Complex Linear Space of Complex Sequences

Noboru Endou Gifu National College of Technology

Summary. In this article, we introduce a notion of complex linear space of complex sequence and complex unitary space.

MML Identifier: CSSPACE.

The notation and terminology used here are introduced in the following papers: [18], [21], [22], [17], [5], [6], [10], [3], [7], [16], [9], [12], [19], [4], [1], [11], [15], [14], [2], [20], [13], and [8].

1. LINEAR SPACE OF COMPLEX SEQUENCE

The non empty set the set of complex sequences is defined by:

(Def. 1) For every set x holds $x \in$ the set of complex sequences iff x is a complex sequence.

Let z be a set. Let us assume that $z \in$ the set of complex sequences. The functor $id_{seq}(z)$ yields a complex sequence and is defined by:

(Def. 2)
$$\operatorname{id}_{\operatorname{seq}}(z) = z.$$

Let z be a set. Let us assume that $z \in \mathbb{C}$. The functor $id_{\mathbb{C}}(z)$ yielding a Complex is defined by:

(Def. 3) $\operatorname{id}_{\mathbb{C}}(z) = z$.

One can prove the following propositions:

- (1) There exists a binary operation A_1 on the set of complex sequences such that
- (i) for all elements a, b of the set of complex sequences holds $A_1(a, b) = id_{seq}(a) + id_{seq}(b)$, and
- (ii) A_1 is commutative and associative.

C 2004 University of Białystok ISSN 1426-2630

NOBORU ENDOU

(2) There exists a function f from $[\mathbb{C}, \text{ the set of complex sequences }]$ into the set of complex sequences such that for all sets r, x if $r \in \mathbb{C}$ and $x \in$ the set of complex sequences, then $f(\langle r, x \rangle) = \mathrm{id}_{\mathbb{C}}(r) \mathrm{id}_{\mathrm{seq}}(x)$.

The binary operation $\operatorname{add}_{\operatorname{seq}}$ on the set of complex sequences is defined as follows:

(Def. 4) For all elements a, b of the set of complex sequences holds $\operatorname{add}_{\operatorname{seq}}(a, b) = \operatorname{id}_{\operatorname{seq}}(a) + \operatorname{id}_{\operatorname{seq}}(b)$.

The function $\operatorname{mult}_{\operatorname{seq}}$ from [C, the set of complex sequences] into the set of complex sequences is defined as follows:

(Def. 5) For all sets z, x such that $z \in \mathbb{C}$ and $x \in$ the set of complex sequences holds $\operatorname{mult}_{\operatorname{seq}}(\langle z, x \rangle) = \operatorname{id}_{\mathbb{C}}(z) \operatorname{id}_{\operatorname{seq}}(x)$.

The element CZeroseq of the set of complex sequences is defined by:

(Def. 6) For every natural number n holds $(id_{seq}(CZeroseq))(n) = 0_{\mathbb{C}}$.

One can prove the following propositions:

- (3) For every complex sequence x holds $id_{seq}(x) = x$.
- (4) For all vectors v, w of (the set of complex sequences, CZeroseq, $\operatorname{add}_{\operatorname{seq}}$, $\operatorname{mult}_{\operatorname{seq}}$) holds $v + w = \operatorname{id}_{\operatorname{seq}}(v) + \operatorname{id}_{\operatorname{seq}}(w)$.
- (5) For every Complex z and for every vector v of $\langle \text{the set of complex} \text{ sequences, CZeroseq, add}_{seq}, \text{mult}_{seq} \rangle$ holds $z \cdot v = z \operatorname{id}_{seq}(v)$.

One can check that (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) is Abelian.

