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Summary. We formalized some basic properties of the Fibonacci num-
bers using definitions and lemmas from [7] and [23], e.g. Cassini’s and Catalan’s

identities. We also showed the connections between Fibonacci numbers and Py-

thagorean triples as defined in [31]. The main result of this article is a proof of

Carmichael’s Theorem on prime divisors of prime-generated Fibonacci numbers.

According to it, if we look at the prime factors of a Fibonacci number generated

by a prime number, none of them have appeared as a factor in any earlier Fi-

bonacci number. We plan to develop the full proof of the Carmichael Theorem

following [33].

MML Identifier: FIB NUM2.

The papers [26], [3], [4], [30], [24], [1], [28], [29], [2], [18], [13], [27], [32], [9], [10],

[7], [12], [8], [17], [21], [19], [22], [25], [6], [20], [11], [23], [15], [31], [14], [16], and

[5] provide the terminology and notation for this paper.

1. Preliminaries

In this paper n, k, r, m, i, j denote natural numbers.

We now state a number of propositions:

(1) For every non empty natural number n holds (n−′ 1) + 2 = n + 1.

(2) For every odd integer n and for every non empty real number m holds

(−m)n = −mn.

(3) For every odd integer n holds (−1)n = −1.

(4) For every even integer n and for every non empty real number m holds

(−m)n = mn.
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(5) For every even integer n holds (−1)n = 1.

(6) For every non empty real number m and for every integer n holds ((−1) ·

m)n = (−1)n ·mn.

(7) For every non empty real number a holds ak+m = ak · am.

(8) For every non empty real number k and for every odd integer m holds

(km)n = km·n.

(9) ((−1)−n)2 = 1.

(10) For every non empty real number a holds a−k · a−m = a−k−m.

(11) (−1)−2·n = 1.

(12) For every non empty real number a holds ak · a−k = 1.

Let n be an odd integer. One can verify that −n is odd.

Let n be an even integer. Note that −n is even.

One can prove the following two propositions:

(13) (−1)−n = (−1)n.

(14) For all natural numbers k, m, m1, n1 such that k | m and k | n holds

k | m ·m1 + n · n1.

One can check that there exists a set which is finite, non empty, and natural-

membered and has non empty elements.

Let f be a function from N into N and let A be a finite natural-membered

set with non empty elements. Note that f↾A is finite subsequence-like.

One can prove the following proposition

(15) For every finite subsequence p holds rng Seq p ⊆ rng p.

Let f be a function from N into N and let A be a finite natural-membered

set with non empty elements. The functor Prefix(f,A) yields a finite sequence

of elements of N and is defined as follows:

(Def. 1) Prefix(f, A) = Seq(f↾A).

The following proposition is true

(16) For every natural number k such that k 6= 0 holds if k + m ¬ n, then

m < n.

Let us mention that N is lower bounded.

Let us mention that {1, 2, 3} is natural-membered and has non empty ele-

ments.

Let us note that {1, 2, 3, 4} is natural-membered and has non empty ele-

ments.

The following propositions are true:

(17) For all sets x, y such that 0 < i and i < j holds {〈〈i, x〉〉, 〈〈j, y〉〉} is a finite

subsequence.

(18) For all sets x, y and for every finite subsequence q such that i < j and

q = {〈〈i, x〉〉, 〈〈j, y〉〉} holds Seq q = 〈x, y〉.



some properties of fibonacci numbers 309

Let n be a natural number. Observe that Segn has non empty elements.

Let A be a set with non empty elements. Note that every subset of A has

non empty elements.

Let A be a set with non empty elements and let B be a set. Observe that

A ∩B has non empty elements and B ∩A has non empty elements.

We now state four propositions:

(19) For every natural number k and for every set a such that k ­ 1 holds

{〈〈k, a〉〉} is a finite subsequence.

(20) Let i, k be natural numbers, y be a set, and f be a finite subsequence.

If f = {〈〈1, y〉〉}, then Shifti f = {〈〈1 + i, y〉〉}.

(21) Let q be a finite subsequence and k, n be natural numbers. Suppose

dom q ⊆ Seg k and n > k. Then there exists a finite sequence p such that

q ⊆ p and dom p = Seg n.

(22) For every finite subsequence q there exists a finite sequence p such that

q ⊆ p.

2. Fibonacci Numbers

In this article we present several logical schemes. The scheme Fib Ind 1

concerns a unary predicate P, and states that:

For every non empty natural number k holds P[k]

provided the parameters have the following properties:

• P[1],

• P[2], and

• For every non empty natural number k such that P[k] and P[k+1]

holds P[k + 2].

The scheme Fib Ind 2 concerns a unary predicate P, and states that:

For every non trivial natural number k holds P[k]

provided the parameters meet the following conditions:

• P[2],

• P[3], and

• For every non trivial natural number k such that P[k] and P[k+1]

holds P[k + 2].

Next we state a number of propositions:

(23) Fib(2) = 1.

(24) Fib(3) = 2.

(25) Fib(4) = 3.

(26) Fib(n + 2) = Fib(n) + Fib(n + 1).

(27) Fib(n + 3) = Fib(n + 2) + Fib(n + 1).

(28) Fib(n + 4) = Fib(n + 2) + Fib(n + 3).
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(29) Fib(n + 5) = Fib(n + 3) + Fib(n + 4).

(30) Fib(n + 2) = Fib(n + 3)− Fib(n + 1).

(31) Fib(n + 1) = Fib(n + 2)− Fib(n).

(32) Fib(n) = Fib(n + 2)− Fib(n + 1).

