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Summary. In this article, we introduce a notion of complex linear space
of complex sequence and complex unitary space.

MML Identifier: CSSPACE.

The notation and terminology used here are introduced in the following papers:
[18], [21], [22], [17], [5], [6], [10], [3], [7], [16], [9], [12], [19], [4], [1], [11], [15], [14],
[2], [20], [13], and [8].

1. LINEAR SPACE OF COMPLEX SEQUENCE

The non empty set the set of complex sequences is defined by:
(Def. 1) For every set x holds z € the set of complex sequences iff x is a complex
sequence.
Let z be a set. Let us assume that z € the set of complex sequences. The
functor idgeq(2) yields a complex sequence and is defined by:
(Def. 2)  idgeq(2) = 2.
Let z be a set. Let us assume that z € C. The functor idc(z) yielding a
Complex is defined by:
(Def. 3) idc(z) = =.
One can prove the following propositions:
(1) There exists a binary operation A; on the set of complex sequences such
that
(i)  for all elements a, b of the set of complex sequences holds 4;(a, b) =
idgeq(a) + idseq(b), and
(ii)  A; is commutative and associative.
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(2) There exists a function f from [ C, the set of complex sequences ] into
the set of complex sequences such that for all sets r, z if » € C and x € the
set of complex sequences, then f({r, x)) = idc(r) idseq().

The binary operation addseq on the set of complex sequences is defined as
follows:
(Def. 4) For all elements a, b of the set of complex sequences holds addseq(a,
b) = idseq(a) + idseq(b).
The function multseq from [ C, the set of complex sequences ] into the set of
complex sequences is defined as follows:
(Def. 5) For all sets z, x such that z € C and x € the set of complex sequences
holds multgeq((z, z)) = idc(z) idseq(z).
The element CZeroseq of the set of complex sequences is defined by:
(Def. 6) For every natural number n holds (idseq(CZeroseq))(n) = Oc.
One can prove the following propositions:

(3) For every complex sequence z holds idseq(z) = .

(4) For all vectors v, w of (the set of complex sequences, CZeroseq, addscq,
multgeq) holds v + w = idgeq(v) + idseq(w).

(5) For every Complex z and for every vector v of (the set of complex
sequences, CZeroseq, addgeq, Multseq) holds z - v = 2 idgeq(v).

One can check that (the set of complex sequences, CZeroseq, addseq, multseq)
is Abelian.
Next we state several propositions:

(6) For all vectors u, v, w of (the set of complex sequences, CZeroseq, addseq,
multgeq) holds (u+v) +w =u+ (v +w).

(7) For every vector v of (the set of complex sequences, CZeroseq, addseq,
mUltseq> holds v + O(the set of complex sequences,CZeroseq,addgeq,multseq) — U-

(8) Let v be a vector of (the set of complex sequences, CZeroseq, addseq;
multgeq). Then there exists a vector w of (the set of complex
sequences, CZeroseq, addseq, Multgeq) such that v+ w =
O(the set of complex sequences,CZeroseq,addseq,multseq)

(9) For every Complex z and for all vectors v, w of (the set of complex
sequences, CZeroseq, addgeq, multgeq) holds z - (v+w) =z v+ 2z - w.

(10) For all Complexes 21, 22 and for every vector v of (the set of complex
sequences, CZeroseq, addgeq, multseq) holds (21 + 22) - v =21 - v+ 22 - v.

(11) For all Complexes z1, z2 and for every vector v of (the set of complex
sequences, CZeroseq, addseq, Multseq) holds (z1 - 22) - v = 21 - (22 - v).

(12) For every vector v of (the set of complex sequences, CZeroseq, addseq,
multgeq) holds 1¢ - v = v.
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The complex linear space the linear space of complex sequences is defined
as follows:

(Def. 7) The linear space of complex sequences = (the set of complex
sequences, CZeroseq, addseq, Multseq)-

Let X be a complex linear space and let X; be a subset of X. Let us assume
that X is linearly closed and non empty. The functor Add_ (X, X) yields a
binary operation on X; and is defined by:

(Def. 8) Add_(X1, X) = (the addition of X)[[ X1, X7 .
Let X be a complex linear space and let X; be a subset of X. Let us assume

that X is linearly closed and non empty. The functor Mult_(X7, X) yields a
function from [ C, X; ] into X; and is defined as follows:

(Def. 9) Mult_(X;, X) = (the external multiplication of X)[[C, X7 .

Let X be a complex linear space and let X; be a subset of X. Let us assume
that X is linearly closed and non empty. The functor Zero_(X1, X) yielding an
element of X is defined by:

(Def. 10) Zero_(X;,X) = 0x.
One can prove the following proposition

(13) Let V be a complex linear space and Vj be a subset of V. Suppose V] is
linearly closed and non empty. Then (Vi, Zero_(V1, V), Add_(V4,V),
Mult_(V4,V)) is a subspace of V.

The subset the set of 12-complex sequences of the linear space of complex
sequences is defined by the conditions (Def. 11).