Next we state several propositions:

- (6) For all vectors u, v, w of (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) holds (u + v) + w = u + (v + w).
- (7) For every vector v of (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) holds $v + 0_{\text{(the set of complex sequences, CZeroseq, add_{seq}, mult_{seq})} = v$.
- (8) Let v be a vector of \langle the set of complex sequences, CZeroseq, $\operatorname{add}_{\operatorname{seq}}$, $\operatorname{mult}_{\operatorname{seq}} \rangle$. Then there exists a vector w of \langle the set of complex sequences, CZeroseq, $\operatorname{add}_{\operatorname{seq}}$, $\operatorname{mult}_{\operatorname{seq}} \rangle$ such that v + w = 1

 $0_{\langle the \ set \ of \ complex \ sequences, CZeroseq, add_{seq}, mult_{seq} \rangle}.$

- (9) For every Complex z and for all vectors v, w of (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) holds $z \cdot (v + w) = z \cdot v + z \cdot w$.
- (10) For all Complexes z_1 , z_2 and for every vector v of (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) holds $(z_1 + z_2) \cdot v = z_1 \cdot v + z_2 \cdot v$.
- (11) For all Complexes z_1 , z_2 and for every vector v of (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) holds $(z_1 \cdot z_2) \cdot v = z_1 \cdot (z_2 \cdot v)$.
- (12) For every vector v of (the set of complex sequences, CZeroseq, add_{seq}, mult_{seq}) holds $1_{\mathbb{C}} \cdot v = v$.

The complex linear space the linear space of complex sequences is defined as follows:

(Def. 7) The linear space of complex sequences = $\langle \text{the set of complex} sequences, CZeroseq, add_{seq}, mult_{seq} \rangle$.

Let X be a complex linear space and let X_1 be a subset of X. Let us assume that X_1 is linearly closed and non empty. The functor Add₋(X_1, X) yields a binary operation on X_1 and is defined by:

(Def. 8) Add₋ $(X_1, X) =$ (the addition of $X) \upharpoonright X_1, X_1 =$.

Let X be a complex linear space and let X_1 be a subset of X. Let us assume that X_1 is linearly closed and non empty. The functor Mult_ (X_1, X) yields a function from $[\mathbb{C}, X_1]$ into X_1 and is defined as follows:

(Def. 9) Mult₋ $(X_1, X) =$ (the external multiplication of $X) \upharpoonright \mathbb{C}, X_1 =$).

Let X be a complex linear space and let X_1 be a subset of X. Let us assume that X_1 is linearly closed and non empty. The functor $\operatorname{Zero}_{-}(X_1, X)$ yielding an element of X_1 is defined by:

(Def. 10) $\operatorname{Zero}_{-}(X_1, X) = 0_X.$

One can prove the following proposition

(13) Let V be a complex linear space and V_1 be a subset of V. Suppose V_1 is linearly closed and non empty. Then $\langle V_1, \text{Zero}_{-}(V_1, V), \text{Add}_{-}(V_1, V), \text{Mult}_{-}(V_1, V) \rangle$ is a subspace of V.

The subset the set of l2-complex sequences of the linear space of complex sequences is defined by the conditions (Def. 11).

- (Def. 11)(i) The set of l2-complex sequences is non empty, and
 - (ii) for every set x holds $x \in$ the set of l2-complex sequences iff $x \in$ the set of complex sequences and $|id_{seq}(x)| |id_{seq}(x)|$ is summable.

One can prove the following propositions:

- (14) The set of l2-complex sequences is linearly closed and the set of l2-complex sequences is non empty.
- (15) (the set of l2-complex sequences, Zero_(the set of l2-complex sequences, the linear space of complex sequences), Add_(the set of l2complex sequences, the linear space of complex sequences), Mult_(the set of l2-complex sequences, the linear space of complex sequences)) is a subspace of the linear space of complex sequences.
- (16) (the set of l2-complex sequences, Zero_(the set of l2-complex sequences, the linear space of complex sequences), Add_(the set of l2-complex sequences, the linear space of complex sequences), Mult_(the set of l2-complex sequences, the linear space of complex sequences)) is a complex linear space.

NOBORU ENDOU

- (17)(i) The carrier of the linear space of complex sequences = the set of complex sequences,
 - (ii) for every set x holds x is an element of the linear space of complex sequences iff x is a complex sequence,
- (iii) for every set x holds x is a vector of the linear space of complex sequences iff x is a complex sequence,
- (iv) for every vector u of the linear space of complex sequences holds $u = id_{seq}(u)$,
- (v) for all vectors u, v of the linear space of complex sequences holds $u + v = id_{seq}(u) + id_{seq}(v)$, and
- (vi) for every Complex z and for every vector u of the linear space of complex sequences holds $z \cdot u = z$ id_{seq}(u).

