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Summary. In this paper we first defined the partial-union sequence, the

partial-intersection sequence, and the partial-difference-union sequence of given

sequence of subsets, and then proved the additive theorem of infinite sequences

and sub-additive theorem of finite sequences for probability. Further, we defined

the monotone class of families of subsets, and discussed the relations between

the monotone class and the σ-field which are generated by the field of subsets of

a given set.

MML identifier: PROB 3, version: 7.5.01 4.39.921

The articles [4], [3], [2], [20], [23], [19], [9], [21], [22], [18], [16], [6], [1], [13], [11],
[24], [7], [8], [15], [14], [10], [12], [26], [25], [17], and [5] provide the notation and
terminology for this paper.

For simplicity, we adopt the following rules: n, m, k are natural numbers, g

is a real number, x, X, Y , Z are sets, A1 is a sequence of subsets of X, F1 is a
finite sequence of elements of 2X , R1 is a finite sequence of elements of R, S1 is
a σ-field of subsets of X, O1 is a non empty set, S2 is a σ-field of subsets of O1,
A2, B1 are sequences of subsets of S2, and P is a probability on S2.

One can prove the following propositions:
(1) For every finite sequence f holds 0 /∈ dom f.

(2) For every finite sequence f holds n ∈ dom f iff n 6= 0 and n ≤ len f.

(3) Let f be a sequence of real numbers. Given k such that let given n. If
k ≤ n, then f(n) = g. Then f is convergent and lim f = g.

(4) (P ·A2)(n) ≥ 0.

(5) If A2(n) ⊆ B1(n), then (P ·A2)(n) ≤ (P ·B1)(n).
(6) If A2 is non-decreasing, then P ·A2 is non-decreasing.
(7) If A2 is non-increasing, then P ·A2 is non-increasing.
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Let A1 be a function. The partial intersections of A1 constitute a function
defined by the conditions (Def. 1).

(Def. 1)(i) dom (the partial intersections of A1) = N,

(ii) (the partial intersections of A1)(0) = A1(0), and
(iii) for every natural number n holds (the partial intersections of A1)(n +

1) = (the partial intersections of A1)(n) ∩A1(n + 1).
Let X be a set and let A1 be a sequence of subsets of X. Then the partial

intersections of A1 is a sequence of subsets of X.
Let A1 be a function. The partial unions of A1 constitute a function defined

by the conditions (Def. 2).

(Def. 2)(i) dom (the partial unions of A1) = N,

(ii) (the partial unions of A1)(0) = A1(0), and
(iii) for every natural number n holds (the partial unions of A1)(n+1) = (the

partial unions of A1)(n) ∪A1(n + 1).
Let X be a set and let A1 be a sequence of subsets of X. Then the partial

unions of A1 is a sequence of subsets of X.
The following propositions are true:

(8) (The partial intersections of A1)(n) ⊆ A1(n).
(9) A1(n) ⊆ (the partial unions of A1)(n).

(10) The partial intersections of A1 are non-increasing.
(11) The partial unions of A1 are non-decreasing.
(12) x ∈ (the partial intersections of A1)(n) iff for every k such that k ≤ n

holds x ∈ A1(k).
(13) x ∈ (the partial unions of A1)(n) iff there exists k such that k ≤ n and

x ∈ A1(k).
(14) Intersection (the partial intersections of A1) = IntersectionA1.

(15)
⋃

(the partial unions of A1) =
⋃

A1.

Let A1 be a function. The partial diff-unions of A1 constitute a function
defined by the conditions (Def. 3).

(Def. 3)(i) dom (the partial diff-unions of A1) = N,

(ii) (the partial diff-unions of A1)(0) = A1(0), and
(iii) for every natural number n holds (the partial diff-unions of A1)(n+1) =

A1(n + 1) \ (the partial unions of A1)(n).
Let X be a set and let A1 be a sequence of subsets of X. Then the partial

diff-unions of A1 is a sequence of subsets of X.
One can prove the following propositions:

(16) x ∈ (the partial diff-unions of A1)(n) iff x ∈ A1(n) and for every k such
that k < n holds x /∈ A1(k).

(17) (The partial diff-unions of A1)(n) ⊆ A1(n).
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(18) (The partial diff-unions of A1)(n) ⊆ (the partial unions of A1)(n).

(19) The partial unions of the partial diff-unions of A1 = the partial unions
of A1.

(20)
⋃

(the partial diff-unions of A1) =
⋃

A1.

Let us consider X, A1. Let us observe that A1 is disjoint valued if and only
if:

(Def. 4) For all m, n such that m 6= n holds A1(m) misses A1(n).

We now state the proposition

(21) The partial diff-unions of A1 are disjoint valued.

Let X be a set, let S1 be a σ-field of subsets of X, and let X1 be a sequence
of subsets of S1. Then the partial intersections of X1 is a sequence of subsets of
S1.

Let X be a set, let S1 be a σ-field of subsets of X, and let X1 be a sequence
of subsets of S1. Then the partial unions of X1 is a sequence of subsets of S1.

Let X be a set, let S1 be a σ-field of subsets of X, and let X1 be a sequence
of subsets of S1. Then the partial diff-unions of X1 is a sequence of subsets of
S1.

Next we state a number of propositions:

(22) P · the partial unions of A2 is non-decreasing.

(23) P · the partial intersections of A2 is non-increasing.

(24) (
∑κ

α=0(P ·A2)(α))κ∈N is non-decreasing.

(25) (P · the partial unions of A2)(0) = (
∑κ

α=0(P ·A2)(α))κ∈N(0).

(26)(i) P · the partial unions of A2 is convergent,
(ii) lim(P · the partial unions of A2) = sup(P · the partial unions of A2),

and
(iii) lim(P · the partial unions of A2) = P (

⋃
A2).

(27) If A2 is disjoint valued, then for all n, m such that n < m holds (the
partial unions of A2)(n) misses A2(m).

(28) If A2 is disjoint valued, then (P ·the partial unions of A2)(n) = (
∑κ

α=0(P ·
A2)(α))κ∈N(n).

(29) If A2 is disjoint valued, then P · the partial unions of A2 = (
∑κ

α=0(P ·
A2)(α))κ∈N.

(30) If A2 is disjoint valued, then (
∑κ

α=0(P · A2)(α))κ∈N is convergent
and lim((

∑κ
α=0(P · A2)(α))κ∈N) = sup((

∑κ
α=0(P · A2)(α))κ∈N) and

lim((
∑κ

α=0(P ·A2)(α))κ∈N) = P (
⋃

A2).

(31) If A2 is disjoint valued, then P (
⋃

A2) =
∑

(P ·A2).

Let us consider X, F1, n. Then F1(n) is a subset of X.
One can prove the following two propositions:
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(32) There exists a finite sequence F1 of elements of 2X such that for every
k such that k ∈ dom F1 holds F1(k) = X.

(33) For every finite sequence F1 of elements of 2X holds
⋃

rng F1 is a subset
of X.

Let X be a set and let F1 be a finite sequence of elements of 2X . Then
⋃

F1

is a subset of X.
We now state the proposition

(34) x ∈
⋃

F1 iff there exists k such that k ∈ dom F1 and x ∈ F1(k).

Let us consider X, F1. The functor ComplementF1 yields a finite sequence
of elements of 2X and is defined by:

(Def. 5) lenComplementF1 = lenF1 and for every n such that n ∈
dom ComplementF1 holds (ComplementF1)(n) = F1(n)c.

Let us consider X, F1. The functor IntersectionF1 yields a subset of X and
is defined by:

(Def. 6) Intersection F1 =
{

(
⋃

ComplementF1)c, if F1 6= ∅,
∅, otherwise.

Next we state several propositions:
(35) dom ComplementF1 = dom F1.

(36) If F1 6= ∅, then x ∈ IntersectionF1 iff for every k such that k ∈ dom F1

holds x ∈ F1(k).
(37) If F1 6= ∅, then x ∈

⋂
rng F1 iff for every n such that n ∈ dom F1 holds

x ∈ F1(n).
(38) Intersection F1 =

⋂
rng F1.

(39) Let F1 be a finite sequence of elements of 2X . Then there exists a
sequence A1 of subsets of X such that for every k such that k ∈ dom F1

holds A1(k) = F1(k) and for every k such that k /∈ dom F1 holds A1(k) = ∅.
(40) Let F1 be a finite sequence of elements of 2X and A1 be a sequence of

subsets of X. Suppose for every k such that k ∈ dom F1 holds A1(k) =
F1(k) and for every k such that k /∈ dom F1 holds A1(k) = ∅. Then
A1(0) = ∅ and

⋃
A1 =

⋃
F1.

Let X be a set and let S1 be a σ-field of subsets of X. A finite sequence of
elements of 2X is said to be a finite sequence of elements of S1 if:

(Def. 7) For every k such that k ∈ dom it holds it(k) ∈ S1.

Let X be a set, let S1 be a σ-field of subsets of X, let F2 be a finite sequence
of elements of S1, and let us consider n. Then F2(n) is an event of S1.

We now state two propositions:
(41) Let F2 be a finite sequence of elements of S1. Then there exists a se-

quence A2 of subsets of S1 such that for every k such that k ∈ dom F2 holds
A2(k) = F2(k) and for every k such that k /∈ dom F2 holds A2(k) = ∅.
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(42) For every finite sequence F2 of elements of S1 holds
⋃

F2 ∈ S1.

Let X be a set, let S be a σ-field of subsets of X, and let F be a finite
sequence of elements of S. The functor F c yielding a finite sequence of elements
of S is defined as follows:

(Def. 8) F c = ComplementF.

We now state the proposition
(43) For every finite sequence F2 of elements of S1 holds IntersectionF2 ∈ S1.

In the sequel F3 denotes a finite sequence of elements of S2.
The following two propositions are true:

(44) dom(P · F3) = dom F3.

(45) P · F3 is a finite sequence of elements of R.
Let us consider O1, S2, F3, P . Then P · F3 is a finite sequence of elements

of R.
Next we state several propositions:

(46) len(P · F3) = len F3.

(47) If lenR1 = 0, then
∑

R1 = 0.

(48) Suppose lenR1 ≥ 1. Then there exists a sequence f of real numbers such
that f(1) = R1(1) and for every n such that 0 6= n and n < lenR1 holds
f(n + 1) = f(n) + R1(n + 1) and

∑
R1 = f(lenR1).

(49) Let F3 be a finite sequence of elements of S2 and A2 be a sequence of sub-
sets of S2. Suppose for every k such that k ∈ dom F3 holds A2(k) = F3(k)
and for every k such that k /∈ dom F3 holds A2(k) = ∅. Then (

∑κ
α=0(P ·

A2)(α))κ∈N is convergent and
∑

(P ·A2) = (
∑κ

α=0(P ·A2)(α))κ∈N(lenF3)
and P (

⋃
A2) ≤

∑
(P ·A2) and

∑
(P · F3) =

∑
(P ·A2).

(50) P (
⋃

F3) ≤
∑

(P · F3) and if F3 is disjoint valued, then P (
⋃

F3) =∑
(P · F3).

Let us consider X and let I1 be a family of subsets of X. We say that I1 is
non-decreasing-union-closed if and only if:

(Def. 9) For every sequence A1 of subsets of X such that A1 is non-decreasing
and for every n holds A1(n) ∈ I1 holds

⋃
A1 ∈ I1.

We say that I1 is non-increasing-intersection-closed if and only if:
(Def. 10) For every sequence A1 of subsets of X such that A1 is non-increasing

and for every n holds A1(n) ∈ I1 holds IntersectionA1 ∈ I1.

