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Summary. In this paper we first defined the partial-union sequence, the
partial-intersection sequence, and the partial-difference-union sequence of given
sequence of subsets, and then proved the additive theorem of infinite sequences
and sub-additive theorem of finite sequences for probability. Further, we defined
the monotone class of families of subsets, and discussed the relations between
the monotone class and the o-field which are generated by the field of subsets of
a given set.
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The articles [4], [3], [2], [20], [23], [19], [9], [21], [22], [18], [16], [6], [1], [13], [11],
[24], [7], [8], [15], [14], [10], [12], [26], [25], [17], and [5] provide the notation and
terminology for this paper.
For simplicity, we adopt the following rules: n, m, k are natural numbers, g
is a real number, x, X, Y, Z are sets, A; is a sequence of subsets of X, I} is a
finite sequence of elements of 2%, Ry is a finite sequence of elements of R, S is
a o-field of subsets of X, Oy is a non empty set, Ss is a o-field of subsets of O,
Ao, By are sequences of subsets of S5, and P is a probability on Ss.
One can prove the following propositions:
(1) For every finite sequence f holds 0 ¢ dom f.
(2) For every finite sequence f holds n € dom f iff n # 0 and n < len f.
(3) Let f be a sequence of real numbers. Given k such that let given n. If
k < n, then f(n) =g. Then f is convergent and lim f = g.
If Ay(n) C By(n), then (P - A2)(n) < (P - By)(n).

If Ag is non-decreasing, then P - As is non-decreasing.
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) If As is non-increasing, then P - Ay is non-increasing.
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Let A; be a function. The partial intersections of A; constitute a function
defined by the conditions (Def. 1).

(Def. 1)(i) dom (the partial intersections of A;) = N,
(ii)  (the partial intersections of A;)(0) = A;(0), and
(ili)  for every natural number n holds (the partial intersections of A;)(n +
1) = (the partial intersections of A1)(n) N Aj(n+ 1).
Let X be a set and let A; be a sequence of subsets of X. Then the partial
intersections of Ay is a sequence of subsets of X.
Let A; be a function. The partial unions of A; constitute a function defined
by the conditions (Def. 2).
(Def. 2)(i)  dom (the partial unions of A;) =N,
(ii)  (the partial unions of A;)(0) = A;(0), and
(iii)  for every natural number n holds (the partial unions of A;)(n+1) = (the
partial unions of A;)(n)U Aj(n+ 1).
Let X be a set and let A7 be a sequence of subsets of X. Then the partial
unions of Ay is a sequence of subsets of X.
The following propositions are true:

(8) (The partial intersections of Ay)(n) C Ai(n).
(9) Ai(n) C (the partial unions of A;)(n).
(10) The partial intersections of A; are non-increasing.
(11) The partial unions of A; are non-decreasing.
(12) =z € (the partial intersections of A;)(n) iff for every k such that k < n

holds z € Ay (k).
(13) = € (the partial unions of Aj)(n) iff there exists k such that £ < n and
x € Al(k‘)
(14) Intersection (the partial intersections of A;) = Intersection A;.
(15) | (the partial unions of A;) = J A;.
Let A; be a function. The partial diff-unions of A; constitute a function
defined by the conditions (Def. 3).
(Def. 3)(i) dom (the partial diff-unions of A;) =N,
(ii)  (the partial diff-unions of A;)(0) = A1(0), and
(ili)  for every natural number n holds (the partial diff-unions of A;)(n+1) =
Ai(n+ 1)\ (the partial unions of A;)(n).
Let X be a set and let A; be a sequence of subsets of X. Then the partial
diff-unions of Ay is a sequence of subsets of X.
One can prove the following propositions:
(16) =z € (the partial diff-unions of A;)(n) iff x € A1(n) and for every k such
that £ < n holds = ¢ Ay (k).
(17) (The partial diff-unions of A;)(n) C A;(n).
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(18) (The partial diff-unions of A;)(n) C (the partial unions of A;)(n).

(19) The partial unions of the partial diff-unions of A; = the partial unions
of A1 .

(20) U (the partial diff-unions of A;) = J A;.

Let us consider X, A;. Let us observe that A; is disjoint valued if and only
if:

(Def. 4) For all m, n such that m # n holds A;(m) misses Aj(n).

We now state the proposition

(21) The partial diff-unions of A; are disjoint valued.

Let X be a set, let S be a o-field of subsets of X, and let X; be a sequence
of subsets of S7. Then the partial intersections of X is a sequence of subsets of
Sl.

Let X be a set, let S be a o-field of subsets of X, and let X; be a sequence
of subsets of S7. Then the partial unions of X7 is a sequence of subsets of 5.

Let X be a set, let S be a o-field of subsets of X, and let X; be a sequence
of subsets of S;. Then the partial diff-unions of X is a sequence of subsets of
Sl.

Next we state a number of propositions:

(22) P -the partial unions of A is non-decreasing.

(23) P -the partial intersections of Ay is non-increasing.

(24) (Xn_o(P - A2)(a))ken is non-decreasing.

(25) (P - the partial unions of A2)(0) = (> _n_o(P - A2)())ken(0).

(26)(1) P - the partial unions of As is convergent,

(ii)  lim(P - the partial unions of As) = sup(P - the partial unions of Aj),

and

(iii)  lim(P - the partial unions of Ay) = P(|J As).

(27) 1If Ay is disjoint valued, then for all n, m such that n < m holds (the
partial unions of Ag)(n) misses Aa(m).

(28) If Ay is disjoint valued, then (P-the partial unions of As)(n) = (> _,(P-

a=0
Az)(a))ren(n).
(29) If A is disjoint valued, then P - the partial unions of Ay = (3 _~_(P -
AQ)(C“))NEN-

(30) If Ay is disjoint valued, then (3 5_ (P - A2)())ken is convergent
and lm((3_5_o(P - A2)(a))wen) = sup((Pq—o(F - A2)(@))ren) and
Hm((Xoa—o(P - A2)())wen) = P(U Az).

(31) If A is disjoint valued, then P(|JA2) = > (P - Ag).

Let us consider X, Fj, n. Then Fij(n) is a subset of X.
One can prove the following two propositions:
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(32) There exists a finite sequence Fj of elements of 2% such that for every
k such that k£ € dom F; holds Fi(k) = X.

(33) For every finite sequence F of elements of 2% holds | Jrng F} is a subset
of X.
Let X be a set and let F} be a finite sequence of elements of 2. Then U F1
is a subset of X.
We now state the proposition
(34) =z € |J Fy iff there exists k such that k € dom Fi and x € Fi(k).

Let us consider X, Fy. The functor Complement F} yields a finite sequence
of elements of 2% and is defined by:
(Def. 5) lenComplement F; = lenF; and for every n such that n €
dom Complement F; holds (Complement Fy)(n) = Fi(n)C.

Let us consider X, Fy. The functor Intersection F} yields a subset of X and

is defined by:
¢ -
(Def. 6) Intersection F} = (U Complfament B, it B £ 0,

(0, otherwise.

Next we state several propositions:
(35) dom Complement F; = dom Fj.

(36) If Fy # (0, then x € Intersection F iff for every k such that k € dom Fy
holds x € Fi(k).

(37) If Fy # 0, then x € (rng F} iff for every n such that n € dom F; holds
x € Fi(n).

(38) Intersection Fy = (|rng F}.

(39) Let Fy be a finite sequence of elements of 2%. Then there exists a
sequence Aj of subsets of X such that for every k such that k € dom £}
holds A; (k) = Fi(k) and for every k such that k ¢ dom F} holds A, (k) = 0.

(40) Let F; be a finite sequence of elements of 2% and A; be a sequence of
subsets of X. Suppose for every k such that k& € dom F; holds A;(k) =
Fi(k) and for every k such that k ¢ dom F; holds A;(k) = (). Then
Al(O) = @ and UA1 = UF1

Let X be a set and let S; be a o-field of subsets of X. A finite sequence of
elements of 2% is said to be a finite sequence of elements of S if:

(Def. 7) For every k such that k € domit holds it(k) € 5.
Let X be a set, let S7 be a o-field of subsets of X, let F5 be a finite sequence
of elements of S1, and let us consider n. Then F»(n) is an event of 5.
We now state two propositions:
(41) Let F; be a finite sequence of elements of S;. Then there exists a se-

quence A, of subsets of S7 such that for every k such that & € dom F3 holds
As(k) = Fy(k) and for every k such that k ¢ dom Fb holds As(k) = 0.
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(42) For every finite sequence Fy of elements of Sy holds |J F» € 5.

Let X be a set, let S be a o-field of subsets of X, and let F' be a finite
sequence of elements of S. The functor F° yielding a finite sequence of elements
of S is defined as follows:

(Def. 8) F° = Complement F.
We now state the proposition
(43) For every finite sequence Fy of elements of S7 holds Intersection F» € 5.
In the sequel F3 denotes a finite sequence of elements of Ss.
The following two propositions are true:
(44) dom(P - F3) = dom F3.
(45) P - Fj is a finite sequence of elements of R.

Let us consider Oy, Sy, F3, P. Then P - F3 is a finite sequence of elements
of R.
Next we state several propositions:

(46) len(P - F3) = len F3.

(47) Iflen Ry =0, then Y R; = 0.

(48) Suppose len R; > 1. Then there exists a sequence f of real numbers such
that f(1) = R1(1) and for every n such that 0 # n and n < len R; holds
fn+1)=f(n)+ Ri(n+1) and Y Ry = f(len Ry).

(49) Let F3 be a finite sequence of elements of S and Ay be a sequence of sub-
sets of Sy. Suppose for every k such that k£ € dom F3 holds As(k) = F3(k)
and for every k such that k ¢ dom F3 holds As(k) = 0. Then (3 5 (P -

A2)(@))ken is convergent and Y (P - Az) = (3on_o(P - Az)(a))wen(len F3)
and P(|JA2) <> (P-Az)and Y (P-F3)=> (P- Aj).
(50) P(UFs) < >.(P - F3) and if F3 is disjoint valued, then P(|JF3) =
> (P F3).
Let us consider X and let I7 be a family of subsets of X. We say that I; is
non-decreasing-union-closed if and only if:
(Def. 9) For every sequence A; of subsets of X such that A; is non-decreasing
and for every n holds A;(n) € I holds |J 4, € I1.

We say that I is non-increasing-intersection-closed if and only if:
(Def. 10) For every sequence A; of subsets of X such that A; is non-increasing
and for every n holds A;(n) € I; holds Intersection A; € I.
We now state three propositions:

(51) Let I; be a family of subsets of X. Then [; is non-decreasing-union-
closed if and only if for every sequence A; of subsets of X such that A; is
non-decreasing and for every n holds A;(n) € I; holds lim A; € I;.

(52) Let I be a family of subsets of X. Then I; is non-increasing-intersection-
closed if and only if for every sequence A; of subsets of X such that A; is
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non-increasing and for every n holds A;(n) € I holds lim A; € I4.

(53) 2% is non-decreasing-union-closed and 2% is non-increasing-intersection-
closed.

Let us consider X. A family of subsets of X is said to be a monotone class
of X if:

(Def. 11) It is non-decreasing-union-closed and it is non-increasing-intersection-
closed.

Next we state four propositions:

(54) Z is a monotone class of X if and only if the following conditions are
satisfied:
(i) ZcC2¥, and
(ii)  for every sequence A; of subsets of X such that A; is monotone and
for every n holds Aj(n) € Z holds lim 4; € Z.

(55) Let F be a field of subsets of X. Then F is a o-field of subsets of X if
and only if F' is a monotone class of X.

(56) 291 is a monotone class of Oy.

(57) Let X be a family of subsets of O;. Then there exists a monotone class
Y of O; such that X C Y and for every Z such that X C Z and Z is a
monotone class of O; holds Y C Z.

Let us consider O; and let X be a family of subsets of O;. The functor
monotone-class(X) yielding a monotone class of O; is defined as follows:

(Def. 12) X C monotone-class(X) and for every Z such that X C Z and Z is a
monotone class of O; holds monotone-class(X) C Z.

We now state two propositions:

(58) For every field Z of subsets of O; holds monotone-class(Z7) is a field of
subsets of O;.

(59) For every field Z of subsets of O; holds 0(Z) = monotone-class(Z).
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Summary. This article is a continuation of [6]. We present the notion of
files and records. These are two finite sequences. One is a record and another
is a separator for the carriage return and/or line feed. So, we define the record.
The sequential text file contains records and separators. Generally, a record and
a separator are paired in the file. And in a special situation, the separator does
not exist in the file, for that the record is only one record or record is nothing.
And the record does not exist in the file, for that some separator is in the file.
In this article, we present a theory for files and records.

MML identifier: FILEREC1, version: 7.5.01 4.39.921

The terminology and notation used here are introduced in the following articles:
[11], [12], [7], [1], [10], [13], [8], [2], 3], [4], [9], [5], and [6].

In this paper a, b, c denote sets.

The following propositions are true:

(1) Let D be a non empty set and p, ¢, r, s be finite sequences of elements
of D. Thenp~q~r~s=p~(¢"r)"sand (p"q"r)"s=p~q~(r"s)
and (p~(q7 7)) "s=pTq"(r"s).

(2) For every set D and for every finite sequence f of elements of D holds
fllen f = f.

(3) For every non empty set D and for all finite sequences p, ¢ of elements
of D such that lenp = 0 holds ¢ = p " q.

(4) Let D be a non empty set, f be a finite sequence of elements of D, and
n, m be natural numbers. If n < m, then len(f},,) < len(f},).

(5) For every non empty set D and for all finite sequences f, g of elements
of D such that leng > 1 holds mid(f "~ g,len f + 1,1en f + leng) = g.

(© 2005 University of Bialystok
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(6) Let D be a non empty set, f, g be finite sequences of elements of D,
and 4, 7 be natural numbers. If 1 < ¢ and ¢ < j and j < len f, then
mid(f " g,4,j) = mid(f, 1, 7).

(7) Let D be a non empty set, f be a finite sequence of elements of D, and
i, 7, n be natural numbers. If 1 < ¢ and 7 < j and ¢ < len(f[n) and
j <len(f[n), then mid(f,d,j) = mid(f[n,i, ).

(8) For every non empty set D and for every finite sequence f of elements
of D such that f = (a) holds a € D.

(9) For every non empty set D and for every finite sequence f of elements

of D such that f = (a,b) holds a € D and b € D.

(10) Let D be a non empty set and f be a finite sequence of elements of D.
If f=<(a,b,c),thena € D and be D and c € D.

(11) For every non empty set D and for every finite sequence f of elements
of D such that f = (a) holds f[1 = (a).

(12) For every non empty set D and for every finite sequence f of elements
of D such that f = (a,b) holds f; = (b).

(13) For every non empty set D and for every finite sequence f of elements
of D such that f = (a,b,c) holds f|1 = (a).

(14) For every non empty set D and for every finite sequence f of elements
of D such that f = (a,b,c) holds f[2 = (a,b).

(15) For every non empty set D and for every finite sequence f of elements
of D such that f = (a,b,c) holds f1 = (b, ¢).

(16) For every non empty set D and for every finite sequence f of elements
of D such that f = (a,b,c) holds fj2 = (c).

(17) For every non empty set D and for every finite sequence f of elements
of D such that len f = 0 holds Rev(f) = f.

(18) Let D be a non empty set, r be a finite sequence of elements of D, and
i be a natural number. If ¢ <lenr, then Rev(r|;) = Rev(r)[(lenr —'1).

(19) Let D be a non empty set and f, C; be finite sequences of elements of D.
If Cy is not a substring of f and C; separates uniquely, then instr(1, f
Cy)=lenf+1.

(20) For every non empty set D and for every finite sequence f of elements
of D holds every finite sequence f, g of elements of D is a preposition of
(f A g) |len f-

(21) Let D be a non empty set and f, Cy be finite sequences of elements of
D. Suppose (' is not a substring of f and C separates uniquely. Then
f 7~ Cq is terminated by C'.

Let D be a set. We introduce file of D as a synonym of finite sequence of
elements of D.
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Let D be a non empty set and let r, f, C7 be files of D. We say that r is a
record of f and C if and only if:
(Def. 1) C; ™ ris a substring of addcr(f, C1) or r is a preposition of addcr(f, Ci)
but r is terminated by Cj.
The following propositions are true:
(22) For every non empty set D and for every finite sequence r of elements
of D holds ovlpart(ep,r) = ep and ovlpart(r,ep) = ep.
(23) For every non empty set D holds every finite sequence C of elements of
D is a record of ep and Cf.
(24) Let D be a non empty set, a, b be sets, and f, r, Cy be files of D.
Suppose a # b and D = {a,b} and Cy = (b) and f = (b,a,b) and r = (a,
b). Then C} is a record of f and C; and r is a record of f and Cf.
(25) For every non empty set D and for all files f, C; of D holds f is a
preposition of f ™ Cj.
(26) For every non empty set D and for all files f, C; of D holds f is a
preposition of adder(f, Cy).
(27) For every non empty set D and for all files 7, Cy of D such that C is a
postposition of r holds 0 < lenr — len C1.
(28) For every non empty set D and for all files C, r of D such that C is a
postposition of r holds r = addcr(r, C1).
(29) For every non empty set D and for all files C1, r of D such that r is
terminated by C; holds r = addcr(r, Cy).
(30) For every non empty set D and for all files f, g of D such that f is
terminated by g holds len g <len f.
(31) For every non empty set D and for all files f, C; of D holds
len adder(f,C1) > len f and len adder(f,Cy) > len Cy.

(32) For every non empty set D and for all finite sequences f, g of elements
of D holds g = (ovlpart(f,g)) ~ ovirdiff(f, g).

(33) For every non empty set D and for all finite sequences f, g of elements
of D holds ovlcon(f, g) = (ovlldiff(f,g)) " g.

(34) For every non empty set D and for all files C, r of D holds addcr(r, Cy) =
(OVHdiff(’r’, Cl)) - 01.

(35) Let D be a non empty set and r1, 72, f be files of D. If f = r; ~ry, then
r1 is a substring of f and 79 is a substring of f.

(36) Let D be a non empty set and ry, ro, r3, f be files of D. Suppose
f =r1"1r9 " r3. Then ry is a substring of f and r9 is a substring of f and
r3 is a substring of f.

(37) Let D be a non empty set and Cy, r1, ro be files of D. Suppose r; is
terminated by C and r9 is terminated by C7. Then C| ™ 7y is a substring
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of addcr(ry ™ re, C1).
(38) Let D be a non empty set, f, g be files of D, and n be a natural number.
If 0 < n and g = 0, then instr(n, f) = n.

(39) Let D be a non empty set, f, g be files of D, and n be a natural number.
If 0 < n and n <len f, then instr(n, f) < len f.

(40) For every non empty set D and for every file f of D holds every file f,
Cy of D is a substring of ovlcon(f, C1).

(41) For every non empty set D and for every file f of D holds every file f,
Cy of D is a substring of adder(f,Cy).

(42) Let D be a non empty set, f, g be finite sequences of elements of D,
and n be a natural number. If g is a substring of f[n and leng > 0 and
len g < n, then g is a substring of f.

(43) For every non empty set D and for all files f, Cy of D holds there exists
a file of D which is a record of f and Cj.

(44) For every non empty set D and for all files f, C1, r of D such that r is
a record of f and C4 holds r is a record of r and C;.

(45) Let D be a non empty set and C1, 71, ro, f be files of D. Suppose 7 is
terminated by Cy and r9 is terminated by C; and f = ry ™ ry. Then rq is
a record of f and C and ry is a record of f and (.
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1. CIRCLED SETS

One can prove the following proposition
(1) For every real linear space V and for all circled subsets A, B of V' holds
A — B is circled.
Let V be a real linear space and let M, N be circled subsets of V. Note that
M — N is circled.
Next we state the proposition
(2) Let V be a non empty RLS structure and M be a subset of V. Then M
is circled if and only if for every vector v of V and for every real number
r such that |r| <1 and w € M holds r - u € M.

(© 2005 University of Bialystok
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Let V be a non empty RLS structure and let M be a subset of V. Let us
observe that M is circled if and only if:

(Def. 1) For every vector u of V' and for every real number r such that |r| < 1
and v € M holds r-u € M.

The following propositions are true:

(3) Let V be areal linear space, M be a subset of V', and r be a real number.
If M is circled, then r - M is circled.

(4) Let V be a real linear space, M7, My be subsets of V, and ry, ry be real
numbers. If Mj is circled and Mo is circled, then rq - My + 179 - Mo is circled.

(5) Let V be a real linear space, M, My, M3 be subsets of V', and 7y, 7o,
r3 be real numbers. Suppose M is circled and Ms is circled and Mj is
circled. Then rq - M7 + 7o - My + r3 - M3 is circled.

(6) For every real linear space V' holds Up(0y) is circled.

(7) For every real linear space V' holds Up(Qy ) is circled.

(8) For every real linear space V and for all circled subsets M, N of V holds
M N N is circled.

(9) For every real linear space V' and for all circled subsets M, N of V' holds
M U N is circled.

2. CIrRcLED HuLL AND CIRCLED FAMILY

Let V' be a non empty RLS structure and let M be a subset of V. The functor
Circled-Family M yields a family of subsets of V' and is defined as follows:
(Def. 2) For every subset N of V holds N € Circled-Family M iff N is circled
and M C N.
Let V be a real linear space and let M be a subset of V. The functor Cir M
yielding a circled subset of V is defined by:
(Def. 3) Cir M = [ Circled-Family M.
Let V be a real linear space and let M be a subset of V. Note that
Circled-Family M is non empty.
We now state several propositions:
(10) For every real linear space V and for all subsets Mj, M of V such that
M; C Ms holds Circled-Family My C Circled-Family M.
(11) For every real linear space V and for all subsets Mj, My of V such that
M1 g MQ holds Cir M1 g Cil‘MQ.
(12) For every real linear space V' and for every subset M of V' holds M C
Cir M.

(13) Let V be a real linear space, M be a subset of V, and N be a circled
subset of V. If M C N, then Cir M C N.
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(14) For every real linear space V' and for every circled subset M of V' holds
CirM = M.
(15) For every real linear space V holds Cir(@y) = 0.

(16) For every real linear space V and for every subset M of V and for every
real number r holds r - Cir M = Cir(r - M).

3. BASIC PROPERTIES OF COMBINATION

Let V be a real linear space and let L be a linear combination of V. We say
that L is circled if and only if the condition (Def. 4) is satisfied.

(Def. 4) There exists a finite sequence F of elements of the carrier of V' such that
(i)  F is one-to-one,
(i) rng F' = the support of L, and
(iii)  there exists a finite sequence f of elements of R such that len f = len F
and Y f =1 and for every natural number n such that n € dom f holds
f(n) = L(F(n)) and f(n) = 0.
The following propositions are true:
(17) Let V be a real linear space and L be a linear combination of V. If L is
circled, then the support of L # (.

(18) Let V be a real linear space, L be a linear combination of V', and v be
a vector of V. If L is circled and L(v) < 0, then v ¢ the support of L.
(19) For every real linear space V' and for every linear combination L of V'

such that L is circled holds L # Or,c,, -
(20) For every real linear space V' holds there exists a linear combination of
V' which is circled.

Let V be a real linear space. One can check that there exists a linear
combination of V' which is circled.
Let V be a real linear space. A circled combination of V is a circled linear
combination of V.
We now state the proposition
(21) For every real linear space V and for every non empty subset M of V'
holds there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V. Note
that there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V. A circled
combination of M is a circled linear combination of M.

Let V be a real linear space. The functor circledComb V is defined as follows:

(Def. 5) For every set L holds L € circledComb V' iff L is a circled combination
of V.
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Let V be a real linear space and let M be a non empty subset of V. The
functor circledComb M is defined by:

(Def. 6) For every set L holds L € circledComb M iff L is a circled combination

of M.
The following propositions are true:

(22) Let V be a real linear space and v be a vector of V. Then there exists
a circled combination L of V such that > L = v and for every non empty
subset A of V' such that v € A holds L is a circled combination of A.

(23) Let V be a real linear space and vy, vy be vectors of V.. Suppose v1 # vs.
Then there exists a circled combination L of V' such that for every non
empty subset A of V' if {v;,v9} C A, then L is a circled combination of A.

(24) Let V be areal linear space, L1, Ls be circled combinations of V', and a, b
be real numbers. Suppose a-b > 0. Then the support of a-L1+b- Ly = (the
support of a - L1) U (the support of b - Ls).

(25) Let V be a real linear space, v be a vector of V, and L be a linear
combination of V. If L is circled and the support of L = {v}, then
L(v)=1and Y L= L(v)-wv.

(26) Let V be a real linear space, v1, ve be vectors of V, and L be a linear
combination of V. Suppose L is circled and the support of L = {vj,v9}
and vy # va. Then L(v1) + L(v2) = 1 and L(v;) > 0 and L(vz) > 0 and
ZL = L(Ul) -1 + L(’Ug) - V9.

(27) Let V be a real linear space, v be a vector of V, and L be a linear
combination of {v}. If L is circled, then L(v) =1 and > L = L(v) - v.
(28) Let V be a real linear space, v1, vy be vectors of V', and L be a linear
combination of {vy,v2}. Suppose v; # vy and L is circled. Then L(v1) +
L(vy) =1 and L(v1) > 0 and L(v2) > 0 and > L = L(v1) - v1 + L(v2) - va.
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1. PRELIMINARIES

Let T be a 1-sorted structure. The functor TotFam T yielding a family of
subsets of T is defined by:

(Def 1) TotFam T = 2the carrier of T_
The following proposition is true

(1) For every set T and for every family F of subsets of 7" holds F' is count-
able iff F'¢ is countable.
Let us note that Q is countable.
The scheme FraenCounll concerns a unary predicate P, and states that:
{{n}; n ranges over elements of Q: P[n|} is countable
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for all values of the parameters.
One can prove the following proposition

(2) For every non empty topological space T and for every subset A of T
holds Der A = {x; x ranges over points of T: x € A\ {z}}.

Let us note that every topological structure which is finite is also second-
countable.

One can verify that R is non countable.

One can verify the following observations:

* every set which is non countable is also non finite,

% every set which is non finite is also non trivial, and

% there exists a set which is non countable and non empty.

We adopt the following rules: T is a non empty topological space, A, B are
subsets of T', and F', G are families of subsets of 7.

One can prove the following propositions:
(3) A s closed iff Der A C A.

(4) Let T be a non empty topological structure, B be a basis of T, and V' be
a subset of T'. Suppose V is open and V # (). Then there exists a subset
W of T such that W € Band W CV and W # 0.

2. REGULAR FORMALIZATION: SEPARABLE SPACES

The following propositions are true:
(5) density T' < weight T
(6) T is separable iff there exists a subset of T' which is dense and countable.
(7) If T is second-countable, then T is separable.

One can check that every non empty topological space which is second-
countable is also separable.

The following four propositions are true:

(8) Let T be a non empty topological space and A, B be subsets of T'. If A
and B are separated, then Fr(AU B) = Fr AU Fr B.

(9) If F is locally finite, then Fr|J F C |JFr F.
(10) For every discrete non empty topological space T' holds T is separable
iff Qr < No.

(11) For every discrete non empty topological space T holds T is separable
iff T' is countable.
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3. FAMILIES OF SUBSETS CLOSED FOR COUNTABLE UNIONS AND
COMPLEMENT

Let us consider T', F'. We say that F' is all-open-containing if and only if:
(Def. 2) For every subset A of T such that A is open holds A € F.
Let us consider T', F'. We say that F' is all-closed-containing if and only if:
(Def. 3) For every subset A of T such that A is closed holds A € F.
Let T be a set and let F' be a family of subsets of T'. We say that F' is closed
for countable unions if and only if:
(Def. 4)  For every countable family G of subsets of T' such that G C F holds
UG e F.
Let T be a set. Note that every o-field of subsets of T is closed for countable
unions.
One can prove the following proposition
(12) For every set T' and for every family F' of subsets of T such that F is
closed for countable unions holds () € F.

Let T be a set. One can verify that every family of subsets of T" which is
closed for countable unions is also non empty.
Next we state the proposition
(13) Let T be a set and F be a family of subsets of 7. Then F' is a o-field of
subsets of T if and only if F' is closed for complement operator and closed
for countable unions.
Let T be a set and let F' be a family of subsets of T'. We say that F' is closed
for countable meets if and only if:
(Def. 5) For every countable family G of subsets of T" such that G C F' holds
NG e F.
Next we state four propositions:
(14) Let F be a family of subsets of T. Then the following statements are
equivalent
(i) F is all-closed-containing and closed for complement operator,
(ii)  F is all-open-containing and closed for complement operator.
(15) For every set T' and for every family F' of subsets of T such that F is
closed for complement operator holds F' = F*°.
(16) Let T be a set and F', G be families of subsets of T. If F' C G and G is
closed for complement operator, then F°¢ C G.
(17) Let T be a set and F' be a family of subsets of 7. Then the following
statements are equivalent
(i)  F is closed for countable meets and closed for complement operator,
(i)  F' is closed for countable unions and closed for complement operator.
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Let us consider T'. One can verify that every family of subsets of T which is
all-open-containing, closed for complement operator, and closed for countable
unions is also all-closed-containing and closed for countable meets and every
family of subsets of T' which is all-closed-containing, closed for complement
operator, and closed for countable meets is also all-open-containing and closed
for countable unions.

4. ON THE FAMILIES OF SUBSETS

Let T be a set and let F' be a countable family of subsets of T. Note that
F° is countable.

Let us consider T'. Note that every family of subsets of T" which is empty is
also open and closed.

Let us consider T. One can check that there exists a family of subsets of T’
which is countable, open, and closed.

We now state the proposition

(18) For every set T holds ) is an empty family of subsets of T

Let us observe that every set which is empty is also countable.

