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Short Sheffer Stroke-Based Single Axiom
for Boolean Algebras
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Summary. We continue the description of Boolean algebras in terms of
the Sheffer stroke as defined in [2]. The single axiomatization for BAs in terms
of disjunction and negation was shown in [3]. As was checked automatically with
the help of automated theorem prover Otter, single axiom of the form

(@[((yl2)|2))(yl(2[x)) =y (Sh1)

is enough to axiomatize the class of all Boolean algebras (] is used instead of | in
translation of our Mizar article). Many theorems in Section 2 were automatically
translated from the Otter proof object.

MML Identifier: SHEFFER2.

The terminology and notation used in this paper are introduced in the following
papers: [4], [1], and [2].

1. FIRST IMPLICATION

Let L be a non empty Sheffer structure. We say that L satisfies (Sh;) if and

only if:
(Def. 1) For all elements x, y, z of L holds z[(y[z[z)[(y[(z]x)) = y.

Let us observe that every non empty Sheffer structure which is trivial satisfies
also (Shy).

Let us observe that there exists a non empty Sheffer structure which satisfies
(Shy), (Sheffer;), (Sheffers), and (Sheffers).

In the sequel L is a non empty Sheffer structure satisfying (Shy).

One can prove the following propositions:
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00102.
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(1) For all elements x, y, z, u of L holds
@yl (@@ (yT)) (@22 [(ul(z](y[2))) = 2[(z[2]2).

(2) For all elements z, y, z of L holds (z[y[(y[(zlyly)[(z[y)(xz]y)))lz =
ylI(zlyly).

(3) For all elements z, y, z of L holds z[(y|

(4) For all elements x, y of L holds z[(z[(z|z|z)[(y](z](
zl(xlz|x).

For every element x of L holds z[(z|z|z) = z|z.
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For every element x of L holds z[(z[z[z

For all elements x, y, z of L holds z[z[(x
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For all elements x, y of L holds (z[y[(zy]
yl(@lyl(zly)lyly).
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For all elements x, y of L holds x[(ylz|(y|z)[xlx) = y|z.
(ylz)
[(z )
(@ly)!

[z]z) =y

f
For all elements x, y, z of L holds z[y[(z[(z]y)) =
[
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For all elements x, y of L holds x[x[
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For all elements x, y of L holds x[(y

For all elements x, y of L holds z[y[
[
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For all elements x, y of L holds z|(y[x|x
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For all elements x, y, z of L holds z[(y[z)[(z[z) = «.
For all elements x, y, z of L holds z[(z[y[(z]y)) = z[y.
For all elements x, y, z of L holds (z[(y[z)[z)]z = x|
zlr)=x

For all elements z, y of L holds x|y = y[z.
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For all elements z, y of L holds z[(y|
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For all elements z, y of L holds z[y[(z|z) = =.
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For all elements z, y, z of L holds x
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For all elements x, y, z of L holds x
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For all elements x, y, z of L holds x
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z[(yl2)[(ylz).
(30) For all elements z, y, z of L holds (z[(y[(z[2)))ly = y[(z[z).
[

(31) For all elements z, y, z, u of L holds x[(y[z)[(z
(32) For all elements z, y of L holds z[(y[(z]y)) = z[z.
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For all elements x, y, z of L holds z[(y[y)

(33) For all elements z, y, z of L holds z[(y[z) = z[(z[y).

(34) For all elements x, y, z of L holds z[(y[(z[(z[(y]x)))) = z|x.

(35) For all elements z, y, z of L holds (z[(y[2))[(ylz[z) = z[(y[z)[(z[(y[2))
(36) For all elements z, y, z of L holds z[(y[z)[y = yly.

(37) For all elements z, y, z of L holds (z[y)[z = z[(y[x).

(38) For all elements x, y, z of L holds z[(y[(z](x]y))) = z[(y]y).

(39) For all elements z, y, z of L holds (z]y[y)[(y[(z[z)) = y[(z]z)[(y](z]x))
(40) For all elements z, y, z, u of L holds (z[y)[(z[u) = ulz[(y|z)

(41) For all elements z, y, z of L holds z[(y[(y[z[2)) = z[(y[y).

(42) For all elements x, y of L holds z[(y[z) = x[(yy).