We now state three propositions:
(51) Let I1 be a family of subsets of X. Then I1 is non-decreasing-union-

closed if and only if for every sequence A1 of subsets of X such that A1 is
non-decreasing and for every n holds A1(n) ∈ I1 holds lim A1 ∈ I1.

(52) Let I1 be a family of subsets of X. Then I1 is non-increasing-intersection-
closed if and only if for every sequence A1 of subsets of X such that A1 is
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non-increasing and for every n holds A1(n) ∈ I1 holds lim A1 ∈ I1.

(53) 2X is non-decreasing-union-closed and 2X is non-increasing-intersection-
closed.

Let us consider X. A family of subsets of X is said to be a monotone class
of X if:

(Def. 11) It is non-decreasing-union-closed and it is non-increasing-intersection-
closed.

Next we state four propositions:
(54) Z is a monotone class of X if and only if the following conditions are

satisfied:
(i) Z ⊆ 2X , and
(ii) for every sequence A1 of subsets of X such that A1 is monotone and

for every n holds A1(n) ∈ Z holds lim A1 ∈ Z.

(55) Let F be a field of subsets of X. Then F is a σ-field of subsets of X if
and only if F is a monotone class of X.

(56) 2O1 is a monotone class of O1.
(57) Let X be a family of subsets of O1. Then there exists a monotone class

Y of O1 such that X ⊆ Y and for every Z such that X ⊆ Z and Z is a
monotone class of O1 holds Y ⊆ Z.

Let us consider O1 and let X be a family of subsets of O1. The functor
monotone-class(X) yielding a monotone class of O1 is defined as follows:

(Def. 12) X ⊆ monotone-class(X) and for every Z such that X ⊆ Z and Z is a
monotone class of O1 holds monotone-class(X) ⊆ Z.

We now state two propositions:
(58) For every field Z of subsets of O1 holds monotone-class(Z) is a field of

subsets of O1.
(59) For every field Z of subsets of O1 holds σ(Z) = monotone-class(Z).
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Summary. This article is a continuation of [6]. We present the notion of

files and records. These are two finite sequences. One is a record and another

is a separator for the carriage return and/or line feed. So, we define the record.

The sequential text file contains records and separators. Generally, a record and

a separator are paired in the file. And in a special situation, the separator does

not exist in the file, for that the record is only one record or record is nothing.

And the record does not exist in the file, for that some separator is in the file.

In this article, we present a theory for files and records.
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The terminology and notation used here are introduced in the following articles:
[11], [12], [7], [1], [10], [13], [8], [2], [3], [4], [9], [5], and [6].

In this paper a, b, c denote sets.
The following propositions are true:

(1) Let D be a non empty set and p, q, r, s be finite sequences of elements
of D. Then p a q a r a s = p a (q a r) a s and (p a q a r) a s = p a q a (r a s)
and (p a (q a r)) a s = p a q a (r a s).

(2) For every set D and for every finite sequence f of elements of D holds
f� len f = f.

(3) For every non empty set D and for all finite sequences p, q of elements
of D such that len p = 0 holds q = p a q.

(4) Let D be a non empty set, f be a finite sequence of elements of D, and
n, m be natural numbers. If n ≤ m, then len(f�m) ≤ len(f�n).

(5) For every non empty set D and for all finite sequences f , g of elements
of D such that len g ≥ 1 holds mid(f a g, len f + 1, len f + len g) = g.
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(6) Let D be a non empty set, f , g be finite sequences of elements of D,
and i, j be natural numbers. If 1 ≤ i and i ≤ j and j ≤ len f, then
mid(f a g, i, j) = mid(f, i, j).

(7) Let D be a non empty set, f be a finite sequence of elements of D, and
i, j, n be natural numbers. If 1 ≤ i and i ≤ j and i ≤ len(f�n) and
j ≤ len(f�n), then mid(f, i, j) = mid(f�n, i, j).

(8) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a〉 holds a ∈ D.

(9) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a, b〉 holds a ∈ D and b ∈ D.

(10) Let D be a non empty set and f be a finite sequence of elements of D.
If f = 〈a, b, c〉, then a ∈ D and b ∈ D and c ∈ D.

(11) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a〉 holds f�1 = 〈a〉.

(12) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a, b〉 holds f�1 = 〈b〉.

(13) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a, b, c〉 holds f�1 = 〈a〉.

(14) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a, b, c〉 holds f�2 = 〈a, b〉.

(15) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a, b, c〉 holds f�1 = 〈b, c〉.

(16) For every non empty set D and for every finite sequence f of elements
of D such that f = 〈a, b, c〉 holds f�2 = 〈c〉.

(17) For every non empty set D and for every finite sequence f of elements
of D such that len f = 0 holds Rev(f) = f.

(18) Let D be a non empty set, r be a finite sequence of elements of D, and
i be a natural number. If i ≤ len r, then Rev(r�i) = Rev(r)�(len r −′ i).

(19) Let D be a non empty set and f , C1 be finite sequences of elements of D.
If C1 is not a substring of f and C1 separates uniquely, then instr(1, f a

C1) = len f + 1.

(20) For every non empty set D and for every finite sequence f of elements
of D holds every finite sequence f , g of elements of D is a preposition of
(f a g)�len f .

(21) Let D be a non empty set and f , C1 be finite sequences of elements of
D. Suppose C1 is not a substring of f and C1 separates uniquely. Then
f a C1 is terminated by C1.

Let D be a set. We introduce file of D as a synonym of finite sequence of
elements of D.
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Let D be a non empty set and let r, f , C1 be files of D. We say that r is a
record of f and C1 if and only if:

(Def. 1) C1
a r is a substring of addcr(f, C1) or r is a preposition of addcr(f, C1)

but r is terminated by C1.
The following propositions are true:

(22) For every non empty set D and for every finite sequence r of elements
of D holds ovlpart(εD, r) = εD and ovlpart(r, εD) = εD.

(23) For every non empty set D holds every finite sequence C1 of elements of
D is a record of εD and C1.

(24) Let D be a non empty set, a, b be sets, and f , r, C1 be files of D.
Suppose a 6= b and D = {a, b} and C1 = 〈b〉 and f = 〈b, a, b〉 and r = 〈a,

b〉. Then C1 is a record of f and C1 and r is a record of f and C1.
(25) For every non empty set D and for all files f , C1 of D holds f is a

preposition of f a C1.

(26) For every non empty set D and for all files f , C1 of D holds f is a
preposition of addcr(f, C1).

(27) For every non empty set D and for all files r, C1 of D such that C1 is a
postposition of r holds 0 ≤ len r − lenC1.

(28) For every non empty set D and for all files C1, r of D such that C1 is a
postposition of r holds r = addcr(r, C1).

(29) For every non empty set D and for all files C1, r of D such that r is
terminated by C1 holds r = addcr(r, C1).

(30) For every non empty set D and for all files f , g of D such that f is
terminated by g holds len g ≤ len f.

(31) For every non empty set D and for all files f , C1 of D holds
len addcr(f, C1) ≥ len f and len addcr(f, C1) ≥ lenC1.

(32) For every non empty set D and for all finite sequences f , g of elements
of D holds g = (ovlpart(f, g)) a ovlrdiff(f, g).

(33) For every non empty set D and for all finite sequences f , g of elements
of D holds ovlcon(f, g) = (ovlldiff(f, g)) a g.

(34) For every non empty set D and for all files C1, r of D holds addcr(r, C1) =
(ovlldiff(r, C1)) a C1.

(35) Let D be a non empty set and r1, r2, f be files of D. If f = r1
a r2, then

r1 is a substring of f and r2 is a substring of f .
(36) Let D be a non empty set and r1, r2, r3, f be files of D. Suppose

f = r1
a r2

a r3. Then r1 is a substring of f and r2 is a substring of f and
r3 is a substring of f .

(37) Let D be a non empty set and C1, r1, r2 be files of D. Suppose r1 is
terminated by C1 and r2 is terminated by C1. Then C1

a r2 is a substring
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of addcr(r1
a r2, C1).

(38) Let D be a non empty set, f , g be files of D, and n be a natural number.
If 0 < n and g = ∅, then instr(n, f) = n.

(39) Let D be a non empty set, f , g be files of D, and n be a natural number.
If 0 < n and n ≤ len f, then instr(n, f) ≤ len f.

(40) For every non empty set D and for every file f of D holds every file f ,
C1 of D is a substring of ovlcon(f, C1).

(41) For every non empty set D and for every file f of D holds every file f ,
C1 of D is a substring of addcr(f, C1).

(42) Let D be a non empty set, f , g be finite sequences of elements of D,
and n be a natural number. If g is a substring of f�n and len g > 0 and
len g ≤ n, then g is a substring of f .

(43) For every non empty set D and for all files f , C1 of D holds there exists
a file of D which is a record of f and C1.

(44) For every non empty set D and for all files f , C1, r of D such that r is
a record of f and C1 holds r is a record of r and C1.

(45) Let D be a non empty set and C1, r1, r2, f be files of D. Suppose r1 is
terminated by C1 and r2 is terminated by C1 and f = r1

a r2. Then r1 is
a record of f and C1 and r2 is a record of f and C1.
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1. Circled Sets

One can prove the following proposition
(1) For every real linear space V and for all circled subsets A, B of V holds

A−B is circled.
Let V be a real linear space and let M , N be circled subsets of V . Note that

M −N is circled.
Next we state the proposition

(2) Let V be a non empty RLS structure and M be a subset of V . Then M

is circled if and only if for every vector u of V and for every real number
r such that |r| ≤ 1 and u ∈ M holds r · u ∈ M.
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Let V be a non empty RLS structure and let M be a subset of V . Let us
observe that M is circled if and only if:

(Def. 1) For every vector u of V and for every real number r such that |r| ≤ 1
and u ∈ M holds r · u ∈ M.

The following propositions are true:
(3) Let V be a real linear space, M be a subset of V , and r be a real number.

If M is circled, then r ·M is circled.
(4) Let V be a real linear space, M1, M2 be subsets of V , and r1, r2 be real

numbers. If M1 is circled and M2 is circled, then r1 ·M1+r2 ·M2 is circled.
(5) Let V be a real linear space, M1, M2, M3 be subsets of V , and r1, r2,

r3 be real numbers. Suppose M1 is circled and M2 is circled and M3 is
circled. Then r1 ·M1 + r2 ·M2 + r3 ·M3 is circled.

(6) For every real linear space V holds Up(0V ) is circled.
(7) For every real linear space V holds Up(ΩV ) is circled.
(8) For every real linear space V and for all circled subsets M , N of V holds

M ∩N is circled.
(9) For every real linear space V and for all circled subsets M , N of V holds

M ∪N is circled.

2. Circled Hull and Circled Family

Let V be a non empty RLS structure and let M be a subset of V . The functor
Circled-Family M yields a family of subsets of V and is defined as follows:

(Def. 2) For every subset N of V holds N ∈ Circled-Family M iff N is circled
and M ⊆ N.

Let V be a real linear space and let M be a subset of V . The functor CirM

yielding a circled subset of V is defined by:
(Def. 3) Cir M =

⋂
Circled-Family M.

Let V be a real linear space and let M be a subset of V . Note that
Circled-Family M is non empty.

We now state several propositions:
(10) For every real linear space V and for all subsets M1, M2 of V such that

M1 ⊆ M2 holds Circled-Family M2 ⊆ Circled-Family M1.

(11) For every real linear space V and for all subsets M1, M2 of V such that
M1 ⊆ M2 holds CirM1 ⊆ CirM2.

