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The notation and terminology used here are introduced in the following papers:

[18], [21], [22], [17], [5], [6], [10], [3], [7], [16], [9], [12], [19], [4], [1], [11], [15], [14],

[2], [20], [13], and [8].

1. Linear Space of Complex Sequence

The non empty set the set of complex sequences is defined by:

(Def. 1) For every set x holds x ∈ the set of complex sequences iff x is a complex

sequence.

Let z be a set. Let us assume that z ∈ the set of complex sequences. The

functor idseq(z) yields a complex sequence and is defined by:

(Def. 2) idseq(z) = z.

Let z be a set. Let us assume that z ∈ C. The functor idC(z) yielding a

Complex is defined by:

(Def. 3) idC(z) = z.

One can prove the following propositions:

(1) There exists a binary operation A1 on the set of complex sequences such

that

(i) for all elements a, b of the set of complex sequences holds A1(a, b) =

idseq(a) + idseq(b), and

(ii) A1 is commutative and associative.
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(2) There exists a function f from [: C, the set of complex sequences :] into

the set of complex sequences such that for all sets r, x if r ∈ C and x ∈ the

set of complex sequences, then f(〈〈r, x〉〉) = idC(r) idseq(x).

The binary operation addseq on the set of complex sequences is defined as

follows:

(Def. 4) For all elements a, b of the set of complex sequences holds addseq(a,

b) = idseq(a) + idseq(b).

The function multseq from [: C, the set of complex sequences :] into the set of

complex sequences is defined as follows:

(Def. 5) For all sets z, x such that z ∈ C and x ∈ the set of complex sequences

holds multseq(〈〈z, x〉〉) = idC(z) idseq(x).

The element CZeroseq of the set of complex sequences is defined by:

(Def. 6) For every natural number n holds (idseq(CZeroseq))(n) = 0C.

One can prove the following propositions:

(3) For every complex sequence x holds idseq(x) = x.

(4) For all vectors v, w of 〈the set of complex sequences,CZeroseq, addseq,

multseq〉 holds v + w = idseq(v) + idseq(w).

(5) For every Complex z and for every vector v of 〈the set of complex

sequences,CZeroseq, addseq,multseq〉 holds z · v = z idseq(v).

One can check that 〈the set of complex sequences,CZeroseq, addseq,multseq〉

is Abelian.

Next we state several propositions:

(6) For all vectors u, v, w of 〈the set of complex sequences,CZeroseq, addseq,

multseq〉 holds (u + v) + w = u + (v + w).

(7) For every vector v of 〈the set of complex sequences,CZeroseq, addseq,

multseq〉 holds v + 0〈the set of complex sequences,CZeroseq,addseq,multseq〉 = v.

(8) Let v be a vector of 〈the set of complex sequences,CZeroseq, addseq,

multseq〉. Then there exists a vector w of 〈the set of complex

sequences,CZeroseq, addseq,multseq〉 such that v + w =

0〈the set of complex sequences,CZeroseq,addseq,multseq〉.

(9) For every Complex z and for all vectors v, w of 〈the set of complex

sequences,CZeroseq, addseq,multseq〉 holds z · (v + w) = z · v + z · w.

(10) For all Complexes z1, z2 and for every vector v of 〈the set of complex

sequences,CZeroseq, addseq,multseq〉 holds (z1 + z2) · v = z1 · v + z2 · v.

(11) For all Complexes z1, z2 and for every vector v of 〈the set of complex

sequences,CZeroseq, addseq,multseq〉 holds (z1 · z2) · v = z1 · (z2 · v).

(12) For every vector v of 〈the set of complex sequences,CZeroseq, addseq,

multseq〉 holds 1C · v = v.
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The complex linear space the linear space of complex sequences is defined

as follows:

(Def. 7) The linear space of complex sequences = 〈the set of complex

sequences,CZeroseq, addseq,multseq〉.

Let X be a complex linear space and let X1 be a subset of X. Let us assume

that X1 is linearly closed and non empty. The functor Add (X1, X) yields a

binary operation on X1 and is defined by:

(Def. 8) Add (X1, X) = (the addition of X)↾[:X1, X1 :].