5. COLLECTIVE PROPERTIES OF FAMILIES

One can prove the following two propositions:
(19) If F = {A}, then A is open iff F' is open.
(20) If FF={A}, then A is closed iff F' is closed.

Let T be a set and let F', G be families of subsets of 7. Then Fm G is a
family of subsets of T'. Then F' U G is a family of subsets of T
Next we state a number of propositions:

(21) If F is closed and G is closed, then F'm G is closed.

(22) 1If F is closed and G is closed, then F'U G is closed.

(23) If F is open and G is open, then F'M G is open.

(24) If F is open and G is open, then F' U G is open.

(25) For every set T and for all families F', G of subsets of T holds F A G <
FF, G.

(26) For every set T and for all families F, G of subsets of T holds F UG <
FF, G.

(27) For all sets F, G holds J(FUG) CUFUUG.
(28) For all sets F', G such that F' # () and G # 0 holds |y FUU G = J(FUG).
(29) For every set F holds QU F = ().
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(30) For all sets F, G such that F UG = () holds F' = or G = (.

(31) For all sets F, G such that Fm G = () holds F' = or G = ().

(32) For all sets F, G holds (FUG) CNFUNG.

(33) For all sets F', G such that F' # () and G # () holds (FUG) = " FUNG.
(34) For all sets F', G such that F' # () and G # 0 holds " FN G = N(FAG).

6. F, AND G§ TYPES OF SUBSETS

Let us consider T, A. We say that A is F, if and only if:
(Def. 6) There exists a closed countable family F' of subsets of 7' such that A =

UF.

Let us consider T, A. We say that A is Gy if and only if:
(Def. 7) There exists an open countable family F' of subsets of 7" such that A =

NE

The following propositions are true:
(35) O is Fy.
(36) 07 is Gs.
Let us consider T'. Note that 7 is I, and Gj.

Next we state two propositions:
(37) Qpis Fy,.
(38) Qrp is Gs.
Let us consider T'. One can verify that Qp is F, and Gs.
One can prove the following propositions:
If Ais Fy,, then A€ is Gj.
If Ais Gg, then A€ is F,.
If Ais F, and B is F,, then AN B is F,.
If Ais F, and B is F,, then AU B is F,.
If Ais G5 and B is Gg, then AU B is Gs.
If Ais G5 and B is Gg, then AN B is Gs.
For every subset A of T such that A is closed holds A is F,.
For every subset A of T such that A is open holds A is Gs.
For every subset A of R! such that A = Q holds A is F.
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7. T}/, TOPOLOGICAL SPACES

Let T' be a topological space. We say that 1" is T} 5 if and only if:
(Def. 8) For every subset A of T" holds Der A is closed.
We now state three propositions:
(48) For every topological space T such that T is T1 holds 7" is T} /5.
(49) For every non empty topological space T such that 1" is T} /o holds 7" is
To.
(50) For every non empty topological space T' holds every point p of T is
isolated in Q7 or an accumulation point of Q7.

Let us note that every topological space which is 775 is also Ty and every
topological space which is 77 is also T} 5.

8. CONDENSATION POINTS

Let us consider T', A and let x be a point of T. We say that x is a conden-
sation point of A if and only if:

(Def. 9) For every neighbourhood N of = holds N N A is not countable.

In the sequel x denotes a point of T'.
One can prove the following proposition

(51) If = is a condensation point of A and A C B, then x is a condensation
point of B.

Let us consider T, A. The functor A° yielding a subset of T is defined as
follows:

(Def. 10) For every point x of T holds = € AY iff 2 is a condensation point of A.
The following propositions are true:

(52) For every point p of T" such that p is a condensation point of A holds p
is an accumulation point of A.

53) A% C Der A.

54) A0 = A0,

55) If A C B, then A° C BY.

56) If z is a condensation point of AU B, then z is a condensation point of
A or a condensation point of B.

(57) AuBY= AU BY.

(58) If A is countable, then there exists no point of 7" which is a condensation

point of A.

(59) If A is countable, then A° = 0.

(
(
(
(
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Let us consider 7" and let A be a countable subset of 7. Note that A is
empty.
The following proposition is true

(60) If T is second-countable, then there exists a basis of T which is countable.

Let us mention that there exists a topological space which is second-countable
and non empty.

9. BOREL FAMILIES OF SUBSETS

Let us consider T'. Observe that TotFam T is non empty, all-open-containing,
closed for complement operator, and closed for countable unions.
We now state four propositions:

(61) For every set T' and for every sequence A of subsets of T" holds rng A is
a countable non empty family of subsets of T.

(62) Let T, F be sets. Then F is a o-field of subsets of T' if and only if F' is
a closed for complement operator o-field of subsets-like non empty family
of subsets of T'.

(63) For all families F', G of subsets of T such that F' is all-open-containing
and F' C G holds G is all-open-containing.

(64) Let F, G be families of subsets of T. Suppose F is all-closed-containing
and F' C G. Then G is all-closed-containing.

Let T be a 1-sorted structure. A o-field of subsets of T" is a o-field of subsets
of the carrier of T

Let T be a non empty topological space. Note that there exists a family
of subsets of T" which is closed for complement operator, closed for count-
able unions, closed for countable meets, all-closed-containing, and all-open-
containing.

We now state the proposition

(65) o(TotFam T) is all-open-containing, closed for complement operator, and
closed for countable unions.

Let us consider T. One can verify that o(TotFam T') is all-open-containing,
closed for complement operator, and closed for countable unions.

Let T be a non empty 1-sorted structure. Note that there exists a family
of subsets of T" which is o-field of subsets-like, closed for complement operator,
closed for countable unions, and non empty.

Let T be a non empty topological space. One can verify that every o-field
of subsets of T is closed for countable unions.

We now state the proposition
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(66) Let T be a non empty topological space and F' be a family of subsets of
T. Suppose F' is closed for complement operator and closed for countable
unions. Then F' is a o-field of subsets of T'.

Let T be a non empty topological space. Note that there exists a o-field of
subsets of T which is all-open-containing.
Let T be a non empty topological space. Note that Topology(7’) is open and
all-open-containing.
We now state the proposition
(67) Let X be a family of subsets of T. Then there exists an all-open-
containing closed for complement operator closed for countable unions
family Y of subsets of T" such that
(i) X CY, and
(ii)  for every all-open-containing closed for complement operator closed for
countable unions family Z of subsets of T" such that X C Z holds Y C Z.

Let us consider T. The functor BorelSetsT yields an all-open-containing
closed for complement operator closed for countable unions family of subsets of
T and is defined by the condition (Def. 11).

(Def. 11) Let G be an all-open-containing closed for complement operator closed
for countable unions family of subsets of T'. Then BorelSetsT C G.

Next we state three propositions:
(68) For every closed family F' of subsets of T" holds F' C BorelSets T
(69) For every open family F' of subsets of T' holds F' C BorelSets T.
(70) BorelSetsT' = o(Topology(T)).
Let us consider T\, A. We say that A is Borel if and only if:
(Def. 12) A € BorelSets T

Let us consider T'. Note that every subset of T which is F, is also Borel.
Let us consider T'. Note that every subset of T" which is Gy is also Borel.
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The notation and terminology used here are introduced in the following papers:
116, [17], [1], [15], [2], (18], [7), [9], (8], [3], [4], (5], [6], [10], 1], [12], [14], and
[13].
One can prove the following propositions:
(1) Let F, G, H be finite sequences of elements of R. Suppose that
(i)  for every natural number 7 such that ¢ € dom F' holds O < F\(4),
(ii)  for every natural number ¢ such that i € dom G holds Ox < G(7),
(iii) dom F' =domG, and
(iv) H=F+4G.
Then Y H=) F+)> G.

(2) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, n be a natural number, f be a partial function from X
to R, F be a finite sequence of separated subsets of S, and a, = be finite
sequences of elements of R. Suppose that f is simple function in S and
dom f # () and for every set x such that z € dom f holds O < f(z) and
F and a are representation of f and domz = dom F' and for every natural
number ¢ such that ¢ € domx holds z(i) = a(i) - (M - F)(i) and len F' = n.
Then [ fdM =3 .

X

!This work has been partially supported by the MEXT grant Grant-in-Aid for Young
Scientists (B)16700156.
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(3) Let X be a non empty set, S be a o-field of subsets of X, f be a partial
function from X to R, M be a o-measure on S, F be a finite sequence
of separated subsets of S, and a, = be finite sequences of elements of R.
Suppose that
) f is simple function in S,
) domf #0,
) for every set x such that x € dom f holds O < f(x),
(iv) F and a are representation of f,
) domaz = dom F, and

) for every natural number n such that n € domz holds z(n) = a(n) -
(M- F)(n).
Then [ fdM =3 .

X

(4) Let X be a non empty set, S be a o-field of subsets of X, f be a partial
function from X to R, and M be a o-measure on S. Suppose f is simple
function in S and dom f # () and for every set x such that z € dom f holds
Og < f(z). Then there exists a finite sequence I’ of separated subsets of
S and there exist finite sequences a, x of elements of R such that

(i) F and a are representation of f,

(i) domax = dom F,

(iii)  for every natural number n such that n € domz holds z(n) = a(n) -
(M - F)(n), and

iv) [fdM =3 a.

X

(5) Let X be a non empty set, S be a o-field of subsets of X, M be a
o-measure on S, and f, g be partial functions from X to R. Suppose that
) f is simple function in S,
) dom f # 0,
iii)  for every set x such that x € dom f holds Og < f(x),
) g is simple function in S,
) domg = dom f, and
) for every set x such that x € dom g holds 0 < g(z).
Then
(vii)  f + g is simple function in S,
(viii)  dom(f + g) # 0,
(ix) for every set x such that z € dom(f + g) holds O < (f + g)(z), and
(x) [f+gdM=[fdM+ [gdM.
X X X

(6) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, f, g be partial functions from X to R, and ¢ be an extended
real number. Suppose that f is simple function in S and dom f # () and
for every set x such that z € dom f holds O < f(z) and O < ¢ and
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¢ < +o0 and domg = dom f and for every set x such that z € domg
holds g(z) = ¢ f(z). Then [gdM =c- [ fdM.
X X
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We use the following convention: n is a natural number, p1, p2 are points of
&r, and a, b, ¢, d are real numbers.
Let us consider a, b, ¢, d. One can verify that ClosedInsideOfRectangle(a, b, c,
d) is convex.
Let us consider a, b, ¢, d. Observe that Trectangle(a, b, ¢, d) is convex.
The following propositions are true:
(1) Let e be a positive real number and g be a continuous map from I into
&T. Then there exists a finite sequence h of elements of R such that
) h(1) =0,
) h(lenh) =1,
(iii) 5 <lenh,
) rngh C the carrier of I,
) his increasing, and

(© 2005 University of Bialystok
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(vi)  for every natural number ¢ and for every subset @ of I and for every
subset W of £" such that 1 < ¢ and ¢ < lenh and @ = [h;, hiy1] and
W = ¢°Q holds oW < e.

(2) For every subset P of £} such that P C L(p1,p2) and p1 € P and py € P
and P is connected holds P = L(p1,p2).

(3) For every path g from p; to ps such that rng g C L(p1, p2) holds rng g =
L(p1,p2)-

(4) Let P, Q be non empty subsets of £2, p1, p2, q1, g2 be points of 2, f

be a path from p; to po, and g be a path from ¢; to go. Suppose that

) mgf=P,

) mgg=Q,

(iii) ~ for every point p of % such that p € P holds (p1)1 < p1 and p1 < (p2)1,
) for every point p of £2 such that p € @ holds (p1)1 < p1 and p1 < (p2)1,
) for every point p of €% such that p € P holds (¢1)2 < p2 and p2 < (¢2)2,

and

(vi)  for every point p of €% such that p € Q holds (q1)2 < p2 and p2 < (g2)2.
Then P meets Q.

(5) Let f, g be continuous maps from I into €% and O, I be points of L.
Suppose that O = 0 and I = 1 and f(O)1 = a and f(I)1 = b and
g(0)2 = c and g(I)2 = d and for every point r of I holds a < f(r)1 and
fr)1 <band a < g(r); and g(r)1 < band ¢ < f(r)2 and f(r)2 < d and
¢ < g(r)2 and g(r)2 < d. Then rng f meets rngg.

(6) Let aq, b1, c1, di be points of Trectangle(a,b,c,d), h be a path from a;
to b1, v be a path from dy to ¢;, and Ay, By, Cy, D1 be points of E%.
Suppose (A1)1 = a and (Bj)1 = b and (C1)2 = ¢ and (D)2 = d and
a1 = Ay and by = By and ¢; = C1 and dy = D1. Then there exist points
s, t of I such that h(s) = v(t).
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notation and terminology for this paper.

We adopt the following rules: r, s denote real numbers, X denotes a set,
and f, g, h denote real-yielding functions.

The following propositions are true:

(1) For all real numbers a, b, ¢ such that |a —b| < ¢ holds b — ¢ < a and
a<b+ec.

(2) Ifr <s, then |—oo,r| misses [s, +o0].
(3) If r <s, then |—oo, r[ misses |s, +oo].
(4) If fCg,thenh—fCh—g.
(5) If fCg,then f—hCg—h.

http://planetmath.org/encyclopedia/Proof0fTietzeExtensionTheorem2. html
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Let f be a real-yielding function, let r be a real number, and let X be a set.
We say that f is absolutely bounded by r in X if and only if:

(Def. 1) For every set x such that z € X Ndom f holds |f(z)| < r.

Let us mention that there exists a sequence of real numbers which is
summable, constant, and convergent.
We now state the proposition

(6) For every empty topological space T} and for every topological space T
holds every map from 77 into 75 is continuous.

Let T7 be a topological space and let 75 be a non empty topological space.
Observe that there exists a map from T3 into T which is continuous.
We now state several propositions:

(7) For all summable sequences f, g of real numbers such that for every
natural number n holds f(n) < g(n) holds > f <> g.

(8) For every sequence f of real numbers such that f is absolutely summable

holds |3 | < Y/ f1-

(9) Let f be a sequence of real numbers and a, r be positive real numbers.
Suppose r < 1 and for every natural number n holds |f(n) — f(n 4+ 1)| <
a-r"™. Then f is convergent and for every natural number n holds |lim f —
fn)| < 3.

(10) Let f be a sequence of real numbers and a, r be positive real numbers.
Suppose r < 1 and for every natural number n holds |f(n) — f(n 4+ 1)| <
a-r". Then lim f > f(0) — 1% and lim f < f(0) + 1%

(11) Let X, Z be non empty sets and F be a sequence of partial functions
from X into R. Suppose Z is common for elements of F'. Let a, r be
positive real numbers. Suppose r < 1 and for every natural number n holds
F(n) — F(n+1) is absolutely bounded by a-r" in Z. Then F is uniform-
convergent on Z and for every natural number n holds limzF — F(n) is
absolutely bounded by ‘if: in Z.

(12) Let X, Z be non empty sets and F' be a sequence of partial functions
from X into R. Suppose Z is common for elements of F. Let a, r be
positive real numbers. Suppose r < 1 and for every natural number n holds
F(n)— F(n+1) is absolutely bounded by a-r" in Z. Let z be an element

of Z. Then (limzF)(z) > F(0)(z) — 1% and (limzF)(z) < F(0)(z) + 1%

1—r

(13) Let X, Z be non empty sets and F' be a sequence of partial functions
from X into R. Suppose Z is common for elements of F. Let a, r be
positive real numbers and f be a function from Z into R. Suppose r < 1
and for every natural number n holds F(n) — f is absolutely bounded by
a-r"in Z. Then F' is point-convergent on Z and limzF = f.

Let S, T be topological structures, let A be an empty subset of S, and let f
be a map from S into T'. Note that f[A is empty.
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Let T be a topological space and let A be a closed subset of T. Note that
TTA is closed.

The following propositions are true:

(14) Let X, Y be non empty topological spaces, X;, Xs be non empty sub-
spaces of X, f; be a map from X; into Y, and f5 be a map from X5 into
Y. Suppose X7 misses Xy or fi[(X1 N X2) = fol(X1 N Xy). Let = be a
point of X. Then
(i) if z € the carrier of Xy, then (f1 U f2)(z) = fi(z), and
(ii) if = € the carrier of X, then (f1 U f2)(x) = fa(z).

(15) Let X, Y be non empty topological spaces, X;, X2 be non empty
subspaces of X, fi be a map from X; into Y, and fo be a map from
Xo into Y. If X3 misses Xo or fi[(X1 N Xa2) = fol(X7 N X3), then
rng(f1 U f2) C rng f1 Urng fo.

(16) Let X, Y be non empty topological spaces, X, X5 be non empty sub-
spaces of X, f1 be a map from X; into Y, and f2 be a map from X5 into
Y. Suppose X; misses Xo or f1[(X1NX2) = fo(X1NXz2). Then for every
subset A of X holds (f1 U f2)°A = f1°A and for every subset A of X,
holds (f1 U f2)°A = fo° A.

(17) If f C g and g is absolutely bounded by r in X, then f is absolutely
bounded by 7 in X.

(18) If X Cdom f or domg C dom f and if f[X = g[X and if f is absolutely
bounded by r in X, then g is absolutely bounded by r in X.

In the sequel T is a non empty topological space and A is a closed subset of
T.
One can prove the following propositions:

(19) Suppose r > 0 and T is Ty. Let f be a continuous map from T'[A into
R. Suppose f is absolutely bounded by r in A. Then there exists a
continuous map ¢ from T into R! such that g is absolutely bounded by 3

2.7

in dom g and f — g is absolutely bounded by =~ in A.

(20) Suppose that for all non empty closed subsets A, B of T such that
A misses B there exists a continuous map f from T into R such that
f°A={0} and f°B = {1}. Then T is a T} space.

(21) Let f be a map from T into R! and = be a point of 7. Then f is
continuous at x if and only if for every real number e such that e > 0
there exists a subset H of T such that H is open and x € H and for every
point y of T such that y € H holds |f(y) — f(z)| <e.

(22) Let F be a sequence of partial functions from the carrier of 7" into R.
Suppose that

(i)  F is uniform-convergent on the carrier of 7', and
(ii)  for every natural number ¢ holds F'(i) is a continuous map from 7" into
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RI
Then liMpe carrier of 7F 18 & continuous map from 7" into RY.

(23) Let T be a non empty topological space, f be a map from 7T into R!,
and r be a positive real number. Then f is absolutely bounded by r in
the carrier of T if and only if f is a map from T into [—r, 7]T.

(24) If f —g is absolutely bounded by 7 in X, then g— f is absolutely bounded
by rin X.

(25) Suppose T is Ty. Let given A and f be a map from T[A into [—1, 1]r.
Suppose f is continuous. Then there exists a continuous map g from T
into [—1, 1] such that g[]A = f.

(26) Suppose that for every non empty closed subset A of T and for every

continuous map f from T[A into [—1, 1] there exists a continuous map
g from T into [—1, 1] such that g]A = f. Then T is Ty.
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Summary. In this paper we prove that simple closed curves can be home-
omorphically framed into a given rectangle. We also show that homeomorphisms
preserve the Jordan property.

MML identifier: JORDAN24, version: 7.5.01 4.39.921

The notation and terminology used in this paper are introduced in the following
articles: [20], [21], [1], (3], [22], [4], (5], (19]. [10], [18], [7], [17], [11], [2], [8], [9].
[16], [13], [14], [15], [6], [23], and [12].

In this paper p1, p2 are points of £2, C' is a simple closed curve, and P is a
subset of £2.

Let n be a natural number, let A be a subset of £}, and let a, b be points
of £&F. We say that a and b realize maximal distance in A if and only if:

(Def. 1) a € Aand b e A and for all points z, y of £} such that z € Aandy € A
holds p(a,b) > p(x,y).
Next we state the proposition
(1) There exist p1, p2 such that p; and py realize maximal distance in C.

Let M be a non empty metric structure and let f be a map from M, into
Miop. We say that f is isometric if and only if:
(Def. 2) There exists an isometric map g from M into M such that g = f.
Let M be a non empty metric structure. Note that there exists a map from
Miop into Miop which is isometric.
Let M be a non empty metric space. Observe that every map from Mgy
into M, which is isometric is also continuous.

(© 2005 University of Bialystok
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Let M be a non empty metric space. Note that every map from M., into
Mo, which is isometric is also homeomorphism.
Let a be a real number. The functor Rotate a yields a map from £2 into €2
and is defined as follows:
(Def. 3) For every point p of £2 holds (Rotatea)(p) = [R(p1 +p2 i O a), S(p1 +
p2 -1 O a)], where a = [r,0] and r; = —1.
The following propositions are true:

(2) Let a be areal number. Suppose 0 < a and a < 2-7. Let f be a map from
(E2)top into (E?)top. If f = Rotatea, then f is isometric, where a = [rq, 0]
and r1 = —1.

(3) Let A, B, D be real numbers. Suppose p; and po real-
ize maximal distance in P. Then (AffineMap(A,B,A,D))(p1) and
(AffineMap(A, B, A, D))(p2) realize maximal distance in (AffineMap(A, B,
A, D))°P.

(4) Let A be a real number. Suppose 0 < A and A < 2 -7 and p; and po
realize maximal distance in P. Then (Rotate A)(p1) and (Rotate A)(p2)
realize maximal distance in (Rotate A)°P.

(5) For every complex number z and for every real number r holds z O —r =
z02-m—r.

(6) For every real number r holds Rotate(—r) = Rotate(2 - 7 — r).

(7) There exists a homeomorphism f of £2 such that [—1, 0] and [1, 0] realize
maximal distance in f°C.

Let 11, T> be topological structures and let f be a map from T3 into T>. We
say that f is closed if and only if:

(Def. 4) For every subset A of T} such that A is closed holds f°A is closed.
One can prove the following propositions:
(8) Let X, Y be non empty topological spaces and f be a continuous map

from X into Y. Suppose f is one-to-one and onto. Then f is a homeo-
morphism if and only if f is closed.
(9) For every set X and for every subset A of X holds A°=10iff A= X.

(10) Let Ty, T> be non empty topological spaces and f be a map from T
into T5. Suppose f is a homeomorphism. Let A be a subset of T7. If A is
connected, then f°A is connected.

(11) Let Ty, T» be non empty topological spaces and f be a map from T} into
Ts. Suppose f is a homeomorphism. Let A be a subset of T7. If A is a
component of 77, then f°A is a component of T5.

(12) Let Ty, T5 be non empty topological spaces, f be a map from T} into
T, and A be a subset of T7. Then f[A is a map from T [A into To[ f°A.

(13) Let 71, T» be non empty topological spaces and f be a map from 7} into
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T5. Suppose f is continuous. Let A be a subset of 77 and g be a map
from T1[A into To[f°A. If g = f]A, then g is continuous.

(14) Let T1, T> be non empty topological spaces and f be a map from 7} into
T5. Suppose f is a homeomorphism. Let A be a subset of 71 and g be a
map from T7[A into To[f°A. If g = f[A, then g is a homeomorphism.

(15) Let 71, T» be non empty topological spaces and f be a map from 77 into
T5. Suppose f is a homeomorphism. Let A, B be subsets of T1. If A is a
component of B, then f°A is a component of f°B.

(16) For every subset S of £2 and for every homeomorphism f of £2 such
that S is Jordan holds f°S is Jordan.
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Summary. This paper formalizes the Jordan curve theorem following [42]
and [17].

MML identifier: JORDAN, version: 7.5.01 4.39.921

The articles [44], [47], [9], [1], [45], [48], [5], [8], [6], [4], [7], [10], [43], [21], [2],
[40], [39], [49], [46], [12], [11], [37], [38], [33], [22], [3], [13], [18], [15], [16], [14],
[31], [32], [35], [20], [34], [30], [25], [26], [19], [29], [24], [23], [36], [41], [28], and
[27] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: a, b, ¢, d, r, s denote real
numbers, n denotes a natural number, p, p1, p2 denote points of 5%, x, y denote
points of £, C denotes a simple closed curve, A, B, P denote subsets of 5%,
U, V denote subsets of (5’%) [C® and D denotes a compact middle-intersecting
subset of £2.

Let M be a symmetric triangle Reflexive metric structure and let z, y be
points of M. One can verify that p(x,y) is non negative.

Let n be a natural number and let x, y be points of £F. Note that p(z,y) is
non negative.

Let n be a natural number and let z, y be points of Ef. Observe that |z —y|
is non negative.

We now state several propositions:

(1) For all points py, p2 of % such that p; # po holds 3 - (p1 + p2) # p1.

(© 2005 University of Bialystok
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(2) If (p1)2 < (p2)2, then (p1)2 < (3 - (p1 + p2))2.

(3) If (p1)2 < (p2)2, then (5 - (p1 + p2))2 < (p2)2-

(4) For every vertical subset A of £2 holds A N B is vertical.

(5) For every horizontal subset A of £2 holds AN B is horizontal.

(6) If p e L(p1,p2) and L(p1,p2) is vertical, then L(p, p2) is vertical.

(7) If p € L(p1,p2) and L(p1,p2) is horizontal, then L(p,p2) is horizontal.

Let P be a subset of £4. One can verify the following observations:
* L(SW-corner(P), SE-corner(P)) is horizontal,
*  L(NW-corner(P), SW-corner(P)) is vertical, and
*  L(NE-corner(P), SE-corner(P)) is vertical.
Let P be a subset of 5%. One can check the following observations:
*  L(SE-corner(P),SW-corner(P)) is horizontal,
*  L(SW-corner(P), NW-corner(P)) is vertical, and
% L(SE-corner(P), NE-corner(P)) is vertical.
Let us note that every subset of S% which is vertical, non empty, and compact
is also middle-intersecting.
The following propositions are true:
(8) For all non empty compact subsets X, Y of £2 such that X C Y but
Wnin(Y) € X or Wpax(Y) € X holds W-bound(X) = W-bound(Y').
(9) For all non empty compact subsets X, ¥ of 5% such that X C Y but
Enin(Y) € X or Epax(Y) € X holds E-bound(X) = E-bound(Y).
(10) For all non empty compact subsets X, Y of £2 such that X C Y but
Nmin(Y) € X or Npax(Y) € X holds N-bound(X) = N-bound(Y).
(11) For all non empty compact subsets X, Y of €% such that X C Y but
Smin(Y) € X or Spax(Y) € X holds S-bound(X) = S-bound(Y).

(12) W-bound(C) = W-bound(NorthArc(C)).

(13) E-bound(C') = E-bound(NorthArc(C)).

(14) W-bound(C) = W-bound(SouthArc(C)).

(15) E-bound(C') = E-bound(SouthArc(C)).

(16) If (p1)1 < r and r < (p2)1, then L(p1,p2) meets VerticalLine(r).
(17) If (p1)2 <r and r < (p2)2, then L(p1,p2) meets HorizontalLine(r).

Let us consider n. One can check that every subset of £ which is empty is
also Bounded and every subset of £F which is non Bounded is also non empty.

Let n be a non empty natural number. Note that there exists a subset of £7
which is open, closed, non Bounded, and convex.

Next we state several propositions:

(18)  For every compact subset C of £2 holds NorthHalfline UMP C'\{UMP C'}
misses C.
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(19) For every compact subset C' of £ holds SouthHalfline LMP C'\ {LMP C'}
misses C'.

(20) For every compact subset C' of &% holds NorthHalfline UMP C \
{UMPC} CUBDC.

21) For every compact subset C of &2 holds SouthHalfline LMP C
T
{LMPC} C UBDC.

(22) If A is an inside component of B, then UBD B misses A.
(23) If A is an outside component of B, then BDD B misses A.
One can prove the following propositions:
(24) For every positive real number r and for every point a of &} holds a €
Ball(a, r).
(25) For every non negative real number 7 holds every point p of £} is a point
of Tdisk(p, 7).

Let r be a positive real number, let n be a non empty natural number, and
let p, ¢ be points of £, Observe that Ball(p, ) \ {¢} is non empty.
We now state several propositions:

26) If r <s, then Ball(z,r) C Ball(z, s).
27) Ball(z,r) \ Ball(z,7) = Sphere(z, r).
28) If y € Sphere(z,r), then L(x,y) \ {z,y} C Ball(z,r).
29) If r < s, then Ball(x,r) C Ball(z, s).

30
31
32

Let n be a non empty natural number. Note that every subset of £} which

If r < s, then Sphere(z,r) C Ball(z, s).

For every non zero real number r holds Ball(z, ) = Ball(z, r).

(
(
(
(
(
(
(

~— O — — N — —

For every non zero real number r holds Fr Ball(x,r) = Sphere(z, r).

is Bounded is also proper.

Let us consider n. Note that there exists a subset of £f which is non empty,
closed, convex, and Bounded and there exists a subset of £F which is non empty,
open, convex, and Bounded.

Let n be a natural number and let A be a Bounded subset of £f. Observe
that A is Bounded.

Let n be a natural number and let A be a Bounded subset of £F. One can
check that Fr A is Bounded.

The following propositions are true:

(33) Let A be a closed subset of £ and p be a point of E}. If p ¢ A, then
there exists a positive real number r such that Ball(p, ) misses A.

(34) For every Bounded subset A of £ and for every point a of £} there
exists a positive real number r such that A C Ball(a,r).

(35) For all topological structures S, 7' and for every map f from S into T’
such that f is a homeomorphism holds f is onto.

483



484 ARTUR KORNILOWICZ

(36) Let T be a topological space, S be a subspace of T', A be a subset of T,
and B be a subset of S. If A = B, then T[A = S[B.

Let T be a non empty 75 topological space. Note that every non empty
subspace of T is T5.

Let us consider p, 7. Observe that Tdisk(p,r) is closed.

Let us consider p, r. Observe that Tdisk(p,r) is compact.

2. PATHS

Next we state a number of propositions:

(37) Let T be a non empty topological space, a, b be points of T, and f be a
path from a to b. If a, b are connected, then rng f is connected.