(12) For every real linear space V and for every subset M of V holds M ⊆
CirM.

(13) Let V be a real linear space, M be a subset of V , and N be a circled
subset of V . If M ⊆ N, then CirM ⊆ N.
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(14) For every real linear space V and for every circled subset M of V holds
CirM = M.

(15) For every real linear space V holds Cir(∅V ) = ∅.
(16) For every real linear space V and for every subset M of V and for every

real number r holds r · CirM = Cir(r ·M).

3. Basic Properties of Combination

Let V be a real linear space and let L be a linear combination of V . We say
that L is circled if and only if the condition (Def. 4) is satisfied.

(Def. 4) There exists a finite sequence F of elements of the carrier of V such that
(i) F is one-to-one,
(ii) rng F = the support of L, and
(iii) there exists a finite sequence f of elements of R such that len f = lenF

and
∑

f = 1 and for every natural number n such that n ∈ dom f holds
f(n) = L(F (n)) and f(n) ≥ 0.

The following propositions are true:
(17) Let V be a real linear space and L be a linear combination of V . If L is

circled, then the support of L 6= ∅.
(18) Let V be a real linear space, L be a linear combination of V , and v be

a vector of V . If L is circled and L(v) ≤ 0, then v /∈ the support of L.
(19) For every real linear space V and for every linear combination L of V

such that L is circled holds L 6= 0LCV
.

(20) For every real linear space V holds there exists a linear combination of
V which is circled.

Let V be a real linear space. One can check that there exists a linear
combination of V which is circled.

Let V be a real linear space. A circled combination of V is a circled linear
combination of V .

We now state the proposition
(21) For every real linear space V and for every non empty subset M of V

holds there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V . Note
that there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V . A circled
combination of M is a circled linear combination of M .

Let V be a real linear space. The functor circledCombV is defined as follows:

(Def. 5) For every set L holds L ∈ circledCombV iff L is a circled combination
of V .
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Let V be a real linear space and let M be a non empty subset of V . The
functor circledCombM is defined by:

(Def. 6) For every set L holds L ∈ circledCombM iff L is a circled combination
of M .

The following propositions are true:
(22) Let V be a real linear space and v be a vector of V . Then there exists

a circled combination L of V such that
∑

L = v and for every non empty
subset A of V such that v ∈ A holds L is a circled combination of A.

(23) Let V be a real linear space and v1, v2 be vectors of V . Suppose v1 6= v2.

Then there exists a circled combination L of V such that for every non
empty subset A of V if {v1, v2} ⊆ A, then L is a circled combination of A.

(24) Let V be a real linear space, L1, L2 be circled combinations of V , and a, b

be real numbers. Suppose a·b > 0. Then the support of a·L1+b·L2 = (the
support of a · L1) ∪ (the support of b · L2).

(25) Let V be a real linear space, v be a vector of V , and L be a linear
combination of V . If L is circled and the support of L = {v}, then
L(v) = 1 and

∑
L = L(v) · v.

(26) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear
combination of V . Suppose L is circled and the support of L = {v1, v2}
and v1 6= v2. Then L(v1) + L(v2) = 1 and L(v1) ≥ 0 and L(v2) ≥ 0 and∑

L = L(v1) · v1 + L(v2) · v2.

(27) Let V be a real linear space, v be a vector of V , and L be a linear
combination of {v}. If L is circled, then L(v) = 1 and

∑
L = L(v) · v.

(28) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear
combination of {v1, v2}. Suppose v1 6= v2 and L is circled. Then L(v1) +
L(v2) = 1 and L(v1) ≥ 0 and L(v2) ≥ 0 and

∑
L = L(v1) · v1 + L(v2) · v2.
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[6] Czes law Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[7] Czes law Byliński. Introduction to real linear topological spaces. Formalized Mathematics,

13(1):99–107, 2005.
[8] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex com-

binations. Formalized Mathematics, 11(1):53–58, 2003.
[9] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary

space. Formalized Mathematics, 11(1):23–28, 2003.



circled sets, circled hull, . . . 451

[10] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Topology of real unitary space.
Formalized Mathematics, 11(1):33–38, 2003.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[13] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[16] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics,

1(3):581–588, 1990.
[17] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized

Mathematics, 1(2):297–301, 1990.
[18] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–

296, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 30, 2005



452 fahui zhai and jianbing cao and xiquan liang



FORMALIZED MATHEMATICS

Volume 13, Number 4, Pages 453–461

University of Bia lystok, 2005

On the Borel Families of Subsets

of Topological Spaces1

Adam Grabowski
Institute of Mathematics
University of Bia lystok

Akademicka 2, 15-267 Bia lystok, Poland

Summary. This is the next Mizar article in a series aiming at complete

formalization of “General Topology” [14] by Engelking. We cover the second part

of Section 1.3.

MML identifier: TOPGEN 4, version: 7.5.01 4.39.921

The papers [27], [30], [31], [9], [1], [2], [26], [3], [28], [10], [12], [21], [29], [22], [5],
[16], [6], [23], [32], [11], [20], [17], [18], [19], [7], [13], [25], [24], [15], [4], and [8]
provide the terminology and notation for this paper.

1. Preliminaries

Let T be a 1-sorted structure. The functor TotFam T yielding a family of
subsets of T is defined by:

(Def. 1) TotFam T = 2the carrier of T .

The following proposition is true
(1) For every set T and for every family F of subsets of T holds F is count-

able iff F c is countable.
Let us note that Q is countable.
The scheme FraenCoun11 concerns a unary predicate P, and states that:

{{n};n ranges over elements of Q: P[n]} is countable

1This work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6

IST grant TYPES No. 510996.
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for all values of the parameters.
One can prove the following proposition

(2) For every non empty topological space T and for every subset A of T

holds DerA = {x;x ranges over points of T : x ∈ A \ {x}}.
Let us note that every topological structure which is finite is also second-

countable.
One can verify that R is non countable.
One can verify the following observations:

∗ every set which is non countable is also non finite,

∗ every set which is non finite is also non trivial, and

∗ there exists a set which is non countable and non empty.

We adopt the following rules: T is a non empty topological space, A, B are
subsets of T , and F , G are families of subsets of T .

One can prove the following propositions:

(3) A is closed iff Der A ⊆ A.

(4) Let T be a non empty topological structure, B be a basis of T , and V be
a subset of T . Suppose V is open and V 6= ∅. Then there exists a subset
W of T such that W ∈ B and W ⊆ V and W 6= ∅.

2. Regular Formalization: Separable Spaces

The following propositions are true:

(5) density T ≤ weight T.

(6) T is separable iff there exists a subset of T which is dense and countable.

(7) If T is second-countable, then T is separable.

One can check that every non empty topological space which is second-
countable is also separable.

The following four propositions are true:

(8) Let T be a non empty topological space and A, B be subsets of T . If A

and B are separated, then Fr(A ∪B) = FrA ∪ Fr B.

(9) If F is locally finite, then Fr
⋃

F ⊆
⋃

Fr F.

(10) For every discrete non empty topological space T holds T is separable
iff ΩT ≤ ℵ0.

(11) For every discrete non empty topological space T holds T is separable
iff T is countable.



on the borel families of subsets . . . 455

3. Families of Subsets Closed for Countable Unions and

Complement

Let us consider T , F . We say that F is all-open-containing if and only if:

(Def. 2) For every subset A of T such that A is open holds A ∈ F.

Let us consider T , F . We say that F is all-closed-containing if and only if:

(Def. 3) For every subset A of T such that A is closed holds A ∈ F.

Let T be a set and let F be a family of subsets of T . We say that F is closed
for countable unions if and only if:

(Def. 4) For every countable family G of subsets of T such that G ⊆ F holds⋃
G ∈ F.

Let T be a set. Note that every σ-field of subsets of T is closed for countable
unions.

One can prove the following proposition
(12) For every set T and for every family F of subsets of T such that F is

closed for countable unions holds ∅ ∈ F.

Let T be a set. One can verify that every family of subsets of T which is
closed for countable unions is also non empty.

Next we state the proposition
(13) Let T be a set and F be a family of subsets of T . Then F is a σ-field of

subsets of T if and only if F is closed for complement operator and closed
for countable unions.

Let T be a set and let F be a family of subsets of T . We say that F is closed
for countable meets if and only if:

(Def. 5) For every countable family G of subsets of T such that G ⊆ F holds⋂
G ∈ F.

Next we state four propositions:
(14) Let F be a family of subsets of T . Then the following statements are

equivalent
(i) F is all-closed-containing and closed for complement operator,
(ii) F is all-open-containing and closed for complement operator.

(15) For every set T and for every family F of subsets of T such that F is
closed for complement operator holds F = F c.

(16) Let T be a set and F , G be families of subsets of T . If F ⊆ G and G is
closed for complement operator, then F c ⊆ G.

(17) Let T be a set and F be a family of subsets of T . Then the following
statements are equivalent

(i) F is closed for countable meets and closed for complement operator,
(ii) F is closed for countable unions and closed for complement operator.
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Let us consider T . One can verify that every family of subsets of T which is
all-open-containing, closed for complement operator, and closed for countable
unions is also all-closed-containing and closed for countable meets and every
family of subsets of T which is all-closed-containing, closed for complement
operator, and closed for countable meets is also all-open-containing and closed
for countable unions.

4. On the Families of Subsets

Let T be a set and let F be a countable family of subsets of T . Note that
F c is countable.

Let us consider T . Note that every family of subsets of T which is empty is
also open and closed.

Let us consider T . One can check that there exists a family of subsets of T

which is countable, open, and closed.
We now state the proposition

(18) For every set T holds ∅ is an empty family of subsets of T .
Let us observe that every set which is empty is also countable.

5. Collective Properties of Families

One can prove the following two propositions:
(19) If F = {A}, then A is open iff F is open.
(20) If F = {A}, then A is closed iff F is closed.

Let T be a set and let F , G be families of subsets of T . Then F e G is a
family of subsets of T . Then F d G is a family of subsets of T .

Next we state a number of propositions:
(21) If F is closed and G is closed, then F e G is closed.
(22) If F is closed and G is closed, then F d G is closed.
(23) If F is open and G is open, then F e G is open.
(24) If F is open and G is open, then F d G is open.

(25) For every set T and for all families F , G of subsets of T holds F e G ≤
[: F, G :] .

(26) For every set T and for all families F , G of subsets of T holds F d G ≤
[: F, G :] .

(27) For all sets F , G holds
⋃

(F d G) ⊆
⋃

F ∪
⋃

G.

(28) For all sets F , G such that F 6= ∅ and G 6= ∅ holds
⋃

F∪
⋃

G =
⋃

(FdG).
(29) For every set F holds ∅ d F = ∅.
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(30) For all sets F , G such that F d G = ∅ holds F = ∅ or G = ∅.
(31) For all sets F , G such that F e G = ∅ holds F = ∅ or G = ∅.
(32) For all sets F , G holds

⋂
(F d G) ⊆

⋂
F ∪

⋂
G.

(33) For all sets F , G such that F 6= ∅ and G 6= ∅ holds
⋂

(FdG) =
⋂

F∪
⋂

G.

(34) For all sets F , G such that F 6= ∅ and G 6= ∅ holds
⋂

F∩
⋂

G =
⋂

(FeG).

6. Fσ and Gδ Types of Subsets

Let us consider T , A. We say that A is Fσ if and only if:

(Def. 6) There exists a closed countable family F of subsets of T such that A =⋃
F.

