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The terminology and notation used in this paper are introduced in the following

papers: [15], [2], [14], [7], [1], [17], [3], [4], [10], [9], [16], [13], [11], [12], [8], [5],

and [6].

1. Convergence in Complex Unitary Space

For simplicity, we adopt the following convention: X is a complex unitary

space, x, y, w, g, g1, g2 are points ofX, z is a Complex, q, r,M are real numbers,

s1, s2, s3, s4 are sequences of X, k, n, m are natural numbers, and N1 is an

increasing sequence of naturals.

Let us consider X, s1. We say that s1 is convergent if and only if:

(Def. 1) There exists g such that for every r such that r > 0 there exists m such

that for every n such that n ­ m holds ρ(s1(n), g) < r.

Next we state several propositions:

(1) If s1 is constant, then s1 is convergent.

(2) If s2 is convergent and there exists k such that for every n such that

k ¬ n holds s3(n) = s2(n), then s3 is convergent.

(3) If s2 is convergent and s3 is convergent, then s2 + s3 is convergent.

(4) If s2 is convergent and s3 is convergent, then s2 − s3 is convergent.

(5) If s1 is convergent, then z · s1 is convergent.
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(6) If s1 is convergent, then −s1 is convergent.

(7) If s1 is convergent, then s1 + x is convergent.

(8) If s1 is convergent, then s1 − x is convergent.

(9) s1 is convergent if and only if there exists g such that for every r such

that r > 0 there exists m such that for every n such that n ­ m holds

‖s1(n)− g‖ < r.

Let us consider X, s1. Let us assume that s1 is convergent. The functor

lim s1 yields a point of X and is defined as follows:

(Def. 2) For every r such that r > 0 there exists m such that for every n such

that n ­ m holds ρ(s1(n), lim s1) < r.

One can prove the following propositions:

(10) If s1 is constant and x ∈ rng s1, then lim s1 = x.

(11) If s1 is constant and there exists n such that s1(n) = x, then lim s1 = x.

(12) If s2 is convergent and there exists k such that for every n such that

n ­ k holds s3(n) = s2(n), then lim s2 = lim s3.

(13) If s2 is convergent and s3 is convergent, then lim(s2+s3) = lim s2+lim s3.

(14) If s2 is convergent and s3 is convergent, then lim(s2−s3) = lim s2−lim s3.

(15) If s1 is convergent, then lim(z · s1) = z · lim s1.

(16) If s1 is convergent, then lim(−s1) = −lim s1.

(17) If s1 is convergent, then lim(s1 + x) = lim s1 + x.

(18) If s1 is convergent, then lim(s1 − x) = lim s1 − x.

(19) Suppose s1 is convergent. Then lim s1 = g if and only if for every r such

that r > 0 there exists m such that for every n such that n ­ m holds

‖s1(n)− g‖ < r.

Let us consider X, s1. The functor ‖s1‖ yielding a sequence of real numbers

is defined as follows:

(Def. 3) For every n holds ‖s1‖(n) = ‖s1(n)‖.

One can prove the following three propositions:

(20) If s1 is convergent, then ‖s1‖ is convergent.

(21) If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and lim‖s1‖ =

‖g‖.

(22) If s1 is convergent and lim s1 = g, then ‖s1 − g‖ is convergent and

lim‖s1 − g‖ = 0.

Let us consider X, s1, x. The functor ρ(s1, x) yielding a sequence of real

numbers is defined as follows:

(Def. 4) For every n holds (ρ(s1, x))(n) = ρ(s1(n), x).

One can prove the following propositions:

(23) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent.
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(24) If s1 is convergent and lim s1 = g, then ρ(s1, g) is convergent and

lim ρ(s1, g) = 0.

(25) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖s2 + s3‖ is convergent and lim‖s2 + s3‖ = ‖g1 + g2‖.

(26) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖(s2 +s3)−(g1 +g2)‖ is convergent and lim‖(s2 +s3)−(g1 +g2)‖ = 0.

(27) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖s2 − s3‖ is convergent and lim‖s2 − s3‖ = ‖g1 − g2‖.

(28) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ‖s2 − s3 − (g1 − g2)‖ is convergent and lim‖s2 − s3 − (g1 − g2)‖ = 0.

(29) If s1 is convergent and lim s1 = g, then ‖z · s1‖ is convergent and lim‖z ·

s1‖ = ‖z · g‖.

(30) If s1 is convergent and lim s1 = g, then ‖z · s1 − z · g‖ is convergent and

lim‖z · s1 − z · g‖ = 0.

