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Summary. We formalize the notion of the prime-power factorization of a
natural number and prove the Fundamental Theorem of Arithmetic. We prove
also how prime-power factorization can be used to compute: products, quotients,
powers, greatest common divisors and least common multiples.

MML Identifier: NAT_3.

The notation and terminology used in this paper are introduced in the following
papers: [25]7 [27]7 [12]7 [7]7 [3]’ [4]7 [1]7 [24]7 [13]7 [2]7 [19]7 [18]7 [28]7 [8]’ [9]7 [6}7
[16], [15], [11], [26], [22], [23], [10], [14], [20], [5], [21], and [17].

1. PRELIMINARIES

We follow the rules: a, b, n denote natural numbers, r denotes a real number,
and f denotes a finite sequence of elements of R.

Let X be an empty set. Observe that card X is empty.

One can check that every binary relation which is natural-yielding is also
real-yielding.

Let us mention that there exists a finite sequence which is natural-yielding.

Let a be a non empty natural number and let b be a natural number. Observe
that a® is non empty.

One can verify that every prime number is non empty.

In the sequel p denotes a prime number.

One can verify that Prime is infinite.

The following propositions are true:
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(1) For all natural numbers a, b, ¢, d such that a | cand b | d holds a-b | ¢-d.
(2) If1<a, then b < a’
(3) If a#0, then n | n®
(4) For all natural numbers 4, j, m, n such that i < j and m’ | n holds

mtl | n.
(5) Ifp|ab thenp|a
(6) For every prime number a such that a | p? holds a = p.
(7) For every finite sequence f of elements of N such that a € rng f holds

alllrf
(8) For every finite sequence f of elements of Prime such that p | [] f holds
p € rng f.
Let f be a real-yielding finite sequence and let a be a natural number. The
functor f* yielding a finite sequence is defined as follows:
(Def. 1) len(f%) = len f and for every set i such that ¢ € dom(f®) holds f*(i) =
O
Let f be a real-yielding finite sequence and let a be a natural number. One
can verify that f is real-yielding.
Let f be a natural-yielding finite sequence and let a be a natural number.
Note that f¢ is natural-yielding.
Let f be a finite sequence of elements of R and let a be a natural number.
Then f¢ is a finite sequence of elements of R.
Let f be a finite sequence of elements of N and let a be a natural number.
Then f® is a finite sequence of elements of N.
Next we state several propositions:
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2. MORE ABOUT BAGS

Let X be a set. Note that there exists a many sorted set indexed by X which
is natural-yielding and finite-support.

Let X be a set, let b be a real-yielding many sorted set indexed by X, and
let a be a natural number. The functor a - b yielding a many sorted set indexed
by X is defined as follows:
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(Def. 2) For every set i holds (a - b)(i) = a - b(3).

Let X be a set, let b be a real-yielding many sorted set indexed by X, and
let @ be a natural number. One can verify that a - b is real-yielding.

Let X be a set, let b be a natural-yielding many sorted set indexed by X,
and let a be a natural number. Note that a - b is natural-yielding.

Let X be a set and let b be a real-yielding many sorted set indexed by X.
Note that support(0 - b) is empty.

Next we state the proposition

(16) For every set X and for every real-yielding many sorted set b indexed by
X such that a # 0 holds support b = support(a - b).

Let X be a set, let b be a real-yielding finite-support many sorted set indexed
by X, and let a be a natural number. One can check that a - b is finite-support.

Let X be a set and let by, bo be real-yielding many sorted sets indexed by
X. The functor min(by, b2) yields a many sorted set indexed by X and is defined
by:

(Def. 3) For every set ¢ holds if by (7) < ba(7), then (min(by,b2))(i) = b1(7) and if
by (Z) > bg(i), then (mln(bl,bg))(l) = bg(’L)

Let X be a set and let by, bo be real-yielding many sorted sets indexed by
X. Note that min(by, be) is real-yielding.

Let X be a set and let b1, bs be natural-yielding many sorted sets indexed
by X. Observe that min(by, be) is natural-yielding.

We now state the proposition

(17) For every set X and for all real-yielding finite-support many sorted sets
b1, by indexed by X holds support min(by, be) C support b; U support bs.
Let X be a set and let by, bs be real-yielding finite-support many sorted sets
indexed by X. Observe that min(by,bs) is finite-support.
Let X be a set and let by, bo be real-yielding many sorted sets indexed by
X. The functor max(by, be) yielding a many sorted set indexed by X is defined
as follows:
(Def. 4) For every set i holds if b1 (i) < be(7), then (max(b1,b2))(i) = b2(i) and if
by (Z) > bg(i), then (max(bl, bg))(’b) =b (Z)
Let X be a set and let by, bo be real-yielding many sorted sets indexed by
X. Observe that max(by, by) is real-yielding.
Let X be a set and let by, by be natural-yielding many sorted sets indexed
by X. One can check that max(by, be) is natural-yielding.
One can prove the following proposition

(18) For every set X and for all real-yielding finite-support many sorted sets
b1, by indexed by X holds support max(by, be) C support b; U support bs.

Let X be a set and let by, bs be real-yielding finite-support many sorted sets
indexed by X. Observe that max(by,be) is finite-support.
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Let A be a set and let b be a bag of A. The functor [][b yields a natural
number and is defined by:
(Def. 5)  There exists a finite sequence f of elements of N such that [[b = [] f
and f = b- CFS(support b).
Let A be a set and let b be a bag of A. Then [[b is a natural number.
One can prove the following proposition
(19) For every set X and for all bags a, b of X such that supporta misses

support b holds [[(a+b) = []a - []b.

