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Summary. This article is an extension of [9] to complex valued functions.

MML Identifier: CFUNCDOM.

The articles [14], [5], [16], [10], [17], [3], [4], [1], [12], [11], [15], [2], [8], [13], [9],
[7], and [6] provide the notation and terminology for this paper.

1. OPERATION OF COMPLEX FUNCTIONS

We adopt the following convention: x1, x2, z are sets, A is a non empty set,
and f, g, h are elements of CA.

Let us consider A. The functor +ca yielding a binary operation on C4 is
defined by:

(Def. 1) For all elements f, g of C4 holds +¢a(f, g) = (+¢)°(f, 9)-

Let us consider A. The functor -ca yielding a binary operation on C4 is
defined as follows:

(Def. 2) For all elements f, g of C4 holds -ca(f, g) = (-c)°(f, 9)-

Let us consider A. The functor -g 4 yielding a function from [C, C*] into
CA is defined by:
(Def. 3) For every complex number z and for every element f of C4 and for every
element z of A holds -%A((z, Mx) =z f(x).
Let us consider A. The functor Oga yielding an element of C4 is defined by:
(Def. 4) O(CA =A+— 0([:.
Let us consider A. The functor 1¢a yields an element of C4 and is defined
by:
(Def. 5) 1ca = A+— 1c.
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One can prove the following propositions:

(1) h=+cal(f, g) iff for every element = of A holds h(z) = f(z) + g(z).
(2) h=-ca(f, g) iff for every element x of A holds h(z) = f(z) - g(x).
(3) For every element x of A holds 1¢a(z) = 1c.

(4) For every element x of A holds O¢a(z) = Oc.

(

5) Oca # 1ca.

In the sequel a, b denote complex numbers.

The following proposition is true

(6) h= -gA((a, f)) iff for every element x of A holds h(z) =a- f(z).
In the sequel u, v, w are vectors of ((CA, Oca, +ca, %A).

One can prove the following propositions:

(1) +calfs 9) = +caly, f)-

(8) +calfs +calg, b)) = +cal+calf, 9), ).
9) calf, 9) = -calg, )

10) -ca(f, -calg, h)) = -cal-calf, 9), h).

11 '(CA(l(CA, f) = f.

12) +ca(0ca, f) = f.

15 '%A((aa '%A((b7 MNES '%A((a b, f)).
+eal-gal{a, £)), €a({b, £))) = Gal{a+0, f)).
‘calfs +calg, b)) = +calcalfs 9), calf, h)).
ca(gal{a, £)), 9) = -Eal{a, -calf, 9)))-

16
17

)
)
)
)
)
)
13) +ealf, cal{=1c, f))) = Oca.
)
)
)
)
18)

(
(
(
(
(14) Gal(lc, /) = f.
(
(
(
(

2. COMPLEX LINEAR SPACE OF COMPLEX VALUED FUNCTIONS

One can prove the following propositions:
(19) There exist f, g such that
(i)  for every z such that z € A holds if z = zj, then f(z) = 1c and if
z # x1, then f(z) = 0c, and
(ii)  for every z such that z € A holds if z = =1, then g(z) = Oc and if
z # x1, then g(z) = 1c.
(20) Suppose that

(i) x1 € A,

(ii) o € A,
(iii) 1 # o,
(iv)  for every z such that z € A holds if z = z1, then f(2) = 1¢ and if

z # x1, then f(z) = O¢, and
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(v)  for every z such that z € A holds if z = z, then g(z) = Oc and if
z # x1, then g(z) = 1¢.
Let given a, b. If +CA('gA(<(I, N, %A((b, g))) = Oca, then a = O¢ and
b= 0c.

(21) If x;1 € A and x93 € A and x; # x9, then there exist f, g such that for
all a, b such that +CA('%A(<G, ), %A((b, g))) = Oca holds a = O¢ and
b= 0c.

