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Summary. We formalize the notion of the prime-power factorization of a
natural number and prove the Fundamental Theorem of Arithmetic. We prove

also how prime-power factorization can be used to compute: products, quotients,

powers, greatest common divisors and least common multiples.

MML Identifier: NAT 3.

The notation and terminology used in this paper are introduced in the following

papers: [25], [27], [12], [7], [3], [4], [1], [24], [13], [2], [19], [18], [28], [8], [9], [6],

[16], [15], [11], [26], [22], [23], [10], [14], [20], [5], [21], and [17].

1. Preliminaries

We follow the rules: a, b, n denote natural numbers, r denotes a real number,

and f denotes a finite sequence of elements of R.

Let X be an empty set. Observe that cardX is empty.

One can check that every binary relation which is natural-yielding is also

real-yielding.

Let us mention that there exists a finite sequence which is natural-yielding.

Let a be a non empty natural number and let b be a natural number. Observe

that ab is non empty.

One can verify that every prime number is non empty.

In the sequel p denotes a prime number.

One can verify that Prime is infinite.

The following propositions are true:
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(1) For all natural numbers a, b, c, d such that a | c and b | d holds a ·b | c ·d.

(2) If 1 < a, then b ¬ ab.

(3) If a 6= 0, then n | na.

(4) For all natural numbers i, j, m, n such that i < j and mj | n holds

mi+1 | n.

(5) If p | ab, then p | a.

(6) For every prime number a such that a | pb holds a = p.

(7) For every finite sequence f of elements of N such that a ∈ rng f holds

a |
∏

f.

(8) For every finite sequence f of elements of Prime such that p |
∏

f holds

p ∈ rng f.

Let f be a real-yielding finite sequence and let a be a natural number. The

functor fa yielding a finite sequence is defined as follows:

(Def. 1) len(fa) = len f and for every set i such that i ∈ dom(fa) holds fa(i) =

f(i)a.

Let f be a real-yielding finite sequence and let a be a natural number. One

can verify that fa is real-yielding.

Let f be a natural-yielding finite sequence and let a be a natural number.

Note that fa is natural-yielding.

Let f be a finite sequence of elements of R and let a be a natural number.

Then fa is a finite sequence of elements of R.

Let f be a finite sequence of elements of N and let a be a natural number.

Then fa is a finite sequence of elements of N.

Next we state several propositions:

(9) f0 = len f 7→ 1.

(10) f1 = f.

(11) (εR)a = εR.

(12) 〈r〉a = 〈ra〉.

(13) (f a 〈r〉)a = (fa) a 〈r〉a.

(14)
∏

(f b+1) =
∏

(f b) ·
∏

f.

(15)
∏

(fa) = (
∏

f)a.

2. More about Bags

Let X be a set. Note that there exists a many sorted set indexed by X which

is natural-yielding and finite-support.

Let X be a set, let b be a real-yielding many sorted set indexed by X, and

let a be a natural number. The functor a · b yielding a many sorted set indexed

by X is defined as follows:
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(Def. 2) For every set i holds (a · b)(i) = a · b(i).

Let X be a set, let b be a real-yielding many sorted set indexed by X, and

let a be a natural number. One can verify that a · b is real-yielding.

Let X be a set, let b be a natural-yielding many sorted set indexed by X,

and let a be a natural number. Note that a · b is natural-yielding.

Let X be a set and let b be a real-yielding many sorted set indexed by X.

Note that support(0 · b) is empty.

Next we state the proposition

(16) For every set X and for every real-yielding many sorted set b indexed by

X such that a 6= 0 holds support b = support(a · b).

Let X be a set, let b be a real-yielding finite-support many sorted set indexed

by X, and let a be a natural number. One can check that a · b is finite-support.

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by

X. The functor min(b1, b2) yields a many sorted set indexed by X and is defined

by:

(Def. 3) For every set i holds if b1(i) ¬ b2(i), then (min(b1, b2))(i) = b1(i) and if

b1(i) > b2(i), then (min(b1, b2))(i) = b2(i).