(38) Let X be a non empty topological space, Y be a non empty subspace
of X, x1, x2 be points of X, y1, yo be points of Y, and f be a path from
x1 to xo. Suppose x1 = y; and xo2 = yo and x1, T2 are connected and
rng f C the carrier of Y. Then vy, yo are connected and f is a path from
y1 to Y.

(39) Let X be an arcwise connected non empty topological space, Y be a non
empty subspace of X, x1, 2 be points of X, y1, yo be points of Y, and f
be a path from x1 to x2. Suppose x1 = y; and x5 = y9 and rng f C the
carrier of Y. Then y;, yo are connected and f is a path from y; to ys.

(40) Let T be a non empty topological space, a, b be points of T', and f be a
path from a to b. If a, b are connected, then rng f = rng(—f).

(41) Let T be an arcwise connected non empty topological space, a, b be
points of T', and f be a path from a to b. Then rng f = rng(—f).

(42) Let T be a non empty topological space, a, b, ¢ be points of T, f be a
path from a to b, and g be a path from b to c¢. If a, b are connected and
b, ¢ are connected, then rng f C rng(f + g).

(43) Let T be an arcwise connected non empty topological space, a, b, ¢ be
points of T', f be a path from a to b, and g be a path from b to ¢. Then
mg f C rng(f + g).

(44) Let T be a non empty topological space, a, b, ¢ be points of T, f be a
path from b to ¢, and g be a path from a to b. If a, b are connected and
b, ¢ are connected, then rng f C rng(g + f).

(45) Let T be an arcwise connected non empty topological space, a, b, ¢ be
points of T', f be a path from b to ¢, and g be a path from a to b. Then
g f C rng(g + f).

(46) Let T be a non empty topological space, a, b, ¢ be points of T, f be a
path from a to b, and g be a path from b to c¢. If a, b are connected and
b, ¢ are connected, then rng(f + g) = rng f Urngg.
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(47) Let T be an arcwise connected non empty topological space, a, b, ¢ be
points of T, f be a path from a to b, and g be a path from b to ¢. Then
mg(f +g) =rng f Urngg.

(48) Let T be a non empty topological space, a, b, ¢, d be points of T', f be
a path from a to b, g be a path from b to ¢, and h be a path from c to d.
Suppose a, b are connected and b, ¢ are connected and ¢, d are connected.
Then rmg(f + g+ h) =rng f Urng g Urng h.

(49) Let T be an arcwise connected non empty topological space, a, b, ¢, d
be points of T', f be a path from a to b, g be a path from b to ¢, and h be
a path from ¢ to d. Then rng(f + g+ h) =rng f Urng g Urngh.

(50) For every non empty topological space T and for every point a of T holds
I —— a is a path from a to a.

(51) Let p1, p2 be points of &F and P be a subset of . Suppose P is an arc
from p; to po. Then there exists a path F' from p; to po and there exists
a map f from I into (E})[P such that rng f = P and F = f.

(52) Let p1, p2 be points of . Then there exists a path F' from p; to p2 and
there exists a map f from I into (E})[L(p1, p2) such that rng f = L(p1,p2)
and F' = f.

(53) Let p1, pa, q1, g2 be points of 2. Suppose P is an arc from p; to ps and
q1 € P and g2 € P and g1 # p1 and q1 # p2 and g2 # p1 and g2 # pa.
Then there exists a path f from ¢ to g2 such that rng f C P and rng f
misses {p1,p2}.

3. RECTANGLES

Next we state three propositions:
(54) If a < b and ¢ < d, then Rectangle(a, b, ¢,d) C ClosedInsideOfRectangle
(a,b,c,d).
(55) InsideOfRectangle(a, b, ¢, d) C ClosedInsideOfRectangle(a, b, ¢, d).
(56) ClosedInsideOfRectangle(a, b, ¢, d) = (OutsideOfRectangle(a, b, ¢, d))°.
Let a, b, ¢, d be real numbers. Note that ClosedInsideOfRectangle(a, b, ¢, d)
is closed.
One can prove the following propositions:
(57) ClosedInsideOfRectangle(a, b, ¢, d) misses OutsideOfRectangle(a, b, ¢, d).
(58) ClosedInsideOfRectangle(a, b, ¢, d) N InsideOfRectangle(a, b, ¢,d) =
InsideOfRectangle(a, b, ¢, d).
(59) If @ < b and ¢ < d, then IntClosedInsideOfRectangle(a,b,c,d) =
InsideOfRectangle(a, b, ¢, d).
(60) If @ < b and ¢ < d, then ClosedInsideOfRectangle(a,b,c,d) \
InsideOfRectangle(a, b, ¢, d) = Rectangle(a, b, ¢, d).
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(61) If a < b and ¢ < d, then FrClosedInsideOfRectangle(a,b,c,d) =
Rectangle(a, b, ¢, d).
(62) Ifa <bandc<d, then W-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =

a

(63) If a <band ¢ <d, then S-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =
c

(64) If a <band c <d, then E-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =
b

(65) If a < band ¢ < d, then N-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =
d

(66) If a« < b and ¢ < d and p; € ClosedInsideOfRectangle(a, b, c,d)
and pa ¢ ClosedInsideOfRectangle(a,b,c,d) and P is an arc from p;
to p2, then Segment (P, p1,p2, p1, FPoint(P, p1, p2, Rectangle(a, b, c,d))) C
ClosedInsideOfRectangle(a, b, ¢, d).

4. SOME USEFUL FUNCTIONS

Let S, T be non empty topological spaces and let = be a point of [ S, T].
Then x7 is an element of S, and x5 is an element of 7.

Let o be a point of £2. The functor (O2); — 01 yielding a real map of [ £2,
E2] is defined as follows:

(Def. 1)  For every point x of [ €2, €21 holds ((Os2)1 — 01)(z) = (22)1 — 01.
The functor ()2 — 02 yields a real map of [:8%, 5% ] and is defined as follows:
(Def. 2)  For every point z of [ €2, €21 holds ((Os2)2 — 02)(z) = (x2)2 — 02.
The real map (0;)1 — (O2)1 of [ €2, €21 is defined as follows:
(Def. 3) For every point x of [ €2, €21 holds ((01)1 — (02)1)(z) = (z1)1 — (72)1-
The real map ()2 — (O2)2 of [ E2, 21 is defined as follows:
(Def. 4)  For every point x of [ €2, €21 holds ((01)2 — (02)2)(z) = (z1)2 — (72)2.
The real map ((g)y of [ €2, 2] is defined as follows:
(Def. 5)  For every point = of [ £2, €21 holds ((2)1(x) = (z2)1.
The real map ((g)2 of |2, 21 is defined by:
(Def. 6) For every point = of [ £2, €21 holds ((2)2(x) = (2)2.
One can prove the following propositions:
(67) For every point o of £2 holds ((z); — o7 is a continuous map from [ £2,
E2 ] into RL.
(68) For every point o of £2 holds ((z)2 — 02 is a continuous map from [ €2,
£%] into RL.
(69) (O1)1 — (Og)1 is a continuous map from [ &2, €27 into R
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(70) (O1)2 — (Og)2 is a continuous map from [ &3, €27 into R
(71) (Os); is a continuous map from [ &2, €2 ] into RL.
(72) (Og)2 is a continuous map from [ &2, £2 ] into RL.
Let o be a point of 5%. One can check that ((J2); — o1 is continuous and
(02)2 — 02 is continuous.
One can check the following observations:

* (01)1 — (02)1 is continuous,
*  (0p)2 — (0g)2 is continuous,
* (Og) is continuous, and

% (0a)2 is continuous.

Let n be a non empty natural number, let o, p be points of £}, and let r be a
positive real number. Let us assume that p is a point of Tdisk(o,r). The functor
DiskProj(o,r,p) yielding a map from (E7)[(Ball(o,r) \ {p}) into Tcircle(o,r) is
defined by:

(Def. 7)  For every point = of (E7)[(Ball(o,7) \ {p}) there exists a point y of £
such that z = y and (DiskProj(o,7,p))(z) = HC(p,y,0,r).

The following propositions are true:

(73) Let o, p be points of 5’% and r be a positive real number. If p is a point
of Tdisk(o, ), then DiskProj(o, r, p) is continuous.

(74) Let n be a non empty natural number, o, p be points of
&L, and r be a positive real number. If p € Ball(o,r), then
DiskProj(o, r, p)[ Sphere(o, r) = idgphere(o,r)-

Let n be a non empty natural number, let o, p be points of £F, and let
r be a positive real number. Let us assume that p € Ball(o,r). The functor

RotateCircle(o, , p) yields a map from Tcircle(o, ) into Tcircle(o,r) and is de-
fined by:
(Def. 8) For every point x of Tcircle(o,r) there exists a point y of £F such that
x =y and (RotateCircle(o, r,p))(z) = HC(y, p, 0, 7).
One can prove the following propositions:
(75) For all points o, p of 5’% and for every positive real number r such that
p € Ball(o,r) holds RotateCircle(o, r, p) is continuous.
(76) Let n be a non empty natural number, o, p be points of £, and r be
a positive real number. If p € Ball(o,r), then RotateCircle(o, r, p) has no
fixpoint.
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5. JORDAN CURVE THEOREM

The following propositions are true:
(77) If U = P and U is a component of (£2)[C° and V is a component of
(E2)]C¢ and U # V, then P misses V.
(78) If U is a component of (£2)]C¢, then (£2)[C°|U is arcwise connected.
(79) If U = P and U is a component of (£2)]C¢, then C = Fr P.
One can prove the following propositions:

(80) For every homeomorphism & of £2 holds h°C satisfies conditions of sim-
ple closed curve.

(81) If [-1,0] and [1,0] realize maximal distance in P, then P C
ClosedInsideOfRectangle(—1, 1, —3, 3).

(82) 1If [-1,0] and [1,0] realize maximal distance in P, then P misses £([—1,
3],[1,3]).

(83) If [-1,0] and [1, 0] realize maximal distance in P, then P misses £(][—1,
-3],[1,-3]).

(84) If [-1,0] and [1,0] realize maximal distance in P, then P N
Rectangle(—1,1,—3,3) = {[-1,0],[1,0]}.

(85) If [-1,0] and [1,0] realize maximal distance in P, then W-bound(P) =
—1.

(86) 1If [—1,0] and [1,0] realize maximal distance in P, then E-bound(P) = 1.

(87) For every compact subset P of % such that [—1,0] and [1,0] realize
maximal distance in P holds Wpest(P) = {[—1,0]}.

(88) For every compact subset P of % such that [—1,0] and [1,0] realize
maximal distance in P holds Epest(P) = {[1,0]}.

(89) Let P be a compact subset of 2. Suppose [—1,0] and [1,0] realize
maximal distance in P. Then Wy (P) = [—1,0] and Wax(P) = [—1,0].

(90) Let P be a compact subset of 2. Suppose [—1,0] and [1,0] realize
maximal distance in P. Then Enin(P) = [1,0] and Epax(P) = [1,0].

(91) If [-1,0] and [1, 0] realize maximal distance in P, then £([0, 3], UMP P)
is vertical.

(92) 1If [-1,0] and [1, 0] realize maximal distance in P, then £(LMP P, [0, —3])
is vertical.

(93) If [—1,0] and [1, 0] realize maximal distance in P and p € P, then pa < 3.

(94) 1If [-1,0] and [1, 0] realize maximal distance in P and p € P, then —3 <
D2.

(95) If [-1,0] and [1,0] realize maximal distance in D and p € L([0,
3], UMP D), then (UMP D)5 < ps.
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(96) If [-1,0] and [1, 0] realize maximal distance in D and p € L(LMP D, [0,
—3]), then P2 S (LMP D)z

(97) If [-1,0] and [1,0] realize maximal distance in D, then L([0,
3], UMP D) C NorthHalfline UMP D.

(98) If [-1,0] and [1,0] realize maximal distance in D, then £(LMP D, |0,
—3]) € SouthHalfline LMP D.

(99) If [-1,0] and [1,0] realize maximal distance in C' and P is an inside
component of C, then £([0, 3], UMP C) misses P.

(100) If [-1,0] and [1,0] realize maximal distance in C' and P is an inside
component of C, then L(LMP C, [0, —3]) misses P.

(101) If[—1,0] and [1,0] realize maximal distance in D, then £(]0, 3], UMP D)n
D = {UMP D}.

(102) If [-1,0] and [1,0] realize maximal distance in D, then L([0,
—3|,LMP D)n D = {LMP D}.

(103) Suppose P is compact and [—1,0] and [1,0] realize maximal dis-
tance in P and A is an inside component of P. Then A C
ClosedInsideOfRectangle(—1, 1, —3, 3).

(104) 1If [-1,0] and [1,0] realize maximal distance in C, then £([0, 3], [0, —3])
meets C.

(105) Suppose [—1,0] and [1, 0] realize maximal distance in C. Let Jy, Ja be
compact middle-intersecting subsets of T5. Suppose that J; is an arc from
[—1,0] to [1,0] and J3 is an arc from [—1,0] to [1,0] and C = J; U Jy
and J; N Jy = {[-1,0],[1,0]} and UMPC € J; and LMPC € Jy and
W-bound(C') = W-bound(J1) and E-bound(C) = E-bound(Jy). Let U; be
a subset of £2. Suppose Uy = Component(Down(% - (UMP(L(LMP Jy, [0,
=3]) N J2) + LMP J;),C*)). Then U; is an inside component of C' and
for every subset V' of Ty such that V' is an inside component of C' holds
V = U, where Th = 5%.

(106) Suppose [—1,0] and [1,0] realize maximal distance in C. Let Jj, Jo
be compact middle-intersecting subsets of T5. Suppose that J; is an
arc from [—1,0] to [1,0] and J» is an arc from [—1,0] to [1,0] and
C = JiUJyand J N Jy = {[-1,0],[1,0]} and UMPC € J; and
LMPC € Jy and W-bound(C) = W-bound(J;) and E-bound(C) =
E-bound(J;). Then BDD C' = Component(Down(3 - (UMP(L(LMP Ji, [0,
—3]) N J2) + LMP J;), C*)), where Th = E3.

(107) Let C be a simple closed curve. Then there exist subsets A1, A of £2
such that

(1) C°= A1 U A,
(i)  A; misses Ao,
(iii) A\ A; = Ag\ Ag, and
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(iv)  for all subsets C1, C of (€2)]C° such that C; = A; and Cy = Aj holds
Cy is a component of (£€2)]C¢ and Cs is a component of (€2)[C¢.

(108) Every simple closed curve is Jordan.

ACKNOWLEDGMENTS

I would like to thank Professor Yatsuka Nakamura for including me in the
team working on the formalization of the Jordan Curve Theorem. Especially, I
am very grateful to Professor Nakamura for inviting me to Shinshu University,
Nagano, to work on the project together.

I am also thankful to Professor Andrzej Trybulec for his continual help and
fruitful discussions during the formalization.

REFERENCES

| Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481—
485, 1991.

[4] Czestaw Bylinski. Basic functions and operations on functions. Formalized Mathematics,
1(1):245-254, 1990.

[5] Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[6] Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
[7] Czestaw Bylinski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czestaw Byliriski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czestaw Byliniski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.
[10] Czestaw Byliriski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.
[11] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[12] Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.
[13] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[14] Agata Darmochwal and Yatsuka Nakamura. Metric spaces as topological spaces — funda-
mental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[15] Agata Darmochwal and Yatsuka Nakamura. The topological space E2. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[16] Agata Darmochwal and Yatsuka Nakamura. The topological space &%, Simple closed
curves. Formalized Mathematics, 2(5):663—-664, 1991.
[17] David Gauld. Brouwer’s Fixed Point Theorem and the Jordan Curve Theorem.
http://aitken.math.auckland.ac.nz/~gauld/750-05/sectionb.pdf.
[18] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics,
6(4):449-454, 1997.
[19] Adam Grabowski and Artur Kornilowicz. Algebraic properties of homotopies. Formalized
Mathematics, 12(3):251-260, 2004.
[20] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II.
Formalized Mathematics, 6(4):467-473, 1997.
[21] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[22] Stanistawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607-610, 1990.



>

L

JORDAN CURVE THEOREM 491

Artur Kornitowicz. The definition and basic properties of topological groups. Formalized
Mathematics, 7(2):217-225, 1998.

Artur Kornitowicz. On some points of a simple closed curve. Formalized Mathematics,
13(1):81-87, 2005.

Artur Kornilowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges
and cages. Part I. Formalized Mathematics, 9(3):501-509, 2001.

Artur Kornitlowicz and Yasunari Shidama. Intersections of intervals and balls in EF.
Formalized Mathematics, 12(3):301-306, 2004.

Artur Kornitlowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the
plane. Formalized Mathematics, 13(2):333-336, 2005.

Artur Kornitlowicz and Yasunari Shidama. Some properties of circles on the plane. For-
malized Mathematics, 13(1):117-124, 2005.

Robert Milewski. On the upper and lower approximations of the curve. Formalized
Mathematics, 11(4):425-430, 2003.

Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized
Mathematics, 11(3):213-224, 2003.

Yatsuka Nakamura and Czestaw Bylinski. Extremal properties of vertices on special
polygons. Part 1. Formalized Mathematics, 5(1):97-102, 1996.

Yatsuka Nakamura and Jarostaw Kotowicz. The Jordan’s property for certain subsets of
the plane. Formalized Mathematics, 3(2):137-142, 1992.

Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. For-
malized Mathematics, 5(4):513-517, 1996.

Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and
the order of their points. Formalized Mathematics, 6(4):563-572, 1997.

Yatsuka Nakamura, Andrzej Trybulec, and Czestaw Byliriski. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.

Adam Naumowicz and Grzegorz Bancerek. Homeomorphisms of Jordan curves. Formal-
ized Mathematics, 13(4):477-480, 2005.

Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Konrad Raczkowski and Pawet Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777-780, 1990.

Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335-338, 1997.

Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report
19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan,
April 1980.

Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.

Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,
2(4):535-545, 1991.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,

1990.
Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized

Mathematics, 1(1):231-237, 1990.

Received September 15, 2005



492 ARTUR KORNILOWICZ



FORMALIZED MATHEMATICS
Volume 13, Number 4, Pages 493-499
University of Bialystok, 2005

The Inner Product and Conjugate of Matrix
of Complex Numbers

Wenpai Chang Hiroshi Yamazaki Yatsuka Nakamura
Shinshu University Shinshu University Shinshu University
Nagano, Japan Nagano, Japan Nagano, Japan

Summary. Concepts of the inner product and conjugate of matrix of com-
plex numbers are defined here. Operations such as addition, subtraction, scalar
multiplication and inner product are introduced using correspondent definitions
of the conjugate of a matrix of a complex field. Many equations for such opera-
tions consist like a case of the conjugate of matrix of a field and some operations
on the set of sum of complex numbers are introduced.
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terminology for this paper.

We follow the rules: i, j denote natural numbers, a denotes an element of
C, and Ri, R denote elements of C'.

Let M be a matrix over C. The functor M yields a matrix over C and is
defined by:

(Def. 1) len M =len M and width M = width M and for all natural numbers i,
j such that (i, j) € the indices of M holds M o (i,j) = M o (i, ).
One can prove the following propositions:

(1) For every matrix M over C holds (i, j) € the indices of M iff 1 < i and
1 <lenM and 1 < j and 57 < width M.

(2) For every matrix M over C holds M =M.
(3) For every complex number a and for every matrix M over C holds len(a-
M) =len M and width(a - M) = width M.
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(4) Let ¢, j be natural numbers, a be a complex number, and M be a matrix
over C. Suppose len(a - M) =len M and width(a - M) = width M and (i,
j) € the indices of M. Then (a-M)o (i,j) =a- (Mo (i,j)).

(5) For every complex number a and for every matrix M over C holds
a-M=a-M.

(6) For all matrices My, My over C holds len(M; + My) = len M; and
Wldth(Ml + MQ) = width M;.

(7) Let i, j be natural numbers and M;, My be matrices over C. Suppose
len My = len M5 and width M; = width M and (i, j) € the indices of M.
Then (Ml + Mg) (e} (Z,]) - (Ml (¢] (Z,])) + (MQ ¢) (Z,j))

(8) For all matrices Mj;, My over C such that lenM; = len My and
width M; = width M> holds My + My = ﬁleE

(9) For every matrix M over C holds len(—M) = len M and width(—M) =
width M.

(10) Let ¢, j be natural numbers and M be a matrix over C. If len(—M) =
len M and width(—M) = width M and (i, j) € the indices of M, then
(=M) o (i,j) = —=(Mo (i, j)).

(11) For every matrix M over C holds (—1) - M = —M.

(12) For every matrix M over C holds —M = — M.

(13) For all matrices My, My over C holds len(M; — My) = len M; and
Wldth(Ml — MQ) = Wldth Ml.

(14) Let ¢, j be natural numbers and M;, Ms be matrices over C. Suppose
len My = len M5 and width M; = width M and (i, j) € the indices of M.
Then (M; — M3) o (i,7) = (My 0 (i,7)) — (M3 o (3,7)).

(15) For all matrices M;, My over C such that len M; = len My and
width My = width My holds M; — My = M; — M.

Let M be a matrix over C. The functor M* yields a matrix over C and is
defined by:
(Def. 2) M* = MT.
Let x be a finite sequence of elements of C. Let us assume that lenx > 0.
The functor FinSeq2Matrix x yielding a matrix over C is defined as follows:
(Def. 3) lenFinSeq2Matrixz = lenz and width FinSeq2Matrixx = 1 and for
every j such that j € Seglenz holds (FinSeq2Matrix z)(j) = (x(7)).
Let M be a matrix over C. The functor Matrix2FinSeq M yields a finite
sequence of elements of C and is defined as follows:
(Def. 4) Matrix2FinSeq M = Mp ;.
Let Fy, F5 be finite sequences of elements of C. The functor F} e F; yielding
a finite sequence of elements of C is defined as follows:

(Def. 5) F1 .F2 = ('(C)O(Fl, Fg).
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Let us observe that the functor Fj e Fy is commutative.
Let F' be a finite sequence of elements of C. The functor )  F yields an
element of C and is defined as follows:
(Def. 6) Y F=+4+c®F.
Let M be a matrix over C and let F' be a finite sequence of elements of
C. The functor M - F yielding a finite sequence of elements of C is defined as
follows:
(Def. 7) len(M - F) = len M and for every i such that ¢ € Seglen M holds (M -
F)(i) = > (Line(M,i) o F).
We now state the proposition
(16) a-(RieR2)=a-R;eRs.
Let M be a matrix over C and let a be a complex number. The functor M -a
yielding a matrix over C is defined by:
(Def. 8) M-a=a- M.
We now state three propositions:
(17) For every element a of C and for every matrix M over C holds M - a =
a- M.
(18) For all finite sequences x, y of elements of C such that len z = leny holds
len(z e y) =lenx and len(x o y) = leny.
(19) Let F1, F» be finite sequences of elements of C and ¢ be a natural number.
If i € dom(F) e F3), then (F} e Fy)(i) = F1(i) - Fa(i).
Let us consider i, Ry, Ry. Then R, @ Ry is an element of C’.
We now state a number of propositions:
(20) (Rie R2)(j) = Ru(j) - Ra(J)-
(21) For all elements a, b of C holds +¢(a, b) = +c(@, b).
(22) Let F be a finite sequence of elements of C. Then there exists a function
G from N into C such that for every natural number n if 1 < n and
n <len F, then G(n) = F(n).
(23) For every finite sequence F' of elements of C such that len ' > 1 holds
+c® F =+4+c®F.
(24) For every finite sequence F' of elements of C such that len F* > 1 holds
Y F=>F.
(25) For all finite sequences z, y of elements of C such that len x = leny holds
rTeyY =yeT.

(26) For all finite sequences x, y of elements of C and for every element a of
C such that lenz =leny holds zea-y=a- (zey).

(27) For all finite sequences z, y of elements of C and for every element a of
C such that lenz =leny holds a-z ey =a- (xey).
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(28) For all finite sequences z, y of elements of C such that len x = leny holds
Tey =TeT7.

(29) For every finite sequence F' of elements of C and for every element a of
Cholds Y (a-F)=a-> F.

Let « be a finite sequence of elements of R. The functor FR2FC z yielding
a finite sequence of elements of C is defined as follows:
(Def. 9) FR2FCz = x.
Next we state a number of propositions:

(30) Let R be a finite sequence of elements of R and F' be a finite sequence
of elements of C. If R=F and len R > 1, then +g ® R = +¢c ® F.

(31) Let x be a finite sequence of elements of R and y be a finite sequence of
elements of C. If x = y and lenx > 1, then )z =) y.

(32) For all finite sequences Fy, Fy of elements of C such that len F; = len F»
holds Y (Fy — F») = > F1 — Y Fs.

(33) Let Fy, F; be finite sequences of elements of C and i be a natural number.
If : € dom(Fy + F»), then (Fy + F»)(i) = F1(i) + Fa(7).

(34) Let Fy, F» be finite sequences of elements of C and i be a natural number.
If : € dom(Fy — Fy), then (Fy — Fy)(i) = F1(i) — Fa(1).

(35) For all finite sequences x, y, z of elements of C such that lenx = leny
and leny =lenz holds (x —y)ez=zez—yez.

(36) For all finite sequences z, y, z of elements of C such that lenxz = leny
and leny =lenz holds z e (y —2) =z ey —zez.

(37) For all finite sequences z, y, z of elements of C such that lenz = leny
and leny =lenz holds z e (y +2) =z ey+zez.

(38) For all finite sequences z, y, z of elements of C such that lenxz = leny
and leny =lenz holds (r+y)ez=zxez+yez.

(39) For all finite sequences F, Fy of elements of C such that len F; = len F5
holds Z(Fl + FQ) = ZFl + ZFQ.

(40) Let 1, y1 be finite sequences of elements of C and x2, y» be finite
sequences of elements of R. If 1 = x9 and y; = y2 and lenxy = lenyo,
then (-¢)°(z1, y1) = (®)° (22, ¥2).

(41) For all finite sequences z, y of elements of R such that len = leny holds
FR2FC(z e y) = FR2FCx ¢ FR2FC y.

(42) For all finite sequences z, y of elements of C such that lenz = leny and
lenz > 0 holds |(z,y)| = > (x 7).

(43) For all matrices A, B over C such that len A = len B and width A =
width B holds the indices of A = the indices of B.

(44) Let i, j be natural numbers and M;, M be matrices over C. If len M; =
len My and width My = width My and j € Seglen M, then Line(M; +
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My, j) = Line(Mj, j) + Line(Ma, 7).

(45) For every matrix M over C such that ¢ € Seglen M holds Line(M, i) =
Line(M ,i).

(46) Let F be a finite sequence of elements of C and M be a matrix over C.
If len F' = width M, then F e Line(M ,i) = Line(M ,i) e F .

(47) Let F be a finite sequence of elements of C and M be a matrix over C.
Iflen F' = width M and len FF > 1, then M - F = M - F.

(48) For all finite sequences Fi, Fy, F3 of elements of C such that len F} =
len Fy and len Fy = len F3 holds F e (Fy e F3) = (F) @ Fy) e F3.

(49) For every finite sequence F' of elements of C holds ) (—F) = —>_ F.

(50) For every element z of C holds > (z) = .

(51) For all finite sequences Fj, F» of elements of C holds > (Fy ~ Fy) =
Z Fy + Z F5.

Let M be a matrix over C. The functor LineSum M yielding a finite sequence

of elements of C is defined as follows:
(Def. 10) lenLineSum M = len M and for every natural number ¢ such that i €
Seglen M holds (LineSum M) (i) = Y Line(M, ).
Let M be a matrix over C. The functor ColSum M yielding a finite sequence
of elements of C is defined by:
(Def. 11) lenColSum M = width M and for every natural number j such that
J € Segwidth M holds (ColSum M)(j) = > (Mn;).
Next we state three propositions:
(52) For every finite sequence F' of elements of C such that len F' = 1 holds
Y. F =F(1).
(53) Let f, g be finite sequences of elements of C and n be a natural number.
Iflenf=n+1and g= fn, then Y f =>" g+ fiens-
(54) For every matrix M over C such that len M > 0 holds ) LineSum M =
>~ ColSum M.

Let M be a matrix over C. The functor SumAll M yielding an element of C
is defined by:
(Def. 12) SumAll M = )" LineSum M.
Next we state two propositions:
(55) For every matrix M over C holds ColSum M = LineSum(M7T).
(56) For every matrix M over C such that len M > 0 holds SumAll M =
SumAll(MT).
Let z, y be finite sequences of elements of C and let M be a matrix over
C. Let us assume that lenx = len M and leny = width M. The functor

QuadraticForm(z, M, y) yielding a matrix over C is defined by the conditions
(Def. 13).
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(Def. 13)(i)  len QuadraticForm(z, M,y) = lenz,
(i)  width QuadraticForm(x, M,y) = leny, and
(iii)  for all natural numbers 4, j such that (i, j) € the indices of M holds
QuadraticForm(z, M,y) o (i,5) = x(i) - (M o (4,7)) - y(j).

The following propositions are true:

(57) Let z, y be finite sequences of elements of C and M be a matrix over C.
If lenx = len M and leny = width M and lenz > 0 and leny > 0, then
(QuadraticForm(z, M, y))" = QuadraticForm(y, M*, x).

(58) Let z, y be finite sequences of elements of C and M be a matrix over
C. Iflenz = len M and leny = width M, then QuadraticForm(z, M,y) =
QuadraticForm(@, M, 7).

(59) For all finite sequences x, y of elements of C such that lenx = leny and
0 < leny holds |(z,y)| = |(y,z)|.

(60) For all finite sequences z, y of elements of C such that lenz = leny and
0 < leny holds |(z,y)| = |(Z, 7).

(61) For every matrix M over C such that width M > 0 holds MT = .

(62) Let z, y be finite sequences of elements of C and M be a matrix over C.
If lenx = width M and leny = len M and lenz > 0 and leny > 0, then
|(z, M* - y)| = SumAll QuadraticForm(z, M, y).

