The Hall Marriage Theorem

Ewa Romanowicz
University of Białystok

Adam Grabowski¹
University of Białystok

Summary. The Marriage Theorem, as credited to Philip Hall [7], gives the necessary and sufficient condition allowing us to select a distinct element from each of a finite collection \(\{A_i\} \) of \(n \) finite subsets. This selection, called a set of different representatives (SDR), exists if and only if the marriage condition (or Hall condition) is satisfied:

\[
\forall J \subseteq \{1,\ldots,n\} \left| \bigcup_{i \in J} A_i \right| \geq |J|.
\]

The proof which is given in this article (according to Richard Rado, 1967) is based on the lemma that for finite sequences with non-trivial elements which satisfy Hall property there exists a reduction (see Def. 5) such that Hall property again holds (see Th. 29 for details).

MML Identifier: HALLMAR1.

The notation and terminology used here are introduced in the following papers: [9], [5], [10], [11], [4], [8], [2], [6], [1], and [3].

1. Preliminaries

One can prove the following proposition

(1) For all finite sets \(X, Y \) holds \(\text{card}(X \cup Y) + \text{card}(X \cap Y) = \text{card} X + \text{card} Y. \)

In this article we present several logical schemes. The scheme Regr11 deals with a natural number \(A \) and a unary predicate \(P \), and states that:

For every natural number \(k \) such that \(1 \leq k \leq A \) holds \(P[k] \)

¹This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.
provided the parameters meet the following conditions:
- \(P[A] \) and \(A \geq 2 \), and
- For every natural number \(k \) such that \(1 \leq k \) and \(k < A \) and \(P[k + 1] \) holds \(P[k] \).

The scheme \textit{Regr2} concerns a unary predicate \(P \), and states that:
- \(P[1] \)

provided the parameters meet the following requirements:
- There exists a natural number \(n \) such that \(n > 1 \) and \(P[n] \), and
- For every natural number \(k \) such that \(k \geq 1 \) and \(P[k + 1] \) holds \(P[k] \).

Let \(F \) be a non empty set. One can check that there exists a finite sequence of elements of \(2^F \) which is non empty and non-empty.

We now state the proposition

(2) Let \(F \) be a non empty set, \(f \) be a non-empty finite sequence of elements of \(2^F \), and \(i \) be a natural number. If \(i \in \text{dom} \ f \), then \(f(i) \neq \emptyset \).

Let \(F \) be a finite set, let \(A \) be a finite sequence of elements of \(2^F \), and let \(i \) be a natural number. Note that \(A(i) \) is finite.

2. Union of Finite Sequences

Let \(F \) be a set, let \(A \) be a finite sequence of elements of \(2^F \), and let \(J \) be a set. The functor \(\bigcup_j A \) yields a set and is defined as follows:

(Def. 1) For every set \(x \) holds \(x \in \bigcup_j A \) iff there exists a set \(j \) such that \(j \in J \) and \(j \in \text{dom} A \) and \(x \in A(j) \).

Next we state two propositions:

(3) For every set \(F \) and for every finite sequence \(A \) of elements of \(2^F \) and for every set \(J \) holds \(\bigcup_j A \subseteq F \).

(4) Let \(F \) be a finite set, \(A \) be a finite sequence of elements of \(2^F \), and \(J, K \) be sets. If \(J \subseteq K \), then \(\bigcup_j A \subseteq \bigcup_k A \).

Let \(F \) be a finite set, let \(A \) be a finite sequence of elements of \(2^F \), and let \(J \) be a set. One can verify that \(\bigcup_j A \) is finite.

The following propositions are true:

(5) Let \(F \) be a finite set, \(A \) be a finite sequence of elements of \(2^F \), and \(i \) be a natural number. If \(i \in \text{dom} A \), then \(\bigcup\{i\} A = A(i) \).

(6) Let \(F \) be a finite set, \(A \) be a finite sequence of elements of \(2^F \), and \(i, j \) be natural numbers. If \(i \in \text{dom} A \) and \(j \in \text{dom} A \), then \(\bigcup\{i,j\} A = A(i) \cup A(j) \).