(31) If s1 is convergent and lim s1 = g, then ‖−s1‖ is convergent and

lim‖−s1‖ = ‖−g‖.

(32) If s1 is convergent and lim s1 = g, then ‖−s1 − −g‖ is convergent and

lim‖−s1 −−g‖ = 0.

(33) If s1 is convergent and lim s1 = g, then ‖(s1 +x)− (g +x)‖ is convergent

and lim‖(s1 + x)− (g + x)‖ = 0.

(34) If s1 is convergent and lim s1 = g, then ‖s1 − x‖ is convergent and

lim‖s1 − x‖ = ‖g − x‖.

(35) If s1 is convergent and lim s1 = g, then ‖s1 − x− (g − x)‖ is convergent

and lim‖s1 − x− (g − x)‖ = 0.

(36) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ρ(s2 + s3, g1 + g2) is convergent and lim ρ(s2 + s3, g1 + g2) = 0.

(37) If s2 is convergent and lim s2 = g1 and s3 is convergent and lim s3 = g2,

then ρ(s2 − s3, g1 − g2) is convergent and lim ρ(s2 − s3, g1 − g2) = 0.

(38) If s1 is convergent and lim s1 = g, then ρ(z · s1, z · g) is convergent and

lim ρ(z · s1, z · g) = 0.

(39) If s1 is convergent and lim s1 = g, then ρ(s1 +x, g +x) is convergent and

lim ρ(s1 + x, g + x) = 0.

Let us consider X, x, r. The functor Ball(x, r) yields a subset of X and is

defined by:

(Def. 5) Ball(x, r) = {y; y ranges over points of X: ‖x− y‖ < r}.

The functor Ball(x, r) yielding a subset of X is defined by:

(Def. 6) Ball(x, r) = {y; y ranges over points of X: ‖x− y‖ ¬ r}.

The functor Sphere(x, r) yielding a subset of X is defined as follows:

(Def. 7) Sphere(x, r) = {y; y ranges over points of X: ‖x− y‖ = r}.
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Next we state a number of propositions:

(40) w ∈ Ball(x, r) iff ‖x− w‖ < r.

(41) w ∈ Ball(x, r) iff ρ(x,w) < r.

(42) If r > 0, then x ∈ Ball(x, r).

(43) If y ∈ Ball(x, r) and w ∈ Ball(x, r), then ρ(y, w) < 2 · r.

(44) If y ∈ Ball(x, r), then y − w ∈ Ball(x− w, r).

(45) If y ∈ Ball(x, r), then y − x ∈ Ball(0X , r).

(46) If y ∈ Ball(x, r) and r ¬ q, then y ∈ Ball(x, q).

(47) w ∈ Ball(x, r) iff ‖x− w‖ ¬ r.

(48) w ∈ Ball(x, r) iff ρ(x,w) ¬ r.

(49) If r ­ 0, then x ∈ Ball(x, r).

(50) If y ∈ Ball(x, r), then y ∈ Ball(x, r).

(51) w ∈ Sphere(x, r) iff ‖x− w‖ = r.

(52) w ∈ Sphere(x, r) iff ρ(x,w) = r.

(53) If y ∈ Sphere(x, r), then y ∈ Ball(x, r).

(54) Ball(x, r) ⊆ Ball(x, r).

(55) Sphere(x, r) ⊆ Ball(x, r).

(56) Ball(x, r) ∪ Sphere(x, r) = Ball(x, r).

2. Cauchy Sequence and Hilbert Space with Complex Coefficient

Let us consider X and let us consider s1. We say that s1 is Cauchy if and

only if:

(Def. 8) For every r such that r > 0 there exists k such that for all n, m such

that n ­ k and m ­ k holds ρ(s1(n), s1(m)) < r.

The following propositions are true:

(57) If s1 is constant, then s1 is Cauchy.

(58) s1 is Cauchy if and only if for every r such that r > 0 there exists k such

that for all n, m such that n ­ k and m ­ k holds ‖s1(n)− s1(m)‖ < r.

(59) If s2 is Cauchy and s3 is Cauchy, then s2 + s3 is Cauchy.

(60) If s2 is Cauchy and s3 is Cauchy, then s2 − s3 is Cauchy.

(61) If s1 is Cauchy, then z · s1 is Cauchy.

(62) If s1 is Cauchy, then −s1 is Cauchy.

(63) If s1 is Cauchy, then s1 + x is Cauchy.

(64) If s1 is Cauchy, then s1 − x is Cauchy.