2. UNITARY SPACE WITH COMPLEX COEFFICIENT

We introduce complex unitary space structures which are extensions of CLS structure and are systems

 \langle a carrier, a zero, an addition, an external multiplication, a scalar product $\rangle,$

where the carrier is a set, the zero is an element of the carrier, the addition is a binary operation on the carrier, the external multiplication is a function from [\mathbb{C} , the carrier] into the carrier, and the scalar product is a function from [the carrier, the carrier] into \mathbb{C} .

Let us note that there exists a complex unitary space structure which is non empty and strict.

Let *D* be a non empty set, let *Z* be an element of *D*, let *a* be a binary operation on *D*, let *m* be a function from $[\mathbb{C}, D]$ into *D*, and let *s* be a function from [D, D] into \mathbb{C} . Note that $\langle D, Z, a, m, s \rangle$ is non empty.

We adopt the following rules: X is a non empty complex unitary space structure, a, b are Complexes, and x, y are points of X.

Let us consider X and let us consider x, y. The functor (x|y) yields a Complex and is defined by:

(Def. 12) $(x|y) = (\text{the scalar product of } X)(\langle x, y \rangle).$

Let I_1 be a non empty complex unitary space structure. We say that I_1 is complex unitary space-like if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let x, y, w be points of I_1 and given a. Then (x|x) = 0 iff $x = 0_{(I_1)}$ and $0 \leq \Re((x|x))$ and $0 = \Im((x|x))$ and $(x|y) = \overline{(y|x)}$ and ((x+y)|w) = (x|w) + (y|w) and $((a \cdot x)|y) = a \cdot (x|y)$.

Let us note that there exists a non empty complex unitary space structure which is complex unitary space-like, complex linear space-like, Abelian, addassociative, right zeroed, right complementable, and strict.

112

A complex unitary space is a complex unitary space-like complex linear space-like Abelian add-associative right zeroed right complementable non empty complex unitary space structure.

We use the following convention: X is a complex unitary space and x, y, z, u, v are points of X.

Next we state a number of propositions:

(18)
$$(0_X|0_X) = 0.$$

(19) $(x|(y+z)) = (x|y) + (x|z).$

- $(10) \quad (w|(g+z)) = (w|g) + (w|z)$
- (20) $(x|(a \cdot y)) = \overline{a} \cdot (x|y).$
- (21) $((a \cdot x)|y) = (x|(\overline{a} \cdot y)).$
- (22) $((a \cdot x + b \cdot y)|z) = a \cdot (x|z) + b \cdot (y|z).$
- (23) $(x|(a \cdot y + b \cdot z)) = \overline{a} \cdot (x|y) + \overline{b} \cdot (x|z).$
- $(24) \quad ((-x)|y) = (x|-y).$
- (25) ((-x)|y) = -(x|y).
- (26) (x|-y) = -(x|y).
- (27) ((-x)|-y) = (x|y).
- (28) ((x-y)|z) = (x|z) (y|z).

(29)
$$(x|(y-z)) = (x|y) - (x|z).$$

- $(30) \quad ((x-y)|(u-v)) = ((x|u) (x|v) (y|u)) + (y|v).$
- (31) $(0_X|x) = 0.$
- (32) $(x|0_X) = 0.$
- $(33) \quad ((x+y)|(x+y)) = (x|x) + (x|y) + (y|x) + (y|y).$
- $(34) \quad ((x+y)|(x-y)) = (((x|x) (x|y)) + (y|x)) (y|y).$
- (35) ((x-y)|(x-y)) = ((x|x) (x|y) (y|x)) + (y|y).
- (36) $|(x|x)| = \Re((x|x)).$
- $(37) \quad |(x|y)| \leqslant \sqrt{|(x|x)|} \cdot \sqrt{|(y|y)|}.$

Let us consider X and let us consider x, y. We say that x, y are orthogonal if and only if:

(Def. 14) (x|y) = 0.