Let X be a complex linear space and let X1 be a subset of X. Let us assume

that X1 is linearly closed and non empty. The functor Mult (X1, X) yields a

function from [: C, X1 :] into X1 and is defined as follows:

(Def. 9) Mult (X1, X) = (the external multiplication of X)↾[: C, X1 :].

Let X be a complex linear space and let X1 be a subset of X. Let us assume

that X1 is linearly closed and non empty. The functor Zero (X1, X) yielding an

element of X1 is defined by:

(Def. 10) Zero (X1, X) = 0X .

One can prove the following proposition

(13) Let V be a complex linear space and V1 be a subset of V . Suppose V1 is

linearly closed and non empty. Then 〈V1,Zero (V1, V ),Add (V1, V ),

Mult (V1, V )〉 is a subspace of V .

The subset the set of l2-complex sequences of the linear space of complex

sequences is defined by the conditions (Def. 11).

(Def. 11)(i) The set of l2-complex sequences is non empty, and

(ii) for every set x holds x ∈ the set of l2-complex sequences iff x ∈ the set

of complex sequences and | idseq(x)| | idseq(x)| is summable.

One can prove the following propositions:

(14) The set of l2-complex sequences is linearly closed and the set of l2-

complex sequences is non empty.

(15) 〈the set of l2-complex sequences,Zero (the set of l2-complex

sequences, the linear space of complex sequences),Add (the set of l2-

complex sequences, the linear space of complex sequences),Mult (the set

of l2-complex sequences, the linear space of complex sequences)〉 is a sub-

space of the linear space of complex sequences.

(16) 〈the set of l2-complex sequences,Zero (the set of l2-complex

sequences, the linear space of complex sequences),Add (the set of l2-

complex sequences, the linear space of complex sequences),Mult (the set of

l2-complex sequences, the linear space of complex sequences)〉 is a complex

linear space.
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(17)(i) The carrier of the linear space of complex sequences = the set of

complex sequences,

(ii) for every set x holds x is an element of the linear space of complex

sequences iff x is a complex sequence,

(iii) for every set x holds x is a vector of the linear space of complex sequ-

ences iff x is a complex sequence,

(iv) for every vector u of the linear space of complex sequences holds u =

idseq(u),

(v) for all vectors u, v of the linear space of complex sequences holds

u + v = idseq(u) + idseq(v), and

(vi) for every Complex z and for every vector u of the linear space of complex

sequences holds z · u = z idseq(u).

2. Unitary Space with Complex Coefficient

We introduce complex unitary space structures which are extensions of CLS

structure and are systems

〈 a carrier, a zero, an addition, an external multiplication, a scalar product

〉,

where the carrier is a set, the zero is an element of the carrier, the addition is

a binary operation on the carrier, the external multiplication is a function from

[: C, the carrier :] into the carrier, and the scalar product is a function from [: the

carrier, the carrier :] into C.

Let us note that there exists a complex unitary space structure which is non

empty and strict.

Let D be a non empty set, let Z be an element of D, let a be a binary

operation on D, let m be a function from [: C, D :] into D, and let s be a function

from [:D, D :] into C. Note that 〈D, Z, a,m, s〉 is non empty.

We adopt the following rules: X is a non empty complex unitary space

structure, a, b are Complexes, and x, y are points of X.

Let us considerX and let us consider x, y. The functor (x|y) yields a Complex

and is defined by:

(Def. 12) (x|y) = (the scalar product of X)(〈〈x, y〉〉).

Let I1 be a non empty complex unitary space structure. We say that I1 is

complex unitary space-like if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let x, y, w be points of I1 and given a. Then (x|x) = 0 iff x = 0(I1)

and 0 ¬ ℜ((x|x)) and 0 = ℑ((x|x)) and (x|y) = (y|x) and ((x + y)|w) =

(x|w) + (y|w) and ((a · x)|y) = a · (x|y).

Let us note that there exists a non empty complex unitary space structure

which is complex unitary space-like, complex linear space-like, Abelian, add-

associative, right zeroed, right complementable, and strict.



complex linear space of complex sequences 113

A complex unitary space is a complex unitary space-like complex linear

space-like Abelian add-associative right zeroed right complementable non empty

complex unitary space structure.

