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Summary. This article is an extension of [9] to complex valued functions.

MML Identifier: CFUNCDOM.

The articles [14], [5], [16], [10], [17], [3], [4], [1], [12], [11], [15], [2], [8], [13], [9],

[7], and [6] provide the notation and terminology for this paper.

1. Operation of Complex Functions

We adopt the following convention: x1, x2, z are sets, A is a non empty set,

and f , g, h are elements of CA.

Let us consider A. The functor +CA yielding a binary operation on C
A is

defined by:

(Def. 1) For all elements f , g of CA holds +CA(f, g) = (+C)◦(f, g).

Let us consider A. The functor ·CA yielding a binary operation on C
A is

defined as follows:

(Def. 2) For all elements f , g of CA holds ·CA(f, g) = (·C)◦(f, g).

Let us consider A. The functor ·C
CA yielding a function from [: C, C

A :] into

C
A is defined by:

(Def. 3) For every complex number z and for every element f of CA and for every

element x of A holds ·C
CA(〈〈z, f〉〉)(x) = z · f(x).

Let us consider A. The functor 0CA yielding an element of CA is defined by:

(Def. 4) 0CA = A 7−→ 0C.

Let us consider A. The functor 1CA yields an element of CA and is defined

by:

(Def. 5) 1CA = A 7−→ 1C.
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232 noboru endou

One can prove the following propositions:

(1) h = +CA(f, g) iff for every element x of A holds h(x) = f(x) + g(x).

(2) h = ·CA(f, g) iff for every element x of A holds h(x) = f(x) · g(x).

(3) For every element x of A holds 1CA(x) = 1C.

(4) For every element x of A holds 0CA(x) = 0C.

(5) 0CA 6= 1CA .

In the sequel a, b denote complex numbers.

The following proposition is true

(6) h = ·C
CA(〈〈a, f〉〉) iff for every element x of A holds h(x) = a · f(x).

In the sequel u, v, w are vectors of 〈CA,0CA , +CA , ·C
CA〉.

One can prove the following propositions:

(7) +CA(f, g) = +CA(g, f).

(8) +CA(f, +CA(g, h)) = +CA(+CA(f, g), h).

(9) ·CA(f, g) = ·CA(g, f).

(10) ·CA(f, ·CA(g, h)) = ·CA(·CA(f, g), h).

(11) ·CA(1CA , f) = f.

(12) +CA(0CA , f) = f.

(13) +CA(f, ·C
CA(〈〈−1C, f〉〉)) = 0CA .

(14) ·C
CA(〈〈1C, f〉〉) = f.

(15) ·C
CA(〈〈a, ·C

CA(〈〈b, f〉〉)〉〉) = ·C
CA(〈〈a · b, f〉〉).

(16) +CA(·C
CA(〈〈a, f〉〉), ·C

CA(〈〈b, f〉〉)) = ·C
CA(〈〈a + b, f〉〉).

(17) ·CA(f, +CA(g, h)) = +CA(·CA(f, g), ·CA(f, h)).

(18) ·CA(·C
CA(〈〈a, f〉〉), g) = ·C

CA(〈〈a, ·CA(f, g)〉〉).

2. Complex Linear Space of Complex Valued Functions

One can prove the following propositions:

(19) There exist f , g such that

(i) for every z such that z ∈ A holds if z = x1, then f(z) = 1C and if

z 6= x1, then f(z) = 0C, and

(ii) for every z such that z ∈ A holds if z = x1, then g(z) = 0C and if

z 6= x1, then g(z) = 1C.

(20) Suppose that

(i) x1 ∈ A,

(ii) x2 ∈ A,

(iii) x1 6= x2,

(iv) for every z such that z ∈ A holds if z = x1, then f(z) = 1C and if

z 6= x1, then f(z) = 0C, and
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(v) for every z such that z ∈ A holds if z = x1, then g(z) = 0C and if

z 6= x1, then g(z) = 1C.

Let given a, b. If +CA(·C
CA(〈〈a, f〉〉), ·C

CA(〈〈b, g〉〉)) = 0CA , then a = 0C and

b = 0C.

(21) If x1 ∈ A and x2 ∈ A and x1 6= x2, then there exist f , g such that for

all a, b such that +CA(·C
CA(〈〈a, f〉〉), ·C

CA(〈〈b, g〉〉)) = 0CA holds a = 0C and

b = 0C.