(63) Let z, y be finite sequences of elements of C and M be a matrix over
C. If leny = len M and lenx = width M and lenx > 0 and leny > 0 and
len M > 0, then |(M - z,y)| = SumAll QuadraticForm(x, MT, y).

(64) Let z, y be finite sequences of elements of C and M be a matrix over C.
If lenz = width M and leny = len M and width M > 0 and len M > 0,
then [(M - z,y)| = |(z, M* - y)|.

(65) Let z, y be finite sequences of elements of C and M be a matrix over
C. If lenz = len M and leny = width M and width M > 0 and len M > 0
and lenz > 0, then |(x, M - y)| = [(M* - x,y)|.
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [1], [3], [4], [5], [6], and [7].

We use the following convention: n is a natural number, a, b, ¢, d are real
numbers, and s is a sequence of real numbers.

We now state a number of propositions:

(1) (a+b+c)2—a2+b2+c2+2 a-b+2-a-c+2-b-c.

(2) (a+b3=a®>+3-a>-b+3-b%-a+b

3) ((a=b)+e)?=((a®>+b2+c*)—2-a-b)+2-a-c)—2-b-c.

4) (a—b—c?=((a®+®+2)—-2-a-b—2-a-¢)+2-b-c

(5) (a—0b)3= ((a3—3 a?-b)+3-b%-a)— b

6) (a+b*r=a*+4-a3-b+6-a>-b>+4-0% a+0bh

(7) (a+b+c+d)?=a’+b*++d*+(2-a-b+2-a-c+2-a-d)+(2-b-

c+2-b-d)+2-c-d.

(© 2005 University of Bialystok
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8) (a+b+c)P =4+ +3+B-a®> b+3-a>¢c)+B-v*-a+3-0*-¢)+
(3-ca+3-c2-b)+6-a-b-c.

(9) Ifa#0, then ((2)"+! 4 qnt1)2 = (1)2n+2 4 2n+2 4 2,

(10) If a # 1 and for every n holds s(n) = a”, then (3.5 _,s(a))ken(n) =

1ian+1
l—a -

(11) Ifa # 1 and a # 0 and for every n holds s(n) = (1), then for every n

Lyn_g
holds (345 5(a))wen(n) = L2
(12) 1IOfn£?r ex;ery n holds2s(n) =10"4+2-n+1, then (35 _;s(a))wen(n) =
(13) 1If for every n holds s(n) = (2-n —1) + (3)", then (35_; s(@))wen(n) =
(2 +1) = ()"
(14) 1If for every n holds s(n) =n - (3)", then (35_s(@))wen(n) =2 — (2+
n) - (I
(15) If for every n holds s(n) = ((3)™ 4+ 2")% then for every n holds
(EZ:o s(a))ren(n) = — 3
(16) If for every n holds s(n) = ((3)" + 3")% then for every n holds
1\n n
(25 g s(@)nen(n) = =2 + 80 4 2.0 43,
(17) If for every n holds s(n) = n - 2" then for every n holds
(Xm0 8(@))ren(n) = (n- 27T —27H) + 2,
(18) If for every n holds s(n) = (2-n + 1) - 3", then for every n holds
(X0 5(a))sen(n) = n- 3" + 1.
(19) If @ # 1 and for every n holds s(n) = n - a”, then for every n holds
K a-(1—a™ n-qnt1
(Eo s(@))ren(n) = $HE5) — et
(20) If for every n holds s(n) = (rootg(n+1)§+(root2(n)) ,then (370 s(@))ren(n) =
roota(n + 1).
(21) If for every n holds s(n) 2" + (3)", then for every n holds
(Xa=o5(@))ren(n) = (2" — (3)") + 1.
(22) If for every n holds s(n) = n!-n+ (n+1) then for every n such that
n > 1 holds (Xi_g s(a))wen(n) = (n+1)! = g
(23) Suppose a # 1 and for every n such that n > 1 holds s(n) (%)™ and
5(0) = 0. Let given n. If n > 1, then (3°5_, s(a))ren(n) = a-((:%5)" —1).
(24) If for every n such that n > 1 holds s(n) = 2" - 32=1 and s(0) = 0, then
for every n such that n > 1 holds (>~ _, s(« ))neN( )=2n. 304 4o

(25) If for every n holds s(n) = Z—ié, then (the partial product of s)( )= %H

(26) If for every n holds s(n) =

— N

TL+1’ then (the partial product of s)(n) =

1
(n+1)!"
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(27) Suppose that for every n such that n > 1 holds s(n) = n and s(0) = 1.
Let given n. If n > 1, then (the partial product of s)(n

(28) Suppose that for every n such that n > 1 holds s(n) =
Let given n. If n > 1, then (the partial product of s)(n) 7

n
(29) Suppose that for every n such that n > 1 holds s(n) = a and s(0) = 1.
Let given n. If n > 1, then (the partial product of s)(n) = a™.

(30) Suppose that for every n such that n > 2 holds s(n) = 1 — # and

s(0) =1 and s(1) = 1. Let given n. If n > 2, then (the partial product of

s)(n) = %
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The terminology and notation used in this paper are introduced in the following
papers: [13], [15], [16], [2], [4], [10], [12], (3], [1], [6], [9], [7], [8], [11], [17], [35],
and [14].
For simplicity, we use the following convention: x, a, b are real numbers,
n is a natural number, Z is an open subset of R, and f, f1, fa, g are partial
functions from R to R.
Next we state a number of propositions:
(1) Suppose Z C dom(%) and for every z such that x € Z holds fi(z) =
a+z and fa(x) = a—x and fa(x) # 0. Then % is differentiable on Z and
for every x such that = € Z holds (%)?Z(l‘) = (61277;)2
(2) Suppose Z C dom(%) and for every x such that x € Z holds fi(z) =
x—a and fa(x) = x+a and fa(x) # 0. Then % is differentiable on Z and

for every x such that z € Z holds (%)/FZ(@ = (xiZ)T

(© 2005 University of Bialystok
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(3) Suppose Z C dom(%) and for every x such that x € Z holds fi(z) =

x—aand fo(z) =x —band fo(x) # 0. Then % is differentiable on Z and

for every x such that = € Z holds (%)/FZ(CU) = ﬁ.

(4) Suppose Z C dom f and for every z such that x € Z holds f(z) = = and
f(z) # 0. Then % is differentiable on Z and for every x such that x € Z
holds (%)’rz(x) =1

z2”
5) Suppose Z C dom((the function sin) -3) and for every = such that z € Z
f

holds f(z) =z and f(x) # 0. Then

(i)  (the function sin) % is differentiable on Z, and

(ii)  for every z such that x € Z holds ((the function sin) -%)’rz(a@) =

— % - (the function cos)(1).
6) Suppose Z C dom((the function cos) -1) and for every x such that z € Z
f

holds f(z) =z and f(x) # 0. Then

(i)  (the function cos) % is differentiable on Z, and

(ii) for every = such that z € Z holds ((the function cos) -%)’rz(aj) = x%-(the

function sin)(1).
7) Suppose Z C dom(idy ((the function sin) -+)) and for every x such that
( b 7 Yy

x € Z holds f(z) =z and f(z) # 0. Then

(i)  idz ((the function sin) %) is differentiable on Z, and

(ii) for every z such that = € Z holds (idz ((the function sin) %))’rz(:n) =

(the function sin)(1) — 1 . (the function cos)(2).
uppose Z C dom(idz ((the function cos) -%)) and for every x such that
(8) S Z C dom(idz ((the functi )})) df h th
x € Z holds f(z) =z and f(z) # 0. Then

(i)  idz ((the function cos) %) is differentiable on Z, and

(ii)  for every z such that z € Z holds (idz ((the function cos) -%))’rz(x) =

(the function cos)(1) + L - (the function sin)(2).
(9) Suppose Z C dom(((the function sin) %) ((the function cos) %)) and
for every x such that = € Z holds f(x) = = and f(x) # 0. Then

(i)  ((the function sin) %) ((the function cos) %) is differentiable on Z, and

(ii) for every z such that = € Z holds (((the function sin) %) ((the function

cos) -%))’FZ(JU) = 5 - ((the function sin)(1)? — (the function cos)(1)2).
(10) Suppose Z C dom(((the function sin) -f) ((7) - (the function sin))) and
n > 1 and for every z such that z € Z holds f(x) =n-z. Then
(i) ((the function sin) -f) ((7) - (the function sin)) is differentiable on Z,
and
(ii) for every z such that € Z holds (((the function sin) -f) ((7) - (the
function sin))) ;(z) = n - (the function sin)(x)5 ! - (the function sin)((n +

1) x).



SOME DIFFERENTIABLE FORMULAS ... 507

(11) Suppose Z C dom(((the function cos) -f) (() - (the function sin))) and
n > 1 and for every x such that x € Z holds f(x) =n-x. Then
(i) ((the function cos) -f) ((;) - (the function sin)) is differentiable on Z,
and
(ii)  for every x such that x € Z holds (((the function cos) -f) ((7) - (the
function sin)))’(z) = n - (the function sin)(z)2~* - (the function cos)((n +
1)-x).
(12) Suppose Z C dom(((the function cos) - f) ((3) - (the function cos))) and
n > 1 and for every z such that z € Z holds f(x) =n-z. Then
(i) ((the function cos) -f) ((7) - (the function cos)) is differentiable on Z,

and
(ii) for every x such that z € Z holds (((the function cos) - f) ((7)- (the func-
tion cos)))|,(z) = —n - (the function cos)(z)5 ! - (the function sin)((n + 1)

(13) Suppose Z C dom(((the function sin) -f) ((7) - (the function cos))) and
n > 1 and for every z such that z € Z holds f(x) =n-z. Then
(i) ((the function sin) -f) ((}) - (the function cos)) is differentiable on Z,
and
(ii)  for every x such that x € Z holds (((the function sin) -f) ((}) - (the
function cos)))},(z) = n- (the function cos) (z)3~ " (the function cos)((n+
1)-x).
(14) Suppose Z C dom(% (the function sin)) and for every x such that z € Z
holds f(z) =z and f(x) # 0. Then
(i) % (the function sin) is differentiable on Z, and

(ii)  for every x such that = € Z holds (% (the function sin)),(z) = 1. (the
function cos)(x) — x%, - (the function sin)(x).

(15) Suppose Z C dom(% (the function cos)) and for every z such that € Z
holds f(z) =z and f(x) # 0. Then
(1) % (the function cos) is differentiable on Z, and
(i)  for every z such that z € Z holds (% (the function cos))|,(z) =
—1 . (the function sin)(z) — x% - (the function cos)(x).

1
(16) Suppose Z C dom((the function sin)+(g) - f) and for every x such that
x € Z holds f(x) =z and f(x) > 0. Then
1

(i)  (the function sin)+(Z) - f is differentiable on Z, and

1
(ii) for every x such that z € Z holds ((the function sin)+(g) - f)}(z) =

_1
(the function cos)(z) + 3 - 2 2.

(17) Suppose Z C dom(g ((the function sin) %)) and g = 2 and for every x
such that z € Z holds f(z) = x and f(z) # 0. Then

(i) g ((the function sin) %) is differentiable on Z, and
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(ii)  for every x such that x € Z holds (g ((the function sin) -
2. x - (the function sin)(1) — (the function cos)(2).

T T

Niz(x) =

[

(18) Suppose Z C dom(g ((the function cos) %)) and g = 2 and for every z
such that z € Z holds f(z) = z and f(x) # 0. Then
(i) g ((the function cos) %) is differentiable on Z, and

(ii) for every x such that € Z holds (g ((the function cos) %))’Fz(m) =
2 - 2 - (the function cos)(1) + (the function sin)(2).

(19) Suppose Z C dom(log_(e) - f) and for every x such that z € Z holds
f(x) = x and f(x) > 0. Then log_(e) - f is differentiable on Z and for

every z such that z € Z holds (log-(e) - f)|(z) = L

(20) Suppose Z C dom(idyz f) and f = log_(e) - f1 and for every x such that
x € Z holds fi(x) = z and fi(x) > 0. Then idz f is differentiable on Z
and for every z such that x € Z holds (idz f)|,(z) = 1 + (log-(e))(x).

(21) Suppose Z C dom(g f) and g = 2 and f = log_(e)- f1 and for every z such
that € Z holds f1(z) =z and fi(x) > 0. Then ¢ f is differentiable on Z
and for every x such that € Z holds (g f)|(z) =z +2-z - (log-(e))(x).

(22) Suppose Z C dom(%) and for every z such that z € Z holds fi(z) =

a and fo = 2 and for every x such that x € Z holds (f1 — fa2)(z) > 0.
Then % is differentiable on Z and for every x such that z € Z holds
(ﬁi_;ﬁz )/{Z(x) = (ffig)z-
(23) Suppose that
; Ltf
() 7 C dom(log (e) - £££L2),
(ii) for every x such that x € Z holds fi(z) = a,
(i) fo=73,
(iv)  for every z such that = € Z holds (f; — f2)(x) > 0, and
(v)  for every x such that x € Z holds (f1 + f2)(z) > 0.

Then log_(e) - % is differentiable on Z and for every x such that z € Z
holds (log_(e) - L2V (z) = F22,

fi—fe ot
(24) Suppose Z C dom(% g) and for every z such that z € Z holds f(z) ==
and g = log_(e) - f1 and for every x such that x € Z holds fi(z) = = and

fi(z) > 0. Then % g is differentiable on Z and for every x such that x € Z
holds (7 9)}z(2) = 3z - (1 — (log-(e))(x)).

(25) Suppose Z C dom(%) and f = log_(e) - f1 and for every x such that
x € Z holds fi(z) = x and fi(x) > 0 and for every = such that z € Z
holds f(z) # 0. Then % is differentiable on Z and for every x such that

v € Z holds (§)(2() = — g (e
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The papers [1], [3], [6], [5], [7], [4], and [2] provide the terminology and notation
for this paper.
We follow the rules: z, y, z, w are real numbers and n is a natural number.
One can prove the following propositions:

__ sinhxzx _
1) tanhz = cochx and tanh 0 = 0.
. o 1 _ 1 —_1
2) sinhz = osohia and coshx = —— and tanhx = oiha

sechxz <1 and 0 < sechx and sech(0 = 1.

If z > 0, then tanhx > 0.
. _ 1 n _ tanh
coshz = N and sinh x T (tani
(coshz 4 sinhx)™ = cosh(n - x) + sinh(n - ) and (coshz — sinhx)" =
cosh(n - z) — sinh(n - x).

(@)}
D D O —

~~ N /N /N~

(7)(i) expz = coshz + sinhz,

(i exp(—x) = coshz — sinh z,
__ cosh(3)+sinh(3)
eXpT = cosh(%)fsinh(%)’
cosh(3)—sinh(3)

)
)
(iv)  exp(—z) = cosh(Z) Tsinh(2)
)
)

o=y

(iii

1+tanh(%)
(V exXpr = Tﬂh(%)’ and
. 1—tanh(%)
(Vl eXp(—x) = H—Tﬂh(%)

(© 2005 University of Bialystok
ol1 ISSN 1426-2630
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coth(£)+1 coth(%)—
(8) If x #0, then expz = W and exp(—z) = W
(9) coshz+sinhz __ 14tanhz
coshz—sinhxz = 1—tanhz”

y , then cothy + tanhz = Y2 and cothy — tanhz =
10) If y # 0, th h h cosh(W+2) 514 coth h

sinh y-cosh z
cosh(y—z)
sinh y-cosh z *

(11) sinhy -sinhz = § - (cosh(y + z) — cosh(y — 2)) and sinhy - coshz =
3+ (sinh(y+2z)+sinh(y—=2)) and coshy-sinh z = 3 - (sinh(y+2) —sinh(y—2))
and coshy - coshz = 1 - (cosh(y + z) + cosh(y — 2)).

(12) (sinhy)? — (cosh )2 = sinh(y + z) - sinh(y — z) — 1.

(13) (sinhy — sinh 2)? — (coshy — coshz)? = 4 - (sinh(%52
coshz)? — (sinhy + sinh 2)2 = 4 - (cosh(¥45%))2.

inh y-+sinh + —
snhy—smhz — tanh(¥3%) - coth(¥3),

ook coth (152) - coth(452),

15
- sinhy+sinhz __ coshy—cosh z
If y—=z 7& 0’ then coshy+coshz ~ sinhy—sinhz*

16
sinhy—sinhz __ coshy—cosh z
17 If y+=z 7& O’ then coshy+coshz = sinhy+sinhz *

)
)
)
)
1g) Sinhygsinhz — tanh(¥ + 2) and sinh y—sinh z — tanh(Y — 2).
)
)
)

))2 and (coshy +

14

cosh y+cosh z cosh y+cosh z

tanhy+tanh z _ sinh(y+z)
tanhy—tanhz ~ sinh(y—=z)"

19

20 sinh(y—z)+sinh y+sinh(y+z)
cosh(y—z)+cosh y+cosh(y+z)

21)(i) sinh(y+z+w) = (tanhy + tanh z 4+ tanh w + tanh y - tanh z - tanh w) -
cosh gy - cosh z - cosh w,
(ii)  cosh(y+z+w) = (1+tanhy-tanh z 4 tanh z - tanh w 4 tanh w - tanh y) -

coshy - cosh z - coshw, and
__ tanh y+tanh z4+tanh w+tanh y-tanh z-tanh w
(111) tanh(y +z+ w) ~ 1+tanh z-tanh w+tanh w-tanh y+tanh y-tanh z *

(22) cosh(2-y)+ cosh(2-z) + cosh(2-w) +cosh(2- (y+ z+w)) = 4-cosh(z +
w) - cosh(w + y) - cosh(y + z).

(23) sinhy -sinh z - sinh(z — y) + sinh 2z - sinh w - sinh(w — z) + sinhw - sinh y -
sinh(y — w) + sinh(z — y) - sinh(w — z) - sinh(y — w) = 0.

(24) If 2 >0, then sinh(3) = \/m
(25) If z <0, then smh = \/m

(26) sinh(2-z) = 2- smhx -coshx and cosh(2 - ) = 2 - (coshz)? — 1 and

= tanhy.

(
(
(
(
(
(
(
(

tanh(2 - z) = 71&:2%;)2
(27) sinh(2-z) = % and sinh(3 - z) = sinhz - (4 - (coshx)? — 1) and

sinh(3-z) = 3-sinhx —2-sinhx - (1 —cosh(2-z)) and cosh(2-2) =1+2-

(sinh z)? and cosh(2-z) = (cosh x)?+ (sinh x)? and cosh(2-x) = %

and cosh(3-z) = coshz-(4-(sinh2)2+1) and tanh(3-2) = ?m#
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28 sinh(5-z)+2-sinh(3-x)+sinhx _ sinh(3-z)

) sinh(7-z)+2-sinh(5-z)+sinh(3-2) ~ sinh(5-z) "
29) If x >0, then tanh(§) = \/%.
30) If # <0, then tanh(%) = —/ &2,
31)(1) (sinh .%')3 _ sinh(3-:v)73-sinh:r7

4
cosh(4-z)—4-cosh(2-x))+3
)

(ii) (sinha)* = ! -
(111) (sinh .73)5 _ (sinh(5-z)—5-sin1}%(3~:c))+10~sinhz7
(iV) (Sinh x)ﬁ _ ((<:osh(6-a:)—6~cosh(4§;))—|—15~cosh(2~z))—107
(V) (Sinh l‘)7 _ ((sinh(?-x)—7~sinh(5~a:))61-21~sinh(3~az))—35~sinhx’ and
. o _ (((cosh(8-z)—8-cosh(6-x))+28-cosh(4-z))—56-cosh(2-x))435
(vi)  (sinha)® — (coh()Seosh(6a))+ 28 cosh(t-r) (2:2))+35

(32)(i) (cosha)? = coshde)idcosha

(il) (COSh 1‘)4 __ cosh(4- m)+4 cosh(2- CE)+3

(iil) (COSh .73)5 __ cosh(5- $)+5 cos (3 a;)—i—lO -coshx

(iV) (COSh .73)6 _ cosh(6-x)+6- cos (4 :v)—|—15 cosh(2- z)+10

(v) (coshz)? = hTa)+T cosh(5, x)+421 cosh(3-2)+35-cosh and
(Vi) (COSh :L')S __ cosh(8-x)+8-cosh(6- x)+2§i§§sh(4 x)+56-cosh(2- x)+35

(33) cosh(2-y) +cos(2-2) =2+2-((sinhy)? — (sinz)2) and cosh(2 - y) —

cos(2-z) = 2 ((sinhy)? + (sin 2)?2).
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Summary. We continue Mizar formalization of General Topology accord-
ing to the book [20] by Engelking. Niemytzki plane is defined as halfplane y > 0
with topology introduced by a neighborhood system. Niemytzki plane is not
T4. Next, the definition of Tychonoff space is given. The characterization of
Tychonoff space by prebasis and the fact that Tychonoff spaces are between T3
and Ty is proved. The final result is that Niemytzki plane is also a Tychonoff
space.
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The notation and terminology used here are introduced in the following papers:
[38], [34], [15], [41], [17], [40], [35], [42], [11], [14], [12], [8], [13], [33], [10], [37],
[41, 2], [1], 3], [5], [32], [39], [22], [25], [23], [29], [27], [26], [28], [43], [18], [31],
[30], [36], [19], [24], [9], [16], [21], [7], and [6].

1. PRELIMINARIES

In this paper z, y are elements of R.
One can prove the following propositions:
(1) For all functions f, g such that f ~ ¢ and for every set A holds
(f+9)7H(A) = (A ug(A).
(2) For all functions f, g such that dom f misses dom g and for every set A
holds (f+-9)~'(4) = f~1(4) Ug~(A).

(© 2005 University of Bialystok
515 ISSN 1426-2630
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Let X be a set and let Y be a non empty real-membered set. Note that
every relation between X and Y is real-yielding.
Next we state several propositions:

(3) For all sets z, a and for every function f such that a € dom f holds
(commute(x——f))(a) = z—— f(a).

(4) Let bbe aset and f be a function. Then b € dom commute( f) if and only
if there exists a set a and there exists a function g such that a € dom f
and g = f(a) and b € dom g.

(5) Let a, b be sets and f be a function. Then a € dom(commute(f))(b) if
and only if there exists a function g such that a € dom f and g = f(a)
and b € dom g.

(6) For all sets a, b and for all functions f, g such that a € dom f and
g = f(a) and b € dom g holds (commute(f))(b)(a) = g(b).

(7) For every set a and for all functions f, g, h such that h = f U g holds
(commute(h))(a) = (commute(f))(a) U (commute(g))(a).

Let us note that every finite subset of R is bounded.
The following propositions are true:

(8) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds ]a,c[ N

[b,d] = [b,c].
(9) For all real numbers a, b, ¢, d such that a > b and ¢ > d holds |a,c[ N
[b,d] = ]a,d].

(10) For all real numbers a, b, ¢, d such that a < b and b < ¢ and ¢ < d holds
[a, c[U]b,d] = [a,d].

(11) For all real numbers a, b, ¢, d such that a < b and b < ¢ and ¢ < d holds
[a, c[N]b,d] = ]b, .

(12) For all sets X, Y holds [[(X,Y) ~ [ X, Y]and [[(X,Y) =X -Y.

In this article we present several logical schemes. The scheme SCH1 deals
with non empty sets A, B, C, two unary functors F and G yielding sets, and a
unary predicate P, and states that:

There exists a function f from C into B such that for every element
a of A holds
(i)  if Plal, then f(a) = F(a), and
(ii)  if not Pla], then f(a) = G(a)
provided the parameters meet the following conditions:

e CCA, and

e For every element a of A such that a € C holds if P[a], then
F(a) € B and if not P[a], then G(a) € B.

The scheme SCH2 deals with non empty sets A, B, C, three unary functors
F, G, and H yielding sets, and two unary predicates P, Q, and states that:
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There exists a function f from C into B such that for every element
a of A holds
(i)  if Pla], then f(a) = F(a),
(ii)  if not Pla] and Qlal, then f(a) = G(a), and
(iii)  if not P[a] and not Qla], then f(a) = H(a)
provided the parameters meet the following conditions:

e CC A, and

e For every element a of A such that a € C holds if P[a], then
F(a) € B and if not P[a] and Qlal, then G(a) € B and if not P[a]
and not Qfa], then H(a) € B.

The following four propositions are true:

(13) For all real numbers a, b holds |[a, b]|? = a? + b2.

(14) Let X be a topological space, Y be a non empty topological space, A,
B be closed subsets of X, f be a continuous function from X [A into Y,
and g be a continuous function from X [B into Y. If f ~ g, then f+-¢ is
a continuous function from X [(A U B) into Y.

(15) Let X be a topological space, Y be a non empty topological space, and
A, B be closed subsets of X. Suppose A misses B. Let f be a continuous
function from X [A into Y and g be a continuous function from X [B into
Y. Then f+-g is a continuous function from X [(AU B) into Y.

(16) Let X be a topological space, Y be a non empty topological space, A
be an open closed subset of X, f be a continuous function from X[A into
Y, and g be a continuous function from XA into Y. Then f+-g is a
continuous function from X into Y.

2. NIEMYTZKI PLANE

One can prove the following proposition

(17) For every natural number n and for every point a of £} and for every
positive real number 7 holds a € Ball(a, ).

The subset (y = 0)-line of £2 is defined by:
(Def. 1)  (y = 0)-line = {[z, 0]}.
The subset (y > 0)-plane of £2 is defined as follows:
(Def. 2) (y > 0)-plane = {[z,y] : y > 0}.
We now state several propositions:
(18) For all sets a, b holds (a,b) € (y = 0)-line iff a € R and b = 0.
(19) For all real numbers a, b holds [a,b] € (y = 0)-line iff b = 0.

(20) (y = 0)-line = .
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(21) For all sets a, b holds (a,b) € (y > 0)-plane iff a € R and there exists y
such that b =y and y > 0.

(22) For all real numbers a, b holds [a, b] € (y > 0)-plane iff b > 0.

Let us note that (y = 0)-line is non empty and (y > 0)-plane is non empty.
We now state several propositions:

(23) (y = 0)-line C (y > 0)-plane.

(24) For all real numbers a, b, r such that » > 0 holds Ball([a,b],r) C (y >
0)-plane iff » <b.

(25) For all real numbers a, b, r such that » > 0 and b > 0 holds Ball([a, b],7)
misses (y = 0)-line iff r <.

(26) Let n be a natural number, a, b be elements of £}, and ry, ry be positive
real numbers. If |a — b| < ry — 1o, then Ball(b,r2) C Ball(a,r).

(27) For every real number a and for all positive real numbers r, ra such
that r1 < ry holds Ball([a,r1],71) C Ball([a, r2],2).

(28) Let 17, T» be non empty topological spaces, By be a neighborhood system
of T7, and Bs be a neighborhood system of T5. Suppose By = Bs. Then
the topological structure of 77 = the topological structure of T5.

In the sequel r is an element of R.

Niemytzki plane is a strict non empty topological space and is defined by

the conditions (Def. 3).
(Def. 3)(i) The carrier of Niemytzki plane = (y > 0)-plane, and

(ii)  there exists a neighborhood system B of Niemytzki plane such that for
every x holds B([z,0]) = {Ball([z,r],r) U{[x,0]} : > 0} and for all z, y
such that y > 0 holds B([z,y]) = {Ball([z,y],r) N (y > 0)-plane : » > 0}.

The following propositions are true:

(29) (y > 0)-plane \ (y = 0)-line is an open subset of Niemytzki plane.

(30) (y = 0)-line is a closed subset of Niemytzki plane.

(31) Let x be a real number and r be a positive real number. Then Ball(]z,
r],r) U {[x,0]} is an open subset of Niemytzki plane.

(32) Let = be a real number and y, r be positive real numbers. Then Ball(]z,
yl,7) N (y > 0)-plane is an open subset of Niemytzki plane.

(33) Let z, y be real numbers and r be a positive real number. If » < y, then
Ball([z, y], ) is an open subset of Niemytzki plane.

(34) Let p be a point of Niemytzki plane and r be a positive real number.
Then there exists a point a of £% and there exists an open subset U of

Niemytzki plane such that p € U and a € U and for every point b of £2
such that b € U holds |b —a| < r.

(35) Let x, y be real numbers and r be a positive real number. Then there
exist rational numbers w, v such that [w,v] € Ball([z, y], ) and [w, v] # [z,
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Y-

(36) Let A be a subset of Niemytzki plane. If A = ((y > 0)-plane \ (y =
0)-line) N[ [(Q, Q), then for every set « holds A\ {2} = ONiemytzki plane-

(37) Let A be a subset of Niemytzki plane. If A = (y > 0)-plane\ (y = 0)-line,
then for every set x holds A\ {2} = ONiemytzki plane-

(38) For every subset A of Niemytzki plane such that A = (y > 0)-plane\ (y =
0)—line holds Z = QNiemytzki plane-

(39) For every subset A of Niemytzki plane such that A = (y = 0)-line holds
A=A and Int A=0.

(40) ((y > 0)-plane \ (y = 0)-line) N [[(Q, Q) is a dense subset of Niemytzki
plane.

(41) ((y > 0)-plane \ (y = 0)-line) N [[(Q, Q) is a dense-in-itself subset of
Niemytzki plane.

(y > 0)-plane \ (y = 0)-line is a dense subset of Niemytzki plane.
(y > 0)-plane\ (y = 0)-line is a dense-in-itself subset of Niemytzki plane.
(y = 0)-line is a nowhere dense subset of Niemytzki plane.

For every subset A of Niemytzki plane such that A = (y = 0)-line holds
Der A is empty.

N
(@)

N N N N N N
IS
e

N e e N N N

Every subset of (y = 0)-line is a closed subset of Niemytzki plane.
Q is a dense subset of Sorgenfrey line.