We use the following convention: X is a complex unitary space and x, y, z,

u, v are points of X.

Next we state a number of propositions:

(18) (0X |0X) = 0.

(19) (x|(y + z)) = (x|y) + (x|z).

(20) (x|(a · y)) = a · (x|y).

(21) ((a · x)|y) = (x|(a · y)).

(22) ((a · x + b · y)|z) = a · (x|z) + b · (y|z).

(23) (x|(a · y + b · z)) = a · (x|y) + b · (x|z).

(24) ((−x)|y) = (x|−y).

(25) ((−x)|y) = −(x|y).

(26) (x|−y) = −(x|y).

(27) ((−x)|−y) = (x|y).

(28) ((x− y)|z) = (x|z)− (y|z).

(29) (x|(y − z)) = (x|y)− (x|z).

(30) ((x− y)|(u− v)) = ((x|u)− (x|v)− (y|u)) + (y|v).

(31) (0X |x) = 0.

(32) (x|0X) = 0.

(33) ((x + y)|(x + y)) = (x|x) + (x|y) + (y|x) + (y|y).

(34) ((x + y)|(x− y)) = (((x|x)− (x|y)) + (y|x))− (y|y).

(35) ((x− y)|(x− y)) = ((x|x)− (x|y)− (y|x)) + (y|y).

(36) |(x|x)| = ℜ((x|x)).

(37) |(x|y)| ¬
√

|(x|x)| ·
√

|(y|y)|.

Let us consider X and let us consider x, y. We say that x, y are orthogonal

if and only if:

(Def. 14) (x|y) = 0.

Let us note that the predicate x, y are orthogonal is symmetric.

We now state several propositions:

(38) If x, y are orthogonal, then x, −y are orthogonal.

(39) If x, y are orthogonal, then −x, y are orthogonal.

(40) If x, y are orthogonal, then −x, −y are orthogonal.

(41) x, 0X are orthogonal.

(42) If x, y are orthogonal, then ((x + y)|(x + y)) = (x|x) + (y|y).

(43) If x, y are orthogonal, then ((x− y)|(x− y)) = (x|x) + (y|y).
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Let us consider X, x. The functor ‖x‖ yields a real number and is defined

as follows:

(Def. 15) ‖x‖ =
√

|(x|x)|.

We now state several propositions:

(44) ‖x‖ = 0 iff x = 0X .

(45) ‖a · x‖ = |a| · ‖x‖.

(46) 0 ¬ ‖x‖.

(47) |(x|y)| ¬ ‖x‖ · ‖y‖.

(48) ‖x + y‖ ¬ ‖x‖+ ‖y‖.

(49) ‖−x‖ = ‖x‖.

(50) ‖x‖ − ‖y‖ ¬ ‖x− y‖.

(51) |‖x‖ − ‖y‖| ¬ ‖x− y‖.

Let us consider X, x, y. The functor ρ(x, y) yielding a real number is defined

as follows:

(Def. 16) ρ(x, y) = ‖x− y‖.

One can prove the following proposition

(52) ρ(x, y) = ρ(y, x).

Let us consider X, x, y. Let us observe that the functor ρ(x, y) is commuta-

tive.

We now state a number of propositions:

(53) ρ(x, x) = 0.

(54) ρ(x, z) ¬ ρ(x, y) + ρ(y, z).

(55) x 6= y iff ρ(x, y) 6= 0.

(56) ρ(x, y)  0.

(57) x 6= y iff ρ(x, y) > 0.

(58) ρ(x, y) =
√

|((x− y)|(x− y))|.

(59) ρ(x + y, u + v) ¬ ρ(x, u) + ρ(y, v).

(60) ρ(x− y, u− v) ¬ ρ(x, u) + ρ(y, v).

(61) ρ(x− z, y − z) = ρ(x, y).

(62) ρ(x− z, y − z) ¬ ρ(z, x) + ρ(z, y).

We follow the rules: s1, s2, s3, s4 are sequences of X and k, n, m are natural

numbers.

