinOps(X, Y)), BdLinOpsNorm(X, Y)).

The following four propositions are true:
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(35) For all complex normed spaces X, Y holds (the carrier of X) — 0y =
OCNSpBALinOps(X,Y)-

(36) Let X, Y be complex normed spaces, f be a point of CNSpBdLinOps(X,
Y), and ¢ be a bounded linear operator from X into Y. If g = f, then for
every vector ¢t of X holds [|g(t)]| < ||If]l - |I£]]-

(37) For all complex normed spaces X, Y and for every point f of
CNSpBdLinOps(X,Y") holds 0 < || f].

(38) For all complex normed spaces X, Y and for every point f of
CNSdeLlHOpS(X, Y) such that f = OCNSdeLinOps(X,Y) holds 0 = ”fH

Let X, Y be complex normed spaces. One can check that every element of
CNSpBdLinOps(X,Y) is function-like and relation-like.

Let X, Y be complex normed spaces, let f be an element of
CNSpBdLinOps(X,Y), and let v be a vector of X. Then f(v) is a vector of
Y.

We now state several propositions:

(39) Let X, Y be complex normed spaces and f, g, h be points of
CNSpBdLinOps(X,Y). Then h = f + g if and only if for every vector
x of X holds h(z) = f(z) + g(z).

(40) Let X, Y Dbe complex normed spaces, f, h be points of
CNSpBdLinOps(X,Y), and ¢ be a Complex. Then h = ¢ f if and only if
for every vector x of X holds h(z) =c- f(x).

(41) Let X, Y be complex normed spaces, f, g be points of
CNSpBdLinOps(X,Y), and ¢ be a Complex. Then ||f|| = 0 iff f =
OcNspBdLinops(x,y) and [l¢- fl| = [¢[ - [ f] and |[f + gll < [[f]] + llg]l

(42) For all complex normed spaces X, Y holds CNSpBdLinOps(X,Y") is
complex normed space-like.

(43) For all complex normed spaces X, Y holds CNSpBdLinOps(X,Y) is a
complex normed space.

Let X, Y be complex normed spaces. Observe that CNSpBdLinOps(X,Y) is
complex normed space-like, complex linear space-like, Abelian, add-associative,
right zeroed, and right complementable.

One can prove the following proposition

(44) Let X, Y be complex normed spaces and f, g, h be points of
CNSpBdLinOps(X,Y). Then h = f — g if and only if for every vector
x of X holds h(zx) = f(z) — g(x).

4. COMPLEX BANACH SPACE OF BOUNDED LINEAR OPERATORS

Let X be a complex normed space. We say that X is complete if and only
if:



208 NOBORU ENDOU

(Def. 14) For every sequence s; of X such that s; is Cauchy sequence by norm
holds s7 is convergent.
Let us observe that there exists a complex normed space which is complete.
A complex Banach space is a complete complex normed space.
One can prove the following three propositions:

(45) Let X be a complex normed space and s; be a sequence of X. If s is
convergent, then ||s1]| is convergent and lim||s1|| = |[lim s1]|.

(46) Let X, Y be complex normed spaces. Suppose Y is complete. Let s; be
a sequence of CNSpBdLinOps(X,Y). If s; is Cauchy sequence by norm,
then s; is convergent.

(47) For every complex normed space X and for every complex Banach space
Y holds CNSpBdLinOps(X,Y’) is a complex Banach space.

Let X be a complex normed space and let Y be a complex Banach space.
One can verify that CNSpBdLinOps(X,Y) is complete.
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