Sorgenfrey line is separable.

Niemytzki plane is separable.

Niemytzki plane is a T} space.

Niemytzki plane is not 7}.

3. TYCHONOFF SPACES

Let T be a topological space. We say that T is Tychonoff if and only if the
conditions (Def. 4) are satisfied.
(Def. 4)(i) T is a T3 space, and
(ii)  for every closed subset A of T and for every point a of 7" such that a € A¢
there exists a continuous function f from 7" into I such that f(a) = 0 and
feA C{1}.
Let us observe that every topological space which is Tychonoff is also 77 and
T5 and every non empty topological space which is T1 and T} is also Tychonoff.
We now state the proposition
(52) Let X be a T topological space. Suppose X is Tychonoff. Let B be a
prebasis of X, x be a point of X, and V be a subset of X. Suppose x € V
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and V € B. Then there exists a continuous function f from X into I such
that f(xz) =0 and f°V°¢ C {1}.

Let X be a set and let Y be a non empty real-membered set. Observe that
every relation between X and Y is real-yielding.

The following propositions are true:

(53) Let X be a topological space, R be a non empty subspace of R, f, g
be continuous functions from X into R, and A be a subset of X. Suppose
that for every point z of X holds z € A iff f(z) < g(z). Then A is closed.

(54) Let X be a topological space, R be a non empty subspace of R!, and f,
g be continuous functions from X into R. Then there exists a continuous
function h from X into R such that for every point = of X holds h(z) =

max(f(z), g(x)).

(55) Let X be a non empty topological space, R be a non empty subspace
of R', A be a finite non empty set, and F be a many sorted function
indexed by A. Suppose that for every set a such that a € A holds F(a)
is a continuous function from X into R. Then there exists a continuous
function f from X into R such that for every point x of X and for every
finite non empty subset S of R if S = rng(commute(F'))(z), then f(z) =
max S.

(56) Let X be a T7 non empty topological space and B be a prebasis of X.
Suppose that for every point z of X and for every subset V of X such
that x € V and V' € B there exists a continuous function f from X into I
such that f(z) =0 and f°V° C {1}. Then X is Tychonoff.

(57) Sorgenfrey line is a T3 space.

(58) For every real number x holds |—oo, z[ is a closed subset of Sorgenfrey
line.

(59) For every real number x holds |—o0, z] is a closed subset of Sorgenfrey
line.

(60) For every real number = holds [z, +o00[ is a closed subset of Sorgenfrey
line.

(61) For all real numbers z, y holds [z, y[ is a closed subset of Sorgenfrey line.

(62) Let = be a real number and w be a rational number. Suppose z < w.
Then there exists a continuous function f from Sorgenfrey line into I such
that for every point a of Sorgenfrey line holds

(i) ifa € [x,w], then f(a) =0, and
(ii) if a ¢ [x,w][, then f(a) = 1.
(63) Sorgenfrey line is Tychonoff.
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4. NIEMYTZKI PLANE 1S TYCHONOFF SPACE

Let z be a real number and let » be a positive real number. The func-
tor +(z,r) yielding a function from Niemytzki plane into I is defined by the
conditions (Def. 5).

(Def. 5)i)  (4+(x,7))(]x,0]) =0, and
(ii)  for every real number a and for every non negative real number b holds
ifa # x orb# 0 and if [a,b] ¢ Ball([z,7],7), then (+(x,r))([a,b]) =1 and
if [a,8] € Ball([z, 7], r), then (+(z,7))([a,b]) = =O-lal,

r-b

One can prove the following propositions:

(64) Let p be a point of 5%. Suppose pz > 0. Let x be a real number and r
be a positive real number. If (+(x,r))(p) = 0, then p = [, 0].

(65) For all real numbers z, y and for every positive real number r such that
x # y holds (+(z,r))([y,0]) = 1.

(66) Let p be a point of 5%, x be a real number, and a, r be positive real
numbers. If a < 1and |p—[z,7-a]| = r-a and pa # 0, then (+(x,r))(p) = a.

(67) Let p be a point of 5%, x, a be real numbers, and r be a positive real
number. If 0 <aand a < 1and [p—[z,7-a]| < r-a, then (+(x,7))(p) < a.

(68) Let p be a point of 8%. Suppose p2 > 0. Let z, a be real numbers and r
be a positive real number. If 0 < a and a < 1 and |p — [z,r - a]| > r - q,
then (+(z,7))(p) > a.

(69) Let p be a point of £%. Suppose p2 > 0. Let z, a, b be real numbers and
r be a positive real number. Suppose 0 < a and b <1 and (+(z,r))(p) €
la,b]. Then there exists a positive real number r; such that r < pa and
Ball(p, 1) C (+(,7))~" (Ja, b]).

(70) For every real number z and for all positive real numbers a, r holds
Ball([z,r - a],r - a) C (+(x,7))71(]0, a).

(71) For every real number x and for all positive real numbers a, r holds
Ball([z,r - a],r - a) U{[x,0]} C (+(z, 7))~ ([0, af).

(72) Let p be a point of £2. Suppose pa > 0. Let z, a be real numbers and
r be a positive real number. If 0 < (+(z,7))(p) and (+(z,7))(p) < a and
a <1, then p € Ball([z,r - a],r - a).

(73) Let p be a point of 5%. Suppose pz > 0. Let x, a be real numbers and
r be a positive real number. Suppose 0 < a and a < (+(x,r))(p). Then
there exists a positive real number r; such that r; < p2 and Ball(p, ) C
(+(z,)) " (a, 1]).

(74) Let p be a point of 5%. Suppose ps = 0. Let x be a real number and r
be a positive real number. Suppose (+(z,r))(p) = 1. Then there exists a
positive real number 71 such that Ball([py,1],71)U{p} C (+(z,7)) "1 ({1}).
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(75) Let T be a non empty topological space, S be a subspace of T, and B
be a basis of T. Then {A N Qg; A ranges over subsets of T: A€ B A A
meets g} is a basis of S.

(76) {]a,b[; a ranges over real numbers, b ranges over real numbers: a < b} is
a basis of RL.

(77) Let T be a topological space, U, V be subsets of T, and B be a set. If
UeBandV € Band BU{UUV} is a basis of T, then B is a basis of T'.

(78) {[0,a[;a ranges over real numbers: 0 < a A a < 1} U {]a,1];a ranges
over real numbers: 0 < a A a < 1} U{]a,b[; a ranges over real numbers, b
ranges over real numbers: 0 <a A a<b A b<1}is a basis of L.

(79) Let T be a non empty topological space and f be a function from T
into I. Then f is continuous if and only if for all real numbers a, b such
that 0 < a and a < 1 and 0 < b and b < 1 holds f~1([0,b[) is open and
f~t(a, 1]) is open.

Let = be a real number and let  be a positive real number. Note that +(x, r)
is continuous.
We now state the proposition

(80) Let U be a subset of Niemytzki plane and given x, r. Suppose U =
Ball([z,r],7) U {[x,0]}. Then there exists a continuous function f from
Niemytzki plane into I such that

(i) f([=,0]) =0, and
(ii)  for all real numbers a, b holds if [a,b] € U€, then f([a,b]) =1 and if [a,
b € U\ {[z,0]}, then f([a,b]) = [20-lal®,
Let =, y be real numbers and let » be a positive real number. The functor
+(z,y,r) yields a function from Niemytzki plane into I and is defined by the
condition (Def. 6).

(Def. 6) Let a be a real number and b be a non negative real number. Then
(i) if [a,b] ¢ Ball(|z,y],r), then (+(z,y,7))([a,b]) = 1, and
(ii)  if [a,b] € Ball([z, y],r), then (+(z,y,7))([a,b]) = ”xy]rﬂ
The following propositions are true:

(81) Let p be a point of £%. Suppose p2 > 0. Let x be a real number, y
be a non negative real number, and r be a positive real number. Then
(+(z,y,7))(p) = 0 if and only if p = [z, y].

(82) Let x be a real number, y be a non negative real number, and 7, a
be positive real numbers. If a < 1, then (+(z,y,7)) ([0, a[) = Ball(|x,
yl,7-a) N (y > 0)-plane.

(83) Let p be a point of 5%. Suppose pa > 0. Let = be a real number,
a be a non negative real number, and y, r be positive real numbers. If
(+(z,9,7))(p) > a, then [[z,y]—p| > r-a and Ball(p, |[z, y] —p[—r-a)"(y =
0)-plane C (+(z,y,7)) " (Ja, 1))-
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(84) Let p be a point of 5%. Suppose p2 = 0. Let z be a real number, a be
a non negative real number, and y, r be positive real numbers. Suppose
(+(z,y,7))(p) > a. Then |[z,y] — p| > r - a and there exists a positive
real number r; such that r = W and Ball([p1,71],71) U {p} C
(+(z,y,7) " (Ja, 1]).

Let = be a real number and let y, r be positive real numbers. One can verify
that +(z,y,r) is continuous.
We now state three propositions:

(85) Let U be a subset of Niemytzki plane and given z, y, r. Suppose y > 0
and U = Ball([z,y],7) N (y > 0)-plane. Then there exists a continuous
function f from Niemytzki plane into I such that f([z,y]) = 0 and for all
real numbers a, b holds if [a,b] € U®, then f([a,b]) = 1 and if [a,b] € U,
then f([a,b]) = [evl=labll,

r

(86) Niemytzki plane is a T3 space.
(87) Niemytzki plane is Tychonoff.
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Summary. This article introduced some important inequalities on partial
sum and partial product, as well as some basic inequalities.
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The notation and terminology used in this paper are introduced in the following

papers: [2]> [1]7 [9]7 [6]7 [3]> [5]7 [7]7 [8]7 and [4]

For simplicity, we adopt the following rules: a, b, ¢, d are positive real

numbers, m, u, w, x, y, z are real numbers, n, k are natural numbers, and s, s;
are sequences of real numbers.

Next we state a number of propositions:

(a+b)-(2+1) >4
a*+vt>a - b+a- b

b+
Ifa<b,then1<a—+z.
Ifa<b,then%<\/%.

4 a24b2

Ifa<b,then\/%<b7.

If a < b, then 7 <
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If || <1 and |y| < 1, then |1ﬁ_—;yy| <1

lzty| x| ||
THaty] = T+a] T T+l

2> 1.

b d
a+(l§+d + a+b+c + b-‘rg-i-d + a+c+d <2
Ifa+b > cand b+c > a and a+c > b, then (a+}))_c+ (b+i)—a+ (c+¢11)—b >

9
a+b+c’

V0a+b)-(c+d)>a-c+Vb-d.
(a-b+c-d)-(a-c+b-d)>4-a-b-c-d.

44byce>3

Ifa-b+b-c+c-a=1, then a + b+ ¢ > /3.

(b+2)fa + (c+cbt)fb + (a+g)fc > 3.

(a—l—é)-(b—l—%)Z(m—{—\/%)?

be paeyabsgybte

Ifz>yandy >z thena? - y+9y?-24+22-2>2-y2+y- 22+ 222
Ifa>bandb>c,thenﬁ>i.

a—c
d
It b>a and ¢ > d, then - > 7%.

m-x+z-y<vVm24 22\ 22 +y2.
(m-z4+u-y+w-2)2<(m?+u?+w?) - (22 + 9% + 22).
%Sa—i—b—i—c.

a?+a-b+b2 b2+b-c+c2? c2+ca+a?
atbte< /et | [Rabere | ata?

a?+a-b+b2 b2+b-c+c? c2+ca+a? a?+b2 b2+4c2 c2+a?
\/ 3 ""\/ 3+ 3 = 7 T 7 T 2

\/az_gbz_i_\/bz;c'z_'_\/cz.gaz <3 (a®+12+c2).

a b c d
a+b+d + a+b+c + b+c+d + a+c+

V3 (a2 + b2+ c2) < beqoca g oab
Ifa+b=1,then (5 —1) (55 —1)>9
Ifa—l—bzl,thena-b—i—ﬁz%.
Ifa—i—b—i—c:l,then%—i—%—i-%zg
Ifa+b+c=1,then (1 -1)- (3 -1)-(2-1)>38
Ifa+b+c=1,then (1+1)-(14+3)-1+1)>64

Ifx—l—y—f—z:Lthenx'y—i—y-z—l—z'xg%.
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N
S

_ 1,1 ,1
Ifa-b-c=1,then ya+vb+e<l4l41
If a > band b > ¢, then a®% - b2 . ¢ > gbte. pate. coth,
If n > 1, then ¢ + 0"t >a™ - b+a-b".
If a®2 + b2 = ¢ and n > 3, then a™*? 4+ b2 < "2

A/—\/—\A/—\A/—\
=R R
[ TSN ]

S N N N N N N

46) Ifn > 1, then (1+ =25)" < (1+ £)".

47) If n>1and k > 1, then (a¥ 4 b¥) - (a™ + ") < 2- (aFt7 4 bFt7).

48) If for every n holds s(n) = \/%, then for every n holds
(a0 s(@))ren(n) <2-vn+ 1.

(49) If for every n holds s(n) = (n+1)2’ then for every n holds

(X0 s(@)ren(n) <2 — .

(50) If for every n holds s(n) = @ +1)2, then (30 s(@))ken(n) < 2.

(51) 1If for every n holds s(n) < 1, then for every n holds (3 _ s(a))xen(n) <
n+ 1.

(52) If for every n holds s(n) > 0 and s(n) < 1, then for every n holds (the
partial product of s)(n) > (3_n_; s(@))ken(n) — n.

(53) If for every n holds s(n) > 0 and si(n) =
(Xa=o(s1)(@))ren(n) > 0.

(54) If for every n holds s(n) > 0 and s;(n) =
(Xa=0 s(@))ren(n) - (a=o(51)(@))ren(n) > (n + 1)

(55) If for every n such that n > 1 holds s(n) = v/n and s(0) = 0, then for
every n such that n > 1 holds (35_( s(@))xen(n) < 3 - (4-n+3)-/n.

(56) If for every n such that n > 1 holds s(n) = /n and s(0) = 0, then for
every n such that n > 1 holds (3_5_j s(@))sen(n) > 2 -n- /.

(57) Suppose that for every n such that n > 1 holds s(n) = 1+ 2% i
(0) = 1. Let given n. If n > 1, then (the partial product of s)(n) >

“V2-n+3.
(58) If for every n such that n > 1 holds s(n) = y/n-(n+1) and s(0) = 0,
then for every n such that n > 1 holds (3.5 _, s(@))xen(n) > %

s%l), then for every n holds

—~

and

[SIEVA
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The papers [11], [13], [14], [1], [8], [10], [2], [4], [7], [5], [6], [9], [15], [3], and [12]
provide the notation and terminology for this paper.

For simplicity, we use the following convention: z, a denote real numbers, n
denotes a natural number, Z denotes an open subset of R, and f, fi, fo denote
partial functions from R to R.

One can prove the following propositions:

(1) If a >0, then exp(z - log, a) = af.

(2) Ifa >0, then exp(—x-log,a) = ag”.

(3) Suppose Z C dom(fi — f2) and for every = such that x € Z holds
fi(x) = a® and fo = 2. Then f; — fo is differentiable on Z and for every
z such that z € Z holds (f1 — f2)jz(z) = =2z

(4) Suppose Z C dom(ﬁfg) and fo = 2 and for every z such that x € Z
holds fi(z) = a? and (f1 — f2)(x) # 0. Then % is differentiable on Z
a2z
and for every z such that € Z holds (%)/Z(I') =

) (aZ—z2)2

(© 2005 University of Bialystok
529 ISSN 1426-2630
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(5) Suppose Z C dom f and f = log_(e) - % and fo = 2 and for every z
such that x € Z holds f1(z) = a® and (f1— f2)(x) > 0 and a # 0. Then f is
differentiable on Z and for every  such that z € Z holds f{,(z) = Loty

P S
(6) Suppose Z C dom(;iy f) and f = log(e) - % and fo = 2 and for
every x such that z € Z holds fi(z) = a? and (f; — f2)(x) > 0 and a # 0.

Then ﬁ f is differentiable on Z and for every x such that z € Z holds
(o2 Niz(@) = 2t

(7) Suppose Z C dom(hﬁfl) and f; = 2 and for every z such that x € Z

holds fa(x) = 1 and = # 0. Then fQ{Ll 7 s differentiable on Z and for every
x such that z € Z holds (ﬁ)’yz(az) = (LETIZ)Z
8) Suppose Z C dom(2 f) and f =log_(e)- L and fi =2 and for every
2 fat+f1 Z

z such that x € Z holds fo(z) = 1 and z # 0. Then 1 f is differentiable
on Z and for every x such that « € Z holds (3 Fiz(x) = m

(9) Suppose Z C dom(log_(e) - %) and for every x such that z € Z holds
x > 0. Then log_(e) -  is differentiable on Z and for every x such that

z € Z holds (log-(e) - 7)1 () = 7.
(10) Suppose Z C dom(f—l2 + log_(e) - %) and for every x such that z € Z
holds fo(x) = = and fa(x) > 0 and fi(z) = x — 1 and fi(z) > 0. Then

1

fi + log_(e) - % is differentiable on Z and for every x such that z € Z
holds (£ +log-(e) - ) (2) = ooy

(11) Suppose Z C dom(exp-f) and for every x such that € Z holds f(z) =
z-log, a and a > 0. Then exp - f is differentiable on Z and for every x such
that = € Z holds (exp-f)|z(z) = (af) - log, a.

(12) Suppose Z C dom(log = ((exp-f1) f2)) and for every z such that x € Z
holds fi(z) =z -log, a and fo(x) = = — log - and a > 0 and a # 1. Then

bglea ((exp-f1) f2) is differentiable on Z and for every x such that z € Z

holds (55— ((exp-f1) f2))|z(2) = z - af.

(13) Suppose Z C dom(m ((exp-f) exp)) and for every x such that
x € Z holds f(zr) = =z -log,a and a > 0 and a # % Then
m ((exp-f) exp) is differentiable on Z and for every = such that z € Z
holds (o ((exp-f) exp))|(x) = (at) - exp().

(14) Suppose Z C dom(exp-f) and for every x such that € Z holds f(z) =
—x. Then exp-f is differentiable on Z and for every = such that x € Z
holds (exp - f)|,(z) = —exp(—x).

(15) Suppose Z C dom(fi (exp-f2)) and for every = such that x € Z holds
fi(x) = —x — 1 and fa(x) = —x. Then f; (exp-f2) is differentiable on Z
and for every z such that x € Z holds (fi (exp-f2))|z(z) =

expzx’
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(16) Suppose Z C dom(—exp-f) and for every x such that z € Z holds
f(z) = —x-log,a and a > 0. Then —exp-f is differentiable on Z and for
every z such that = € Z holds (—exp-f)|,(z) = (ag") - log, a.

(17) Suppose Z C dom(log = ((—exp-f1) f2)) and for every x such that z € Z
holds fi(z) = —z-log,a and fa(x) = = + bg% and ¢ > 0 and a # 1.

Then logle —((—exp-f1) f2) is differentiable on Z and for every x such that

x € Z holds (@ ((—exp-f1) f2))/[z(f’3) = %'

(18) Suppose Z C dom(y5 - 1a_1 e’;gl')f ) and for every z such that = € Z holds

f(x) =z -log,a and a > 0 and a # e. Then Tog 1@ i e);;zpf is differentiable

on Z and for every x such that x € Z holds (logelafl e’;f;’)f )iz(2) = exiﬂfx).

(19) Suppose Z C dom(Tlgﬂ o +) and for every x such that x € Z holds

f(x) =z-log,a and a > 0 and a # e. Then = log - ei’gpf is differentiable
on Z and for every x such that x € Z holds (opz— soerr)z(2) = exp()

1-log,a exp-f
(20) Suppose Z C dom(log_(e) - (exp+f)) and for every x such that z € Z
holds f(xz) = 1. Then log_(e) - (exp +f) is differentiable on Z and for every

(e)
z such that € Z holds (log_(e) - (exp +f))}(x) = ef;(px(ﬁl.

(21) Suppose Z C dom(log_(e) - (exp—f)) and for every x such that z € Z
holds f(z) = 1 and (exp—f)(z) > 0. Then log_(e) - (exp—f) is dif-
ferentiable on Z and for every z such that z € Z holds (log_(e) -
(exp— )} (@) = 22

(22) Suppose Z C dom(—log_(e)-(f —exp)) and for every x such that
x € Z holds f(z) =1 and (f — exp)(z) > 0. Then —log_(e) - (f — exp)
is differentiable on Z and for every x such that x € Z holds
(—log-(e) - (f — exp))5(x) = {22

(23) Suppose Z C dom((3) - exp+f) and for every = such that x € Z holds
f(z) = 1. Then (3) - exp+f is differentiable on Z and for every z such
that € Z holds ((%) - exp +f)iz(x) =2-exp(2- z).

(24) Suppose Z C dom(3 (log_(e) - f)) and f= (%) exp+fi and for every z
such that z € Z holds fi(x) = 1. Then 1 (log_(e) - f) is differentiable on Z

and for every z such that z € Z holds (3 (log,( ) F))iz(@) = %.

T
aR

(25) Suppose Z C dom((2) - exp —f) and for every z such that z € Z holds
f(z) = 1. Then (3) - exp —f is differentiable on Z and for every z such
that 2 € Z holds ((3) - exp —f)iz(x) =2-exp(2-z).

(26) Suppose Z C dom(j (log_(e) - f)) and f = (3) - exp—f1 and for every
z such that © € Z holds fi(z) = 1 and f(z) > 0. Then 1 (log-(e) - f)
is differentiable on Z and for every z such that = € Z holds (3 (log-(e) -

Niz(@) = m'

931
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(27) Suppose Z C dom((%) - (exp —f)) and for every z such that € Z holds
f(z) = 1. Then (%) - (exp —f) is differentiable on Z and for every x such
that € Z holds ((2) - (exp —f))iz(x) =2 exp(x) - (exp(x) — 1).

(28) Suppose Z C dom f and f = log_(e) - (%)'(t}({%ﬂ and for every x such

that © € Z holds fi(x) =1 and (exp —f1)(x) > 0. Then f is differentiable

on Z and for every z such that 2 € Z holds f{,(z) = gigg;ﬂ

(29) Suppose Z C dom((2) - (exp +f)) and for every z such that € Z holds
f(z) = 1. Then (%) - (exp+f) is differentiable on Z and for every x such
that = € Z holds ((3) - (exp +f))}5(z) = 2 - exp() - (exp(z) + 1).

(30) Suppose Z C dom f and f = log_(e) - (%)'(6;(71;—’_“ and for every x such

that € Z holds fi(x) = 1. Then f is differentiable on Z and for every x

such that x € Z holds f),(z) = gigggﬁ

(31) Suppose Z C dom((%) - (f —exp)) and for every x such that z € Z holds
f(z) = 1. Then () - (f — exp) is differentiable on Z and for every x such
that € Z holds ((3) - (f — exp))iz(z) = =2 exp(z) - (1 — exp(x)).

(32) Suppose Z C dom f and f = log_(e) - (%).(2‘736)@ and for every x such
that x € Z holds fi(z) = 1 and (f1 —exp)(z) > 0. Then f is differentiable
on Z and for every x such that x € Z holds f{,(z) = Lexp(z)

1—exp(z)
_ . exp
(33) Suppose Z C dom f and f = log_(e) @ Chrowp)

that x € Z holds fi(x) = 1. Then f is differentiable on Z and for every =

such that x € Z holds f{,(z) = ;Zﬁggg

(34) Suppose Z C dom(log_(e)- f) and f = exp+exp - f1 and for every x such
that € Z holds fi(z) = —x. Then log_(e) - f is differentiable on Z and

for every x such that = € Z holds (log-(e) - f)},(x) = %ﬁgg:g.

and for every x such

(35) Suppose Z C dom(log_(e)- f) and f = exp — exp - f1 and for every x such
that © € Z holds fi(z) = —x and f(z) > 0. Then log_(e) - f is differen-

tiable on Z and for every x such that € Z holds (log-(e) - f)},(z) =

exp z+exp(—z)
expz—exp(—z)”

3
(36) Suppose Z C dom(2 ((2) -
holds f(z) = 1. Then 2 ((
x such that = € Z holds (

f +exp))) and for every x such that z € Z

(f
E%) (f +exp)) is differentiable on Z and for every
3 (R)-(f +exp)))iz(x) = exp(z) - (1+exp(w))§.

3
(37) Suppose Z C dom(z72— Tos @ ((g) - (f +exp-f1))) and for every = such that
x € Z holds f(z) =1 and fi(z) = x-log,a and a > 0 and a # 1. Then

3

% ((5) - (f +exp-f1)) is differentiable on Z and for every x such that
3 1
x € Z holds (310g 2 (R) - (f+exp-f1)iz(x) = (af) - (1 + af)g-
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(38) Suppose Z C dom((—31) ((the function cos) -f)) and for every z such
that € Z holds f(z) =2 - xz. Then
(i)  (—3) ((the function cos) -f) is differentiable on Z, and
(i) for every x such that z € Z holds ((—3) ((the function cos) iz(@) =
sin(2 - z).
(39) Suppose that

(i) Z C dom(2 ((H%) - (f — the function cos))), and
(ii)  for every z such that x € Z holds f(x) = 1 and (the function sin)(z) > 0
and (the function cos)(z) < 1 and (the function cos)(z) > —1.
Then )
(iii)  2((Z)- (f — the function cos)) is differentiable on Z, and
1

(iv)  for every x such that « € Z holds (2 ((3)-(f —the function cos)))|z(z) =

1
(1 + (the function cos)(x))g-
(40) Suppose that

1
(i)  Z Cdom((—2)((g) - (f + the function cos))), and
(ii) for every x such that € Z holds f(z) = 1 and (the function sin)(z) > 0
and (the function cos)(z) < 1 and (the function cos)(xz) > —1.
Then )
(ii))  (=2) ((2) - (f + the function cos)) is differentiable on Z, and
1
(iv)  for every x such that x € Z holds ((—2) ((3) - (f + the function
1
cos)))’rz(x) = (1 — (the function cos)(x))g.
(41) Suppose Z C dom(3 (log_(e) - f)) and f = f1 + 2 (the function sin) and
for every x such that x € Z holds fi(x) =1 and f(x) > 0. Then
(i) 1 (log_(e) - f) is differentiable on Z, and
(ii)  for every z such that = € Z holds (4 (log-(e) - MNiz(@) =

(the function cos)(z)
1+2-(the function sin)(z) "

(42) Suppose Z C dom((—3) (log_(e) - f)) and f = f1 + 2 (the function cos)
and for every z such that x € Z holds fi(x) =1 and f(z) > 0. Then
(i) (—3) (log-(e) - f) is differentiable on Z, and
(i) for every z such that z € Z holds ((—3) (log-(e) - MNiz(x) =

(the function sin)(x)
1+2-(the function cos)(z)"

(43) Suppose Z C dom( ((the function sin) -f)) and for every @ such that
x € Z holds f(x) =2-a-x and a # 0. Then
(i) £ ((the function sin) - f) is differentiable on Z, and
(ii)  for every x such that € Z holds (4 ((the function sin) ))iz(x) =

4-a
3-cos(2-a- ).
(44) Suppose Z C dom(f; — ;- ((the function sin) -f)) and for every z such
that 2 € Z holds fi(z) = § and f(z) =2-a-z and a # 0. Then
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(i) fi— ﬁ ((the function sin) - f) is differentiable on Z, and
(ii)  for every  such that « € Z holds (f1— 4 ((the function sin) iz(@) =
(sin(a - z))2.
(45) Suppose Z C dom(f; + 7~ ((the function sin) -f)) and for every z such
that € Z holds fi(z) = § and f(z) =2-a-z and a # 0. Then
(i)  fi1+ £ ((the function sin) -f) is differentiable on Z, and
(ii)  for every z such that « € Z holds (f1+% ((the function sin) iz(@) =
(cos(a - x))2.
(46) Suppose Z C dom(2 ((%) - (the function cos))) and n > 0. Then
(i)  L((®)- (the function cos)) is differentiable on Z, and

n

(ii)  for every z such that € Z holds ( ((%) - (the function cos)))iz(z) =

—((the function cos)(z)3 ") - (the function sin)(z).

(47) Suppose Z C dom( ((3) - (the function cos))—the function cos) and
n > 0. Then

(i) % ((3) - (the function cos))—the function cos is differentiable on Z, and

(ii)  for every x such that z € Z holds (3 ((3) - (the function cos))—the

function cos)|,(x) = (the function sin)(z)3.

(48) Suppose Z C dom((the function sin)—% ((3) - (the function sin))) and
n > 0. Then
(i)  (the function sin)—% ((3)- (the function sin)) is differentiable on Z, and
(i)  for every z such that z € Z holds ((the function sin)—3% ((3) - (the
function sin)))} (=) = (the function cos)(r)3.
(49) Suppose Z C dom((the function sin) -log_(e)). Then
(i)  (the function sin) -log_(e) is differentiable on Z, and

(i) ~ for every  such that x € Z holds ((the function sin) -log_(e))},(z) =

(the function cos)(log, )
= .

(50) Suppose Z C dom(—(the function cos) - log_(e)). Then
(i)  —(the function cos) - log_(e) is differentiable on Z, and
(ii) for every x such that x € Z holds (—(the function cos) - log_(e))},(z) =

(the function sin)(log, z)
p .
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Summary. In this paper, we introduce binary arithmetic and its related
operations. We include some theorems concerning logical operators.
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The terminology and notation used in this paper are introduced in the following
articles: [4], [3], [2], and [1].

In this paper z, y, z denote boolean sets.

Next we state a number of propositions:

—_

true = x = x.

\V]

false = x = true.

w

r =z = true and —(z = x) = false.

N

—(r=y)=xA-y.

r = -z =z and ~(z = ) = x.