(43) For all elements z, y of L holds (z]y)ly = y[(z|z).

(44) =

(45)

(
For all elements z, y, z of L holds (z[(yly))l(z[(zly)) =
z[(zy) (@] (z]y)).
(46) For all elements =z, y, z of L holds (z[(yl2))[(z|(yly)) =
z[(yl2) (=] (yl2)).
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(47) For all elements z, y, z of L holds z[(y[y[(z](x[(x[y)))) = z[(y[y[(yly))

(48) For all elements z, y, z of L holds (z[(y[2)[(z[(y[2)))[(yly) = z[(yly

(49) For all elements z, y, z of L holds z[(yly[(z[(z[(x]y)))) = z[y

(50) For all elements x, y, z of L holds (xly[(z[y)[(z](x]yl2)[(z|y)))[(z|z) =
zl(zlylz) [(z]2).

(51) For all elements z, y, z of L holds (z[(y[z]x))[(yly) = y[z[(yly)

(52) For all elements z, y, z of L holds z[(y[z]x)[(yly) = y.

(53) For all elements z, y, z of L holds x[(y[(z[z]y)x) = y[(z|z]y).

(54) For all elements x, y, z of L holds x[(y[(y[(z]x))]x) = y[(z|(y[(z[2))]y)

(55) For all elements z, y, z of L holds z[(y[(y[(z[z))[z) = y[(y[(z]x)).

(56) For all elements x, y, z, u of L holds z[(y[(z[(z[(u[(y[z))))) = z[(y]y)

(57) For all elements z, y, z of L holds z[(y[(y[(z[(z[y)))) = [ (y[(z]x)).

(58) For all elements x, y, z of L holds x[(y[(y[(z](x]y)))) = z|z.

(59) For all elements z, y of L holds z[(y[(yly)) = z[z.

(60) For all elements z, y, z of L holds z[(y[(z[z)[(y[(z]x))[(2]z)) =

z[(yl(z]z)).
(61) For all elements z, y, z of L holds z[(y[(z]2)) = z[(y[(z]x)).
(62) For all elements x, y, z of L holds z[(y[(z]z[z)) =z
(63) For all elements z, y, z of L holds (z[(y[y))[(z](z](ylylz))) =
z](z1y) (=] (z]y))-
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(64) For all elements z, y, z of L holds (z[(yly))[(z](z[(z[(yly)))) =
z[(z1y) (21 (z]y))-

(65) For all elements z, y, z of L holds (z[(yly))[(z](z]z)) =
z[(z1y) [(z[(z]y))-

(66) For all elements z, y, z of L holds (z[zly)[(z]z]y) = y[(z[2)[(y[(x]z)).

(67) For every non empty Sheffer structure L such that L satisfies (Sh;) holds
L satisfies (Sheffer;).

(68) For every non empty Sheffer structure L such that L satisfies (Shy) holds
L satisfies (Sheffers).

(69) For every non empty Sheffer structure L such that L satisfies (Sh;) holds
L satisfies (Sheffers).

Let us mention that there exists a non empty Sheffer ortholattice struc-
ture which is properly defined, Boolean, well-complemented, lattice-like, and de
Morgan and satisfies (Sheffer;), (Sheffers), (Sheffers), and (Shy).

Let us mention that every non empty Sheffer ortholattice structure which
is properly defined satisfies (Sheffer;), (Sheffers), and (Sheffers) is also Bo-
olean and lattice-like and every non empty Sheffer ortholattice structure which
is Boolean, lattice-like, well-complemented, and properly defined satisfies also
(Sheffer; ), (Sheffers), and (Sheffers).

2. SECOND IMPLICATION

We adopt the following rules: L denotes a non empty Sheffer structure satis-
fying (Sheffer;), (Sheffers), and (Sheffers) and v, ¢, p, w, z, y,  denote elements
of L.

One can prove the following propositions:

~J
(e}

For all z, w holds w|(z]z]x) = wlw.

For all p, x holds z = z[z[(p[(p|p))-

For all y, w holds wlw[(w[(y[(yly))) = w.