Let X be a set, let b be a real-yielding many sorted set indexed by X, and
let n be a non empty natural number. The functor " yielding a many sorted
set indexed by X is defined by:

(Def. 6) support(b™) = support b and for every set ¢ holds 0™ (i) = b(i)™.

Let X be a set, let b be a natural-yielding many sorted set indexed by X, and
let n be a non empty natural number. One can verify that " is natural-yielding.

Let X be a set, let b be a real-yielding finite-support many sorted set indexed
by X, and let n be a non empty natural number. Observe that o™ is finite-
support.

The following proposition is true

(20) For every set A holds [[ EmptyBag A = 1.

3. MULTIPLICITY OF A DIVISOR

Let n, d be natural numbers. Let us assume that d # 1 and n # 0. The
functor d-count(n) yields a natural number and is defined by:

(Def. 7) (Jd-count(n) ’ n and d@-count(n)+1 )(n
One can prove the following propositions:

(21) If n # 1, then n-count(1) = 0.
(22) If 1 < n, then n-count(n) = 1.
(23) Ifb#0and b < a and a # 1, then a-count(b) = 0.
(24) If a # 1 and a # p, then a-count(p) = 0.
(25) If 1 < b, then b-count(b*) = a.
(26) Ifb+#1and a # 0 and b| P~ %) then b | a.
(27) If b# 1, then a # 0 and b-count(a) =0 iff b1 a.
(28) For all non empty natural numbers a, b holds p-count(a - b) =

p-count(a) + p-count(b).

(29) For all non empty natural numbers a, b holds pP-eount(a:) — pp-count(a) .
pp—count(b).

~— T — ~— ~— ~— ~—

(30) For all non empty natural numbers a, b such that b | a holds p-count(b) <
p-count(a).
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(31) For all non empty natural numbers a, b such that b | @ holds p-count(a—+
b) = p-count(a) — p-count(b).

(32) For every non empty natural number a holds p-count(a’) = b -
p-count(a).

4. EXPONENTS IN PRIME-POWER FACTORIZATION

Let n be a natural number. The functor PrimeExponents(n) yields a many
sorted set indexed by Prime and is defined as follows:
(Def. 8) For every prime number p holds (PrimeExponents(n))(p) = p-count(n).
We introduce PFExp(n) as a synonym of PrimeExponents(n).
One can prove the following three propositions:
(33) For every set x such that 2 € dom PFExp(n) holds z is a prime number.
(34) For every set = such that x € support PFExp(n) holds = is a prime
number.
(35) If a > n and n # 0, then (PFExp(n))(a) = 0.
Let n be a natural number. Note that PFExp(n) is natural-yielding.
One can prove the following two propositions:
(36) If a € support PFExp(b), then a | b.
(37) If b is non empty and a is a prime number and a | b, then a €
support PFExp(b).
Let n be a non empty natural number. Observe that PFExp(n) is finite-
support.
We now state two propositions:

(38) For every non empty natural number a such that p | a holds
(PFExp(a))(p) # 0.
(39) PFExp(1l) = EmptyBag Prime.
One can verify that support PFExp(1) is empty.
One can prove the following four propositions:

40) (PFExp(p®))(p) = a.

(
(41)  (PFExp(p))(p) = 1.

(42) 1If a # 0, then support PFExp(p®) = {p}.
(

43) support PFExp(p) = {p}.

Let p be a prime number and let a be a non empty natural number. Observe
that support PFExp(p®) is non empty and trivial.

Let p be a prime number. Observe that support PFExp(p) is non empty and
trivial.

Next we state several propositions:
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(44) For all non empty natural numbers a, b such that a and b are relative
prime holds support PFExp(a) misses support PFExp(b).

(45) For all non empty natural numbers a, b holds support PFExp(a) C
support PFExp(a - b).

(46) For all non empty natural numbers a, b holds support PFExp(a - b) =
support PFExp(a) U support PFExp(b).

(47) For all non empty natural numbers a, b such that a and b are rela-
tive prime holds card support PFExp(a - b) = card support PFExp(a) +
card support PFExp(b).

(48) For all non empty natural numbers a, b holds support PFExp(a) =
support PFExp(a®).

In the sequel n, m are non empty natural numbers.
Next we state several propositions:
49) PFExp(n-m) = PFExp(n) + PFExp(m).
50) If m | n, then PFExp(n + m) = PFExp(n) =" PFExp(m).

(
(
(
(
(

~— — ~— ~— ~—

51) PFExp(n®) = a-PFExp(n).
52) If support PFExp(n) = ), then n = 1.
53) For all non empty natural numbers m, n holds PFExp(ged(n,m)) =

min(PFExp(n), PFExp(m)).
(54) For all non empty natural numbers m, n holds PFExp(lem(n,m)) =
max(PFExp(n), PFExp(m)).

5. PRIME-POWER FACTORIZATION

Let n be a non empty natural number. The functor PrimeFactorization(n)
yielding a many sorted set indexed by Prime is defined as follows:

(Def. 9) support PrimeFactorization(n) = support PFExp(n) and for every natu-
ral number p such that p € support PFExp(n) holds
(PrimeFactorization(n))(p) = pPeout(),

We introduce PPF(n) as a synonym of PrimeFactorization(n).

Let n be a non empty natural number. Observe that PPF(n) is natural-
yielding and finite-support.

The following propositions are true:

(55) If p-count(n) = 0, then (PPF(n))(p) = 0.

(56) If p-count(n) # 0, then (PPF(n))(p) = pP-oowt(n),

(57) If support PPF(n) = (), then n = 1.

(58) For all non empty natural numbers a, b such that a and b are relative

prime holds PPF(a - b) = PPF(a) + PPF(b).

(59) (PPF(p"))(p) = p".
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(60) PPF(n™) = (PPF(n))™
(61) J[PPF(n)=n.
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