(=)

X =T ==

o
~— O O Y N N N N N N~ ) N S~ N

true & x = x.

false & x = —x.

e I e e e R e
Nej ot

xr < v = true and ~(z & x) = false.

[
=)

-z < x = false.
zANlyez)=xA(-yVz)A(-zVy).

—_
—

y 'mand’ z) =z Ay VaA -z

N TN N TN /N
—_ =
W N

—_
N

z A (
x A (y 'mor’ 2) =x Ay A -z
zA(xAy)=zNy.

(© 2005 University of Bialystok
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(15) zA(zVy)=xVzAy.

(16) zA(zdy) =xA-w.

(17) zA(z=y)=xAy.

(18) zA(z&y)=xAy.

(19) z A (xz 'nand’ y) =z A .

(20) x A (z 'nor’ y) = false.

(21) zV(y®z)=xzV-yAzVyA-z.

(22) zV(yez)=(@V-yVz)A(zV-zVy).

(23) zV (y 'mand’ 2) =2V -y V -z,

(24) zV(y 'nor’ z) = (zV-y)A(xV-z) and 2V (y '‘nor’ z) = (y = 2)A(z = z).
(25) zV(zVy) =zVy.

(26) =V (z=y) = true.

(27) zV(zey =y==2.

(28) xV (x 'nand’ y) = true.

(29) zV (x'nor’ y) =y = x.

(30) z=ydz=—-xV-yAzVyA-z.

(3l) z=>yez=(-xzV-yVz)A(-xVyV-z).

(32) z=ymand z=-xV-yV -z

(33) z = ymnor' z = (~xV-y) A(-zV -z) and z = y'no’ z = (z =

—y) A (z = —2).
) r=xAy=x=y.
) = xVy=true.
) T=r®y=—xV-y.
) r=rx=>y=c=1y.
)
)
)
)

w
3

r=>reoy=cr=>yandr=>rSyY=c=1=7Yy.
x = x 'mand’ y = =(z A y).
x = x 'nor’ y = —z.
xz'nand’ (y = 2) = (mxVy) A (-2 V —z) and 2 'nand’ (y = z) = (v =
Y) A (x = —z2).
(42) z'nand’ (y < 2) =-(x A (-yVz)A (-2 Vy)).
(43) x 'mand’ (y 'nand’ z) = (mx Vy) A (-z V z) and x 'nand’ (y 'mand’ z) =
(x=y)A(x=2).
(44) 2z 'mand’ (y 'nor’ z) = -x VyV 2.
(45) x 'mand’ z Ay = —(xz Avy).
(46) x 'mand’ (z®y) =2 = y.
(47) z 'nand’ (z = y) = =(z A y).
(48) z mand’ (x & y) = ~(z Ay).
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x 'mand’ (z 'nand’ y) =z = y.

x 'mand’ (z 'nor’ y) = true.

z'nor’ (y®dz)=-(xV-yAzVyA-z).

z'not’ (y<z)==((xV-yVz)A(xV-zVy)).
z 'nor’ (y 'mand’ z) = "z Ay A 2.

x 'nor’ (y 'mor’ z) =~ AyV -z Az

x 'nor’ x Ay = -z

x 'nor’ (zVy)=-xA-y.

x 'nor’ (x B y) =—x A -y.

/

x 'nor’ (z = y) = false.

/

x 'nor’ (x 'mand’ y) = false.

/

(

(
x'not’ (z & y)=-xANy.

(
x 'nor’ (z 'nor’ y) = —x Ay.
r@yNz=(xVyAz)A(—zV-(yAz)).
rTDrNy=xNy.
r@(xVy)=-zAy.
T A (B y) =T Ay.
zA=(z®y)=xANy.
rd(zdy) =y.
zA-(z=y)=xAy.
r@(x=y)=—aV-y.
A (r e y) =T Ay
zA-(x e y) = Ay
r®(z & y) =y
z® (x 'nand’ y) =z = y.
x @ (x 'nor’ y) =y = x.
T A (r=y)=-xV-xAy.
Ay z)=-xA(yVz)A(-zVy).
Tz A (rey)=-TAYyA(-TVy).
-z A (z 'nand’ y) = -z V -z A —y.
-z A (z 'nor’ y) = —x A .
—zV(r=y)=-zVy.
—zV(z ey =-xVy.
-z V (z 'nand’ y) = —x V .
-z @ (
-z @ (
—(r=y) =z Ay

rT=y)=xANy.
y=z)=xA(xV-yV-zAy.
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(86) —(r<y)=xA-yVyA .
87) —xd(rey) =yv.
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Summary. This article describes definitions of reversible matrix, symmet-
rical matrix, antisymmetric matrix, orthogonal matrix and their main properties.
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The terminology and notation used in this paper have been introduced in the
following articles: [8], [3], [11], [12], [1], [10], [9], [6], [2], [4], [5], [13], and [7].
For simplicity, we adopt the following convention: n denotes a natural num-
ber, K denotes a field, a denotes an element of K, and M, My, Ms, Ms, My
denote matrices over K of dimension n.
Let n be a natural number, let K be a field, and let M7, My be matrices
over K of dimension n. We say that M is permutable with M if and only if:
(Def 1) M1 . M2 = M2 . Ml.
Let us note that the predicate M; is permutable with My is symmetric.
Let n be a natural number, let K be a field, and let M7, M> be matrices
over K of dimension n. We say that M; is reverse of M> if and only if:
1 0 nxn
(Def. 2) M1~M2:M2~M1 andM1~M2: .
0 Iy

(© 2005 University of Bialystok
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Let us note that the predicate M is reverse of My is symmetric.

Let n be a natural number, let K be a field, and let M; be a matrix over K
of dimension n. We say that M is reversible if and only if:

(Def. 3) There exists a matrix M over K of dimension n such that M is reverse
of Mg.

Let us consider n, K and let M7 be a matrix over K of dimension n. Then
— M7 is a matrix over K of dimension n.

Let us consider n, K and let M7, My be matrices over K of dimension n.
Then M; + Ms is a matrix over K of dimension n.

Let us consider n, K and let M7, Ms be matrices over K of dimension n.
Then M; — M5 is a matrix over K of dimension n.

Let us consider n, K and let M7, My be matrices over K of dimension n.
Then M - My is a matrix over K of dimension n.

The following propositions are true:

(1) For every field K and for every matrix A over K such that
(len A)x(len A)

0 ... 0
lenA > 0 and widthA > 0 holds oo A =
len A) x (width A ’ "k
0 ... 0 (len A)x (width A)
0 ... 0

K

(2) For every field K and for every matrix A over K such that
(width A) x (width A)

0 ... 0
len A > 0 and widthA > 0 holds A- | : . =
len A idth A ’ ’ K
0 ... 0 (len A) x (width A)
0 0/
O 0 nxn
(3) If n >0, then M; is permutable with | @ .
0 ... 0/,

(4) If My is permutable with My and My is permutable with M3 and M is
permutable with M3, then M; is permutable with Ms - Ms.

(5) If M; is permutable with Ms and permutable with M3 and n > 0, then
M, is permutable with Ms + Ms.
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nxn

(6) M is permutable with .
0 1) .
(7) If My is reverse of Mz and M is reverse of Mg, then M; = M.

Let n be a natural number, let K be a field, and let M; be a matrix over K
of dimension n. Let us assume that M is reversible. The functor M7~ yields a
matrix over K of dimension n and is defined by:

(Def. 4) M, is reverse of M.

We now state a number of propositions:

1 O nxn 1 0 nxn 1 O nxn
&) ( )T = and is
0 1/ 0 1) 0 1/ .
reversible.
1 O nxn 1 0 nxn
@) « )7)T =
0 L/ 0 L)
1 O nxn 1 0 nxn
(10) If n > 0, then ( )T = )
0 1) 0 1/
(11) Let K be a field, n be a natural number, and M be a matrix over K
1 0 nxn
of dimension n. If M = ( )T and n > 0, then M~ =
nxn 0 1 K
1 0
0 L)k

(12) If M,T = M, and Mj is reverse of My and M = M3T and n > 0, then
M5 is reverse of M.

(13) If M is reversible and n > 0 and M; = MT and My = (M™~)T, then
My~ = Ms.
(14) Let K be a field, n be a natural number, and My, My, M3, M, be

matrices over K of dimension n. If Mj is reverse of M; and My is reverse
of My, then Mg - My is reverse of My - M.

(15) Let K be a field, n be a natural number, and M;, My be matrices over

K of dimension n. If My is reverse of My, then M; is permutable with
Ms.

(16) If M is reversible, then M is reversible and (M™)~ = M.
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nxn

(17) If n > 0 and M; - Mo = o, and M, is reversible, then

0 ... 0/,

M, is permutable with M.
(18) Ifn > 0and My = M; - My and M is reversible, then M; is permutable
with MQ.
(19) Ifn > 0and My = My - M; and M is reversible, then M; is permutable
with MQ.
Let n be a natural number, let K be a field, and let M; be a matrix over K
of dimension n. We say that M; is symmetrical if and only if:
(Def. 5)  M;T = M;.

The following propositions are true:

1 0 nxn
(20) If n >0, then is symmetrical.
0 L)
nxn nxn
a ... a a
(21) Ifn >0, then (| @ -. )T =
a a a a
a a nxn
(22) Ifn>0,then | : -. is symmetrical.
a ... a

(23) If n > 0 and M; is symmetrical and My is symmetrical, then M; is
permutable with My iff My - Ms is symmetrical.
(24) Ifn >0, then (M; + My)" = My " + M,T.
(25) If n > 0 and M; is symmetrical and Ms is symmetrical, then M; + Mo
is symmetrical.
(26) Suppose that
(i) M is an upper triangular matrix over K of dimension n and a lower
triangular matrix over K of dimension n, and
(ii)) n>0.
Then M is symmetrical.
(27) Let K be a field, n be a natural number, and M;, My be matrices over
K of dimension n. If n > 0, then (—M;)" = —M; 7.
(28) Let K be a field, n be a natural number, and M;, Ms be matrices over K
of dimension n. If M; is symmetrical and n > 0, then —M; is symmetrical.
(29) Let K be a field, n be a natural number, and M;, My be matrices over
K of dimension n. Suppose n > 0 and M; is symmetrical and My is
symmetrical. Then M; — Ms is symmetrical.
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Let n be a natural number, let K be a field, and let M7 be a matrix over K
of dimension n. We say that M; is antisymmetric if and only if:
(Def. 6) M;T = —M;.
We now state a number of propositions:

(30) Let K be a Fanoian field, n be a natural number, and M; be a matrix

over K of dimension n. If M; is symmetrical and antisymmetric and n > 0,
0 O nxn

then M = | : Lo
0 ... 0/,

(31) Let K be a Fanoian field, n, i be natural numbers, and M; be a matrix
over K of dimension n. If M is antisymmetric and n > 0 and i € Segn,
then Mj o (i,7) = Ok

(32) Let K be a field, n be a natural number, and M;, M, be matrices over

K of dimension n. Suppose n > 0 and M; is antisymmetric and Ms is
antisymmetric. Then M; + M is antisymmetric.

(33) Let K be a field, n be a natural number, and M;, My be matrices
over K of dimension n. If M is antisymmetric and n > 0, then —M is
antisymmetric.

(34) Let K be a field, n be a natural number, and M;, My be matrices over
K of dimension n. Suppose n > 0 and M; is antisymmetric and Ms is
antisymmetric. Then M; — Ms is antisymmetric.

(35) If My = M; — M;* and n > 0, then M, is antisymmetric.

(36) If n > 0, then M; is permutable with My iff (M + Ms) - (M + Ms) =
My - My + My - My + My - My + Mo - M.

(37) If n > 0 and M; is reversible and My is reversible, then Mj - My is
reversible and (M - M)~ = My~ - M; ™.

(38) If n > 0 and M, is reversible and My is reversible and M; is permutable
with Ms, then My - Ms is reversible and (My - M)~ = My~ - My™.

(39) If n > 0 and M; is reversible and My is reversible and M; - My =

1 0 nxn
) , then M is reverse of M.
0 1 K
(40) If n > 0 and M; is reversible and My is reversible and My - My =
1 0 nxn
) , then M is reverse of M.
0 1 K

(41) If n > 0 and M; is reversible and permutable with Ms, then M;™ is
permutable with Mo.
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Let n be a natural number, let K be a field, and let M; be a matrix over K
of dimension n. We say that M; is orthogonal if and only if:

(Def. 7) M, is reversible and MT = My~

The following propositions are true:

1 0 nxn
(42) If n > 0, then M, Mt = and M is reversible iff
0 Iy
M is orthogonal.
1 0 nxn
(43) If n > 0, then M is reversible and M;T - My = iff
0 Iy

M is orthogonal.

(44) Ifn >0 and M, is orthogonal, then Mt - My = My - Myt

(45) If n > 0 and M is orthogonal and permutable with My and Mz = M; T,
then M3 is permutable with M>.

(46) If n > 0 and M; is reversible and My is reversible, then Mj - My is
reversible and (M - M)~ = My~ - My ™.

(47) If n > 0 and M is orthogonal and My is orthogonal, then Mj - My is
orthogonal.

(48) If n > 0 and M is orthogonal and permutable with My and M3 = M, T,
then Mj is permutable with M>.

(49) If n > 0 and M; is permutable with My, then M; + M; is permutable

with M.

(50) If n > 0 and M; is permutable with My, then M; + M, is permutable
with MQ.

(51) If n > 0 and M, is permutable with My, then M; + M; is permutable
with My + M.

(52) If n > 0 and M; is permutable with My, then M; + M, is permutable
with My + M.

(563) If n > 0 and M; is permutable with My, then M; + M, is permutable
with M; + M.

(54) If n > 0 and M; is permutable with My, then M) - My is permutable
with Ms.

(55) If n > 0 and M; is permutable with My, then M; - M is permutable
with MQ.

(56) If n > 0 and M is permutable with My, then M; - My is permutable
with My - M.

(57) Ifn > 0and M is permutable with My and Mz = M; " and My = M7,
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then Mj is permutable with Mjy.

(58) Suppose n > 0 and M is reversible and M is reversible and M3 is
reversible. Then M; - My - M3 is reversible and (M - My - M3)~ = M3~ -
My~ - My~

(59) If n > 0 and M is orthogonal and Ms is orthogonal and Mj is orthogo-
nal, then M; - Ms - M3 is orthogonal.

1 0 nxn
(60) If n >0, then is orthogonal.
0 1)
(61) If n > 0 and M; is orthogonal and M, is orthogonal, then M;>~ - My is
orthogonal.
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Summary. In the article we formalized the concept of the Generalized Full
Addition and Subtraction circuits (GFAs), defined the structures of calculation
units for the redundant signed digit (RSD) operations, and proved the stability
of the circuits. Generally, 1-bit binary full adder assumes positive weights to all
of its three binary inputs and two outputs. We obtained four type of 1-bit GFA
to constract the RSD arithmetic logical units that we generalized full adder to
have both positive and negative weights to inputs and outputs.

MML identifier: GFACIRC1, version: 7.6.01 4.50.934

The articles [15], [14], [18], [13], [1], [21], [5], [6], [7], [2], [4], [16], [20], [8], [12],
[17], [11], [10], [9], [3], and [19] provide the terminology and notation for this
paper.

1. PRELIMINARIES

In this article we present several logical schemes. The scheme 1AryBooleEx
deals with a unary functor F yielding an element of Boolean, and states that:
There exists a function f from Boolean' into Boolean such that

for every element x of Boolean holds f({x)) = F(x)
for all values of the parameter.
The scheme 1AryBooleUniq deals with a unary functor F yielding an element
of Boolean, and states that:
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Let f1, f2 be functions from Boolean' into Boolean. Suppose for
every element x of Boolean holds fi({x)) = F(z) and for every
element x of Boolean holds fa({x)) = F(x). Then fi1 = fo

for all values of the parameter.

The scheme 1AryBooleDef deals with a unary functor F yielding an element
of Boolean, and states that:
(i)  There exists a function f from Boolean' into Boolean such
that for every element = of Boolean holds f({x)) = F(x), and
(ii)  for all functions fi, f» from Boolean' into Boolean such
that for every element x of Boolean holds fi((x)) = F(z) and for
every element x of Boolean holds fa({x)) = F(x) holds f1 = fo

for all values of the parameter.
The function invl from Boolean® into Boolean is defined by:
(Def. 1) For every element z of Boolean holds (invl)({z)) = —x.
Next we state the proposition
(1) For every element z of Boolean holds (invl)({x)) = =z and (invl)((z)) =
nands((x, z)) and (inv1)({(0)) = 1 and (inv1)({1)) = 0.
The function bufl from Boolean' into Boolean is defined by:
(Def. 2) For every element x of Boolean holds (bufl)({(z)) = .
One can prove the following proposition
(2) For every element x of Boolean holds (bufl)({x)) = x and (bufl)({(z)) =
ands((x, z)) and (bufl)((0)) = 0 and (bufl)((1)) = 1.
The function and2c from Boolean? into Boolean is defined by:
(Def. 3) For all elements x, y of Boolean holds (and2c)((z,y)) = x A —y.
Next we state the proposition

(3) Let z, y be elements of Boolean. Then (and2c)({x,y)) = x A =y and

(and2c)((z,y)) = (andzq)({y, z)) and (and2c)((z,y)) = (norzq)({z,y)) and
(and2¢)((0,0)) = 0 and (and2c)({0,1)) = 0 and (and2c)((1,0)) = 1 and
(and2c)((1,1)) = 0.

The function xor2c from Boolean? into Boolean is defined by:
(Def. 4) For all elements x, y of Boolean holds (xor2¢)({z,y)) = x & —y.
We now state several propositions:

(4) Let x, y be elements of Boolean. Then (xor2c)((z,y)) = = & —y and
(xor2c)((z,y)) = (xorz)({z,y)) and (xor2c)((z,y)) = ora({(andz)({z,
y)),anda({x,y)))) and (xor2c)((0,0)) = 1 and (xor2c)({0,1)) = 0 and
(xor2c)((1,0)) = 0 and (xor2c)((1,1)) = 1.

(5) For all elements z, y of Boolean holds —(z®y) = "z @y and ~(zDy) =
z®-yand "z Py=1zPy.
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(6) For all elements x, y of Boolean holds (inv1)((xory((z,y)))) = (xora,)({(z,
y)) and (invl)((xorz2({x,y)))) = (xor2c)({z,y)) and xors({(invl)({x)),
(inv1)((9)))) = xorz({z, y))-

(7) For all elements z, y, z of Boolean holds —(z ® -y ® z) =z ® —~y ® —z.

(8) For all elements z, y, z of Boolean holds (inv1l)((xora(((xor2c)({(z,y)),
2)))) = (xor2c)({(xor2c)((z, y)), 2))-

(9) For all elements z, y, z of Boolean holds ~z @y ® -z = x @ —y @ —z.
(10) For all elements z, y, z of Boolean holds (xor2c)({(xore,)({x,y)),2)) =
(xor2c)(((xor2c)({(z,y)), 2))-
(11) For all elements z, y, z of Boolean holds ~(-x @ =y ® —z) =z Dy ® 2.
(12) For all elements x, y, z of Boolean holds (inv1)({(xor2c)({(xorq)({z,y)),
z)))) = xora(({xorz((z,7)), 2)).

2. GENERALIZED FuLL ApDER (GFA) Circuir (TYPE-0)

Let x, y, z be sets. The functor GFAOCarryIStr(z,y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined by:

(Def. 5)  GFAOCarryIStr(z,y, z) = 1GateCircStr({z, y), anda)+- 1GateCircStr((y,
z),andg)+- 1GateCircStr((z, ), ands).

Let x, y, z be sets. The functor GFAOCarryICirc(z,y, z) yields a strict
Boolean circuit of GFAQCarryIStr(x,y, z) with denotation held in gates and is
defined as follows:

(Def. 6) GFAOCarrylICirc(zx, y, z) = 1GateCircuit(z, y, anda)+- 1GateCircuit(y, z,
ands)+- 1GateCircuit(z, z, ands).

Let =, y, z be sets. The functor GFAOCarryStr(z,y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined as follows:

(Def. 7) GFAOCarryStr(z,y,z) = GFAO0CarryIStr(zx,y, z)+- 1GateCircStr({{(z,
y), andsa ), ({y, z), andsy ), ({2, z), ands }), ors).

Let x, y, z be sets. The functor GFAOCarryCirc(x,y, z) yields a strict
Boolean circuit of GFAOCarryStr(z,y, z) with denotation held in gates and is
defined as follows:

(Def. 8) GFAO0CarryCirc(z,y, z) = GFA0CarryICirc(z,y, z)+- 1GateCircuit({(z,
y), ands ), ({y, z), andy ), ((z, x), andy ), ors).

Let z, y, z be sets. The functor GFAO0CarryOutput(z,y,z) yielding an
element of InnerVertices(GFAOCarryStr(z,y, z)) is defined as follows:

(Def. 9) GFAOCarryOutput(z,y,2) = ({{{z,y), anda), {(y, 2), andz ), ((z, z),
and2 )>, ors )
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One can prove the following propositions:

(13) For all sets z, y, z holds InnerVertices(GFAOCarryIStr(z,y, 2)) = {{(z,
y), andsa ), ((y, 2), andy ), ({2, z), ands ) }.

(14) For all sets x, y, z holds InnerVertices(GFAOCarryStr(z,y, z)) = {((z,
y), ands ), {(y, z), andsa ), ((z, x), ands ) } U {GFAOCarryOutput(zx, y, z) }.

(15) For all sets x, y, z holds InnerVertices(GFAOCarryStr(z, y, z)) is a binary
relation.

(16) For all sets z, y, z such that  # ((y, z), anda ) and y # ((z,z), anda )
and z # ((z,y), anda) holds InputVertices(GFAOCarryIStr(z,y,z2)) =
{z,y,2}.

(17) For all sets z, y, z such that x # ((y,2), anda ) and y # ((z, ), andy )
and z # ((z,y), ands) holds InputVertices(GFAOCarryStr(z,y,z)) =
{z,y, 2}

(18) For all non pair sets z, y, z holds InputVertices(GFAOCarryStr(z, y, 2))
has no pairs.

(19) Let z, y, z be sets. Then = € the carrier of GFAOCarryStr(z,y, 2)
and y € the carrier of GFAOCarryStr(z,y,z) and z € the
carrier of GFAOCarryStr(z,y,z) and ((z,y), ands) € the car-
rier of GFAOCarryStr(z,y,z) and {((y,z),ands) € the carrier
of GFAOCarryStr(z,y,z) and {((z,z),ands) € the carrier of
GFAOCarryStr(z,y, z) and (({(z,y), anda ), {(y, ), ands }, {(z, z), ands )),
orz ) € the carrier of GFAOCarryStr(z,y, 2).

(20) For all sets z, y, z holds ((z,y), anda ) € InnerVertices(GFAOCarryStr(z,
y,z)) and {(y, z), ands ) € InnerVertices(GFAOCarryStr(z,y, z)) and ((z,
x), andy ) € InnerVertices(GFAOCarryStr(zx, y, z)) and GFA0CarryOutput
(x,y, z) € InnerVertices(GFAOCarryStr(z, y, z)).

(21) For all sets z, y, z such that x # ((y,2), anda ) and y # ((z,z), anda )
and z # ((z,y), andy ) holds =z € InputVertices(GFAOCarryStr(z,y, z))
and y € InputVertices(GFAOCarryStr(z,y, z)) and
z € InputVertices(GFAOCarryStr(z, y, z)).

(22) For all non pair sets z, y, z holds InputVertices(GFAOCarryStr(zx, y, z)) =
{z,y, z}.

(23) Let z, y, z be sets, s be a state of GFAOCarryCirc(z, y, ), and a1, ag, a3
be elements of Boolean. Suppose a; = s(z) and as = s(y) and az = s(z).
Then (Following(s))({(z,y), anda)) = a1 A a2 and (Following(s))({(y, 2),
ands )) = az A ag and (Following(s))({(z,x), anday)) = ag A a;.

(24) Let =, y, z be sets, s be a state of GFAOCarryCirc(z,y,2),
and aj, a2, as be elements of Boolean. If ar = s({{(z,vy),
andg )) and as = s({(y,2), and2)) and a3 = s({(z,), andz)), then
(Following(s))(GFAOCarryOutput(z,y,2)) = a1 V a2 V as3.
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(25) Let x, y, z be sets. Suppose x # ((y,z), andy ) and y # ((z,x), ands )
and z # ((z,y), anda ). Let s be a state of GFAOCarryCirc(z,y, z) and
ai, az, az be elements of Boolean. Suppose a; = s(z) and ay = s(y)
and ag = s(z). Then (Following(s,2))(GFA0CarryOutput(z,y, 2)) = a1 A
az Vaz AagV az Aap and (Following(s,2))({(x,y), and2)) = a1 A az and
(Following(s, 2))({(y, 2), anda )) = aa A a3 and (Following(s,2))({(z, z),
ands )) =az ANaj.

(26) For all sets z, y, z such that  # ((y, z), anda ) and y # ((z,z), anda )
and z # ((z,y), and2 ) and for every state s of GFAOCarryCirc(z,y, 2)
holds Following(s, 2) is stable.

Let z, y, z be sets. The functor GFAOAdderStr(z,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 10) GFAOAdderStr(x,y, z) = 2GatesCircStr(z, y, z, x0r).

Let z, y, z be sets. The functor GFAOAdderCirc(z, y, z) yielding a strict
Boolean circuit of GFAOAdderStr(x, y, z) with denotation held in gates is defined
by:

(Def. 11) GFAO0AdderCirc(z, y, z) = 2GatesCircuit(z, y, z, xorz).

Let =, y, z be sets. The functor GFAOAdderOutput(z,y, z) yielding an

element of InnerVertices(GFAOAdderStr(x,y, z)) is defined by:

(Def. 12) GFAO0AdderOutput(z, y, z) = 2GatesCircOutput(z, y, z, xors).
Next we state a number of propositions:
(27) For all sets x, y, z holds InnerVertices(GFAOAdderStr(x,y, z)) = {{(z,
y), xora ) } U{GFAO0AdderOutput(z,y, z)}.
(28) For all sets z, y, z holds InnerVertices(GFAOAdderStr(z, y, 2)) is a binary
relation.
(29) For all sets =z, y, =z such that z # ((z,y), xora) holds
InputVertices(GFAOAdderStr(z, y, 2)) = {x,y, z}.
(30) For all non pair sets x, y, z holds InputVertices(GFAOAdderStr(z, y, 2))
has no pairs.
(31) Let x, y, z be sets. Then
)« € the carrier of GFAOAdderStr(z,y, 2),
)y € the carrier of GFAOAdderStr(z, y, z),
(iii)  z € the carrier of GFAOAdderStr(z,y, z),
) {{z,y), xory) € the carrier of GFAOAdderStr(z,y, z), and
) {({({{z,y), xora ), z), xory ) € the carrier of GFAOAdderStr(z,y, 2).
(32) For all sets z, y, z holds ((x, y), xory ) € InnerVertices(GFAOAdderStr(z,y,
z)) and GFAOAdderOutput(z,y, z) € InnerVertices(GFAOAdderStr(z,y, 2)).
(33) For all sets x, y, z such that z # ((z,y), xory) holds =z €
InputVertices(GFAOAdderStr(z, y, z)) and
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y € InputVertices(GFAOAdderStr(z, y, z)) and
z € InputVertices(GFAOAdderStr(zx, y, z)).

(34) For all non pair sets z, y, z holds Input Vertices(GFAOAdderStr(z, y, z)) =
{z,y,2}.

(35) Let z, y, z be sets. Suppose z # ((z,y), xorz ). Let s be a state of
GFAOAdderCirc(z,y, z) and ay, az, as be elements of Boolean. Suppose
a; = s(z) and ay = s(y) and az = s(z). Then (Following(s))({(z,y),
xors )) = a1 @ ag and (Following(s))(x) = a1 and (Following(s))(y) = a2
and (Following(s))(z) = as.

(36) Let x, y, z be sets. Suppose z # ((z,y), xora ). Let s be a state of
GFAOAdderCirc(z,y, z) and a4, a1, ag, az be elements of Boolean. If
ay = s({(z,y), xory)) and a; = s(z) and az = s(y) and ag = s(z), then
(Following(s))(GFAOAdderOutput(z,y, z)) = a4 & as.

(37) Let =z, y, z be sets. Suppose z # ((z,y), xorg). Let s be
a state of GFAOAdderCirc(x,y,z) and aj, az, as be elements of
Boolean.  Suppose a1 = s(z) and a2 = s(y) and az = s(2).
Then (Following(s,2))(GFAOAdderOutput(z,y,z)) = a1 @ as & ag and
(Following(s, 2))({(z, y), xor2 )) = a1 @ a2 and (Following(s,2))(z) = ai
and (Following(s,2))(y) = az and (Following(s,2))(z) = as.

(38) For all sets z, y, z such that z # ((x,y), xory ) and for every state s of
GFAO0AdderCirc(z, y, z) holds Following(s, 2) is stable.

Let x, y, z be sets. The functor BitGFAOStr(z,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 13) BitGFAO0Str(z,y, z) = GFAOAdderStr(zx, y, z)+- GFAOCarryStr(z, y, 2).

Let z, y, z be sets. The functor BitGFAOCirc(z,y, z) yielding a strict
Boolean circuit of BitGFAOStr(z,y, z) with denotation held in gates is defined
by:

(Def. 14) BitGFAO0Circ(z, y, z) = GFAOAdderCirc(z, y, z)+- GFA0OCarryCirc(z, y, 2).

We now state several propositions:

(39) For all sets z, y, z holds InnerVertices(BitGFAO0Str(z,y, 2)) = {{{(z,v),
xorg ) JU{GFAOAdderOutput(z, y, z) fU{{{z,y), ands ), {(y, z), anda ), {(z,
x), andg ) } U {GFAOCarryOutput(z, y, 2)}.