Let us note that the predicate x, y are orthogonal is symmetric. We now state several propositions:

- (38) If x, y are orthogonal, then x, -y are orthogonal.
- (39) If x, y are orthogonal, then -x, y are orthogonal.
- (40) If x, y are orthogonal, then -x, -y are orthogonal.
- (41) $x, 0_X$ are orthogonal.
- (42) If x, y are orthogonal, then ((x+y)|(x+y)) = (x|x) + (y|y).
- (43) If x, y are orthogonal, then ((x y)|(x y)) = (x|x) + (y|y).

Let us consider X, x. The functor ||x|| yields a real number and is defined as follows:

(Def. 15) $||x|| = \sqrt{|(x|x)|}$.

We now state several propositions:

- (44) ||x|| = 0 iff $x = 0_X$.
- $(45) \quad ||a \cdot x|| = |a| \cdot ||x||.$
- $(46) \quad 0 \leqslant \|x\|.$
- $(47) \quad |(x|y)| \le ||x|| \cdot ||y||.$
- (48) $||x+y|| \le ||x|| + ||y||.$
- $(49) \quad \|-x\| = \|x\|.$
- (50) $||x|| ||y|| \le ||x y||.$
- (51) $|||x|| ||y||| \le ||x y||.$

Let us consider X, x, y. The functor $\rho(x, y)$ yielding a real number is defined as follows:

(Def. 16)
$$\rho(x, y) = ||x - y||.$$

One can prove the following proposition

(52) $\rho(x,y) = \rho(y,x).$

Let us consider X, x, y. Let us observe that the functor $\rho(x, y)$ is commutative.

We now state a number of propositions:

- (53) $\rho(x, x) = 0.$
- (54) $\rho(x,z) \leq \rho(x,y) + \rho(y,z).$
- (55) $x \neq y$ iff $\rho(x, y) \neq 0$.
- (56) $\rho(x,y) \ge 0.$
- (57) $x \neq y \text{ iff } \rho(x, y) > 0.$
- (58) $\rho(x,y) = \sqrt{|((x-y)|(x-y))|}.$
- (59) $\rho(x+y,u+v) \leq \rho(x,u) + \rho(y,v).$
- (60) $\rho(x-y,u-v) \leq \rho(x,u) + \rho(y,v).$
- (61) $\rho(x-z, y-z) = \rho(x, y).$
- (62) $\rho(x-z,y-z) \leq \rho(z,x) + \rho(z,y).$

We follow the rules: s_1 , s_2 , s_3 , s_4 are sequences of X and k, n, m are natural numbers.

The scheme Ex Seq in CUS deals with a non empty complex unitary space structure \mathcal{A} and a unary functor \mathcal{F} yielding a point of \mathcal{A} , and states that:

There exists a sequence s_1 of \mathcal{A} such that for every n holds $s_1(n) =$

 $\mathcal{F}(n)$

for all values of the parameters.

Let us consider X and let us consider s_1 . The functor $-s_1$ yielding a sequence of X is defined by:

(Def. 17) For every n holds $(-s_1)(n) = -s_1(n)$.

Let us consider X, let us consider s_1 , and let us consider x. The functor $s_1 + x$ yielding a sequence of X is defined by:

(Def. 18) For every *n* holds $(s_1 + x)(n) = s_1(n) + x$.

One can prove the following proposition

 $(63) \quad s_2 + s_3 = s_3 + s_2.$

Let us consider X, s_2 , s_3 . Let us observe that the functor $s_2 + s_3$ is commutative.