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by

X. Note that min(b1, b2) is real-yielding.

Let X be a set and let b1, b2 be natural-yielding many sorted sets indexed

by X. Observe that min(b1, b2) is natural-yielding.

We now state the proposition

(17) For every set X and for all real-yielding finite-support many sorted sets

b1, b2 indexed by X holds supportmin(b1, b2) ⊆ support b1 ∪ support b2.

Let X be a set and let b1, b2 be real-yielding finite-support many sorted sets

indexed by X. Observe that min(b1, b2) is finite-support.

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by

X. The functor max(b1, b2) yielding a many sorted set indexed by X is defined

as follows:

(Def. 4) For every set i holds if b1(i) ¬ b2(i), then (max(b1, b2))(i) = b2(i) and if

b1(i) > b2(i), then (max(b1, b2))(i) = b1(i).

Let X be a set and let b1, b2 be real-yielding many sorted sets indexed by

X. Observe that max(b1, b2) is real-yielding.

Let X be a set and let b1, b2 be natural-yielding many sorted sets indexed

by X. One can check that max(b1, b2) is natural-yielding.

One can prove the following proposition

(18) For every set X and for all real-yielding finite-support many sorted sets

b1, b2 indexed by X holds supportmax(b1, b2) ⊆ support b1 ∪ support b2.

Let X be a set and let b1, b2 be real-yielding finite-support many sorted sets

indexed by X. Observe that max(b1, b2) is finite-support.
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Let A be a set and let b be a bag of A. The functor
∏

b yields a natural

number and is defined by:

(Def. 5) There exists a finite sequence f of elements of N such that
∏

b =
∏

f

and f = b · CFS(support b).

Let A be a set and let b be a bag of A. Then
∏

b is a natural number.

One can prove the following proposition

(19) For every set X and for all bags a, b of X such that support a misses

support b holds
∏

(a + b) =
∏

a ·
∏

b.

Let X be a set, let b be a real-yielding many sorted set indexed by X, and

let n be a non empty natural number. The functor bn yielding a many sorted

set indexed by X is defined by:

(Def. 6) support(bn) = support b and for every set i holds bn(i) = b(i)n.

Let X be a set, let b be a natural-yielding many sorted set indexed byX, and

let n be a non empty natural number. One can verify that bn is natural-yielding.

Let X be a set, let b be a real-yielding finite-support many sorted set indexed

by X, and let n be a non empty natural number. Observe that bn is finite-

support.

The following proposition is true

(20) For every set A holds
∏
EmptyBagA = 1.

3. Multiplicity of a Divisor

Let n, d be natural numbers. Let us assume that d 6= 1 and n 6= 0. The

functor d -count(n) yields a natural number and is defined by:

(Def. 7) dd -count(n) | n and dd -count(n)+1 ∤ n.

One can prove the following propositions:

(21) If n 6= 1, then n -count(1) = 0.

(22) If 1 < n, then n -count(n) = 1.

(23) If b 6= 0 and b < a and a 6= 1, then a -count(b) = 0.

(24) If a 6= 1 and a 6= p, then a -count(p) = 0.

(25) If 1 < b, then b -count(ba) = a.

(26) If b 6= 1 and a 6= 0 and b | bb -count(a), then b | a.

(27) If b 6= 1, then a 6= 0 and b -count(a) = 0 iff b ∤ a.

(28) For all non empty natural numbers a, b holds p -count(a · b) =

p -count(a) + p -count(b).

(29) For all non empty natural numbers a, b holds pp -count(a·b) = pp -count(a) ·

pp -count(b).

(30) For all non empty natural numbers a, b such that b | a holds p -count(b) ¬

p -count(a).
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(31) For all non empty natural numbers a, b such that b | a holds p -count(a÷

b) = p -count(a)−′ p -count(b).

(32) For every non empty natural number a holds p -count(ab) = b ·

p -count(a).