Let us consider T , A. We say that A is Gδ if and only if:

(Def. 7) There exists an open countable family F of subsets of T such that A =⋂
F.

The following propositions are true:

(35) ∅T is Fσ.

(36) ∅T is Gδ.

Let us consider T . Note that ∅T is Fσ and Gδ.
Next we state two propositions:

(37) ΩT is Fσ.

(38) ΩT is Gδ.

Let us consider T . One can verify that ΩT is Fσ and Gδ.
One can prove the following propositions:

(39) If A is Fσ, then Ac is Gδ.

(40) If A is Gδ, then Ac is Fσ.

(41) If A is Fσ and B is Fσ, then A ∩B is Fσ.

(42) If A is Fσ and B is Fσ, then A ∪B is Fσ.

(43) If A is Gδ and B is Gδ, then A ∪B is Gδ.

(44) If A is Gδ and B is Gδ, then A ∩B is Gδ.

(45) For every subset A of T such that A is closed holds A is Fσ.

(46) For every subset A of T such that A is open holds A is Gδ.

(47) For every subset A of R1 such that A = Q holds A is Fσ.
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7. T1/2 Topological Spaces

Let T be a topological space. We say that T is T1/2 if and only if:

(Def. 8) For every subset A of T holds DerA is closed.
We now state three propositions:

(48) For every topological space T such that T is T1 holds T is T1/2.
(49) For every non empty topological space T such that T is T1/2 holds T is

T0.
(50) For every non empty topological space T holds every point p of T is

isolated in ΩT or an accumulation point of ΩT .

Let us note that every topological space which is T1/2 is also T0 and every
topological space which is T1 is also T1/2.

8. Condensation Points

Let us consider T , A and let x be a point of T . We say that x is a conden-
sation point of A if and only if:

(Def. 9) For every neighbourhood N of x holds N ∩A is not countable.
In the sequel x denotes a point of T .
One can prove the following proposition

(51) If x is a condensation point of A and A ⊆ B, then x is a condensation
point of B.

Let us consider T , A. The functor A0 yielding a subset of T is defined as
follows:

(Def. 10) For every point x of T holds x ∈ A0 iff x is a condensation point of A.
The following propositions are true:

(52) For every point p of T such that p is a condensation point of A holds p

is an accumulation point of A.
(53) A0 ⊆ Der A.

(54) A0 = A0.

(55) If A ⊆ B, then A0 ⊆ B0.

(56) If x is a condensation point of A ∪B, then x is a condensation point of
A or a condensation point of B.

(57) A ∪B0 = A0 ∪B0.

(58) If A is countable, then there exists no point of T which is a condensation
point of A.

(59) If A is countable, then A0 = ∅.
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Let us consider T and let A be a countable subset of T . Note that A0 is
empty.

The following proposition is true

(60) If T is second-countable, then there exists a basis of T which is countable.

Let us mention that there exists a topological space which is second-countable
and non empty.

9. Borel Families of Subsets

Let us consider T . Observe that TotFam T is non empty, all-open-containing,
closed for complement operator, and closed for countable unions.

We now state four propositions:

(61) For every set T and for every sequence A of subsets of T holds rng A is
a countable non empty family of subsets of T .

(62) Let T , F be sets. Then F is a σ-field of subsets of T if and only if F is
a closed for complement operator σ-field of subsets-like non empty family
of subsets of T .

(63) For all families F , G of subsets of T such that F is all-open-containing
and F ⊆ G holds G is all-open-containing.

(64) Let F , G be families of subsets of T . Suppose F is all-closed-containing
and F ⊆ G. Then G is all-closed-containing.

Let T be a 1-sorted structure. A σ-field of subsets of T is a σ-field of subsets
of the carrier of T .

Let T be a non empty topological space. Note that there exists a family
of subsets of T which is closed for complement operator, closed for count-
able unions, closed for countable meets, all-closed-containing, and all-open-
containing.

We now state the proposition

(65) σ(TotFam T ) is all-open-containing, closed for complement operator, and
closed for countable unions.

Let us consider T . One can verify that σ(TotFam T ) is all-open-containing,
closed for complement operator, and closed for countable unions.

Let T be a non empty 1-sorted structure. Note that there exists a family
of subsets of T which is σ-field of subsets-like, closed for complement operator,
closed for countable unions, and non empty.

Let T be a non empty topological space. One can verify that every σ-field
of subsets of T is closed for countable unions.

We now state the proposition
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(66) Let T be a non empty topological space and F be a family of subsets of
T . Suppose F is closed for complement operator and closed for countable
unions. Then F is a σ-field of subsets of T .

Let T be a non empty topological space. Note that there exists a σ-field of
subsets of T which is all-open-containing.

Let T be a non empty topological space. Note that Topology(T ) is open and
all-open-containing.

We now state the proposition
(67) Let X be a family of subsets of T . Then there exists an all-open-

containing closed for complement operator closed for countable unions
family Y of subsets of T such that

(i) X ⊆ Y, and
(ii) for every all-open-containing closed for complement operator closed for

countable unions family Z of subsets of T such that X ⊆ Z holds Y ⊆ Z.

Let us consider T . The functor BorelSets T yields an all-open-containing
closed for complement operator closed for countable unions family of subsets of
T and is defined by the condition (Def. 11).

(Def. 11) Let G be an all-open-containing closed for complement operator closed
for countable unions family of subsets of T . Then BorelSets T ⊆ G.

Next we state three propositions:
(68) For every closed family F of subsets of T holds F ⊆ BorelSets T.

(69) For every open family F of subsets of T holds F ⊆ BorelSets T.

(70) BorelSets T = σ(Topology(T )).
Let us consider T , A. We say that A is Borel if and only if:

(Def. 12) A ∈ BorelSets T.

Let us consider T . Note that every subset of T which is Fσ is also Borel.
Let us consider T . Note that every subset of T which is Gδ is also Borel.
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One can prove the following propositions:
(1) Let F , G, H be finite sequences of elements of R. Suppose that
(i) for every natural number i such that i ∈ dom F holds 0R ≤ F (i),
(ii) for every natural number i such that i ∈ dom G holds 0R ≤ G(i),
(iii) dom F = dom G, and
(iv) H = F + G.

Then
∑

H =
∑

F +
∑

G.

(2) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, n be a natural number, f be a partial function from X

to R, F be a finite sequence of separated subsets of S, and a, x be finite
sequences of elements of R. Suppose that f is simple function in S and
dom f 6= ∅ and for every set x such that x ∈ dom f holds 0R ≤ f(x) and
F and a are representation of f and dom x = dom F and for every natural
number i such that i ∈ dom x holds x(i) = a(i) · (M ·F )(i) and lenF = n.

Then
∫
X

f dM =
∑

x.

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young

Scientists (B)16700156.
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(3) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial
function from X to R, M be a σ-measure on S, F be a finite sequence
of separated subsets of S, and a, x be finite sequences of elements of R.
Suppose that

(i) f is simple function in S,
(ii) dom f 6= ∅,
(iii) for every set x such that x ∈ dom f holds 0R ≤ f(x),
(iv) F and a are representation of f ,
(v) dom x = dom F, and
(vi) for every natural number n such that n ∈ dom x holds x(n) = a(n) ·

(M · F )(n).
Then

∫
X

f dM =
∑

x.

(4) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial
function from X to R, and M be a σ-measure on S. Suppose f is simple
function in S and dom f 6= ∅ and for every set x such that x ∈ dom f holds
0R ≤ f(x). Then there exists a finite sequence F of separated subsets of
S and there exist finite sequences a, x of elements of R such that

(i) F and a are representation of f ,
(ii) dom x = dom F,

(iii) for every natural number n such that n ∈ dom x holds x(n) = a(n) ·
(M · F )(n), and

(iv)
∫
X

f dM =
∑

x.

(5) Let X be a non empty set, S be a σ-field of subsets of X, M be a
σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) f is simple function in S,
(ii) dom f 6= ∅,
(iii) for every set x such that x ∈ dom f holds 0R ≤ f(x),
(iv) g is simple function in S,
(v) dom g = dom f, and
(vi) for every set x such that x ∈ dom g holds 0R ≤ g(x).

Then
(vii) f + g is simple function in S,
(viii) dom(f + g) 6= ∅,
(ix) for every set x such that x ∈ dom(f + g) holds 0R ≤ (f + g)(x), and
(x)

∫
X

f + g dM =
∫
X

f dM +
∫
X

g dM.

(6) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, f , g be partial functions from X to R, and c be an extended
real number. Suppose that f is simple function in S and dom f 6= ∅ and
for every set x such that x ∈ dom f holds 0R ≤ f(x) and 0R ≤ c and
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c < +∞ and dom g = dom f and for every set x such that x ∈ dom g

holds g(x) = c · f(x). Then
∫
X

g dM = c ·
∫
X

f dM.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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We use the following convention: n is a natural number, p1, p2 are points of
En

T, and a, b, c, d are real numbers.
Let us consider a, b, c, d. One can verify that ClosedInsideOfRectangle(a, b, c,

d) is convex.
Let us consider a, b, c, d. Observe that Trectangle(a, b, c, d) is convex.
The following propositions are true:

(1) Let e be a positive real number and g be a continuous map from I into
En

T. Then there exists a finite sequence h of elements of R such that
(i) h(1) = 0,

(ii) h(lenh) = 1,

(iii) 5 ≤ lenh,

(iv) rng h ⊆ the carrier of I,
(v) h is increasing, and
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(vi) for every natural number i and for every subset Q of I and for every
subset W of En such that 1 ≤ i and i < lenh and Q = [hi, hi+1] and
W = g◦Q holds ∅W < e.

(2) For every subset P of En
T such that P ⊆ L(p1, p2) and p1 ∈ P and p2 ∈ P

and P is connected holds P = L(p1, p2).
(3) For every path g from p1 to p2 such that rng g ⊆ L(p1, p2) holds rng g =

L(p1, p2).
(4) Let P , Q be non empty subsets of E2

T, p1, p2, q1, q2 be points of E2
T, f

be a path from p1 to p2, and g be a path from q1 to q2. Suppose that
(i) rng f = P,

(ii) rng g = Q,

(iii) for every point p of E2
T such that p ∈ P holds (p1)1 ≤ p1 and p1 ≤ (p2)1,

(iv) for every point p of E2
T such that p ∈ Q holds (p1)1 ≤ p1 and p1 ≤ (p2)1,

(v) for every point p of E2
T such that p ∈ P holds (q1)2 ≤ p2 and p2 ≤ (q2)2,

and
(vi) for every point p of E2

T such that p ∈ Q holds (q1)2 ≤ p2 and p2 ≤ (q2)2.

Then P meets Q.
(5) Let f , g be continuous maps from I into E2

T and O, I be points of I.
Suppose that O = 0 and I = 1 and f(O)1 = a and f(I)1 = b and
g(O)2 = c and g(I)2 = d and for every point r of I holds a ≤ f(r)1 and
f(r)1 ≤ b and a ≤ g(r)1 and g(r)1 ≤ b and c ≤ f(r)2 and f(r)2 ≤ d and
c ≤ g(r)2 and g(r)2 ≤ d. Then rng f meets rng g.

(6) Let a1, b1, c1, d1 be points of Trectangle(a, b, c, d), h be a path from a1

to b1, v be a path from d1 to c1, and A1, B1, C1, D1 be points of E2
T.

Suppose (A1)1 = a and (B1)1 = b and (C1)2 = c and (D1)2 = d and
a1 = A1 and b1 = B1 and c1 = C1 and d1 = D1. Then there exist points
s, t of I such that h(s) = v(t).
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We adopt the following rules: r, s denote real numbers, X denotes a set,
and f , g, h denote real-yielding functions.

