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Summary. In this article, some classic theorems of calculus are described.
The Taylor expansions and the logarithmic differentiation, etc. are included here.

MML Identifier: TAYLOR 1.

The terminology and notation used in this paper have been introduced in the

following articles: [22], [24], [25], [4], [6], [9], [5], [11], [20], [18], [3], [8], [2], [21],

[7], [1], [23], [14], [12], [10], [17], [19], [13], [15], [16], and [26].

1. The Logarithmic Differentiation Method

For simplicity, we use the following convention: n denotes a natural number, i

denotes an integer, p, x, x0, y denote real numbers, q denotes a rational number,

and f denotes a partial function from R to R.

Let q be an integer. The functor q
Z yields a function from R into R and is

defined as follows:

(Def. 1) For every real number x holds (q
Z)(x) = x

q
Z.

Next we state a number of propositions:

(1) For all natural numbers m, n holds xn+m
Z = (xn

Z) · xm
Z .

(2) n
Z is differentiable in x and (n

Z)′(x) = n · xn−1
Z .

(3) If f is differentiable in x0, then (n
Z) · f is differentiable in x0 and ((n

Z) ·

f)′(x0) = n · f(x0)
n−1
Z · f ′(x0).

(4) exp(−x) = 1
expx

.

(5) (expx)
1

i

R = exp(x
i
).

(6) For all integers m, n holds (expx)
m

n

R = exp(m
n
· x).
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(7) (expx)q
Q = exp(q · x).

(8) (expx)p
R = exp(p · x).

(9) (exp 1)x
R = expx and (exp 1)x = expx and ex = expx and exR = expx.

(10) exp(1)x
R = exp(x) and exp(1)x = exp(x) and ex = exp(x) and exR =

exp(x).

(11) e ­ 2.

(12) log
e
expx = x.

(13) log
e
exp(x) = x.

(14) If y > 0, then exp log
e
y = y.

(15) If y > 0, then exp(log
e
y) = y.

(16) exp is one-to-one and exp is differentiable on R and exp is differentiable

on ΩR and for every real number x holds exp′(x) = exp(x) and for every

real number x holds 0 < exp′(x) and domexp = R and domexp = ΩR and

rng exp = ]0,+∞[.

Let us note that exp is one-to-one.

We now state the proposition

(17) exp−1 is differentiable on dom(exp−1) and for every real number x such

that x ∈ dom(exp−1) holds (exp−1)′(x) = 1
x
.

Let us mention that ]0, +∞[ is non empty.

Let a be a real number. The functor log (a) yields a partial function from R

to R and is defined by:

(Def. 2) dom log (a) = ]0, +∞[ and for every element d of ]0,+∞[ holds

(log (a))(d) = loga d.

One can prove the following three propositions:

(18) log (e) = exp−1 and log (e) is one-to-one and dom log (e) = ]0, +∞[

and rng log (e) = R and log (e) is differentiable on ]0, +∞[ and for every

real number x such that x > 0 holds log (e) is differentiable in x and for

every element x of ]0,+∞[ holds (log (e))′(x) = 1
x
and for every element

x of ]0, +∞[ holds 0 < (log (e))′(x).

(19) If f is differentiable in x0, then exp ·f is differentiable in x0 and

(exp ·f)′(x0) = exp(f(x0)) · f
′(x0).

(20) If f is differentiable in x0 and f(x0) > 0, then log (e) · f is differentiable

in x0 and (log (e) · f)′(x0) = f ′(x0)
f(x0) .

Let p be a real number. The functor p
R yielding a partial function from R to

R is defined as follows:

(Def. 3) dom(p
R) = ]0,+∞[ and for every element d of ]0,+∞[ holds (p

R)(d) = d
p
R.

We now state two propositions:

(21) If x > 0, then p
R is differentiable in x and (p

R)′(x) = p · x
p−1
R .
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(22) If f is differentiable in x0 and f(x0) > 0, then (p
R) · f is differentiable in

x0 and ((p
R) · f)′(x0) = p · f(x0)

p−1
R · f ′(x0).

2. The Taylor Expansions

Let f be a partial function from R to R and let Z be a subset of R. The

functor f ′(Z) yields a sequence of partial functions from R into R and is defined

by:

(Def. 4) f ′(Z)(0) = f↾Z and for every natural number i holds f ′(Z)(i + 1) =

f ′(Z)(i)′↾Z .

Let f be a partial function from R to R, let n be a natural number, and let

Z be a subset of R. We say that f is differentiable n times on Z if and only if:

(Def. 5) For every natural number i such that i ¬ n − 1 holds f ′(Z)(i) is diffe-

rentiable on Z.

The following proposition is true

(23) Let f be a partial function from R to R, Z be a subset of R, and n be

a natural number. Suppose f is differentiable n times on Z. Let m be a

natural number. If m ¬ n, then f is differentiable m times on Z.

Let f be a partial function from R to R, let Z be a subset of R, and let a, b

be real numbers. The functor Taylor(f, Z, a, b) yields a sequence of real numbers

and is defined as follows:

(Def. 6) For every natural number n holds (Taylor(f, Z, a, b))(n) = f ′(Z)(n)(a)·(b−a)n

n! .