(65) If s1 is convergent, then s1 is Cauchy.
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Let us consider X and let us consider s2, s3. We say that s2 is compared to

s3 if and only if:

(Def. 9) For every r such that r > 0 there exists m such that for every n such

that n ­ m holds ρ(s2(n), s3(n)) < r.

One can prove the following two propositions:

(66) s1 is compared to s1.

(67) If s2 is compared to s3, then s3 is compared to s2.

Let us consider X and let us consider s2, s3. Let us notice that the predicate

s2 is compared to s3 is reflexive and symmetric.

The following propositions are true:

(68) If s2 is compared to s3 and s3 is compared to s4, then s2 is compared to

s4.

(69) s2 is compared to s3 iff for every r such that r > 0 there exists m such

that for every n such that n ­ m holds ‖s2(n)− s3(n)‖ < r.

(70) If there exists k such that for every n such that n ­ k holds s2(n) =

s3(n), then s2 is compared to s3.

(71) If s2 is Cauchy and compared to s3, then s3 is Cauchy.

(72) If s2 is convergent and compared to s3, then s3 is convergent.

(73) If s2 is convergent and lim s2 = g and s2 is compared to s3, then s3 is

convergent and lim s3 = g.

Let us consider X and let us consider s1. We say that s1 is bounded if and

only if:

(Def. 10) There exists M such that M > 0 and for every n holds ‖s1(n)‖ ¬M.

We now state several propositions:

(74) If s2 is bounded and s3 is bounded, then s2 + s3 is bounded.

(75) If s1 is bounded, then −s1 is bounded.

(76) If s2 is bounded and s3 is bounded, then s2 − s3 is bounded.

(77) If s1 is bounded, then z · s1 is bounded.

(78) If s1 is constant, then s1 is bounded.

(79) For every m there exists M such that M > 0 and for every n such that

n ¬ m holds ‖s1(n)‖ < M.

(80) If s1 is convergent, then s1 is bounded.

(81) If s2 is bounded and compared to s3, then s3 is bounded.

Let us consider X, N1, s1. Then s1 ·N1 is a sequence of X.

We now state several propositions:

(82) Let X be a complex unitary space, s be a sequence of X, N be an

increasing sequence of naturals, and n be a natural number. Then (s ·

N)(n) = s(N(n)).
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(83) s1 is a subsequence of s1.

(84) If s2 is a subsequence of s3 and s3 is a subsequence of s4, then s2 is a

subsequence of s4.

(85) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(86) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

(87) If s1 is bounded and s2 is a subsequence of s1, then s2 is bounded.

(88) If s1 is convergent and s2 is a subsequence of s1, then s2 is convergent.

(89) If s2 is a subsequence of s1 and s1 is convergent, then lim s2 = lim s1.

(90) If s1 is Cauchy and s2 is a subsequence of s1, then s2 is Cauchy.

Let us consider X, let us consider s1, and let us consider k. The functor

s1 ↑ k yields a sequence of X and is defined as follows:

(Def. 11) For every n holds (s1 ↑ k)(n) = s1(n + k).

One can prove the following propositions:

(91) s1 ↑ 0 = s1.

(92) s1 ↑ k ↑m = s1 ↑m ↑ k.

(93) s1 ↑ k ↑m = s1 ↑ (k + m).

(94) (s2 + s3) ↑ k = s2 ↑ k + s3 ↑ k.

(95) (−s1) ↑ k = −s1 ↑ k.

(96) (s2 − s3) ↑ k = s2 ↑ k − s3 ↑ k.

(97) (z · s1) ↑ k = z · (s1 ↑ k).

(98) (s1 ·N1) ↑ k = s1 · (N1 ↑ k).

(99) s1 ↑ k is a subsequence of s1.

(100) If s1 is convergent, then s1 ↑ k is convergent and lim(s1 ↑ k) = lim s1.

(101) If s1 is convergent and there exists k such that s1 = s2 ↑ k, then s2 is

convergent.

(102) If s1 is Cauchy and there exists k such that s1 = s2↑k, then s2 is Cauchy.

(103) If s1 is Cauchy, then s1 ↑ k is Cauchy.

(104) If s2 is compared to s3, then s2 ↑ k is compared to s3 ↑ k.

(105) If s1 is bounded, then s1 ↑ k is bounded.

(106) If s1 is constant, then s1 ↑ k is constant.

Let us consider X. We say that X is complete if and only if:

(Def. 12) For every s1 such that s1 is Cauchy holds s1 is convergent.

The following proposition is true

(107) If X is complete and s1 is Cauchy, then s1 is bounded.

Let us consider X. We say that X is Hilbert if and only if:

(Def. 13) X is a complex unitary space and complete.
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