The following propositions are true:
(1) For all real numbers a, b, c such that |a − b| ≤ c holds b − c ≤ a and

a ≤ b + c.

(2) If r < s, then ]−∞, r] misses [s,+∞[.
(3) If r ≤ s, then ]−∞, r[ misses ]s,+∞[.
(4) If f ⊆ g, then h− f ⊆ h− g.

(5) If f ⊆ g, then f − h ⊆ g − h.

1http://planetmath.org/encyclopedia/ProofOfTietzeExtensionTheorem2.html
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Let f be a real-yielding function, let r be a real number, and let X be a set.
We say that f is absolutely bounded by r in X if and only if:

(Def. 1) For every set x such that x ∈ X ∩ dom f holds |f(x)| ≤ r.

Let us mention that there exists a sequence of real numbers which is
summable, constant, and convergent.

We now state the proposition
(6) For every empty topological space T1 and for every topological space T2

holds every map from T1 into T2 is continuous.

Let T1 be a topological space and let T2 be a non empty topological space.
Observe that there exists a map from T1 into T2 which is continuous.

We now state several propositions:
(7) For all summable sequences f , g of real numbers such that for every

natural number n holds f(n) ≤ g(n) holds
∑

f ≤
∑

g.

(8) For every sequence f of real numbers such that f is absolutely summable
holds |

∑
f | ≤

∑
|f |.

(9) Let f be a sequence of real numbers and a, r be positive real numbers.
Suppose r < 1 and for every natural number n holds |f(n)− f(n + 1)| ≤
a ·rn. Then f is convergent and for every natural number n holds | lim f −
f(n)| ≤ a·rn

1−r .

(10) Let f be a sequence of real numbers and a, r be positive real numbers.
Suppose r < 1 and for every natural number n holds |f(n)− f(n + 1)| ≤
a · rn. Then lim f ≥ f(0)− a

1−r and lim f ≤ f(0) + a
1−r .

(11) Let X, Z be non empty sets and F be a sequence of partial functions
from X into R. Suppose Z is common for elements of F . Let a, r be
positive real numbers. Suppose r < 1 and for every natural number n holds
F (n)−F (n + 1) is absolutely bounded by a · rn in Z. Then F is uniform-
convergent on Z and for every natural number n holds limZF − F (n) is
absolutely bounded by a·rn

1−r in Z.
(12) Let X, Z be non empty sets and F be a sequence of partial functions

from X into R. Suppose Z is common for elements of F . Let a, r be
positive real numbers. Suppose r < 1 and for every natural number n holds
F (n)−F (n+1) is absolutely bounded by a · rn in Z. Let z be an element
of Z. Then (limZF )(z) ≥ F (0)(z)− a

1−r and (limZF )(z) ≤ F (0)(z)+ a
1−r .

(13) Let X, Z be non empty sets and F be a sequence of partial functions
from X into R. Suppose Z is common for elements of F . Let a, r be
positive real numbers and f be a function from Z into R. Suppose r < 1
and for every natural number n holds F (n)− f is absolutely bounded by
a · rn in Z. Then F is point-convergent on Z and limZF = f.

Let S, T be topological structures, let A be an empty subset of S, and let f

be a map from S into T . Note that f�A is empty.
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Let T be a topological space and let A be a closed subset of T . Note that
T �A is closed.

The following propositions are true:
(14) Let X, Y be non empty topological spaces, X1, X2 be non empty sub-

spaces of X, f1 be a map from X1 into Y , and f2 be a map from X2 into
Y . Suppose X1 misses X2 or f1�(X1 ∩ X2) = f2�(X1 ∩ X2). Let x be a
point of X. Then

(i) if x ∈ the carrier of X1, then (f1 ∪ f2)(x) = f1(x), and
(ii) if x ∈ the carrier of X2, then (f1 ∪ f2)(x) = f2(x).

(15) Let X, Y be non empty topological spaces, X1, X2 be non empty
subspaces of X, f1 be a map from X1 into Y , and f2 be a map from
X2 into Y . If X1 misses X2 or f1�(X1 ∩ X2) = f2�(X1 ∩ X2), then
rng(f1 ∪ f2) ⊆ rng f1 ∪ rng f2.

(16) Let X, Y be non empty topological spaces, X1, X2 be non empty sub-
spaces of X, f1 be a map from X1 into Y , and f2 be a map from X2 into
Y . Suppose X1 misses X2 or f1�(X1∩X2) = f2�(X1∩X2). Then for every
subset A of X1 holds (f1 ∪ f2)◦A = f1

◦A and for every subset A of X2

holds (f1 ∪ f2)◦A = f2
◦A.

(17) If f ⊆ g and g is absolutely bounded by r in X, then f is absolutely
bounded by r in X.

(18) If X ⊆ dom f or dom g ⊆ dom f and if f�X = g�X and if f is absolutely
bounded by r in X, then g is absolutely bounded by r in X.

In the sequel T is a non empty topological space and A is a closed subset of
T .

One can prove the following propositions:
(19) Suppose r > 0 and T is T4. Let f be a continuous map from T �A into

R1. Suppose f is absolutely bounded by r in A. Then there exists a
continuous map g from T into R1 such that g is absolutely bounded by r

3

in dom g and f − g is absolutely bounded by 2·r
3 in A.

(20) Suppose that for all non empty closed subsets A, B of T such that
A misses B there exists a continuous map f from T into R1 such that
f◦A = {0} and f◦B = {1}. Then T is a T4 space.

(21) Let f be a map from T into R1 and x be a point of T . Then f is
continuous at x if and only if for every real number e such that e > 0
there exists a subset H of T such that H is open and x ∈ H and for every
point y of T such that y ∈ H holds |f(y)− f(x)| < e.

(22) Let F be a sequence of partial functions from the carrier of T into R.
Suppose that

(i) F is uniform-convergent on the carrier of T , and
(ii) for every natural number i holds F (i) is a continuous map from T into
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R1.
Then limthe carrier of T F is a continuous map from T into R1.

(23) Let T be a non empty topological space, f be a map from T into R1,
and r be a positive real number. Then f is absolutely bounded by r in
the carrier of T if and only if f is a map from T into [−r, r]T.

(24) If f−g is absolutely bounded by r in X, then g−f is absolutely bounded
by r in X.

(25) Suppose T is T4. Let given A and f be a map from T �A into [−1, 1]T.
Suppose f is continuous. Then there exists a continuous map g from T

into [−1, 1]T such that g�A = f.

(26) Suppose that for every non empty closed subset A of T and for every
continuous map f from T �A into [−1, 1]T there exists a continuous map
g from T into [−1, 1]T such that g�A = f. Then T is T4.
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[4] Czes law Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
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The notation and terminology used in this paper are introduced in the following
articles: [20], [21], [1], [3], [22], [4], [5], [19], [10], [18], [7], [17], [11], [2], [8], [9],
[16], [13], [14], [15], [6], [23], and [12].

In this paper p1, p2 are points of E2
T, C is a simple closed curve, and P is a

subset of E2
T.

Let n be a natural number, let A be a subset of En
T, and let a, b be points

of En
T. We say that a and b realize maximal distance in A if and only if:

(Def. 1) a ∈ A and b ∈ A and for all points x, y of En
T such that x ∈ A and y ∈ A

holds ρ(a, b) ≥ ρ(x, y).
Next we state the proposition

(1) There exist p1, p2 such that p1 and p2 realize maximal distance in C.
Let M be a non empty metric structure and let f be a map from Mtop into

Mtop. We say that f is isometric if and only if:
(Def. 2) There exists an isometric map g from M into M such that g = f.

Let M be a non empty metric structure. Note that there exists a map from
Mtop into Mtop which is isometric.

Let M be a non empty metric space. Observe that every map from Mtop

into Mtop which is isometric is also continuous.
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Let M be a non empty metric space. Note that every map from Mtop into
Mtop which is isometric is also homeomorphism.

Let a be a real number. The functor Rotate a yields a map from E2
T into E2

T

and is defined as follows:

(Def. 3) For every point p of E2
T holds (Rotate a)(p) = [<(p1 + p2 · i 	 a),=(p1 +

p2 · i 	 a)], where a = [r1, 0] and r1 = −1.
The following propositions are true:

(2) Let a be a real number. Suppose 0 ≤ a and a < 2·π. Let f be a map from
(E2)top into (E2)top. If f = Rotate a, then f is isometric, where a = [r1, 0]
and r1 = −1.

(3) Let A, B, D be real numbers. Suppose p1 and p2 real-
ize maximal distance in P . Then (AffineMap(A,B, A,D))(p1) and
(AffineMap(A,B, A,D))(p2) realize maximal distance in (AffineMap(A,B,

A,D))◦P.

(4) Let A be a real number. Suppose 0 ≤ A and A < 2 · π and p1 and p2

realize maximal distance in P . Then (Rotate A)(p1) and (Rotate A)(p2)
realize maximal distance in (Rotate A)◦P.

(5) For every complex number z and for every real number r holds z 	 −r =
z 	 2 · π − r.

(6) For every real number r holds Rotate(−r) = Rotate(2 · π − r).
(7) There exists a homeomorphism f of E2

T such that [−1, 0] and [1, 0] realize
maximal distance in f◦C.

Let T1, T2 be topological structures and let f be a map from T1 into T2. We
say that f is closed if and only if:

(Def. 4) For every subset A of T1 such that A is closed holds f◦A is closed.
One can prove the following propositions:

(8) Let X, Y be non empty topological spaces and f be a continuous map
from X into Y . Suppose f is one-to-one and onto. Then f is a homeo-
morphism if and only if f is closed.

(9) For every set X and for every subset A of X holds Ac = ∅ iff A = X.

(10) Let T1, T2 be non empty topological spaces and f be a map from T1

into T2. Suppose f is a homeomorphism. Let A be a subset of T1. If A is
connected, then f◦A is connected.

(11) Let T1, T2 be non empty topological spaces and f be a map from T1 into
T2. Suppose f is a homeomorphism. Let A be a subset of T1. If A is a
component of T1, then f◦A is a component of T2.

(12) Let T1, T2 be non empty topological spaces, f be a map from T1 into
T2, and A be a subset of T1. Then f�A is a map from T1�A into T2�f◦A.

(13) Let T1, T2 be non empty topological spaces and f be a map from T1 into
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T2. Suppose f is continuous. Let A be a subset of T1 and g be a map
from T1�A into T2�f◦A. If g = f�A, then g is continuous.

(14) Let T1, T2 be non empty topological spaces and f be a map from T1 into
T2. Suppose f is a homeomorphism. Let A be a subset of T1 and g be a
map from T1�A into T2�f◦A. If g = f�A, then g is a homeomorphism.

(15) Let T1, T2 be non empty topological spaces and f be a map from T1 into
T2. Suppose f is a homeomorphism. Let A, B be subsets of T1. If A is a
component of B, then f◦A is a component of f◦B.

(16) For every subset S of E2
T and for every homeomorphism f of E2

T such
that S is Jordan holds f◦S is Jordan.
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The articles [44], [47], [9], [1], [45], [48], [5], [8], [6], [4], [7], [10], [43], [21], [2],
[40], [39], [49], [46], [12], [11], [37], [38], [33], [22], [3], [13], [18], [15], [16], [14],
[31], [32], [35], [20], [34], [30], [25], [26], [19], [29], [24], [23], [36], [41], [28], and
[27] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: a, b, c, d, r, s denote real
numbers, n denotes a natural number, p, p1, p2 denote points of E2

T, x, y denote
points of En

T, C denotes a simple closed curve, A, B, P denote subsets of E2
T,

U , V denote subsets of (E2
T)�Cc, and D denotes a compact middle-intersecting

subset of E2
T.