3. Cassini’s and Catalan’s Identities

The following propositions are true:

(33) Fib(n) · Fib(n + 2)− Fib(n + 1)2 = (−1)n+1.

(34) For every non empty natural number n holds Fib(n−′ 1) · Fib(n + 1)−

Fib(n)2 = (−1)n.

(35) τ > 0.

(36) τ = (−τ)−1.

(37) (−τ)(−1)·n = ((−τ)−1)n.

(38) − 1
τ

= τ .

(39) ((τ r)2 − 2 · (−1)r) + (τ−r)2 = (τ r − τ r)2.

(40) For all non empty natural numbers n, r such that r ¬ n holds Fib(n)2−

Fib(n + r) · Fib(n−′ r) = (−1)n−′r · Fib(r)2.

(41) Fib(n)2 + Fib(n + 1)2 = Fib(2 · n + 1).

(42) For every non empty natural number k holds Fib(n + k) = Fib(k) ·

Fib(n + 1) + Fib(k −′ 1) · Fib(n).

(43) For every non empty natural number n holds Fib(n) | Fib(n · k).

(44) For every non empty natural number k such that k | n holds Fib(k) |

Fib(n).

(45) Fib(n) ¬ Fib(n + 1).

(46) For every natural number n such that n > 1 holds Fib(n) < Fib(n + 1).

(47) For all natural numbers m, n such that m ­ n holds Fib(m) ­ Fib(n).

(48) For every natural number k such that k > 1 holds if k < n, then Fib(k) <

Fib(n).

(49) Fib(k) = 1 iff k = 1 or k = 2.

(50) Let k, n be natural numbers. Suppose n > 1 and k 6= 0 and k 6= 1 and

k 6= 1 and n 6= 2 or k 6= 2 and n 6= 1. Then Fib(k) = Fib(n) if and only if

k = n.

(51) Let n be a natural number. Suppose n > 1 and n 6= 4. Suppose n is non

prime. Then there exists a non empty natural number k such that k 6= 1

and k 6= 2 and k 6= n and k | n.

(52) For every natural number n such that n > 1 and n 6= 4 holds if Fib(n)

is prime, then n is prime.
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4. Sequence of Fibonacci Numbers

The function FIB from N into N is defined as follows:

(Def. 2) For every natural number k holds FIB(k) = Fib(k).

The subset Neven of N is defined by:

(Def. 3) Neven = {2 · k : k ranges over natural numbers}.

The subset Nodd of N is defined as follows:

(Def. 4) Nodd = {2 · k + 1 : k ranges over natural numbers}.

One can prove the following two propositions:

(53) For every natural number k holds 2 · k ∈ Neven and 2 · k + 1 /∈ Neven.

(54) For every natural number k holds 2 · k + 1 ∈ Nodd and 2 · k /∈ Nodd.

Let n be a natural number. The functor EvenFibs(n) yielding a finite sequ-

ence of elements of N is defined by:

(Def. 5) EvenFibs(n) = Prefix(FIB, Neven ∩ Segn).

The functor OddFibs(n) yields a finite sequence of elements of N and is defined

by:

(Def. 6) OddFibs(n) = Prefix(FIB, Nodd ∩ Seg n).

We now state a number of propositions:

(55) EvenFibs(0) = ∅.

(56) Seq(FIB ↾{2}) = 〈1〉.

(57) EvenFibs(2) = 〈1〉.

(58) EvenFibs(4) = 〈1, 3〉.

(59) For every natural number k holds Neven ∩ Seg(2 · k + 2) ∪ {2 · k + 4} =

Neven ∩ Seg(2 · k + 4).

(60) For every natural number k holds FIB ↾(Neven∩Seg(2 ·k+2))∪{〈〈2 ·k+4,

FIB(2 · k + 4)〉〉} = FIB ↾(Neven ∩ Seg(2 · k + 4)).

(61) For every natural number n holds EvenFibs(2 · n + 2) = EvenFibs(2 ·

n) a 〈Fib(2 · n + 2)〉.

(62) OddFibs(1) = 〈1〉.

(63) OddFibs(3) = 〈1, 2〉.

(64) For every natural number k holds Nodd ∩ Seg(2 · k + 3) ∪ {2 · k + 5} =

Nodd ∩ Seg(2 · k + 5).

(65) For every natural number k holds FIB ↾(Nodd∩Seg(2 ·k+3))∪{〈〈2 ·k+5,

FIB(2 · k + 5)〉〉} = FIB ↾(Nodd ∩ Seg(2 · k + 5)).

(66) For every natural number n holds OddFibs(2 · n + 3) = OddFibs(2 · n +

1) a 〈Fib(2 · n + 3)〉.

(67) For every natural number n holds
∑
EvenFibs(2·n+2) = Fib(2·n+3)−1.

(68) For every natural number n holds
∑
OddFibs(2 ·n + 1) = Fib(2 ·n + 2).
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5. Carmichael’s Theorem on Prime Divisors

One can prove the following three propositions:

(69) For every natural number n holds Fib(n) and Fib(n + 1) are relative

prime.

(70) For every non empty natural number n and for every natural number m

such that m 6= 1 holds if m | Fib(n), then m ∤ Fib(n−′ 1).

(71) Let n be a non empty natural number. Suppose m is prime and n is

prime and m | Fib(n). Let r be a natural number. If r < n and r 6= 0,

then m ∤ Fib(r).

6. Fibonacci Numbers and Pythagorean Triples

We now state the proposition

(72) For every non empty natural number n holds {Fib(n) · Fib(n + 3), 2 ·

Fib(n+1) ·Fib(n+2),Fib(n+1)2+Fib(n+2)2} is a Pythagorean triple.
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