(40) For all sets z, y, z holds InnerVertices(BitGFAOStr(z,y, 2)) is a binary
relation.

(41) For all sets =, y, z such that z # {((z,y), xor2) and = # ((y,
z),andy) and y # ((z,z),and2) and z # ((x,y),ands) holds
InputVertices(BitGFAOStr(z, v, 2)) = {z,y, z}.

(42) For all non pair sets z, y, z holds InputVertices(BitGFAOStr(z,y, 2)) =
{z,y,2}.
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(43) For all non pair sets x, y, z holds InputVertices(BitGFAOStr(z, y, z)) has
no pairs.

(44) Let z, y, z be sets. Then = € the carrier of BitGFAO0Str(z,v, 2)
and y € the carrier of BitGFAOStr(z,y,z) and z € the carrier of
BitGFAOStr(x,y, z) and ({(z,y), xora ) € the carrier of BtGFA0Str(z,y, z)
and ((((z,y), xora ), z), xory ) € the carrier of BitGFAOStr(z,y,2) and
((z,y), andy ) € the carrier of BitGFAOStr(x,y, z) and ((y, z), and2) €
the carrier of BitGFAOStr(x,y,z) and ((z,z), and2) € the carrier
of BitGFAOStr(z,y, z) and {(({{z,y), ands ), ({y, 2), anda ), ({2, x), anda )),
org) € the carrier of BitGFAOStr(x,y, 2).

(45) Letx,y, z besets. Then ({x,y), xory ) € InnerVertices(BitGFA0Str(z, y,
z)) and GFAOAdderOutput(z,y,z) € InnerVertices(BitGFAOStr(x,y, z))
and ((z,y), and2) € InnerVertices(BitGFAOStr(x,y,z)) and {((y,z),
andg) € InnerVertices(BitGFAOStr(x,y,2)) and ((z,z), ands) €
InnerVertices(BitGFAOStr(z,y, z)) and GFAOCarryOutput(z,y,z) €
InnerVertices(BitGFAO0Str(z, y, 2)).

(46) Let =, vy, =z Dbe sets. Suppose z # ({x,y), xora) and
x # {((y,z),and2) and y # ((z,z),and2) and z # ((z,
y), anda ). Then =z € InputVertices(BitGFAOStr(z,y,z)) and y €
InputVertices(BitGFAOStr(z, y, 2)) and z € InputVertices(BitGFAOStr(z,

Y, 2)).
Let x, y, z be sets. The functor BitGFAOCarryOutput(z,y, z) yielding an
element of InnerVertices(BitGFAOStr(z,y, z)) is defined as follows:
(Def. 15) BitGFAOCarryOutput(z,y, z) = (({{(z,y), anda ), ((y, 2), andz ), ((z, z),
and2 )>, ors )
Let x, y, z be sets. The functor BitGFAOAdderOutput(z,y, z) yielding an
element of InnerVertices(BitGFAOStr(x,y, z)) is defined as follows:

(Def. 16) BitGFAO0AdderOutput(z,y, z) = 2GatesCircOutput(z, y, z, xors).
One can prove the following two propositions:

(47) Let x, y, z be sets. Suppose z # ((z,y), xorz) and = # {((y,
z),andy) and y # ((z,x),ands) and z # ((z,y), ands). Let s
be a state of BitGFAOCirc(z,y,z) and aj, az, a3 be elements of
Boolean.  Suppose a1 = s(z) and az = s(y) and az = s(z).
Then (Following(s,2))(GFAOAdderOutput(z,y,z)) = a1 @ az ® ag and
(Following(s, 2))(GFAO0CarryOutput(z,y, 2)) = a1 Aaz Vaz Aag V az A aj.

(48) Let x, y, z be sets. Suppose z # {((z,y), xory) and = # ({y,z),
andsy ) and y # ((z,z), and2 ) and z # ((z,y), ands ). Let s be a state
of BitGFAOCirc(z,y, z). Then Following(s, 2) is stable.
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3. GENERALIZED FuLL ADDER (GFA) Circuir (TYPE-1)

Let z, y, z be sets. The functor GFA1CarryIStr(z,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def. 17) GFA1CarrylStr(x,y, z) = 1GateCircStr((x, y), and2c)+- 1GateCircStr((y,
z), anda, ) +- 1GateCircStr((z, x), ands).

Let x, y, z be sets. The functor GFA1CarrylCirc(z,y, z) yields a strict
Boolean circuit of GFA1CarryIStr(x,y, z) with denotation held in gates and is
defined as follows:

(Def. 18) GFA1CarrylICirc(z,y, z) = 1GateCircuit(z, y, and2c)+- 1GateCircuit(y,
z,ands, )+ 1GateCircuit(z, z, ands).

Let x, y, z be sets. The functor GFA1CarryStr(x,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def. 19) GFAl1CarryStr(z,y,z) = GFA1CarryIStr(z,vy, z)+- 1GateCircStr(({(z,
y), and2c ), ((y, z), anda, ), ({2, z), ands }), ors).

Let z, y, z be sets. The functor GFA1CarryCirc(z,y, z) yielding a strict
Boolean circuit of GFA1CarryStr(zx, y, z) with denotation held in gates is defined
by:

(Def. 20) GFA1CarryCirc(z,y, z) = GFA1CarryICirc(x, y, z)+- 1GateCircuit({(z,
y), and2c ), ((y, ), anda, ), ((z, x), andy ), or3).

Let z, y, z be sets. The functor GFA1CarryOutput(z,y,2) yielding an
element of InnerVertices(GFA1CarryStr(z,y, z)) is defined as follows:

(Def. 21) GFA1lCarryOutput(z,y,z) = (({{z,y), and2c), ((y, z), anda, ), ({2, z),
andy )), ors ).

We now state a number of propositions:

(49) For all sets x, y, z holds InnerVertices(GFA1CarryIStr(z,y, z)) = {{(z,
y), and2c ), ((y, z), anda, ), {(z, ), andz ) }.

(50) For all sets z, y, z holds InnerVertices(GFA1CarryStr(z,y, 2)) = {{(z,
y), and2c ), ((y, ), anda, ), ({2, ), andy ) JU{GFA1CarryOutput(zx,y, ) }.

(51) For all sets x, y, z holds InnerVertices(GFA1CarryStr(z, y, z)) is a binary
relation.

(52) For all sets z, y, z such that x # ((y, z), anda, ) and y # ((z,z), anda )
and z # ((z,y), and2c) holds InputVertices(GFA1CarryIStr(z,y,z2)) =
{:1:7 y7 Z}'

(53) For all sets z, y, z such that « # ((y, z), anda, ) and y # ((z,z), anda )
and z # ((z,y), and2c) holds InputVertices(GFA1CarryStr(z,y,2)) =
{:B’ y7 Z}'



GENERALIZED FULL ADDER CIRCUITS (GFAS). ... 557

(54) For all non pair sets z, y, z holds InputVertices(GFA1CarryStr(z, y, 2))
has no pairs.

(55) Let z, y, z be sets. Then z € the carrier of GFA1CarryStr(z,y, 2)
and y € the carrier of GFAlCarryStr(x,y,z) and z € the
carrier of GFAl1lCarryStr(z,y,z) and ((z,y), and2c) € the -car-
rier of GFAlCarryStr(x,y,z) and ((y,z), ands,) € the carrier
of GFAlCarryStr(z,y,z) and ((z,x),and2) € the carrier of
GFA1CarryStr(z,y, z) and ({({(z,y), and2c ), ((y, ), anda, ), ({2, z), anda )),
orz ) € the carrier of GFA1CarryStr(z,y, 2).

(56) For all sets z, y, z holds ((x,y), and2c) € InnerVertices(GFA1CarryStr(z,
y,z)) and ((y, z), anda, ) € InnerVertices(GFA1CarryStr(z,y, z)) and ((z,
x), ands ) € InnerVertices(GFA1CarryStr(z,y, z)) and GFA1CarryOutput
(x,y,z) € InnerVertices(GFA1CarryStr(z, vy, z)).

(57) For all sets z, y, z such that z # ((y, ), anda, ) and y # ((z, ), andy )
and z # ((x,y), and2c) holds =z € InputVertices(GFA1CarryStr(x,y, z))
and y € InputVertices(GFA1CarryStr(z, y, z)) and
z € InputVertices(GFA1CarryStr(z,y, 2)).

(58) For all non pair sets z, y, z holds InputVertices(GFA1CarryStr(z, y, z)) =
{z,y, z}.

(59) Let z, y, z be sets, s be a state of GFA1CarryCirc(z, y, z), and a1, ag, a3
be elements of Boolean. Suppose a; = s(z) and as = s(y) and az = s(z).
Then (Following(s))({(z,y), and2c)) = a1 A —az and (Following(s))({(y,
z), anda, )) = —ag A ag and (Following(s))({(z,z), anda)) = ag A a;.

(60) Let =, y, z be sets, s be a state of GFAlCarryCirc(z,y,z2),
and aj, a2, az be elements of Boolean. If a9 = s({(z,y),
and2c)) and a2 = s({(y,z2), ands, )) and a3 = s({(z,x), ands )), then
(Following(s))(GFA1CarryOutput(z,y, z)) = a1 V a2 V as.

(61) Let x, y, z be sets. Suppose = # ((y, z), anda, ) and y # ((z,x), andy )
and z # ((z,y), and2c). Let s be a state of GFA1CarryCirc(z,y, z) and
ay, a2, ag be elements of Boolean. Suppose a; = s(x) and ay = s(y) and
as = s(z). Then (Following(s, 2))(GFA1CarryOutput(x, y, z)) = a1 A—agV
—ag A as V az A a; and (Following(s,2))({{z,y), and2c)) = a1 A —ag and
(Following(s, 2))({(y, z), anda, }) = —az A az and (Following(s, 2))({(z, z),
ands )) = asg A ay.

(62) For all sets z, y, z such that x # ((y, ), anda, ) and y # ((z, ), anda )
and z # ((x,y), and2c) and for every state s of GFA1CarryCirc(z,y, 2)
holds Following(s, 2) is stable.

Let z, y, z be sets. The functor GFA1AdderStr(x,y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined as follows:
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(Def. 22) GFA1AdderStr(z,y, z) = 2GatesCircStr(z, y, z, xor2c).

Let z, y, z be sets. The functor GFA1AdderCirc(z, y, z) yielding a strict
Boolean circuit of GFA1AdderStr(x, y, z) with denotation held in gates is defined
by:

(Def. 23) GFA1AdderCirc(z, y, z) = 2GatesCircuit(z, y, z, xor2c).

Let z, y, z be sets. The functor GFA1AdderOutput(z, y, z) yields an element
of InnerVertices(GFA1AdderStr(z,y, z)) and is defined as follows:

(Def. 24) GFA1AdderOutput(z, y, z) = 2GatesCircOutput(z, y, z, xor2c).
We now state a number of propositions:

(63) For all sets x, y, z holds InnerVertices(GFA1AdderStr(x,y, z)) = {{(z,
y), xor2c )} U {GFA1AdderOutput(z,y, 2)}.
(64) For all sets x, y, z holds InnerVertices(GFA1AdderStr(z, y, z)) is a binary
relation.
(65) For all sets x, y, =z such that z # ((z,y), xor2c) holds
InputVertices(GFA1AdderStr(z, y, 2)) = {x,y, z}.
(66) For all non pair sets x, y, z holds InputVertices(GFA1AdderStr(z, y, z))
has no pairs.
(67) Let x, y, z be sets. Then
)« € the carrier of GFA1AdderStr(z,y, 2),
)y € the carrier of GFA1AdderStr(z,y, z),
(ili) 2z € the carrier of GFA1AdderStr(z,y, z),
) {(z,y), xor2c) € the carrier of GFA1AdderStr(z,y, z), and
) {{{{z,y), xor2c), z), xor2c) € the carrier of GFA1AdderStr(z,y, z).
(68) For all sets z, y, z holds ((x, y), xor2c) € InnerVertices(GFA1AdderStr(z,
y,z)) and GFA1AdderOutput(z, y, z) € InnerVertices(GFA1AdderStr(x, y,
(69) For all sets z, y, z such that z # ((x,y), xor2c) holds = €
InputVertices(GFA1AdderStr(z, y, z)) and
y € InputVertices(GFA1AdderStr(z,y, z)) and
z € InputVertices(GFA1AdderStr(z, y, z)).
(70) For all non pair sets z, y, z holds InputVertices(GFA1AdderStr(z, y, z)) =
{1.7 y7 Z}'
(71) Let x, y, z be sets. Suppose z # ((z,y), xor2c). Let s be a state of
GFA1AdderCirc(z,y, z) and aj, ag, as be elements of Boolean. Suppose
a; = s(z) and az = s(y) and az = s(z). Then (Following(s))({(x,y),
xor2c )) = a;®—ay and (Following(s))(z) = a1 and (Following(s))(y) = a2
and (Following(s))(z) = as.
(72) Let z, y, z be sets. Suppose z # ((z,y), xor2c). Let s be a state of
GFA1lAdderCirc(z,y, z) and a4, a1, a2, asz be elements of Boolean. If
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ay = s({{z,y), xor2c)) and a; = s(z) and az = s(y) and az = s(z), then
(Following(s))(GFA1AdderOutput(z,y, z)) = a4 ® —as.

(73) Let x, y, z be sets. Suppose z # ((x,y), xor2c). Let s be
a state of GFAlAdderCirc(z,y,z) and aj, az, as be elements of
Boolean. Suppose a; = s(x) and a2 = s(y) and ag = s(z). Then
(Following(s, 2))(GFA1AdderOutput(z,y,2)) = a3 @ —az & —as and
(Following(s, 2))({(z, y), xor2c)) = a1 ®—ag and (Following(s,2))(z) = a1
and (Following(s,2))(y) = a2 and (Following(s, 2))(z) = as.

(74) Let =z, y, z be sets. Suppose z # ((z,y), xor2c). Let s be
a state of GFAlAdderCirc(z,y,z) and aj, az, az be elements of
Boolean. If a7 = s(zr) and ay = s(y) and a3 = s(z), then
(Following(s, 2))(GFA1AdderOutput(z,y, z)) = —(a1 ® ~az ® ag).

(75) For all sets x, y, z such that z # ({x,y), xor2c) and for every state s of
GFA1AdderCirc(z, y, z) holds Following(s, 2) is stable.

Let z, y, z be sets. The functor BitGFA1Str(x,y, z) yields an unsplit non
void strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined as follows:

(Def. 25) BitGFA1Str(z,y, z) = GFA1AdderStr(x, y, z)+- GFA1CarryStr(z, y, 2).

Let z, y, z be sets. The functor BitGFA1Circ(x,y, z) yielding a strict
Boolean circuit of BitGFA1Str(z,y, z) with denotation held in gates is defined
by:

(Def. 26) BitGFA1Circ(z,y, z) = GFA1AdderCirc(z, y, )+ GFA1CarryCirc(z, y, 2).

We now state several propositions:

(76) For all sets z, y, z holds InnerVertices(BitGFA1Str(x,y,z2)) =
{{{x,y), xor2c ) }U{GFA1AdderOutput(z, y, z) }U{{{z,y), and2c ), ((y, z),
anda, ), ((z,x), andy ) } U {GFA1CarryOutput(z,y, z)}.

(77) For all sets z, y, z holds InnerVertices(BitGFA1Str(z,y, 2)) is a binary
relation.

(78) For all sets x, y, z such that z # ((z,y), xor2c) and = # {((y,
z), andg, ) and y # ((z,x),ands) and z # ((z,y), and2c) holds
InputVertices(BitGFA1Str(z,y, 2)) = {x,y, z}.

(79) For all non pair sets z, y, z holds InputVertices(BitGFA1Str(z,y, z)) =
{z,y,2}.

(80) For all non pair sets z, y, z holds InputVertices(BitGFA1Str(z, y, z)) has
no pairs.

(81) Let z, y, z be sets. Then = € the carrier of BitGFA1Str(z,v, 2)
and y € the carrier of BitGFA1Str(z,y,z) and z € the
carrier of BitGFA1Str(z,y,z) and ((z,y), xor2c) € the car-
rier of BitGFA1Str(x,y,z) and (({((z,y), xor2c),z), xor2c) € the
carrier of BitGFA1Str(z,y,z) and ((z,y), and2c) € the car-
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rier of BitGFA1Str(x,y,z) and ((y,z), ands,) € the carrier of
BitGFA1Str(z,y, z) and {(z, x), anda ) € the carrier of BtGFA1Str(z,y, 2)
and ((((z,y), and2c), ((y, z), anda, ), ({2, x), anda )), orz) € the carrier
of BitGFA1Str(z,y, z).

(82) Let z, y, z be sets. Then ((z,y), xor2c) € InnerVertices(BitGFA1Str(z,
y,z)) and GFA1AdderOutput(z,y, z) € InnerVertices(BitGFA1Str(z,y, z))
and ((z,y), and2c) € InnerVertices(BitGFA1Str(z,y,z2)) and ((y,z),
anda, ) € InnerVertices(BitGFA1Str(x,y,z2)) and ((z,z), andy) €
InnerVertices(BitGFA1Str(z,y,2)) and GFAlCarryOutput(z,y,z) €
InnerVertices(BitGFA1Str(z, y, 2)).

(83) Let =z, wy, =z be sets. Suppose z # {((z,y), xor2c) and
€z 7é <<y72>7 and?a) and Yy 75 (<Z,$>, al’ld2> and =z 7é (<33,
y), and2c). Then z € InputVertices(BitGFA1Str(z,y,2)) and y €
InputVertices(BitGFA1Str(z,y, 2)) and z € InputVertices(BitGFA1Str(z,
Y, 2))-

Let x, y, z be sets. The functor BitGFA1CarryOutput(z,y, z) yielding an
element of InnerVertices(BitGFA1Str(x,y, z)) is defined as follows:
(Def. 27) BitGFA1CarryOutput(z,y,z) = ({({{z,y), and2c), ({(y, ), andag ), ({2,
x), anda )), ors ).
Let x, y, z be sets. The functor BitGFA1AdderOutput(z,y, z) yielding an
element of InnerVertices(BitGFA1Str(x,y, z)) is defined as follows:
(Def. 28) BitGFA1AdderOutput(z, y, z) = 2GatesCircOutput(z, y, z, xor2c).
The following two propositions are true:

(84) Let =z, y, z be sets. Suppose z # ((z,y), xor2c) and = # ((y,
z),andy, ) and y # ((z,z),ands) and z # {((z,y), and2c). Let s
be a state of BitGFA1Circ(z,y,2) and a1, as, as be elements of
Boolean. Suppose a1 = s(x) and az = s(y) and ag = s(z). Then
(Following(s, 2))(GFA1AdderOutput(z,y,2)) = —(a1 & —az & a3) and
(Following(s, 2))(GFA1CarryOutput(z, y, z)) = a1 A—azV-azAazVasAay.

(85) Let =z, y, z be sets. Suppose z # ((z,y), xor2c) and = # ((y,z2),
andy, ) and y # ((z,z), ands ) and z # ((z,y), and2c). Let s be a state
of BitGFA1Circ(z,y, z). Then Following(s, 2) is stable.

4. GENERALIZED FuLL ADDER (GFA) CircuiT (TYPE-2)

Let z, y, z be sets. The functor GFA2CarryIStr(z,y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined by:

(Def. 29) GFA2CarrylStr(x,y, z) = 1GateCircStr({x, y), anda, )+ 1GateCircStr((y,
z),and2c)+- 1GateCircStr((z, z), andgp).
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Let x, y, z be sets. The functor GFA2CarrylICirc(z,y, z) yielding a strict
Boolean circuit of GFA2CarryIStr(z,y, z) with denotation held in gates is de-
fined as follows:

(Def. 30) GFA2CarrylICirc(z, y, z) = 1GateCircuit(x, y, anda, )+- 1GateCircuit(y,
z,and2c)+- 1GateCircuit(z, z, andgp).

Let z, y, z be sets. The functor GFA2CarryStr(z,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 31) GFA2CarryStr(z,y,z) = GFA2CarryIStr(z,y, z)+- 1GateCircStr(({(z,
y), anda, ), ((y, 2), and2c ), ((z, z), andgy, )), nors).

Let x, y, z be sets. The functor GFA2CarryCirc(x,y, z) yields a strict
Boolean circuit of GFA2CarryStr(z,y, z) with denotation held in gates and is
defined as follows:

(Def. 32) GFA2CarryCirc(z,y, z) = GFA2CarryICirc(z,y, 2)+- 1GateCircuit({(z,
y), anda, ), ((y, 2), and2c), ((z, z), andgy ), nors).

Let z, y, z be sets. The functor GFA2CarryOutput(z, y, z) yields an element
of InnerVertices(GFA2CarryStr(z, y, z)) and is defined by:

(Def. 33) GFA2CarryOutput(x,y,z) = (({{x,y), anda, ), ({y, z), and2c ), {{(z, z),
andgy )), nors ).

We now state a number of propositions:

(86) For all sets z, y, z holds InnerVertices(GFA2CarryIStr(z,y, z)) = {{(z,
y), anda, ), ((y, 2), and2¢c ), ((z, z), andgy ) }.
(87) For all sets z, y, z holds InnerVertices(GFA2CarryStr(z,y, 2)) = {{{(z,
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y), anda, ), ((y, 2), and2c), ((z, z), andg, ) JU{GFA2CarryOutput(z, y, z) }.

(88) For all sets z, y, z holds InnerVertices(GFA2CarryStr(x, y, z)) is a binary
relation.

(89) For all sets z, y, z such that x # ((y, 2), and2c) and y # ((z, ), andgy )
and z # ((z,y), anda, ) holds InputVertices(GFA2CarryIStr(z,y, z)) =
{z,y,2}.

(90) For all sets z, y, z such that x # ((y, z), and2c) and y # ((z,z), andgp )
and z # ((z,y), andy, ) holds InputVertices(GFA2CarryStr(z,y,z2)) =
{z,y,2}.

(91) For all non pair sets x, y, z holds InputVertices(GFA2CarryStr(z,y, 2))
has no pairs.

(92) Let z, y, z be sets. Then = € the carrier of GFA2CarryStr(z,y, 2)
and y € the carrier of GFA2CarryStr(z,y,z) and z € the
carrier of GFA2CarryStr(z,y,z) and ((z,y), anda,) € the car-
rier of GFA2CarryStr(z,y,z) and ((y,z),and2c) € the -car-
rier of GFA2CarryStr(x,y,z) and ((z,z), andy,) € the carrier
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of GFA2CarryStr(z,y,z) and {{{{(z,y), anda, ), ({y, z), and2c), ((z, x),
andgy )), nors ) € the carrier of GFA2CarryStr(z, y, 2).

(93) For all sets z, y, z holds ((x, y), andy, ) € InnerVertices(GFA2CarryStr(z,
y,z)) and {(y, z), and2c) € InnerVertices(GFA2CarryStr(z,y, z)) and {(z,
x), andgy ) € InnerVertices(GFA2CarryStr(z,y, z)) and GFA2CarryOutput
(x,y, z) € InnerVertices(GFA2CarryStr(z,y, z)).

(94) For all sets x, y, z such that x # ((y, z), and2c) and y # ((z,z), andg )
and z # ((z,y), andg, ) holds z € InputVertices(GFA2CarryStr(x,y, 2))
and y € InputVertices(GFA2CarryStr(z,y, z)) and
z € InputVertices(GFA2CarryStr(z, y, z)).

(95) For all non pair sets z, y, z holds InputVertices(GFA2CarryStr(z, y, z)) =
{z,y, z}.

(96) Let x, y, z be sets, s be a state of GFA2CarryCirc(z, y, ), and a1, az, as
be elements of Boolean. Suppose a; = s(x) and ay = s(y) and a3 = s(z).
Then (Following(s))({{(z,y), anda, }) = —a1 A ag and (Following(s))({(y,
z), and2c)) = az A —ag and (Following(s))({(z,x), andg }) = —az A —ay.

(97) Let z, y, z be sets, s be a state of GFA2CarryCirc(z,y,2), and
ai, az, az be elements of Boolean. If a1 = s({{z,y), anda,))
and az = s({(y,z), and2c)) and a3 = s({(z,x), andg)), then
(Following(s))(GFA2CarryOutput(z,y, 2)) = =(a1 V az V as).

(98) Let x, y, z be sets. Suppose x # {(y, z), and2¢) and y # {(z, z), andg, )
and z # ((z,y), andg, ). Let s be a state of GFA2CarryCirc(z,y, z) and
ai, az, ag be elements of Boolean. Suppose a; = s(z) and a2 = s(y) and
as = s(z). Then (Following(s, 2))(GFA2CarryOutput(z,y, z)) = —=(-a; A
asVaz A—asV-agA-ay) and (Following(s, 2))({(x,y), anda, )) = —a1 Aag
and (Following(s, 2))({(y, z), and2c¢)) = aaA—asz and (Following(s, 2))({(z,
x), andgy )) = —as A —ay.

(99) For all sets x, y, z such that x # ((y, z), and2c¢) and y # ((z, x), andg, )
and z # ((x,y), andy, ) and for every state s of GFA2CarryCirc(z,y, z)
holds Following(s, 2) is stable.

Let z, y, z be sets. The functor GFA2AdderStr(x,y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined as follows:

(Def. 34) GFA2AdderStr(z,y, z) = 2GatesCircStr(z, y, z, xor2c).

Let x, y, z be sets. The functor GFA2AdderCirc(z,y, z) yielding a strict
Boolean circuit of GFA2AdderStr(x, y, z) with denotation held in gates is defined
as follows:

(Def. 35) GFA2AdderCirc(z, y, z) = 2GatesCircuit(z, y, z, xor2c).

Let z, y, z be sets. The functor GFA2AdderOutput(z, y, z) yields an element
of InnerVertices(GFA2AdderStr(z,y, z)) and is defined by:
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(Def. 36) GFA2AdderOutput(z,y, z) = 2GatesCircOutput(z, y, z, xor2c).
One can prove the following propositions:
(100) For all sets x, y, z holds InnerVertices(GFA2AdderStr(z,y, z)) = {{((z,
y), xor2c )} U{GFA2AdderOutput(z,y, z)}.
(101) For all sets x, y, z holds InnerVertices(GFA2AdderStr(x, y, z)) is a binary
relation.
(102) For all sets z, y, =z such that z # ((z,y), xor2c) holds
InputVertices(GFA2AdderStr(z,y, 2)) = {z,y, z}.
(103) For all non pair sets x, y, z holds InputVertices(GFA2AdderStr(z, y, z))
has no pairs.
(104) Let x, y, z be sets. Then
(i) =z € the carrier of GFA2AdderStr(z, y, z),
(ii)  y € the carrier of GFA2AdderStr(z, vy, 2),
(ili) 2z € the carrier of GFA2AdderStr(z, y, z),
)
)

e e

(iv)  {(z,y), xor2c) € the carrier of GFA2AdderStr(z,y, z), and
(v)  (({{z,y), xor2c), z), xor2c) € the carrier of GFA2AdderStr(z, y, ).

(105) For all sets z, y, z holds ((x, y), xor2c) € InnerVertices(GFA2AdderStr(z,
y,z)) and GFA2AdderOutput(z,y, z) € InnerVertices(GFA2AdderStr(z, y,

(106) For all sets z, y, z such that z # ((x,y), xor2c) holds z= €
InputVertices(GFA2AdderStr(z, y, z)) and
y € InputVertices(GFA2AdderStr(z, y, z)) and
z € InputVertices(GFA2AdderStr(x, y, z)).

(107) For all non pair sets z, y, z holds InputVertices(GFA2AdderStr(x,y, z)) =
{z,y,2}.

(108) Let x, y, z be sets. Suppose z # ((z,y), xor2c). Let s be a state of
GFA2AdderCirc(z, y, z) and aj, ag, az be elements of Boolean. Suppose
a; = s(z) and ay = s(y) and az = s(z). Then (Following(s))({(z,y),
xor2c)) = a; ®—ag and (Following(s))(z) = a; and (Following(s))(y) = a2
and (Following(s))(z) = as.

(109) Let x, y, z be sets. Suppose z # {(z,y), xor2c). Let s be a state of
GFA2AdderCirc(x,y, z) and a4, a1, a2, as be elements of Boolean. If
as = s({(z,y), xor2c)) and a1 = s(z) and az = s(y) and az = s(z), then
(Following(s))(GFA2AdderOutput(z,y, 2)) = as ® —as.

(110) Let z, y, z be sets. Suppose z # ((z,y), xor2c). Let s be
a state of GFA2AdderCirc(z,y,z) and aj, ag, az be elements of
Boolean. Suppose a1 = s(z) and az = s(y) and a3 = s(z). Then
(Following(s, 2))(GFA2AdderOutput(x,y,z)) = a1 & —az & —as and
(Following(s, 2))({(x,y), xor2c)) = a1 ®ag and (Following(s, 2))(z) = a;
and (Following(s,2))(y) = az and (Following(s, 2))(z) = as.
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(111) Let z, y, z be sets. Suppose z #* ({(x,y), xor2c). Let s be
a state of GFA2AdderCirc(z,y,z) and aj, az, a3 be elements of
Boolean. If ay = s(x) and as = s(y) and a3 = s(z), then
(Following(s, 2))(GFA2AdderOutput(z,y, z)) = —a1 @ az & —as.

(112) For all sets z, y, z such that z # ((z,y), xor2c) and for every state s of
GFA2AdderCirc(z, y, z) holds Following(s, 2) is stable.

Let z, y, z be sets. The functor BitGFA2Str(z,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 37) BitGFA2Str(z,y, z) = GFA2AdderStr(x, y, z)+- GFA2CarryStr(z, v, 2).