Let M be a symmetric triangle Reflexive metric structure and let x, y be
points of M . One can verify that ρ(x, y) is non negative.

Let n be a natural number and let x, y be points of En
T. Note that ρ(x, y) is

non negative.
Let n be a natural number and let x, y be points of En

T. Observe that |x−y|
is non negative.

We now state several propositions:
(1) For all points p1, p2 of En

T such that p1 6= p2 holds 1
2 · (p1 + p2) 6= p1.
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(2) If (p1)2 < (p2)2, then (p1)2 < (1
2 · (p1 + p2))2.

(3) If (p1)2 < (p2)2, then (1
2 · (p1 + p2))2 < (p2)2.

(4) For every vertical subset A of E2
T holds A ∩B is vertical.

(5) For every horizontal subset A of E2
T holds A ∩B is horizontal.

(6) If p ∈ L(p1, p2) and L(p1, p2) is vertical, then L(p, p2) is vertical.
(7) If p ∈ L(p1, p2) and L(p1, p2) is horizontal, then L(p, p2) is horizontal.
Let P be a subset of E2

T. One can verify the following observations:
∗ L(SW-corner(P ),SE-corner(P )) is horizontal,
∗ L(NW-corner(P ),SW-corner(P )) is vertical, and
∗ L(NE-corner(P ),SE-corner(P )) is vertical.
Let P be a subset of E2

T. One can check the following observations:
∗ L(SE-corner(P ),SW-corner(P )) is horizontal,
∗ L(SW-corner(P ),NW-corner(P )) is vertical, and
∗ L(SE-corner(P ),NE-corner(P )) is vertical.
Let us note that every subset of E2

T which is vertical, non empty, and compact
is also middle-intersecting.

The following propositions are true:
(8) For all non empty compact subsets X, Y of E2

T such that X ⊆ Y but
Wmin(Y ) ∈ X or Wmax(Y ) ∈ X holds W-bound(X) = W-bound(Y ).

(9) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y but

Emin(Y ) ∈ X or Emax(Y ) ∈ X holds E-bound(X) = E-bound(Y ).
(10) For all non empty compact subsets X, Y of E2

T such that X ⊆ Y but
Nmin(Y ) ∈ X or Nmax(Y ) ∈ X holds N-bound(X) = N-bound(Y ).

(11) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y but

Smin(Y ) ∈ X or Smax(Y ) ∈ X holds S-bound(X) = S-bound(Y ).
(12) W-bound(C) = W-bound(NorthArc(C)).
(13) E-bound(C) = E-bound(NorthArc(C)).
(14) W-bound(C) = W-bound(SouthArc(C)).
(15) E-bound(C) = E-bound(SouthArc(C)).
(16) If (p1)1 ≤ r and r ≤ (p2)1, then L(p1, p2) meets VerticalLine(r).
(17) If (p1)2 ≤ r and r ≤ (p2)2, then L(p1, p2) meets HorizontalLine(r).

Let us consider n. One can check that every subset of En
T which is empty is

also Bounded and every subset of En
T which is non Bounded is also non empty.

Let n be a non empty natural number. Note that there exists a subset of En
T

which is open, closed, non Bounded, and convex.
Next we state several propositions:

(18) For every compact subset C of E2
T holds NorthHalfline UMP C\{UMPC}

misses C.
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(19) For every compact subset C of E2
T holds SouthHalfline LMPC\{LMPC}

misses C.
(20) For every compact subset C of E2

T holds NorthHalfline UMPC \
{UMPC} ⊆ UBD C.

(21) For every compact subset C of E2
T holds SouthHalfline LMP C \

{LMPC} ⊆ UBD C.

(22) If A is an inside component of B, then UBD B misses A.
(23) If A is an outside component of B, then BDD B misses A.

One can prove the following propositions:
(24) For every positive real number r and for every point a of En

T holds a ∈
Ball(a, r).

(25) For every non negative real number r holds every point p of En
T is a point

of Tdisk(p, r).
Let r be a positive real number, let n be a non empty natural number, and

let p, q be points of En
T. Observe that Ball(p, r) \ {q} is non empty.

We now state several propositions:
(26) If r ≤ s, then Ball(x, r) ⊆ Ball(x, s).
(27) Ball(x, r) \ Ball(x, r) = Sphere(x, r).
(28) If y ∈ Sphere(x, r), then L(x, y) \ {x, y} ⊆ Ball(x, r).
(29) If r < s, then Ball(x, r) ⊆ Ball(x, s).
(30) If r < s, then Sphere(x, r) ⊆ Ball(x, s).
(31) For every non zero real number r holds Ball(x, r) = Ball(x, r).
(32) For every non zero real number r holds FrBall(x, r) = Sphere(x, r).

Let n be a non empty natural number. Note that every subset of En
T which

is Bounded is also proper.
Let us consider n. Note that there exists a subset of En

T which is non empty,
closed, convex, and Bounded and there exists a subset of En

T which is non empty,
open, convex, and Bounded.

Let n be a natural number and let A be a Bounded subset of En
T. Observe

that A is Bounded.
Let n be a natural number and let A be a Bounded subset of En

T. One can
check that FrA is Bounded.

The following propositions are true:
(33) Let A be a closed subset of En

T and p be a point of En
T. If p /∈ A, then

there exists a positive real number r such that Ball(p, r) misses A.
(34) For every Bounded subset A of En

T and for every point a of En
T there

exists a positive real number r such that A ⊆ Ball(a, r).
(35) For all topological structures S, T and for every map f from S into T

such that f is a homeomorphism holds f is onto.
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(36) Let T be a topological space, S be a subspace of T , A be a subset of T ,
and B be a subset of S. If A = B, then T �A = S�B.

Let T be a non empty T2 topological space. Note that every non empty
subspace of T is T2.

Let us consider p, r. Observe that Tdisk(p, r) is closed.
Let us consider p, r. Observe that Tdisk(p, r) is compact.

2. Paths

Next we state a number of propositions:
(37) Let T be a non empty topological space, a, b be points of T , and f be a

path from a to b. If a, b are connected, then rng f is connected.
(38) Let X be a non empty topological space, Y be a non empty subspace

of X, x1, x2 be points of X, y1, y2 be points of Y , and f be a path from
x1 to x2. Suppose x1 = y1 and x2 = y2 and x1, x2 are connected and
rng f ⊆ the carrier of Y . Then y1, y2 are connected and f is a path from
y1 to y2.

(39) Let X be an arcwise connected non empty topological space, Y be a non
empty subspace of X, x1, x2 be points of X, y1, y2 be points of Y , and f

be a path from x1 to x2. Suppose x1 = y1 and x2 = y2 and rng f ⊆ the
carrier of Y . Then y1, y2 are connected and f is a path from y1 to y2.

(40) Let T be a non empty topological space, a, b be points of T , and f be a
path from a to b. If a, b are connected, then rng f = rng(−f).

(41) Let T be an arcwise connected non empty topological space, a, b be
points of T , and f be a path from a to b. Then rng f = rng(−f).

(42) Let T be a non empty topological space, a, b, c be points of T , f be a
path from a to b, and g be a path from b to c. If a, b are connected and
b, c are connected, then rng f ⊆ rng(f + g).

(43) Let T be an arcwise connected non empty topological space, a, b, c be
points of T , f be a path from a to b, and g be a path from b to c. Then
rng f ⊆ rng(f + g).

(44) Let T be a non empty topological space, a, b, c be points of T , f be a
path from b to c, and g be a path from a to b. If a, b are connected and
b, c are connected, then rng f ⊆ rng(g + f).

(45) Let T be an arcwise connected non empty topological space, a, b, c be
points of T , f be a path from b to c, and g be a path from a to b. Then
rng f ⊆ rng(g + f).

(46) Let T be a non empty topological space, a, b, c be points of T , f be a
path from a to b, and g be a path from b to c. If a, b are connected and
b, c are connected, then rng(f + g) = rng f ∪ rng g.
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(47) Let T be an arcwise connected non empty topological space, a, b, c be
points of T , f be a path from a to b, and g be a path from b to c. Then
rng(f + g) = rng f ∪ rng g.

(48) Let T be a non empty topological space, a, b, c, d be points of T , f be
a path from a to b, g be a path from b to c, and h be a path from c to d.
Suppose a, b are connected and b, c are connected and c, d are connected.
Then rng(f + g + h) = rng f ∪ rng g ∪ rng h.

(49) Let T be an arcwise connected non empty topological space, a, b, c, d

be points of T , f be a path from a to b, g be a path from b to c, and h be
a path from c to d. Then rng(f + g + h) = rng f ∪ rng g ∪ rng h.

(50) For every non empty topological space T and for every point a of T holds
I 7−→ a is a path from a to a.

(51) Let p1, p2 be points of En
T and P be a subset of En

T. Suppose P is an arc
from p1 to p2. Then there exists a path F from p1 to p2 and there exists
a map f from I into (En

T)�P such that rng f = P and F = f.

(52) Let p1, p2 be points of En
T. Then there exists a path F from p1 to p2 and

there exists a map f from I into (En
T)�L(p1, p2) such that rng f = L(p1, p2)

and F = f.

(53) Let p1, p2, q1, q2 be points of E2
T. Suppose P is an arc from p1 to p2 and

q1 ∈ P and q2 ∈ P and q1 6= p1 and q1 6= p2 and q2 6= p1 and q2 6= p2.

Then there exists a path f from q1 to q2 such that rng f ⊆ P and rng f

misses {p1, p2}.

3. Rectangles

Next we state three propositions:
(54) If a ≤ b and c ≤ d, then Rectangle(a, b, c, d) ⊆ ClosedInsideOfRectangle

(a, b, c, d).
(55) InsideOfRectangle(a, b, c, d) ⊆ ClosedInsideOfRectangle(a, b, c, d).
(56) ClosedInsideOfRectangle(a, b, c, d) = (OutsideOfRectangle(a, b, c, d))c.

Let a, b, c, d be real numbers. Note that ClosedInsideOfRectangle(a, b, c, d)
is closed.

One can prove the following propositions:
(57) ClosedInsideOfRectangle(a, b, c, d) misses OutsideOfRectangle(a, b, c, d).
(58) ClosedInsideOfRectangle(a, b, c, d) ∩ InsideOfRectangle(a, b, c, d) =

InsideOfRectangle(a, b, c, d).
(59) If a < b and c < d, then Int ClosedInsideOfRectangle(a, b, c, d) =

InsideOfRectangle(a, b, c, d).
(60) If a ≤ b and c ≤ d, then ClosedInsideOfRectangle(a, b, c, d) \

InsideOfRectangle(a, b, c, d) = Rectangle(a, b, c, d).
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(61) If a < b and c < d, then FrClosedInsideOfRectangle(a, b, c, d) =
Rectangle(a, b, c, d).

(62) If a ≤ b and c ≤ d, then W-bound(ClosedInsideOfRectangle(a, b, c, d)) =
a.

(63) If a ≤ b and c ≤ d, then S-bound(ClosedInsideOfRectangle(a, b, c, d)) =
c.

(64) If a ≤ b and c ≤ d, then E-bound(ClosedInsideOfRectangle(a, b, c, d)) =
b.

(65) If a ≤ b and c ≤ d, then N-bound(ClosedInsideOfRectangle(a, b, c, d)) =
d.