(22) Suppose that

(i) A = {x1, x2},

(ii) x1 6= x2,

(iii) for every z such that z ∈ A holds if z = x1, then f(z) = 1C and if

z 6= x1, then f(z) = 0C, and

(iv) for every z such that z ∈ A holds if z = x1, then g(z) = 0C and if

z 6= x1, then g(z) = 1C.

Let given h. Then there exist a, b such that h = +CA(·C
CA(〈〈a, f〉〉), ·C

CA(〈〈b,

g〉〉)).

(23) If A = {x1, x2} and x1 6= x2, then there exist f , g such that for every h

there exist a, b such that h = +CA(·C
CA(〈〈a, f〉〉), ·C

CA(〈〈b, g〉〉)).

(24) Suppose A = {x1, x2} and x1 6= x2. Then there exist f , g such that for

all a, b such that +CA(·C
CA(〈〈a, f〉〉), ·C

CA(〈〈b, g〉〉)) = 0CA holds a = 0C and

b = 0C and for every h there exist a, b such that h = +CA(·C
CA(〈〈a, f〉〉),

·C
CA(〈〈b, g〉〉)).

(25) 〈CA,0CA , +CA , ·C
CA〉 is a complex linear space.

Let us consider A. The functor ComplexVectSpace(A) yields a strict complex

linear space and is defined by:

(Def. 6) ComplexVectSpace(A) = 〈CA,0CA ,+CA , ·C
CA〉.

We now state the proposition

(26) There exists a strict complex linear space V and there exist vectors u,

v of V such that for all a, b such that a · u + b · v = 0V holds a = 0C and

b = 0C and for every vector w of V there exist a, b such that w = a·u+b·v.

Let us consider A. The functor CRing(A) yielding a strict double loop struc-

ture is defined by:

(Def. 7) CRing(A) = 〈CA, +CA , ·CA ,1CA ,0CA〉.

Let us consider A. Observe that CRing(A) is non empty.

We now state two propositions:

(27) Let x, y, z be elements of CRing(A). Then x+y = y+x and (x+y)+z =

x+(y+z) and x+0CRing(A) = x and there exists an element t of CRing(A)

such that x + t = 0CRing(A) and x · y = y · x and (x · y) · z = x · (y · z) and

x · 1CRing(A) = x and 1CRing(A) · x = x and x · (y + z) = x · y + x · z and

(y + z) · x = y · x + z · x.



234 noboru endou

(28) CRing(A) is a commutative ring.

We introduce complex algebra structures which are extensions of double loop

structure and CLS structure and are systems

〈 a carrier, a multiplication, an addition, an external multiplication, a unity,

a zero 〉,

where the carrier is a set, the multiplication and the addition are binary ope-

rations on the carrier, the external multiplication is a function from [: C, the

carrier :] into the carrier, and the unity and the zero are elements of the carrier.

Let us mention that there exists a complex algebra structure which is non

empty.

Let us considerA. The functor CAlgebra(A) yielding a strict complex algebra

structure is defined as follows:

(Def. 8) CAlgebra(A) = 〈CA, ·CA ,+CA , ·C
CA ,1CA ,0CA〉.

Let us consider A. Observe that CAlgebra(A) is non empty.

Next we state the proposition

(29) Let x, y, z be elements of CAlgebra(A) and given a, b. Then x+y = y+x

and (x + y) + z = x + (y + z) and x + 0CAlgebra(A) = x and there exists an

element t of CAlgebra(A) such that x + t = 0CAlgebra(A) and x · y = y · x

and (x ·y) ·z = x · (y ·z) and x ·1CAlgebra(A) = x and x · (y+z) = x ·y+x ·z

and a·(x·y) = (a·x)·y and a·(x+y) = a·x+a·y and (a+b)·x = a·x+b·x

and (a · b) · x = a · (b · x).

Let I1 be a non empty complex algebra structure. We say that I1 is complex

algebra-like if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y, z be elements of I1 and given a, b. Then x · 1(I1) = x and

x · (y +z) = x ·y +x ·z and a · (x ·y) = (a ·x) ·y and a · (x+y) = a ·x+a ·y

and (a + b) · x = a · x + b · x and (a · b) · x = a · (b · x).

Let us note that there exists a non empty complex algebra structure which

is strict, Abelian, add-associative, right zeroed, right complementable, commu-

tative, associative, and complex algebra-like.

A complex algebra is an Abelian add-associative right zeroed right com-

plementable commutative associative complex algebra-like non empty complex

algebra structure.

One can prove the following proposition

(30) CAlgebra(A) is a complex algebra.
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