For all ¢, p, y, w holds (w[(y[(yly))Ip)I(alqlp) = pl(wlg)[(pI(wlq)).
For all ¢, p, z holds (z[p)[(qlqlp) = pl(z[z[g)(p|(z|z]q)).

q [(z
For all w, p, y, ¢ holds (wlw(p)[(¢l(yl(yly))Ip) = pl(wlq)[(pl(wlq)).
For all p, = holds = = x|z [(p[p[p).

p
For all y, w holds wlw[(w/(ylyly)
(w

lyly)l
For all p, y, w holds w[(y[yly)|
[yl
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For all y, w holds w|(y

-
©

AN AN N AN N AN N N N N N /N
09} ~l
(=) D

~— O N N~ N N~ N

@v

For all p, z, y holds y[(x|x x|
For all z, y holds y[(z[z) = (z]z)[y
For all y, w holds wly = y[y[(y fy)f
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For all ¢, =z, =« holds (qf(zlz[2)[(q[(zlz[2)))[(x[ql(2[z]q)) =
z[2[(z[2)[(x]q) [(qlql(x]q)).

For all ¢, =z, x holds (qf(zlz[2)[(q[(zlz[2)))[(x[ql(2[z]q)) =
z[(zlq)[(qlql(z1q))-

For all w, ¢, z holds (wlw[(2[2[q))[(ql(qlql2)[(ql(qlqlz))) =
z[z[ql(wlq)[(2[21q](w]g)).

For all ¢, p, x holds p[(z[p)[(p[(x[p))(ql(gqlq)) = (z]z)Ip.

For all p, z holds p[(x|p) = (x]x)[p.

For all p, y holds (y[p)[(y

For all z, y holds z =

For all z, y holds (y[z
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For all z, z, y holds z[(yly[2)[(x] i i
For all 2, y, = holds z1(21(212)1(21(12)) 1y) 1z ]

T.
For all z, z, y holds (z[(yly[2))lz = z[(y[z).

For all z, y holds z[(y|z|z)
For all z, y,  holds y = x|
For all z, y holds y[(y[yl2)
)

wl(zlq[(zlg)[(w[(x]q)))-
For all ¢, w, y, x holds (z[(y[(yly))[w[(glqlw)) [(wl(z[g)[(w](z]q))) =
wl(x]q).

For all z, p, q, y, = holds
(z[z[(pI(pTP) (2] (y[(y1y))
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(144) For all y, w, z, v, = holds (w[(z[(z[v)))[(z[(y[(yly))Iz[(vv]z)) =
z[(z]v).

148) For all z, w, x holds w! [(z2).

149) For all p, z, y, « holds (z[(z[p)[(z[(z[p)))[(x[(yI(yly)) Iz (pIpl2)) =
plplzl(z [yl (yy) =) [(plplz[ (@] (y[(yIy))[2)).

(150) For all p, z, y, x holds z[(xz[p) =

(151) For all 2, p, y, « holds z[(z[p) = z[(p[(z[(y[(yIy¥)) [(z[(y[(y]¥)))))
(152) For all z, p, x holds z[(x|p) = z[(plx)

(153) For all w, g, p holds (p[q)[w = w(q[p).

(154) For all w, p, q holds (q[plw)lq = q[(pIplw).

(155) For all z, w, y,  holds wlz = w((z[z[(z[(y[(yIy)[((y[(yly)))Iw))
(156) For all w, z, x holds wlx = w|(z|z[(z[w)).

(157)

For all ¢, x, z, y holds (z[y)[(z[(y[(z[(z]2)
zlyl(z[(y1(z[(z]2))))-
(158) For all =, ¢, z, y holds (2[y)[(z[(yl(=[(212))[(y(2[(2]2)))Iq)) =
zlyl (@[ (y[(z](2[2))))-
(159) For all z, z, ¢, y holds (z]y)[(z(y
(160) For all z, ¢, y holds z[y[(z[(y]q))
(161) L satisfies (Shy).

Let us mention that every non empty Sheffer structure which satisfies
(Sheffer;), (Sheffers), and (Sheffers) satisfies also (Sh;) and every non empty
Sheffer structure which satisfies (Sh;) satisfies also (Sheffer;), (Sheffers), and
(Sheffers).

Let us observe that every non empty Sheffer ortholattice structure which
is properly defined satisfies (Shj) is also Boolean and lattice-like and every
non empty Sheffer ortholattice structure which is Boolean, lattice-like, well-
complemented, and properly defined satisfies also (Shy).
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