(Def. 11)(i)  The set of 12-complex sequences is non empty, and

(ii)  for every set x holds x € the set of 12-complex sequences iff « € the set
of complex sequences and |idgseq ()| | idseq ()| is summable.

One can prove the following propositions:

(14) The set of 12-complex sequences is linearly closed and the set of 12-
complex sequences is non empty.

(15) (the set of 12-complex sequences,Zero_(the set of 12-complex
sequences, the linear space of complex sequences), Add_(the set of 12-
complex sequences, the linear space of complex sequences), Mult_(the set
of 12-complex sequences, the linear space of complex sequences)) is a sub-
space of the linear space of complex sequences.

(16) (the set of 12-complex sequences,Zero_(the set of 12-complex
sequences, the linear space of complex sequences), Add_(the set of 12-
complex sequences, the linear space of complex sequences), Mult_(the set of
12-complex sequences, the linear space of complex sequences)) is a complex
linear space.
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(17)(i)  The carrier of the linear space of complex sequences = the set of
complex sequences,
(ii)  for every set x holds z is an element of the linear space of complex
sequences iff x is a complex sequence,
(ili)  for every set  holds x is a vector of the linear space of complex sequ-
ences iff z is a complex sequence,
(iv)  for every vector u of the linear space of complex sequences holds u =
i (1),
(v)  for all vectors u, v of the linear space of complex sequences holds
U+ v = idgeq(u) + idseq(v), and
(vi) for every Complex z and for every vector u of the linear space of complex
sequences holds z - u = 2 idgeq(u).

2. UNITARY SPACE WITH COMPLEX COEFFICIENT

We introduce complex unitary space structures which are extensions of CLS
structure and are systems

( a carrier, a zero, an addition, an external multiplication, a scalar product
)
where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, the external multiplication is a function from
E C, the carrier ] into the carrier, and the scalar product is a function from [ the
carrier, the carrier ] into C.

Let us note that there exists a complex unitary space structure which is non
empty and strict.

Let D be a non empty set, let Z be an element of D, let a be a binary
operation on D, let m be a function from [ C, D ] into D, and let s be a function
from [ D, D] into C. Note that (D, Z, a,m, s) is non empty.

We adopt the following rules: X is a non empty complex unitary space
structure, a, b are Complexes, and x, y are points of X.

Let us consider X and let us consider z, y. The functor (z|y) yields a Complex
and is defined by:

(Def. 12) (z|y) = (the scalar product of X)({z, y)).

Let I; be a non empty complex unitary space structure. We say that I is
complex unitary space-like if and only if the condition (Def. 13) is satisfied.
(Def. 13) Let z, y, w be points of I; and given a. Then (z|z) = 0 iff = 0(p))

and 0 < R((z|x)) and 0 = I((z|z)) and (z|y) = (y|z) and ((z + y)|w) =
(z|lw) + (y|w) and ((a - z)|y) = a - (z[y).
Let us note that there exists a non empty complex unitary space structure
which is complex unitary space-like, complex linear space-like, Abelian, add-
associative, right zeroed, right complementable, and strict.
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A complex unitary space is a complex unitary space-like complex linear

space-like Abelian add-associative right zeroed right complementable non empty

complex unitary space structure.

We use the following convention: X is a complex unitary space and z, vy, z,

u, v are points of X.

Next we state a number of propositions:
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(0x|0x) = 0.

(a-z)ly) = (z|(a -

(a-z+b-y)lz) =a-(z[2) +b- (y|2).
zl(a-y+b-2))=a-(zly) + b - (z]2).
(—2)ly) = (z[—y)

(—2)ly) = —(zly)

z|—y) = —(=|y)

—z)|-y) = (z|y)

zl(y — 2)) = (zly) — (z[2).

(@ = y)l(u—v)) = ((z[u) = (2[v) = (y|v)) + (y|v).
Ox|z) = 0.

x|0x) = 0.

(@ +y)l(z+y)) = (zlz) + (z|y) + (y]2) + (yly).

(@ + Yl —y) = (((z|lz) — (z[y)) + (yl2)) — (Yly)-
(= ylx —y)) = ((z[x) = (z]y) — (ylz)) + (y[y)-

@l < VI(zl)] - /I (yly)l-

Let us consider X and let us consider z, y. We say that x, y are orthogonal

if and only if:

(Def. 14)

(z[y) = 0.

Let us note that the predicate x, y are orthogonal is symmetric.
We now state several propositions:

38

o
(e}

If z, y are orthogonal, then x, —y are orthogonal.
If x, y are orthogonal, then —z, y are orthogonal.
If 2, y are orthogonal, then —z, —y are orthogonal.

x, 0x are orthogonal.

(z]z) + (yly).
(z]z) + (yly).