Let z, y, z be sets. The functor BitGFA2Circ(x, y, ) yields a strict Boolean
circuit of BitGFA2Str(x,y, z) with denotation held in gates and is defined by:

(Def. 38) BitGFA2Circ(x,y, z) = GFA2AdderCirc(z, y, z)+- GFA2CarryCirc(z, y, 2).
Next we state several propositions:

(113) For all sets x, y, z holds InnerVertices(BitGFA2Str(x,y,2)) =
{{{z,y), xor2c ) }U{GFA2AdderOutput(z, y, z) }U{{{z,y), anda, ), {{y, 2),
and2c ), ((z, x), andg, ) } U {GFA2CarryOutput(z,y, ) }.

(114) For all sets x, y, z holds InnerVertices(BitGFA2Str(x,y, z)) is a binary
relation.

(115) For all sets x, y, z such that z # ((z,y), xor2c) and = # ({y,
z),and2c) and y # ((z,z),andg) and z # ((x,y), andy,) holds
InputVertices(BitGFA2Str(z,y, 2)) = {z,y, z}.

(116) For all non pair sets z, y, z holds InputVertices(BitGFA2Str(z,y, z)) =
{z,y, 2}

(117) For all non pair sets x, y, z holds InputVertices(BitGFA2Str(z, y, z)) has
no pairs.

(118) Let z, y, z be sets. Then x € the carrier of BitGFA2Str(x,y,2)
and y € the carrier of BitGFA2Str(z,y,z) and z € the
carrier of BitGFA2Str(z,y,z) and ((x,y), xor2c) € the car-
rier of BitGFA2Str(z,y,z) and (({((z,y), xor2c), z), xor2c) € the
carrier of BitGFA2Str(z,y,z) and ((z,y), ands,) € the car-
rier of BitGFA2Str(z,y,z) and ((y,z), and2c) € the carrier of
BitGFA2Str(x, y, z) and ((z, x), andg, ) € the carrier of BitGFA2Str(x, y, z)
and (({(x,y), andy, ), ((y, 2), and2c ), ((z,x), andgy )), nors ) € the carrier
of BitGFA2Str(x, vy, 2).

(119) Let z, y, z be sets. Then ((x,y), xor2c) € InnerVertices(BitGFA2Str(z,
y, z)) and GFA2AdderOutput(z, y, z) € InnerVertices(BitGFA2Str(z, y, z))
and ((z,y), anda, ) € InnerVertices(BitGFA2Str(x,y,2)) and ((y,z),
and2c) € InnerVertices(BitGFA2Str(z,y,2)) and ((z,z), andgy) €
InnerVertices(BitGFA2Str(z,y,2)) and GFA2CarryOutput(z,y,z) €
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InnerVertices(BitGFA2Str(z, y, 2)).

(120) Let =z, wy, =z be sets. Suppose z # ((z,y), xor2c) and
x # ((y,z),and2c) and y # ((z,2),andy) and z # {((z,
y), anda, ). Then z € InputVertices(BitGFA2Str(z,y,2)) and y €
InputVertices(BitGFA2Str(z, y, 2)) and z € InputVertices(BitGFA2Str(z,
Y,2))-
Let z, y, z be sets. The functor BitGFA2CarryOutput(z,y, z) yields an
element of InnerVertices(BitGFA2Str(x,y, z)) and is defined by:
(Def. 39) BitGFA2CarryOutput(z,y,z) = ({{(z,y), anda, ), ((y, ), and2c ), ((z,
x), andgy )), nors ).
Let z, y, z be sets. The functor BitGFA2AdderOutput(z, y, z) yielding an
element of InnerVertices(BitGFA2Str(x,y, z)) is defined by:
(Def. 40) BitGFA2AdderOutput(z, y, z) = 2GatesCircOutput(z, y, z, xor2c).
Next we state two propositions:

(121) Let =z, y, z be sets. Suppose z # ((z,y), xor2c) and =z # {((y,
z), and2c) and y # ((z,z), andg,) and z # ((z,y), andy, ). Let s
be a state of BitGFA2Circ(x,y,z) and aj, ag, az be elements of
Boolean. Suppose a; = s(x) and a2 = s(y) and ag = s(z). Then
(Following(s, 2))(GFA2AdderOutput(z,y,2)) = -a; & az & —az and
(Following(s, 2))(GFA2CarryOutput(z,y, z)) = —(-a1 A az V az A —as V
R EWA —|a1).

(122) Let x, y, z be sets. Suppose z # ((x,y), xor2c) and = # ((y, z), and2c)
and y # ((z,x), andgy) and z # ((x,y), ands, ). Let s be a state of
BitGFA2Circ(z,y, z). Then Following(s, 2) is stable.

5. GENERALIZED FuLL ADDER (GFA) Circuir (TYPE-3)

Let z, y, z be sets. The functor GFA3CarryIStr(x,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def. 41) GFA3CarrylStr(x, y, z) = 1GateCircStr({x, y), andg)+- 1GateCircStr((y,
z), andgp)+- 1GateCircStr((z, z), andgy).

Let z, y, z be sets. The functor GFA3CarrylICirc(z,y, z) yielding a strict
Boolean circuit of GFA3CarryIStr(z,y, z) with denotation held in gates is de-
fined by:

(Def. 42) GFA3CarrylICirc(z, y, z) = 1GateCircuit(z, y, andg,)+- 1GateCircuit(y,
z, andgp)+- 1GateCircuit(z, x, andgy).

Let z, y, z be sets. The functor GFA3CarryStr(x,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:
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(Def. 43) GFA3CarryStr(z,y,z) = GFA3CarrylStr(z,y, z)+- 1GateCircStr({{(z,

y>7 and?b )7 (<Z/, Z>7 and2b )7 (<Z7 $>, aHde )>7 HOI'3).
Let z, y, z be sets. The functor GFA3CarryCirc(z,y, z) yielding a strict

Boolean circuit of GFA3CarryStr(z, y, z) with denotation held in gates is defined
by:

(Def. 44) GFA3CarryCirc(z,y, 2) = GFA3CarrylCirc(z,y, 2)+- 1GateCircuit({(z,

y>7 anday )7 <<y7 Z>7 anday, )’ (<Z7 $>, andyy, )7 IlOI'3).
Let z, y, z be sets. The functor GFA3CarryOutput(z, y, z) yields an element
of InnerVertices(GFA3CarryStr(z, vy, z)) and is defined as follows:

(Def. 45) GFA3CarryOutput(z,y,z) = (({{z,y), andsy ), ((y, 2), andgp ), ((z, z),

andgy )), nors ).
The following propositions are true:
(123) For all sets z, y, z holds InnerVertices(GFA3CarryIStr(z,y, 2)) = {{(z,
y>7 anday )a <<y7 Z>7 anday, )7 (<Z, 33‘>, andayp )}
(124) For all sets z, y, z holds InnerVertices(GFA3CarryStr(z, vy, 2)) = {{(z,
y), andgp ), ((y, 2), andgy ), ((z, z), andgy ) JU{GFA3CarryOutput(z, y, 2) }.
(125) For all sets x, y, z holds InnerVertices(GFA3CarryStr(z, y, z)) is a binary
relation.

(126) For all sets x, y, z such that x # ((y, z), andg, ) and y # {((z, ), andgy, )
and z # ((z,y), andgy, ) holds InputVertices(GFA3CarrylStr(z,y,2)) =
{z,y, 2}

(127) For all sets x, y, z such that = # ((y, z), andg, ) and y # ((z, ), andy, )
and z # ((z,y), andgy) holds InputVertices(GFA3CarryStr(z,y, 2)) =
{z,y,2}.

(128) For all non pair sets z, y, z holds InputVertices(GFA3CarryStr(z, y, z))
has no pairs.

(129) Let z, y, z be sets. Then = € the carrier of GFA3CarryStr(z,y, 2)
and y € the carrier of GFA3CarryStr(z,y,z) and z € the
carrier of GFA3CarryStr(x,y,z) and ((x,y), andgy,) € the car-
rier of GFA3CarryStr(z,y,z) and {((y,z), andy,) € the carrier
of GFA3CarryStr(x,y,z) and ((z,z), andy) € the carrier of
GFA3CarryStr(z,y, z) and (({(z, y), andy ), {{y, 2), andgy, ), ({2, ), anday )),
nors ) € the carrier of GFA3CarryStr(z, y, z).

(130) For all sets z, y, z holds ((x, y), andg, ) € InnerVertices(GFA3CarryStr(z,
y,z)) and ((y, z), andgp ) € InnerVertices(GFA3CarryStr(x,y, z)) and ((z,
x), andgy ) € InnerVertices(GFA3CarryStr(z,y, z)) and GFA3CarryOutput
(x,y, z) € InnerVertices(GFA3CarryStr(z,y, z)).

(131) For all sets x, y, z such that = # ((y, z), andg, ) and y # ((z, z), andy, )
and z # ((x,y), andg, ) holds x € InputVertices(GFA3CarryStr(x,y, z))
and y € InputVertices(GFA3CarryStr(z,y, z)) and
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z € InputVertices(GFA3CarryStr(z,y, 2)).

(132) For all non pair sets x, y, z holds Input Vertices(GFA3CarryStr(x, y, z)) =
{z,y,2}.

(133) Let z, y, z be sets, s be a state of GFA3CarryCirc(zx, y, ), and a1, ag, a3
be elements of Boolean. Suppose a; = s(x) and ay = s(y) and a3 = s(z).
Then (Following(s))({(z,vy), andgp )) = —a1 A —az and (Following(s))({(y,
z), andgy )) = —ag A —as and (Following(s))({(z, z), andgp )) = —as A —ay.

(134) Let x, y, z be sets, s be a state of GFA3CarryCirc(z,y,z), and
ai, a2, az be elements of Boolean. If a1 = s({(z,y), andgy ))
and as = s({(y,z2),andg)) and a3 = s({(z,z), andg)), then
(Following(s))(GFA3CarryOutput(z,y, 2)) = —(a1 V az V a3).

(135) Let x, y, z be sets. Suppose = # ((y, z), andg ) and y # ((z,x), andy )
and z # ((x,y), andg, ). Let s be a state of GFA3CarryCirc(z,y, z) and
ai, ag, az be elements of Boolean. Suppose a; = s(z) and ay = s(y)
and ag = s(z). Then (Following(s,2))(GFA3CarryOutput(z,y,z)) =
—(mayr A —ag V —ag A —ag Vo —asz A —ap) and (Following(s, 2))({((z, y),
andg, )) = —a; A —ag and (Following(s, 2))({(y, z), andgp )) = —az A —as
and (Following(s,2))({(z,z), andg )) = —az A —ay.

(136) For all sets z, y, z such that = # ((y, z), andgp ) and y # ((z, x), andy )
and z # ((z,y), andg, ) and for every state s of GFA3CarryCirc(z,y, 2)
holds Following(s, 2) is stable.

Let z, y, z be sets. The functor GFA3AdderStr(z,y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined by:

(Def. 46) GFA3AdderStr(x,y, z) = 2GatesCircStr(x, y, z, xors).

Let x, y, z be sets. The functor GFA3AdderCirc(z,y, z) yielding a strict
Boolean circuit of GFA3AdderStr(x, y, z) with denotation held in gates is defined
by:

(Def. 47) GFA3AdderCirc(z, y, z) = 2GatesCircuit(z, y, z, xors).

Let x, y, z be sets. The functor GFA3AdderOutput(z,y, z) yielding an

element of InnerVertices(GFA3AdderStr(z,y, z)) is defined by:

(Def. 48) GFA3AdderOutput(z,y, z) = 2GatesCircOutput(zx, y, z, xors).

One can prove the following propositions:

(137) For all sets x, y, z holds InnerVertices(GFA3AdderStr(x,y, z)) = {((z,
y), xorz ) } U{GFA3AdderOutput(z,y, z)}.

(138) For all sets z, y, z holds InnerVertices(GFA3AdderStr(z, y, z)) is a binary
relation.

(139) For all sets =z, y, =z such that z # ((z,y), xorz) holds
InputVertices(GFA3AdderStr(z,y, 2)) = {z,y, 2}
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(140) For all non pair sets x, y, z holds InputVertices(GFA3AdderStr(z,y, z))
has no pairs.

(141) Let x, y, z be sets. Then
)z € the carrier of GFA3AdderStr(x,y, 2),
)y € the carrier of GFA3AdderStr(z,y, z),
(iii) 2z € the carrier of GFA3AdderStr(z,y, z),
) {{x,y), xors ) € the carrier of GFA3AdderStr(x,y, z), and
) {({{({(z,y), xory ), z), xorg ) € the carrier of GFA3AdderStr(z,y, z).

(142) For all sets z, y, z holds ((x,y), xory ) € InnerVertices(GFA3AdderStr(z,
y,z)) and GFA3AdderOutput(zx, y, z) € InnerVertices(GFA3AdderStr(z, y,
z)).

(143) For all sets z, y, z such that z # ((x,y), xora) holds =z €
InputVertices(GFA3AdderStr(z, y, z)) and
y € InputVertices(GFA3AdderStr(z, y, z)) and
z € InputVertices(GFA3AdderStr(x, y, z)).

(144) For all non pair sets z, y, z holds InputVertices(GFA3AdderStr(zx, y, z)) =
{z,y, 2}

(145) Let z, y, z be sets. Suppose z # ((z,y), xora ). Let s be a state of
GFA3AdderCirc(z,y, z) and aj, ag, as be elements of Boolean. Suppose
a; = s(z) and az = s(y) and az = s(z). Then (Following(s))({(x,y),
xory )) = a; @ az and (Following(s))(z) = a1 and (Following(s))(y) = aa
and (Following(s))(z) = as.

(146) Let z, y, z be sets. Suppose z # ((z,y), xora ). Let s be a state of
GFA3AdderCirc(z,y, z) and a4, a1, a2, az be elements of Boolean. If
ay = s({(z,y), xory)) and a; = s(z) and ag = s(y) and ag = s(z), then
(Following(s))(GFA3AdderOutput(z,y, z)) = a4 & as.

(147) Let =z, y, z be sets. Suppose z # ((z,y), xora). Let s be
a state of GFA3AdderCirc(x,y,z) and aj, az, as be elements of
Boolean.  Suppose a1 = s(z) and az = s(y) and az = s(2).
Then (Following(s,2))(GFA3AdderOutput(z,y,z)) = a1 @ az & ag and
(Following(s, 2))({(x,y), xora)) = a1 @ az and (Following(s,2))(x) = a1
and (Following(s, 2))(y) = a2 and (Following(s, 2))(z) = as.

(148) Let z, y, z be sets. Suppose z # ((x,y), xory). Let s be
a state of GFA3AdderCirc(z,y,z) and aj, ag, a3 be elements of
Boolean. If ay = s(zx) and as = s(y) and a3 = s(z), then
(Following(s, 2))(GFA3AdderOutput(z,y, z)) = =(—a1 & —az ® —as).

(149) For all sets z, y, z such that z # ((x,y), xory ) and for every state s of
GFA3AdderCirc(z, y, z) holds Following(s, 2) is stable.

Let z, y, z be sets. The functor BitGFA3Str(z,y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
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Boolean denotation held in gates is defined by:
(Def. 49) BitGFA3Str(z,y, z) = GFA3AdderStr(x, y, z)+- GFA3CarryStr(z, y, z).
Let z, y, z be sets. The functor BitGFA3Circ(x, y, z) yields a strict Boolean

circuit of BitGFA3Str(z,y, z) with denotation held in gates and is defined as
follows:

(Def. 50) BitGFA3Circ(z, y, z) = GFA3AdderCirc(z, y, z)+- GFA3CarryCirc(z, y, 2).
One can prove the following propositions:

(150) For all sets x, y, z holds InnerVertices(BitGFA3Str(x,y,2))
{{{z,y), xora )} U{GFA3AdderOutput(x,y, 2) } U {{{z,y), anday ), {{y, 2),
andgy, ), ((z, ), andgy ) } U {GFA3CarryOutput(z,y, 2)}.

(151) For all sets z, y, z holds InnerVertices(BitGFA3Str(z,y, z)) is a binary
relation.

(152) For all sets x, y, z such that z # {((z,y), xor2) and = # {({y,
z),andgy ) and y # ((z,x), andy ) and z # ((z,y), andg ) holds
InputVertices(BitGFA3Str(z, y, 2)) = {x,y, z}.

(153) For all non pair sets z, y, z holds InputVertices(BitGFA3Str(x,y, z)) =
{z,y,2}.

(154) For all non pair sets x, y, z holds InputVertices(BitGFA3Str(x, y, z)) has
no pairs.

(155) Let z, y, z be sets. Then z € the carrier of BitGFA3Str(z,v, 2)
and y € the carrier of BitGFA3Str(x,y,z) and z € the carrier of
BitGFA3Str(z,y, z) and ({x,y), xors ) € the carrier of BitGFA3Str(z,y, z)
and (({((z,y), xora ), z), xory) € the carrier of BitGFA3Str(z,y,z) and
((z,y), andgy ) € the carrier of BitGFA3Str(x,y, z) and ((y, z), andg ) €
the carrier of BitGFA3Str(x,y,z) and ((z,z), andg,) € the carrier of
BitGFA3Str(x,y, z) and (({(x,y), anda ), ((y, 2), andap ), ((z, z), anday )),
norg ) € the carrier of BitGFA3Str(z, vy, 2).

(156) Let x, y, z be sets. Then ((z,y), xors ) € InnerVertices(BitGFA3Str(z, y,
z)) and GFA3AdderOutput(z,y,z) € InnerVertices(BitGFA3Str(x,y, z))
and ((z,y), andg,) € InnerVertices(BitGFA3Str(z,y,z)) and {((y, 2),
andg, ) € InnerVertices(BitGFA3Str(z,y,z)) and ((z,x), andy) €
InnerVertices(BitGFA3Str(z,y, 2)) and GFA3CarryOutput(z,y,z) €
InnerVertices(BitGFA3Str(x, y, 2)).

(157) Let =, y, =z be sets. Suppose z # ({(x,y), xora) and
x # {{y,2),ands) and y # ((z,z),andy) and z # {((z,
y), andgy ). Then z € InputVertices(BitGFA3Str(z,y,2)) and y €
InputVertices(BitGFA3Str(z,y, z)) and z € InputVertices(BitGFA3Str(z,
Y,2))-

Let z, y, z be sets. The functor BitGFA3CarryOutput(z,y, z) yields an
element of InnerVertices(BitGFA3Str(x,y, z)) and is defined by:
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(Def. 51) BitGFA3CarryOutput(z,y,z) = ({({{x,y), andsy ), ({y, 2), andy }, ({2,
x), andgy }), nors ).
Let x, y, z be sets. The functor BitGFA3AdderOutput(x,y, z) yielding an
element of InnerVertices(BitGFA3Str(x,y, 2)) is defined by:

(Def. 52) BitGFA3AdderOutput(x,y, z) = 2GatesCircOutput(z, y, z, xors).
Next we state two propositions:

(158) Let x, y, z be sets. Suppose z # ((z,y),xory) and =z # ((y,
z), andgy ) and y # ((z,z),andg,) and z # ((z,y), andgy ). Let s
be a state of BitGFA3Circ(z,y,z) and a1, az, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and ag = s(z). Then
(Following(s, 2))(GFA3AdderOutput(z, y, z)) = —(—a; & —az & —a3) and
(Following(s, 2))(GFA3CarryOutput(z, y, 2)) = —=(—a1 A a2 V —az A —as V
—as A —aq).

(159) Let z, y, z be sets. Suppose z # ((z,y), xore ) and x # ((y, ), anday, )
and y # ((z,x), andg, ) and z # ((z,y), andgy ). Let s be a state of
BitGFA3Circ(z, y, z). Then Following(s,2) is stable.
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The articles [18], [10], [22], [17], 2], [19], [6], [23], [24], [7], [9], [8], [25], [15], [3],
[4], [5], [14], [20], [16], [13], [21], [11], [12], and [1] provide the terminology and
notation for this paper.

1. PRELIMINARIES

Let S be a non empty 1-sorted structure. Note that g is non proper.
The following propositions are true:

(1) Let L be an add-associative right zeroed right complementable non
empty loop structure and a, b be elements of L. Then (a — b) +b = a.

(2) Let L be an add-associative right zeroed right complementable Abelian
non empty loop structure and b, ¢ be elements of L. Then ¢ =b— (b—¢).

(3) Let L be an add-associative right zeroed right complementable Abelian
non empty loop structure and a, b, ¢ be elements of L. Then a—b—(c—b) =
a—c.

(© 2005 University of Bialystok
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2. IDEALS

Let K be a non empty groupoid and let S be a subset of K. We say that S
is quasi-prime if and only if:
(Def. 1) For all elements a, b of K such that a-b€ S holdsa € SorbeS.
Let K be a non empty multiplicative loop structure and let .S be a subset
of K. We say that S is prime if and only if:
(Def. 2) S is proper and quasi-prime.
Let R be a non empty double loop structure and let I be a subset of R. We
say that I is quasi-maximal if and only if:
(Def. 3) For every ideal J of R such that I C J holds J = I or J is non proper.

Let R be a non empty double loop structure and let I be a subset of R. We

say that I is maximal if and only if:
(Def. 4) I is proper and quasi-maximal.

Let K be a non empty multiplicative loop structure. Note that every subset
of K which is prime is also proper and quasi-prime and every subset of K which
is proper and quasi-prime is also prime.

Let R be a non empty double loop structure. One can verify that every subset
of R which is maximal is also proper and quasi-maximal and every subset of R
which is proper and quasi-maximal is also maximal.

Let R be a non empty loop structure. One can verify that 2 is add closed.

Let R be a non empty groupoid. Observe that Qg is left ideal and right
ideal.

We now state the proposition

(4) For every integral domain R holds {Og} is prime.

3. EQUIVALENCE RELATION

In the sequel R denotes a ring, I denotes an ideal of R, and a, b denote
elements of R.

Let R be a ring and let I be an ideal of R. The functor ~; yielding a binary
relation on R is defined by:

(Def. 5) For all elements a, b of R holds (a, b) € = iff a—b € I.

Let R be a ring and let I be an ideal of R. One can verify that ~j is non
empty, total, symmetric, and transitive.

We now state several propositions:
(5) a€b]y,iffa-bel.

(6) [a], = b, ffa—bel.
(7) [a]“ﬂa = the carrier of R.
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(8) =q, = {the carrier of R}.
©) la,,, = {a}

(10) Riog}y = rng(singletonthe carrier of R)'

4. QUOTIENT RING

Let R be a ring and let I be an ideal of R. The functor R/I yields a strict
double loop structure and is defined by the conditions (Def. 6).

(Def. 6)(i) The carrier of R/I = Classes(~),
(ii)  the unity of R/I = [1R]
(ili)  the zero of R/I = [Og]

)

(iv

~r’

~r’
for all elements x, y of R/ 7 there exist elements a, b of R such that

z = [a]y, and y = [b], and (the addition of R/I)(x, y) = [a + b]

and
I

~r’

(v) for all elements x, y of R/ 7 there exist elements a, b of R such that
z = [a]y, and y = [b], and (the multiplication of R/[)(a:, y) =la-bl,.

Let R be a ring and let I be an ideal of R. Note that R/ T is non empty.

In the sequel x, y denote elements of R/ T

We now state several propositions:

(11) There exists an element a of R such that z = [a], .

(12) [a], is an element of R/ T-

(13) Ifz=la],, and y = [b], , then z +y=[a+ D], .

(14) Ifz=[a],, andy=[b],, thenz-y=1[a b] .

(15)

1p|l. =1 .
1Ry, Ry,

Let R be a ring and let I be an ideal of R. Observe that R/I is Abelian,
add-associative, and right zeroed.
Let R be a commutative ring and let I be an ideal of R. Note that R/I is
commutative.
The following propositions are true:
(16) I is proper iff R/ 7 is non degenerated.
(17) I is quasi-prime iff R/ 7 is integral domain-like.
(18) For every commutative ring R and for every ideal I of R holds I is prime
iff R/ 7 is an integral domain.
(19) If R is commutative and [/ is quasi-maximal, then R/ 1 is field-like.
(20) If R/ 7 is field-like, then I is quasi-maximal.
(21) For every commutative ring R and for every ideal I of R holds I is
maximal iff R/ T is a skew field.
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Let R be a non degenerated commutative ring. One can check that every
ideal of R which is maximal is also prime.

Let R be a non degenerated ring. Note that there exists an ideal of R which
is maximal.

Let R be a non degenerated commutative ring and let I be a quasi-prime
ideal of R. Observe that R/ T is integral domain-like.

Let R be a non degenerated commutative ring and let I be a quasi-maximal
ideal of R. Observe that R/ 7 is field-like.
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The terminology and notation used here are introduced in the following articles:
[21], [8], [24], [25], [6], [26], [7], [3], [14], [2], [5], [1], [20], [22], [4], [23], [15], [16],
[13], [12], [11], [9], [18], [10], [19], and [17].

1. THE REAL EUCLIDEAN SPACE AS A REAL LINEAR SPACE

In this paper n is a natural number.
Let n be a natural number. The functor (€7, || - ||) yields a strict non empty
normed structure and is defined by the conditions (Def. 1).
(Def. 1)(i)  The carrier of (E", - ||) = R",
ii the zero of (E™, || - ||) = (0,...,0),
(i) Em -1 = )

(iii)  for all elements a, b of R™ holds (the addition of (€™, ||-]|))(a, b) = a+b,
(iv)  for every element r of R and for every element z of R™ holds (the

external multiplication of (", - ||))(r, ) = r -z, and
(v)  for every element z of R™ holds (the norm of (£",] - ||))(x) = |z|.
Let n be a natural number. Note that the addition of (€™, - ||) is commu-
tative and associative.
Let n be a non empty natural number. Note that (£",] - ||) is non trivial.

One can prove the following propositions:
(1) For every vector z of (€™, || - ||) and for every element y of R"™ such that
x =y holds ||z|| = |y|.
(2) Let n be a natural number, z, y be vectors of (€™, - ), and a, b be
elements of R"®. If xt =a and y = b, then x +y =a + b.

(© 2005 University of Bialystok
577 ISSN 1426-2630
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(3) For every vector x of (€™, - ||) and for every element y of R™ and for
every real number a such that xt =y holdsa-z=a-y.

Let n be a natural number. Note that (£",|| - ||) is real normed space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.

One can prove the following propositions:

(4) For every vector z of (€™, -||) and for every element a of R™ such that
z = a holds —x = —a.

(5) For all vectors z, y of (€™, || - ||) and for all elements a, b of R™ such that
r=aand y=bholdsx —y=a—0b.

(6) For every finite sequence f of elements of R such that dom f = Segn
holds f is an element of R™.

(7) Let n be a natural number and z be an element of R™. Suppose that for
every natural number 4 such that ¢ € Segn holds 0 < z(7). Then 0 < ) =z
and for every natural number i such that i € Segn holds z(i) < > x.

(8) For every element x of R™ and for every natural number ¢ such that
i € Segn holds |z(i)| < |z|.

(9) Let x be a point of (€™, || - ||) and y be an element of R". If x =y, then
for every natural number i such that ¢ € Segn holds |y(i)| < [|z||.

(10) For every element z of R"*! holds |z|?2 = |z[n|? + z(n + 1)%.

Let n be a natural number, let f be a function from N into R", and let k
be a natural number. Then f(k) is an element of R"™.

We now state two propositions:

(11) Let n be a natural number, = be a point of (€™, || - ||), 2 be an element
of R™, s1 be a sequence of (£",] - ||), and x; be a function from N into
R"™. Suppose x2 = x and 1 = s1. Then sy is convergent and lims; = =
if and only if for every natural number ¢ such that ¢ € Segn there exists
a sequence 71 of real numbers such that for every natural number & holds
ri1(k) = z1(k)(i) and 7 is convergent and (i) = limr;.

(12) For every sequence f of (£",] - ||) such that f is Cauchy sequence by
norm holds f is convergent.

Let us consider n. Note that (€™, || - ||) is complete.

2. THE REAL EUCLIDEAN SPACE AS A REAL NORMED SPACE

Let n be a natural number. The functor (€™, (+|)) yields a strict non empty

unitary space structure and is defined by the conditions (Def. 2).
(Def. 2)(i)  The RLS structure of (€™, (+|-)) = the RLS structure of (£", |- |), and
(ii)  for all elements z, y of R™ holds (the scalar product of (£, (:|-)))(z,

y) =2 (rey).
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Let n be a non empty natural number. One can verify that (£”, (-|-)) is non
trivial.

Let n be a natural number. Observe that (£", (-|-)) is real unitary space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.

The following propositions are true:

(13) Let n be a natural number, a be a real number, x3, y; be points of
(E™ -1, and x4, y2 be points of (", (-|-)). If 3 = x4 and y1 = y2, then
T3+ yi=x4+yo and —x3 = —x4 and a - r3 = a - 4.

(14) For every natural number n and for every point z3 of (£", ] - ||) and for
every point x4 of (€™, (-|-)) such that x3 = x4 holds ||z3|2 = (z4]74).

(15) Let n be a natural number and f be a set. Then f is a sequence of
(E™, |l - 1) if and only if f is a sequence of (€™, (-|-)).

(16) Let n be a natural number, sy be a sequence of (£",|| - ||), and s3 be a
sequence of (€™, (|-)) such that sy = s3. Then

(i)  if s9 is convergent, then s3 is convergent and lim sp = lim s3, and
(ii)  if s3 is convergent, then s is convergent and lim so = lim s3.

(17) Let n be a natural number, sy be a sequence of (€™, || - ||), and s3 be a
sequence of (€™, (+|-)). If so = s3 and s2 is Cauchy sequence by norm, then
s3 is Cauchy.

(18) Let n be a natural number, s2 be a sequence of (€™, - ||), and s3 be
a sequence of (€™, (+])). If sy = s3 and s3 is Cauchy, then s is Cauchy
sequence by norm.

Let us consider n. Note that (€™, (+|)) is Hilbert.
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