4. Exponents in Prime-Power Factorization

Let n be a natural number. The functor PrimeExponents(n) yields a many

sorted set indexed by Prime and is defined as follows:

(Def. 8) For every prime number p holds (PrimeExponents(n))(p) = p -count(n).

We introduce PFExp(n) as a synonym of PrimeExponents(n).

One can prove the following three propositions:

(33) For every set x such that x ∈ domPFExp(n) holds x is a prime number.

(34) For every set x such that x ∈ support PFExp(n) holds x is a prime

number.

(35) If a > n and n 6= 0, then (PFExp(n))(a) = 0.

Let n be a natural number. Note that PFExp(n) is natural-yielding.

One can prove the following two propositions:

(36) If a ∈ support PFExp(b), then a | b.

(37) If b is non empty and a is a prime number and a | b, then a ∈

support PFExp(b).

Let n be a non empty natural number. Observe that PFExp(n) is finite-

support.

We now state two propositions:

(38) For every non empty natural number a such that p | a holds

(PFExp(a))(p) 6= 0.

(39) PFExp(1) = EmptyBagPrime .

One can verify that support PFExp(1) is empty.

One can prove the following four propositions:

(40) (PFExp(pa))(p) = a.

(41) (PFExp(p))(p) = 1.

(42) If a 6= 0, then support PFExp(pa) = {p}.

(43) support PFExp(p) = {p}.

Let p be a prime number and let a be a non empty natural number. Observe

that support PFExp(pa) is non empty and trivial.

Let p be a prime number. Observe that support PFExp(p) is non empty and

trivial.

Next we state several propositions:
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(44) For all non empty natural numbers a, b such that a and b are relative

prime holds support PFExp(a) misses support PFExp(b).

(45) For all non empty natural numbers a, b holds support PFExp(a) ⊆

support PFExp(a · b).

(46) For all non empty natural numbers a, b holds support PFExp(a · b) =

support PFExp(a) ∪ support PFExp(b).

(47) For all non empty natural numbers a, b such that a and b are rela-

tive prime holds card support PFExp(a · b) = card support PFExp(a) +

card support PFExp(b).

(48) For all non empty natural numbers a, b holds support PFExp(a) =

support PFExp(ab).

In the sequel n, m are non empty natural numbers.

Next we state several propositions:

(49) PFExp(n ·m) = PFExp(n) + PFExp(m).

(50) If m | n, then PFExp(n÷m) = PFExp(n)−′ PFExp(m).

(51) PFExp(na) = a · PFExp(n).

(52) If support PFExp(n) = ∅, then n = 1.

(53) For all non empty natural numbers m, n holds PFExp(gcd(n,m)) =

min(PFExp(n),PFExp(m)).

(54) For all non empty natural numbers m, n holds PFExp(lcm(n,m)) =

max(PFExp(n),PFExp(m)).

5. Prime-Power Factorization

Let n be a non empty natural number. The functor PrimeFactorization(n)

yielding a many sorted set indexed by Prime is defined as follows:

(Def. 9) support PrimeFactorization(n) = support PFExp(n) and for every natu-

ral number p such that p ∈ support PFExp(n) holds

(PrimeFactorization(n))(p) = pp -count(n).

We introduce PPF(n) as a synonym of PrimeFactorization(n).

Let n be a non empty natural number. Observe that PPF(n) is natural-

yielding and finite-support.

The following propositions are true:

(55) If p -count(n) = 0, then (PPF(n))(p) = 0.

(56) If p -count(n) 6= 0, then (PPF(n))(p) = pp -count(n).

(57) If support PPF(n) = ∅, then n = 1.

(58) For all non empty natural numbers a, b such that a and b are relative

prime holds PPF(a · b) = PPF(a) + PPF(b).

(59) (PPF(pn))(p) = pn.



fundamental theorem of arithmetic 185

(60) PPF(nm) = (PPF(n))m.

(61)
∏
PPF(n) = n.
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