If z, y are orthogonal, then ((z 4+ y)|(z +y))
If x, y are orthogonal, then ((z — y)|(z — v))

113
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Let us consider X, x. The functor ||z|| yields a real number and is defined
as follows:
(Def. 15)  [[z]| = /|(z[|z)].
We now state several propositions:
(44) ||z =0iff z = 0x.
(45) la-z[| = |a] - [|z].
(46) 0 < [|z|.
(47 |yl <= - [yl
(48) lz+yll < llzll + [lyll-
(49)
(50)
(51)

5

=l = =]
21l = llyll < fl = ylI
[zl =1yl < llz = yll-

Let us consider X, x, y. The functor p(z,y) yielding a real number is defined
as follows:

(Def. 16)  p(z,y) = [lz -yl
One can prove the following proposition

(52) p(z,y) = p(y, ).
Let us consider X, z, y. Let us observe that the functor p(z,y) is commuta-

—_

tive.
We now state a number of propositions:

D
[\

(53) p(z,x) =0.

(54)  plz,2) < p(z,y) + p(y, 2).

(55) =z #yiff p(z,y) # 0.

(56) p(z,y) > 0.

(57) x # vy iff p(z,y) > 0.

(58) p(z,y) = VI((x - y)lz — )]
(59) plz+y,u+v) < plz,u) + p(y,v)
(60) plz —y,u—v) < pz,u)+ p(y,v)
(61) plz—zy—2)=p

(62)

We follow the rules: s1, so, s3, s4 are sequences of X and k, n, m are natural
numbers.
The scheme Ez Seq in CUS deals with a non empty complex unitary space
structure A and a unary functor F yielding a point of A, and states that:
There exists a sequence s; of A such that for every n holds s1(n) =
F(n)
for all values of the parameters.
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Let us consider X and let us consider s;. The functor —s; yielding a sequence
of X is defined by:

(Def. 17)

For every n holds (—s1)(n) = —s1(n).

Let us consider X, let us consider s1, and let us consider x. The functor

s1 + x yielding a sequence of X is defined by:

(Def. 18)

For every n holds (s; + x)(n) = s1(n) + «.

One can prove the following proposition

(63)

So + 83 = 83 + S2.

Let us consider X, so, s3. Let us observe that the functor sy + s3 is commu-

tative.

One can prove the following propositions:
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So + (s34 s4) = (s2 + s3) + s4.

If s5 is constant and sg is constant and s; = s + s3, then s1 is constant.
If so is constant and s3 is constant and s; = so — s3, then s1 is constant.
If s9 is constant and s; = a - s9, then sy is constant.
s1 is constant iff for every n holds si(n) = si(n + 1).
s1 is constant iff for all n, k holds s1(n) = s1(n + k).
s1 is constant iff for all n, m holds s1(n) = s1(m).

S9 — 83 = 89 + —S3.

s1 =581+ 0x.

a-(s2+s3)=a-sy+a-ss.
(a+b)-s1=a-s1+0b-s1.

(a-b)-s1=a-(b-s1).

1c - s1 = s1.

(—1¢) - 81 = —s1.

S1—x =81+ —x.

S9 — 83 = —(s3 — $2).

s1 =s1 — Ox.

1 = ——s1.

S9 — (83 4 S4) = S2 — S3 — S4.

(s2+ s3) — 84 = S2 + (83 — S4).

So — (83 — s4) = (s2 — s3) + s4.

a-(s2—83)=a-s2—a-ss.
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3. COMPLEX UNITARY SPACE OF COMPLEX SEQUENCE

Next we state the proposition

(86) There exists a function f from [ the set of 12-complex sequences, the set
of 12-complex sequences | into C such that for all sets z, y if = € the set of
12-complex sequences and y € the set of 12-complex sequences, then f({z,
y)) = >_(idseq () idseq(y))-

The function scalarg from [the set of 12-complex sequences, the set of 12-
complex sequences ] into C is defined by the condition (Def. 19).

(Def. 19) Let x, y be sets. Suppose z € the set of 12-complex sequences and y € the
set of 12-complex sequences. Then scalarq ({(z, y)) = > (idseq(x) idseq(y) )-

Let us observe that (the set of 12-complex sequences, Zero_(the set of 12-
complex sequences, the linear space of complex sequences), Add_(the set of 12-
complex sequences, the linear space of complex sequences), Mult_(the set of
12-complex sequences, the linear space of complex sequences), scalarg) is non
empty.

The non empty complex unitary space structure ComplexI2-Space is defined
by the condition (Def. 20).

(Def. 20) Complexl2-Space = (the set of 12-complex sequences, Zero_(the set of 12-
complex sequences, the linear space of complex sequences), Add_(the set of
12-complex sequences, the linear space of complex sequences), Mult_(the set
of 12-complex sequences, the linear space of complex sequences), scalar.;).

The following propositions are true:

(87) Let I be a complex unitary space structure. Suppose (the carrier of [, the
zero of [, the addition of I, the external multiplication of [) is a complex
linear space. Then [ is a complex linear space.

(88) For every complex sequence s; such that for every natural number n
holds s1(n) = Oc¢ holds s; is summable and > s; = Oc.

Let us observe that Complexl2-Space is Abelian, add-associative, right ze-
roed, right complementable, and complex linear space-like.
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