(7) Let \(J \) be a set, \(F \) be a finite set, \(A \) be a finite sequence of elements of \(2^F \), and \(i \) be a natural number. If \(i \in J \) and \(i \in \text{dom} A \), then \(A(i) \subseteq \bigcup_j A \).
3. Cut Operation for Finite Sequences

Let F be a finite set, let A be a finite sequence of elements of 2^F, let i be a natural number, and let x be a set. The functor $\text{Cut}(A, i, x)$ yielding a finite sequence of elements of 2^F is defined by the conditions (Def. 2).

(Def. 2)(i) \quad \text{dom } \text{Cut}(A, i, x) = \text{dom } A, \text{ and }

(ii) \quad \text{for every natural number } k \text{ such that } k \in \text{dom } \text{Cut}(A, i, x) \text{ holds if } i = k,
then \((\text{Cut}(A, i, x))(k) = A(k) \setminus \{x\}\) and if \(i \neq k\), then \((\text{Cut}(A, i, x))(k) = A(k)\).

The following propositions are true:

(11) \quad \text{Let } F \text{ be a finite set, } A \text{ be a finite sequence of elements of } 2^F, \text{ i be a natural number, and let } x \text{ be a set. If } i \in \text{dom } A \text{ and } x \in A(i), \text{ then } \text{card}(\text{Cut}(A, i, x))(i) = \text{card } A(i) - 1.

(12) \quad \text{Let } F \text{ be a finite set, } A \text{ be a finite sequence of elements of } 2^F, \text{ i be a natural number, and let } x, J \text{ be sets. Then } \bigcup_{J \setminus \{i\}} \text{Cut}(A, i, x) = \bigcup_{J \setminus \{i\}} A.

(13) \quad \text{Let } F \text{ be a finite set, } A \text{ be a finite sequence of elements of } 2^F, \text{ i be a natural number, and let } x, J \text{ be sets. If } i \notin J, \text{ then } \bigcup_J A = \bigcup_J \text{Cut}(A, i, x).

(14) \quad \text{Let } F \text{ be a finite set, } A \text{ be a finite sequence of elements of } 2^F, \text{ i be a natural number, and let } x, J \text{ be sets. If } i \in \text{dom } \text{Cut}(A, i, x) \text{ and } J \subseteq \text{dom } \text{Cut}(A, i, x) \text{ and } i \in J, \text{ then } \bigcup_J \text{Cut}(A, i, x) = \bigcup_{J \setminus \{i\}} A \cup (A(i) \setminus \{x\}).

4. System of Different Representatives and Hall Property

Let F be a finite set, let X be a finite sequence of elements of 2^F, and let A be a set. We say that A is a system of different representatives of X if and only if the condition (Def. 3) is satisfied.

(Def. 3) \quad \text{There exists a finite sequence } f \text{ of elements of } F \text{ such that } f = A \text{ and } \text{dom } X = \text{dom } f \text{ and for every natural number } i \text{ such that } i \in \text{dom } f \text{ holds } f(i) \in X(i) \text{ and } f \text{ is one-to-one.}
Let F be a finite set and let A be a finite sequence of elements of 2^F. We say that A satisfies Hall condition if and only if:

(Def. 4) For every finite set J such that $J \subseteq \text{dom } A$ holds $\text{card } J \leq \text{card } \bigcup_j A$.

Next we state four propositions:

(15) Let F be a finite set and A be a non-empty finite sequence of elements of 2^F. If A satisfies Hall condition, then A is non-empty.

(16) Let F be a finite set, A be a finite sequence of elements of 2^F, and i be a natural number. If $i \in \text{dom } A$ and A satisfies Hall condition, then $\text{card } A(i) \geq 1$.

(17) Let F be a non-empty finite set and A be a non-empty finite sequence of elements of 2^F. Suppose for every natural number i such that $i \in \text{dom } A$ holds $\text{card } A(i) = 1$ and A satisfies Hall condition. Then there exists a set which is a system of different representatives of A.

(18) Let F be a finite set and A be a finite sequence of elements of 2^F such that there exists a set which is a system of different representatives of A. Then A satisfies Hall condition.

5. Reductions and Singlifications of Finite Sequences

Let F be a set, let A be a finite sequence of elements of 2^F, and let i be a natural number. A finite sequence of elements of 2^F is said to be a reduction of A at i-th position if:

(Def. 5) $\text{dom } i = \text{dom } A$ and for every natural number j such that $j \in \text{dom } A$ and $j \neq i$ holds $A(j) = i(j)$ and $i(i) \subseteq A(i)$.