The following propositions are true:

(24) Let f be a partial function from R to R, Z be a subset of R, and n be a

natural number. Suppose f is differentiable n times on Z. Let a, b be real

numbers. If a < b and ]a, b[ ⊆ Z, then f ′(Z)(n)↾]a, b[ = f ′(]a, b[)(n).

(25) Let n be a natural number, f be a partial function from R to R, and

Z be a subset of R. Suppose f is differentiable n times on Z. Let a, b be

real numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on

[a, b] and f is differentiable n + 1 times on ]a, b[. Let l be a real number

and g be a partial function from R to R. Suppose dom g = R and for every

real number x holds g(x) = f(b)− (
∑κ

α=0(Taylor(f, Z, x, b))(α))κ∈N(n)−
l·(b−x)n+1

(n+1)! and f(b)− (
∑κ

α=0(Taylor(f, Z, a, b))(α))κ∈N(n)− l·(b−a)n+1

(n+1)! = 0.

Then

(i) g is differentiable on ]a, b[,

(ii) g(a) = 0,

(iii) g(b) = 0,

(iv) g is continuous on [a, b], and

(v) for every real number x such that x ∈ ]a, b[ holds g′(x) =

−
f ′(]a,b[)(n+1)(x)·(b−x)n

n! + l·(b−x)n

n! .
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(26) Let n be a natural number, f be a partial function from R to R, Z be

a subset of R, and b, l be real numbers. Then there exists a function g

from R into R such that for every real number x holds g(x) = f(b) −

(
∑κ

α=0(Taylor(f, Z, x, b))(α))κ∈N(n)− l·(b−x)n+1

(n+1)! .

(27) Let n be a natural number, f be a partial function from R to R, and Z

be a subset of R. Suppose f is differentiable n times on Z. Let a, b be real

numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on [a, b]

and f is differentiable n+1 times on ]a, b[. Then there exists a real number

c such that c ∈ ]a, b[ and f(b) = (
∑κ

α=0(Taylor(f, Z, a, b))(α))κ∈N(n) +
f ′(]a,b[)(n+1)(c)·(b−a)n+1

(n+1)! .

(28) Let n be a natural number, f be a partial function from R to R, and

Z be a subset of R. Suppose f is differentiable n times on Z. Let a, b be

real numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on

[a, b] and f is differentiable n + 1 times on ]a, b[. Let l be a real number

and g be a partial function from R to R. Suppose dom g = R and for every

real number x holds g(x) = f(a)− (
∑κ

α=0(Taylor(f, Z, x, a))(α))κ∈N(n)−
l·(a−x)n+1

(n+1)! and f(a)− (
∑κ

α=0(Taylor(f, Z, b, a))(α))κ∈N(n)− l·(a−b)n+1

(n+1)! = 0.

Then

(i) g is differentiable on ]a, b[,

(ii) g(b) = 0,

(iii) g(a) = 0,

(iv) g is continuous on [a, b], and

(v) for every real number x such that x ∈ ]a, b[ holds g′(x) =

−
f ′(]a,b[)(n+1)(x)·(a−x)n

n! + l·(a−x)n

n! .

(29) Let n be a natural number, f be a partial function from R to R, and Z

be a subset of R. Suppose f is differentiable n times on Z. Let a, b be real

numbers. Suppose a < b and [a, b] ⊆ Z and f ′(Z)(n) is continuous on [a, b]

and f is differentiable n+1 times on ]a, b[. Then there exists a real number

c such that c ∈ ]a, b[ and f(a) = (
∑κ

α=0(Taylor(f, Z, b, a))(α))κ∈N(n) +
f ′(]a,b[)(n+1)(c)·(a−b)n+1

(n+1)! .

(30) Let f be a partial function from R to R, Z be a subset of R, and Z1 be

an open subset of R. Suppose Z1 ⊆ Z. Let n be a natural number. If f is

differentiable n times on Z, then f ′(Z)(n)↾Z1 = f ′(Z1)(n).

(31) Let f be a partial function from R to R, Z be a subset of R, and Z1 be

an open subset of R. Suppose Z1 ⊆ Z. Let n be a natural number. Suppose

f is differentiable n + 1 times on Z. Then f is differentiable n + 1 times

on Z1.

(32) Let f be a partial function from R to R, Z be a subset of R, and x be

a real number. If x ∈ Z, then for every natural number n holds f(x) =

(
∑κ

α=0(Taylor(f, Z, x, x))(α))κ∈N(n).
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(33) Let n be a natural number, f be a partial function from R to R,

and x0, r be real numbers. Suppose 0 < r and f is differentiable

n + 1 times on ]x0 − r, x0 + r[. Let x be a real number. Suppose x ∈

]x0 − r, x0 + r[. Then there exists a real number s such that 0 < s and

s < 1 and f(x) = (
∑κ

α=0(Taylor(f, ]x0 − r, x0 + r[, x0, x))(α))κ∈N(n) +
f ′(]x0−r,x0+r[)(n+1)(x0+s·(x−x0))·(x−x0)n+1

(n+1)! .
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