(66) If a < b and c < d and p1 ∈ ClosedInsideOfRectangle(a, b, c, d)
and p2 /∈ ClosedInsideOfRectangle(a, b, c, d) and P is an arc from p1

to p2, then Segment(P, p1, p2, p1,FPoint(P, p1, p2,Rectangle(a, b, c, d))) ⊆
ClosedInsideOfRectangle(a, b, c, d).

4. Some Useful Functions

Let S, T be non empty topological spaces and let x be a point of [: S, T :].
Then x1 is an element of S, and x2 is an element of T .

Let o be a point of E2
T. The functor (�2)1 − o1 yielding a real map of [: E2

T,

E2
T :] is defined as follows:

(Def. 1) For every point x of [: E2
T, E2

T :] holds ((�2)1 − o1)(x) = (x2)1 − o1.

The functor (�2)2 − o2 yields a real map of [: E2
T, E2

T :] and is defined as follows:
(Def. 2) For every point x of [: E2

T, E2
T :] holds ((�2)2 − o2)(x) = (x2)2 − o2.

The real map (�1)1 − (�2)1 of [: E2
T, E2

T :] is defined as follows:
(Def. 3) For every point x of [: E2

T, E2
T :] holds ((�1)1− (�2)1)(x) = (x1)1− (x2)1.

The real map (�1)2 − (�2)2 of [: E2
T, E2

T :] is defined as follows:
(Def. 4) For every point x of [: E2

T, E2
T :] holds ((�1)2− (�2)2)(x) = (x1)2− (x2)2.

The real map (�2)1 of [: E2
T, E2

T :] is defined as follows:
(Def. 5) For every point x of [: E2

T, E2
T :] holds (�2)1(x) = (x2)1.

The real map (�2)2 of [: E2
T, E2

T :] is defined by:
(Def. 6) For every point x of [: E2

T, E2
T :] holds (�2)2(x) = (x2)2.

One can prove the following propositions:
(67) For every point o of E2

T holds (�2)1 − o1 is a continuous map from [: E2
T,

E2
T :] into R1.

(68) For every point o of E2
T holds (�2)2 − o2 is a continuous map from [: E2

T,

E2
T :] into R1.

(69) (�1)1 − (�2)1 is a continuous map from [: E2
T, E2

T :] into R1.



jordan curve theorem 487

(70) (�1)2 − (�2)2 is a continuous map from [: E2
T, E2

T :] into R1.
(71) (�2)1 is a continuous map from [: E2

T, E2
T :] into R1.

(72) (�2)2 is a continuous map from [: E2
T, E2

T :] into R1.
Let o be a point of E2

T. One can check that (�2)1 − o1 is continuous and
(�2)2 − o2 is continuous.

One can check the following observations:
∗ (�1)1 − (�2)1 is continuous,
∗ (�1)2 − (�2)2 is continuous,
∗ (�2)1 is continuous, and
∗ (�2)2 is continuous.
Let n be a non empty natural number, let o, p be points of En

T, and let r be a
positive real number. Let us assume that p is a point of Tdisk(o, r). The functor
DiskProj(o, r, p) yielding a map from (En

T)�(Ball(o, r) \ {p}) into Tcircle(o, r) is
defined by:

(Def. 7) For every point x of (En
T)�(Ball(o, r) \ {p}) there exists a point y of En

T

such that x = y and (DiskProj(o, r, p))(x) = HC(p, y, o, r).
The following propositions are true:

(73) Let o, p be points of E2
T and r be a positive real number. If p is a point

of Tdisk(o, r), then DiskProj(o, r, p) is continuous.
(74) Let n be a non empty natural number, o, p be points of

En
T, and r be a positive real number. If p ∈ Ball(o, r), then

DiskProj(o, r, p)�Sphere(o, r) = idSphere(o,r).

Let n be a non empty natural number, let o, p be points of En
T, and let

r be a positive real number. Let us assume that p ∈ Ball(o, r). The functor
RotateCircle(o, r, p) yields a map from Tcircle(o, r) into Tcircle(o, r) and is de-
fined by:

(Def. 8) For every point x of Tcircle(o, r) there exists a point y of En
T such that

x = y and (RotateCircle(o, r, p))(x) = HC(y, p, o, r).
One can prove the following propositions:

(75) For all points o, p of E2
T and for every positive real number r such that

p ∈ Ball(o, r) holds RotateCircle(o, r, p) is continuous.
(76) Let n be a non empty natural number, o, p be points of En

T, and r be
a positive real number. If p ∈ Ball(o, r), then RotateCircle(o, r, p) has no
fixpoint.
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5. Jordan Curve Theorem

The following propositions are true:

(77) If U = P and U is a component of (E2
T)�Cc and V is a component of

(E2
T)�Cc and U 6= V, then P misses V .

(78) If U is a component of (E2
T)�Cc, then (E2

T)�Cc�U is arcwise connected.

(79) If U = P and U is a component of (E2
T)�Cc, then C = FrP.

One can prove the following propositions:

(80) For every homeomorphism h of E2
T holds h◦C satisfies conditions of sim-

ple closed curve.

(81) If [−1, 0] and [1, 0] realize maximal distance in P , then P ⊆
ClosedInsideOfRectangle(−1, 1,−3, 3).

(82) If [−1, 0] and [1, 0] realize maximal distance in P , then P misses L([−1,

3], [1, 3]).

(83) If [−1, 0] and [1, 0] realize maximal distance in P , then P misses L([−1,

−3], [1,−3]).

(84) If [−1, 0] and [1, 0] realize maximal distance in P , then P ∩
Rectangle(−1, 1,−3, 3) = {[−1, 0], [1, 0]}.

(85) If [−1, 0] and [1, 0] realize maximal distance in P , then W-bound(P ) =
−1.

(86) If [−1, 0] and [1, 0] realize maximal distance in P , then E-bound(P ) = 1.

(87) For every compact subset P of E2
T such that [−1, 0] and [1, 0] realize

maximal distance in P holds Wmost(P ) = {[−1, 0]}.
(88) For every compact subset P of E2

T such that [−1, 0] and [1, 0] realize
maximal distance in P holds Emost(P ) = {[1, 0]}.

(89) Let P be a compact subset of E2
T. Suppose [−1, 0] and [1, 0] realize

maximal distance in P . Then Wmin(P ) = [−1, 0] and Wmax(P ) = [−1, 0].

(90) Let P be a compact subset of E2
T. Suppose [−1, 0] and [1, 0] realize

maximal distance in P . Then Emin(P ) = [1, 0] and Emax(P ) = [1, 0].

(91) If [−1, 0] and [1, 0] realize maximal distance in P , then L([0, 3],UMPP )
is vertical.

(92) If [−1, 0] and [1, 0] realize maximal distance in P , then L(LMPP, [0,−3])
is vertical.

(93) If [−1, 0] and [1, 0] realize maximal distance in P and p ∈ P, then p2 < 3.

(94) If [−1, 0] and [1, 0] realize maximal distance in P and p ∈ P, then −3 <

p2.

(95) If [−1, 0] and [1, 0] realize maximal distance in D and p ∈ L([0,

3],UMPD), then (UMP D)2 ≤ p2.
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(96) If [−1, 0] and [1, 0] realize maximal distance in D and p ∈ L(LMPD, [0,

−3]), then p2 ≤ (LMPD)2.

(97) If [−1, 0] and [1, 0] realize maximal distance in D, then L([0,

3],UMPD) ⊆ NorthHalfline UMPD.

(98) If [−1, 0] and [1, 0] realize maximal distance in D, then L(LMPD, [0,

−3]) ⊆ SouthHalfline LMPD.

(99) If [−1, 0] and [1, 0] realize maximal distance in C and P is an inside
component of C, then L([0, 3],UMPC) misses P .

(100) If [−1, 0] and [1, 0] realize maximal distance in C and P is an inside
component of C, then L(LMPC, [0,−3]) misses P .

(101) If [−1, 0] and [1, 0] realize maximal distance in D, then L([0, 3],UMPD)∩
D = {UMPD}.

(102) If [−1, 0] and [1, 0] realize maximal distance in D, then L([0,

−3],LMPD) ∩D = {LMPD}.
(103) Suppose P is compact and [−1, 0] and [1, 0] realize maximal dis-

tance in P and A is an inside component of P . Then A ⊆
ClosedInsideOfRectangle(−1, 1,−3, 3).

(104) If [−1, 0] and [1, 0] realize maximal distance in C, then L([0, 3], [0,−3])
meets C.

(105) Suppose [−1, 0] and [1, 0] realize maximal distance in C. Let J1, J2 be
compact middle-intersecting subsets of T2. Suppose that J1 is an arc from
[−1, 0] to [1, 0] and J2 is an arc from [−1, 0] to [1, 0] and C = J1 ∪ J2

and J1 ∩ J2 = {[−1, 0], [1, 0]} and UMPC ∈ J1 and LMPC ∈ J2 and
W-bound(C) = W-bound(J1) and E-bound(C) = E-bound(J1). Let U1 be
a subset of E2

T. Suppose U1 = Component(Down(1
2 · (UMP(L(LMPJ1, [0,

−3]) ∩ J2) + LMPJ1), Cc)). Then U1 is an inside component of C and
for every subset V of T2 such that V is an inside component of C holds
V = U1, where T2 = E2

T.
(106) Suppose [−1, 0] and [1, 0] realize maximal distance in C. Let J1, J2

be compact middle-intersecting subsets of T2. Suppose that J1 is an
arc from [−1, 0] to [1, 0] and J2 is an arc from [−1, 0] to [1, 0] and
C = J1 ∪ J2 and J1 ∩ J2 = {[−1, 0], [1, 0]} and UMPC ∈ J1 and
LMPC ∈ J2 and W-bound(C) = W-bound(J1) and E-bound(C) =
E-bound(J1). Then BDD C = Component(Down(1

2 · (UMP(L(LMPJ1, [0,

−3]) ∩ J2) + LMPJ1), Cc)), where T2 = E2
T.

(107) Let C be a simple closed curve. Then there exist subsets A1, A2 of E2
T

such that
(i) Cc = A1 ∪A2,

(ii) A1 misses A2,
(iii) A1 \A1 = A2 \A2, and
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(iv) for all subsets C1, C2 of (E2
T)�Cc such that C1 = A1 and C2 = A2 holds

C1 is a component of (E2
T)�Cc and C2 is a component of (E2

T)�Cc.

(108) Every simple closed curve is Jordan.
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[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
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Summary. Concepts of the inner product and conjugate of matrix of com-
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tions consist like a case of the conjugate of matrix of a field and some operations
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The papers [20], [24], [18], [25], [7], [8], [9], [3], [19], [2], [4], [11], [5], [10], [6],
[17], [1], [13], [14], [23], [12], [15], [16], [22], and [21] provide the notation and
terminology for this paper.

We follow the rules: i, j denote natural numbers, a denotes an element of
C, and R1, R2 denote elements of Ci.

Let M be a matrix over C. The functor M yields a matrix over C and is
defined by:

(Def. 1) len M = lenM and width M = width M and for all natural numbers i,
j such that 〈〈i, j〉〉 ∈ the indices of M holds M ◦ (i, j) = M ◦ (i, j) .

One can prove the following propositions:

(1) For every matrix M over C holds 〈〈i, j〉〉 ∈ the indices of M iff 1 ≤ i and
i ≤ lenM and 1 ≤ j and j ≤ width M.

(2) For every matrix M over C holds M = M.