(22) Suppose that

(i) A={z,22},

(ii) I 7é 9,

(ili)  for every z such that z € A holds if z = z1, then f(z) = 1¢ and if
z # x1, then f(z) = Oc, and

(iv) for every z such that z € A holds if z = =z, then g(z) = Oc and if
z # x1, then g(z) = 1c.
Let given h. Then there exist a, b such that h = +(CA('gA(<CL, ), -gA((b,
9))-

(23) If A= {x1,22} and x1 # xo, then there exist f, g such that for every h
there exist a, b such that h = +ca(-ga({a, f)), -Ga({D, 9))).

(24) Suppose A = {z1,x2} and x; # x2. Then there exist f, g such that for
all a, b such that +(CA(‘%A(<G,, ), -gA((b, g))) = Oca holds a = O¢ and
b = Oc and for every h there exist a, b such that h = —I—CA(-gA((a, N,
C.(b, 9)))-

(25) (CA,0¢a, +ca, %A) is a complex linear space.

Let us consider A. The functor ComplexVectSpace(A) yields a strict complex
linear space and is defined by:
(Def. 6) ComplexVectSpace(A) = (CA, 0¢a, ¢4, '84>-
We now state the proposition

(26) There exists a strict complex linear space V' and there exist vectors u,
v of V' such that for all a, b such that a-u + b-v = 0y holds a = O¢ and
b = Oc and for every vector w of V' there exist a, b such that w = a-u+b-v.

Let us consider A. The functor CRing(A) yielding a strict double loop struc-
ture is defined by:
(Def. 7) CRing(A) = (CA, +¢a,-ca, 1ca, 0ca).
Let us consider A. Observe that CRing(A) is non empty.
We now state two propositions:

(27) Let x, y, z be elements of CRing(A). Then x+y = y+x and (z+y)+2z =
T+ (y+2) and x+0cRing(4) =  and there exists an element ¢ of CRing(A)
such that © +¢ = OcRinga) and z-y =y-x and (z-y)-z =2 (y- 2) and
T - 1oRing(4) = @ and 1oginga) -2 =z and x- (y +2) =2 -y + -z and
(y+z2)-z2=y-z+z 2.
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(28) CRing(A) is a commutative ring.

We introduce complex algebra structures which are extensions of double loop
structure and CLS structure and are systems

( a carrier, a multiplication, an addition, an external multiplication, a unity,
a zero ),
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from [ C, the
carrier ] into the carrier, and the unity and the zero are elements of the carrier.

Let us mention that there exists a complex algebra structure which is non
empty.

Let us consider A. The functor CAlgebra(A) yielding a strict complex algebra
structure is defined as follows:

(Def. 8) CAlgebra(A) = (CA, -ca, +ca, -%A, 1ca,0ca).
Let us consider A. Observe that CAlgebra(A) is non empty.
Next we state the proposition

(29) Let x, y, z be elements of CAlgebra(A) and given a, b. Then x+y = y+x
and (r +y)+2 =2+ (y + 2) and x + 0cAlgebra(a) = @ and there exists an
element ¢ of CAlgebra(A) such that x +t = Ocalgebra(a) and -y =y -
and (z-y)-z =2 (y-z) and 2 - 1oalgebra(a) = T and v+ (y+2) = x-y+x-2
and a-(z-y) = (a-x)-yand a-(r+y) = a-x+a-y and (a+b)-z = a-z+b-x
and (a-b)-z=a-(b-x).

Let I; be a non empty complex algebra structure. We say that I; is complex
algebra-like if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y, z be elements of I; and given a, b. Then z - 1(;;) = z and
z-(y+z)=z-y+z-zanda-(x-y) = (a-z)-yanda-(z+y)=a-z+a-y
and (a+b)-z=a-z+b-zand (a-b)-z=a-(b-z).

Let us note that there exists a non empty complex algebra structure which
is strict, Abelian, add-associative, right zeroed, right complementable, commu-
tative, associative, and complex algebra-like.

A complex algebra is an Abelian add-associative right zeroed right com-
plementable commutative associative complex algebra-like non empty complex
algebra structure.

One can prove the following proposition

(30) CAlgebra(A) is a complex algebra.
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