The scheme Ex Seq in CUS deals with a non empty complex unitary space

structure A and a unary functor F yielding a point of A, and states that:

There exists a sequence s1 ofA such that for every n holds s1(n) =

F(n)

for all values of the parameters.



complex linear space of complex sequences 115

Let us considerX and let us consider s1. The functor −s1 yielding a sequence

of X is defined by:

(Def. 17) For every n holds (−s1)(n) = −s1(n).

Let us consider X, let us consider s1, and let us consider x. The functor

s1 + x yielding a sequence of X is defined by:

(Def. 18) For every n holds (s1 + x)(n) = s1(n) + x.

One can prove the following proposition

(63) s2 + s3 = s3 + s2.

Let us consider X, s2, s3. Let us observe that the functor s2 + s3 is commu-

tative.

One can prove the following propositions:

(64) s2 + (s3 + s4) = (s2 + s3) + s4.

(65) If s2 is constant and s3 is constant and s1 = s2 + s3, then s1 is constant.

(66) If s2 is constant and s3 is constant and s1 = s2− s3, then s1 is constant.

(67) If s2 is constant and s1 = a · s2, then s1 is constant.

(68) s1 is constant iff for every n holds s1(n) = s1(n + 1).

(69) s1 is constant iff for all n, k holds s1(n) = s1(n + k).

(70) s1 is constant iff for all n, m holds s1(n) = s1(m).

(71) s2 − s3 = s2 +−s3.

(72) s1 = s1 + 0X .

(73) a · (s2 + s3) = a · s2 + a · s3.

(74) (a + b) · s1 = a · s1 + b · s1.

(75) (a · b) · s1 = a · (b · s1).

(76) 1C · s1 = s1.

(77) (−1C) · s1 = −s1.

(78) s1 − x = s1 +−x.

(79) s2 − s3 = −(s3 − s2).

(80) s1 = s1 − 0X .

(81) s1 = −−s1.

(82) s2 − (s3 + s4) = s2 − s3 − s4.

(83) (s2 + s3)− s4 = s2 + (s3 − s4).

(84) s2 − (s3 − s4) = (s2 − s3) + s4.

(85) a · (s2 − s3) = a · s2 − a · s3.
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3. Complex Unitary Space of Complex Sequence

Next we state the proposition

(86) There exists a function f from [: the set of l2-complex sequences, the set

of l2-complex sequences :] into C such that for all sets x, y if x ∈ the set of

l2-complex sequences and y ∈ the set of l2-complex sequences, then f(〈〈x,

y〉〉) =
∑

(idseq(x) idseq(y)).

The function scalarcl from [: the set of l2-complex sequences, the set of l2-

complex sequences :] into C is defined by the condition (Def. 19).

(Def. 19) Let x, y be sets. Suppose x ∈ the set of l2-complex sequences and y ∈ the

set of l2-complex sequences. Then scalarcl(〈〈x, y〉〉) =
∑

(idseq(x) idseq(y)).

Let us observe that 〈the set of l2-complex sequences,Zero (the set of l2-

complex sequences, the linear space of complex sequences),Add (the set of l2-

complex sequences, the linear space of complex sequences),Mult (the set of

l2-complex sequences, the linear space of complex sequences), scalarcl〉 is non

empty.

The non empty complex unitary space structure Complexl2-Space is defined

by the condition (Def. 20).

(Def. 20) Complexl2-Space = 〈the set of l2-complex sequences,Zero (the set of l2-

complex sequences, the linear space of complex sequences),Add (the set of

l2-complex sequences, the linear space of complex sequences),Mult (the set

of l2-complex sequences, the linear space of complex sequences), scalarcl〉.

The following propositions are true:

(87) Let l be a complex unitary space structure. Suppose 〈the carrier of l, the

zero of l, the addition of l, the external multiplication of l〉 is a complex

linear space. Then l is a complex linear space.

(88) For every complex sequence s1 such that for every natural number n

holds s1(n) = 0C holds s1 is summable and
∑

s1 = 0C.

Let us observe that Complexl2-Space is Abelian, add-associative, right ze-

roed, right complementable, and complex linear space-like.
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