Let F be a set and let A be a finite sequence of elements of 2^F. A finite sequence of elements of 2^F is said to be a reduction of A if:

(Def. 6) $\text{dom } i = \text{dom } A$ and for every natural number i such that $i \in \text{dom } A$ holds $i(i) \subseteq A(i)$.

Let F be a set, let A be a finite sequence of elements of 2^F, and let i be a natural number. Let us assume that $i \in \text{dom } A$ and $A(i) \neq \emptyset$. A reduction of A is called a singlification of A at i-th position if:

(Def. 7) $i(i) = 1$.

One can prove the following propositions:

(19) Let F be a finite set, A be a finite sequence of elements of 2^F, and i be a natural number. Then every reduction of A at i-th position is a reduction of A.

(20) Let F be a finite set, A be a finite sequence of elements of 2^F, i be a natural number, and x be a set. If $i \in \text{dom } A$ and $x \in A(i)$, then $\text{Cut}(A, i, x)$ is a reduction of A at i-th position.
(21) Let F be a finite set, A be a finite sequence of elements of 2^F, i be a natural number, and x be a set. If $i \in \text{dom} A$ and $x \in A(i)$, then $\text{Cut}(A, i, x)$ is a reduction of A.

(22) Let F be a finite set, A be a finite sequence of elements of 2^F, and B be a reduction of A. Then every reduction of B is a reduction of A.

(23) Let F be a non-empty finite set, A be a non-empty finite sequence of elements of 2^F, i be a natural number, and B be a singlification of A at i-th position. If $i \in \text{dom} A$, then $B(i) \neq \emptyset$.

(24) Let F be a non-empty finite set, A be a non-empty finite sequence of elements of 2^F, i, j be natural numbers, B be a singlification of A at i-th position, and C be a singlification of B at j-th position. Suppose $i \in \text{dom} A$ and $j \in \text{dom} A$ and $C(i) \neq \emptyset$ and $B(j) \neq \emptyset$. Then C is a singlification of A at j-th position and a singlification of A at i-th position.

(25) Let F be a finite set, A be a finite sequence of elements of 2^F, and i be a natural number. Then A is a reduction of A at i-th position.

(26) For every set F holds every finite sequence A of elements of 2^F is a reduction of A.

Let F be a non-empty set and let A be a finite sequence of elements of 2^F. Let us assume that A is non-empty. A reduction of A is called a singlification of A if:

(Def. 8) For every natural number i such that $i \in \text{dom} A$ holds $\text{it}(i) = 1$.

We now state the proposition

(27) Let F be a non-empty finite set, A be a non-empty non-empty finite sequence of elements of 2^F, and f be a function. Then f is a singlification of A if and only if the following conditions are satisfied:

(i) $\text{dom} f = \text{dom} A$, and

(ii) for every natural number i such that $i \in \text{dom} A$ holds f is a singlification of A at i-th position.

Let F be a non-empty finite set, let A be a non-empty finite sequence of elements of 2^F, and let k be a natural number. Note that every singlification of A at k-th position is non empty.

Let F be a non-empty finite set and let A be a non-empty finite sequence of elements of 2^F. One can check that every singlification of A is non empty.

6. RADO’S PROOF OF THE HALL MARRIAGE THEOREM

One can prove the following propositions:

(28) Let F be a non-empty finite set, A be a non-empty finite sequence of elements of 2^F, X be a set, and B be a reduction of A. Suppose X is a
system of different representatives of B. Then X is a system of different representatives of A.

(29) Let F be a finite set and A be a finite sequence of elements of 2^F. Suppose A satisfies Hall condition. Let i be a natural number. If $\text{card} A(i) \geq 2$, then there exists a set x such that $x \in A(i)$ and $\text{Cut}(A, i, x)$ satisfies Hall condition.

(30) Let F be a finite set, A be a finite sequence of elements of 2^F, and i be a natural number. If $i \in \text{dom} A$ and A satisfies Hall condition, then there exists a singification of A at i-th position which satisfies Hall condition.

(31) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^F. If A satisfies Hall condition, then there exists a singification of A which satisfies Hall condition.

(32) Let F be a non empty finite set and A be a non empty finite sequence of elements of 2^F. Then there exists a set which is a system of different representatives of A if and only if A satisfies Hall condition.

References

Received May 11, 2004