One can prove the following propositions:

 $(64) \quad s_2 + (s_3 + s_4) = (s_2 + s_3) + s_4.$

(65) If
$$s_2$$
 is constant and s_3 is constant and $s_1 = s_2 + s_3$, then s_1 is constant

- (66) If s_2 is constant and s_3 is constant and $s_1 = s_2 s_3$, then s_1 is constant.
- If s_2 is constant and $s_1 = a \cdot s_2$, then s_1 is constant. (67)
- s_1 is constant iff for every n holds $s_1(n) = s_1(n+1)$. (68)
- s_1 is constant iff for all n, k holds $s_1(n) = s_1(n+k)$. (69)
- s_1 is constant iff for all n, m holds $s_1(n) = s_1(m)$. (70)

$$(71) \quad s_2 - s_3 = s_2 + -s_3.$$

(72)
$$s_1 = s_1 + 0_X$$
.

$$(73) \quad a \cdot (s_2 + s_3) = a \cdot s_2 + a \cdot s_3.$$

(74)
$$(a+b) \cdot s_1 = a \cdot s_1 + b \cdot s_1.$$

(75) $(a \cdot b) \cdot s_1 = a \cdot (b \cdot s_1).$

$$(76) \quad 1_{\mathbb{C}} \cdot s_1 = s_1.$$

- (77) $(-1_{\mathbb{C}}) \cdot s_1 = -s_1.$
- (78) $s_1 x = s_1 + -x$.
- $(79) \quad s_2 s_3 = -(s_3 s_2).$
- (80) $s_1 = s_1 0_X$.

(81)
$$s_1 = --s_1.$$

$$(82) \quad s_2 - (s_3 + s_4) = s_2 - s_3 - s_4.$$

(83)
$$(s_2 + s_3) - s_4 = s_2 + (s_3 - s_4).$$

(84) $s_2 - (s_2 - s_4) = (s_2 - s_2) + s_4.$

$$(84) \quad s_2 - (s_3 - s_4) = (s_2 - s_3) + s_4.$$

 $(85) \quad a \cdot (s_2 - s_3) = a \cdot s_2 - a \cdot s_3.$

NOBORU ENDOU

3. Complex Unitary Space of Complex Sequence

Next we state the proposition

(86) There exists a function f from [the set of l2-complex sequences, the set of l2-complex sequences] into \mathbb{C} such that for all sets x, y if $x \in$ the set of l2-complex sequences and $y \in$ the set of l2-complex sequences, then $f(\langle x, y \rangle) = \sum (\operatorname{id}_{\operatorname{seq}}(x) \operatorname{id}_{\operatorname{seq}}(y)).$

The function scalar_{cl} from [: the set of l2-complex sequences, the set of l2-complex sequences :] into \mathbb{C} is defined by the condition (Def. 19).

(Def. 19) Let x, y be sets. Suppose $x \in$ the set of l2-complex sequences and $y \in$ the set of l2-complex sequences. Then $\operatorname{scalar_{cl}}(\langle x, y \rangle) = \sum (\operatorname{id}_{\operatorname{seq}}(x) \operatorname{id}_{\operatorname{seq}}(y))$. Let us observe that \langle the set of l2-complex sequences, Zero_(the set of l2-complex sequences, the linear space of complex sequences), Add_(the set of l2-complex sequences, the linear space of complex sequences), Mult_(the set of l2-complex sequences, the linear space of complex sequences), scalar_{cl} \rangle is non empty.

The non empty complex unitary space structure Complex12-Space is defined by the condition (Def. 20).

(Def. 20) Complexl2-Space = (the set of l2-complex sequences, Zero_(the set of l2-complex sequences, the linear space of complex sequences), Add_(the set of l2-complex sequences, the linear space of complex sequences), Mult_(the set of l2-complex sequences, the linear space of complex sequences), scalar_{cl}).

The following propositions are true:

- (87) Let l be a complex unitary space structure. Suppose (the carrier of l, the zero of l, the addition of l, the external multiplication of l) is a complex linear space. Then l is a complex linear space.
- (88) For every complex sequence s_1 such that for every natural number n holds $s_1(n) = 0_{\mathbb{C}}$ holds s_1 is summable and $\sum s_1 = 0_{\mathbb{C}}$.

Let us observe that Complexl2-Space is Abelian, add-associative, right zeroed, right complementable, and complex linear space-like.

References

- Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.

- [8] Noboru Endou. Complex linear space and complex normed space. *Formalized Mathematics*, 12(2):93–102, 2004.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [11] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [14] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449– 452, 1991.
- [15] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403–410, 1997.
- [16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [20] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.

Received January 26, 2004