(3) For every complex number a and for every matrix M over C holds len(a ·
M) = len M and width(a ·M) = widthM.
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(4) Let i, j be natural numbers, a be a complex number, and M be a matrix
over C. Suppose len(a ·M) = len M and width(a ·M) = widthM and 〈〈i,
j〉〉 ∈ the indices of M . Then (a ·M) ◦ (i, j) = a · (M ◦ (i, j)).

(5) For every complex number a and for every matrix M over C holds
a ·M = a · M .

(6) For all matrices M1, M2 over C holds len(M1 + M2) = lenM1 and
width(M1 + M2) = widthM1.

(7) Let i, j be natural numbers and M1, M2 be matrices over C. Suppose
lenM1 = lenM2 and width M1 = widthM2 and 〈〈i, j〉〉 ∈ the indices of M1.
Then (M1 + M2) ◦ (i, j) = (M1 ◦ (i, j)) + (M2 ◦ (i, j)).

(8) For all matrices M1, M2 over C such that lenM1 = lenM2 and
width M1 = widthM2 holds M1 + M2 = M1 + M2 .

(9) For every matrix M over C holds len(−M) = lenM and width(−M) =
width M.

(10) Let i, j be natural numbers and M be a matrix over C. If len(−M) =
lenM and width(−M) = widthM and 〈〈i, j〉〉 ∈ the indices of M , then
(−M) ◦ (i, j) = −(M ◦ (i, j)).

(11) For every matrix M over C holds (−1) ·M = −M.

(12) For every matrix M over C holds −M = −M .

(13) For all matrices M1, M2 over C holds len(M1 − M2) = lenM1 and
width(M1 −M2) = widthM1.

(14) Let i, j be natural numbers and M1, M2 be matrices over C. Suppose
lenM1 = lenM2 and width M1 = widthM2 and 〈〈i, j〉〉 ∈ the indices of M1.
Then (M1 −M2) ◦ (i, j) = (M1 ◦ (i, j))− (M2 ◦ (i, j)).

(15) For all matrices M1, M2 over C such that lenM1 = lenM2 and
width M1 = widthM2 holds M1 −M2 = M1 − M2 .

Let M be a matrix over C. The functor M∗ yields a matrix over C and is
defined by:

(Def. 2) M∗ = MT .

Let x be a finite sequence of elements of C. Let us assume that len x > 0.

The functor FinSeq2Matrixx yielding a matrix over C is defined as follows:
(Def. 3) lenFinSeq2Matrixx = lenx and widthFinSeq2Matrixx = 1 and for

every j such that j ∈ Seg lenx holds (FinSeq2Matrixx)(j) = 〈x(j)〉.
Let M be a matrix over C. The functor Matrix2FinSeqM yields a finite

sequence of elements of C and is defined as follows:
(Def. 4) Matrix2FinSeq M = M�,1.

Let F1, F2 be finite sequences of elements of C. The functor F1 •F2 yielding
a finite sequence of elements of C is defined as follows:

(Def. 5) F1 • F2 = (·C)◦(F1, F2).
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Let us observe that the functor F1 • F2 is commutative.
Let F be a finite sequence of elements of C. The functor

∑
F yields an

element of C and is defined as follows:

(Def. 6)
∑

F = +C ~ F.

Let M be a matrix over C and let F be a finite sequence of elements of
C. The functor M · F yielding a finite sequence of elements of C is defined as
follows:

(Def. 7) len(M · F ) = lenM and for every i such that i ∈ Seg lenM holds (M ·
F )(i) =

∑
(Line(M, i) • F ).

We now state the proposition
(16) a · (R1 •R2) = a ·R1 •R2.

Let M be a matrix over C and let a be a complex number. The functor M ·a
yielding a matrix over C is defined by:

(Def. 8) M · a = a ·M.

We now state three propositions:
(17) For every element a of C and for every matrix M over C holds M · a =

a · M .

(18) For all finite sequences x, y of elements of C such that len x = len y holds
len(x • y) = len x and len(x • y) = len y.

(19) Let F1, F2 be finite sequences of elements of C and i be a natural number.
If i ∈ dom(F1 • F2), then (F1 • F2)(i) = F1(i) · F2(i).

Let us consider i, R1, R2. Then R1 •R2 is an element of Ci.
We now state a number of propositions:

(20) (R1 •R2)(j) = R1(j) ·R2(j).

(21) For all elements a, b of C holds +C(a, b) = +C(a, b).
(22) Let F be a finite sequence of elements of C. Then there exists a function

G from N into C such that for every natural number n if 1 ≤ n and
n ≤ lenF, then G(n) = F (n).

(23) For every finite sequence F of elements of C such that len F ≥ 1 holds
+C ~ F = +C ~ F .

(24) For every finite sequence F of elements of C such that lenF ≥ 1 holds∑
F =

∑
F .

(25) For all finite sequences x, y of elements of C such that len x = len y holds
x • y = y • x.

(26) For all finite sequences x, y of elements of C and for every element a of
C such that len x = len y holds x • a · y = a · (x • y).

(27) For all finite sequences x, y of elements of C and for every element a of
C such that len x = len y holds a · x • y = a · (x • y).
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(28) For all finite sequences x, y of elements of C such that len x = len y holds
x • y = x • y .

(29) For every finite sequence F of elements of C and for every element a of
C holds

∑
(a · F ) = a ·

∑
F.

Let x be a finite sequence of elements of R. The functor FR2FC x yielding
a finite sequence of elements of C is defined as follows:

(Def. 9) FR2FC x = x.

Next we state a number of propositions:
(30) Let R be a finite sequence of elements of R and F be a finite sequence

of elements of C. If R = F and lenR ≥ 1, then +R ~ R = +C ~ F.

(31) Let x be a finite sequence of elements of R and y be a finite sequence of
elements of C. If x = y and lenx ≥ 1, then

∑
x =

∑
y.

(32) For all finite sequences F1, F2 of elements of C such that lenF1 = lenF2

holds
∑

(F1 − F2) =
∑

F1 −
∑

F2.

(33) Let F1, F2 be finite sequences of elements of C and i be a natural number.
If i ∈ dom(F1 + F2), then (F1 + F2)(i) = F1(i) + F2(i).

(34) Let F1, F2 be finite sequences of elements of C and i be a natural number.
If i ∈ dom(F1 − F2), then (F1 − F2)(i) = F1(i)− F2(i).

(35) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds (x− y) • z = x • z − y • z.

(36) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x • (y − z) = x • y − x • z.

(37) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds x • (y + z) = x • y + x • z.

(38) For all finite sequences x, y, z of elements of C such that lenx = len y

and len y = len z holds (x + y) • z = x • z + y • z.

(39) For all finite sequences F1, F2 of elements of C such that lenF1 = lenF2

holds
∑

(F1 + F2) =
∑

F1 +
∑

F2.

(40) Let x1, y1 be finite sequences of elements of C and x2, y2 be finite
sequences of elements of R. If x1 = x2 and y1 = y2 and len x1 = len y2,

then (·C)◦(x1, y1) = (·R)◦(x2, y2).
(41) For all finite sequences x, y of elements of R such that len x = len y holds

FR2FC(x • y) = FR2FC x • FR2FC y.

(42) For all finite sequences x, y of elements of C such that len x = len y and
lenx > 0 holds |(x, y)| =

∑
(x • y ).

(43) For all matrices A, B over C such that lenA = lenB and width A =
width B holds the indices of A = the indices of B.

(44) Let i, j be natural numbers and M1, M2 be matrices over C. If lenM1 =
lenM2 and widthM1 = widthM2 and j ∈ Seg lenM1, then Line(M1 +
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M2, j) = Line(M1, j) + Line(M2, j).
(45) For every matrix M over C such that i ∈ Seg lenM holds Line(M, i) =

Line(M , i) .
(46) Let F be a finite sequence of elements of C and M be a matrix over C.

If lenF = widthM, then F • Line(M , i) = Line(M , i) • F .

(47) Let F be a finite sequence of elements of C and M be a matrix over C.
If lenF = widthM and lenF ≥ 1, then M · F = M · F .

(48) For all finite sequences F1, F2, F3 of elements of C such that len F1 =
lenF2 and lenF2 = lenF3 holds F1 • (F2 • F3) = (F1 • F2) • F3.

(49) For every finite sequence F of elements of C holds
∑

(−F ) = −
∑

F .

(50) For every element z of C holds
∑
〈z〉 = z.

(51) For all finite sequences F1, F2 of elements of C holds
∑

(F1
a F2) =∑

F1 +
∑

F2.

Let M be a matrix over C. The functor LineSum M yielding a finite sequence
of elements of C is defined as follows:

(Def. 10) len LineSum M = lenM and for every natural number i such that i ∈
Seg lenM holds (LineSum M)(i) =

∑
Line(M, i).

Let M be a matrix over C. The functor ColSum M yielding a finite sequence
of elements of C is defined by:

(Def. 11) lenColSum M = widthM and for every natural number j such that
j ∈ Seg widthM holds (ColSum M)(j) =

∑
(M�,j).

Next we state three propositions:
(52) For every finite sequence F of elements of C such that lenF = 1 holds∑

F = F (1).
(53) Let f , g be finite sequences of elements of C and n be a natural number.

If len f = n + 1 and g = f�n, then
∑

f =
∑

g + flen f .

(54) For every matrix M over C such that lenM > 0 holds
∑

LineSum M =∑
ColSum M.

Let M be a matrix over C. The functor SumAll M yielding an element of C
is defined by:

(Def. 12) SumAllM =
∑

LineSum M.

Next we state two propositions:
(55) For every matrix M over C holds ColSum M = LineSum(MT).
(56) For every matrix M over C such that len M > 0 holds SumAll M =

SumAll(MT).
Let x, y be finite sequences of elements of C and let M be a matrix over

C. Let us assume that lenx = lenM and len y = widthM. The functor
QuadraticForm(x, M, y) yielding a matrix over C is defined by the conditions
(Def. 13).
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(Def. 13)(i) lenQuadraticForm(x, M, y) = len x,

(ii) widthQuadraticForm(x,M, y) = len y, and
(iii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M holds

QuadraticForm(x,M, y) ◦ (i, j) = x(i) · (M ◦ (i, j)) · y(j) .
The following propositions are true:

(57) Let x, y be finite sequences of elements of C and M be a matrix over C.
If lenx = len M and len y = widthM and lenx > 0 and len y > 0, then
(QuadraticForm(x,M, y))T = QuadraticForm(y, M∗, x) .

(58) Let x, y be finite sequences of elements of C and M be a matrix over
C. If lenx = lenM and len y = widthM, then QuadraticForm(x,M, y) =
QuadraticForm(x, M , y ).

(59) For all finite sequences x, y of elements of C such that len x = len y and
0 < len y holds |(x, y)| = |(y, x)| .

(60) For all finite sequences x, y of elements of C such that len x = len y and
0 < len y holds |(x, y)| = |(x, y )|.

(61) For every matrix M over C such that widthM > 0 holds MT = M
T
.

(62) Let x, y be finite sequences of elements of C and M be a matrix over C.
If lenx = widthM and len y = lenM and lenx > 0 and len y > 0, then
|(x,M∗ · y)| = SumAllQuadraticForm(x, MT, y).

(63) Let x, y be finite sequences of elements of C and M be a matrix over
C. If len y = lenM and lenx = widthM and lenx > 0 and len y > 0 and
lenM > 0, then |(M · x, y)| = SumAllQuadraticForm(x, MT, y).

(64) Let x, y be finite sequences of elements of C and M be a matrix over C.
If lenx = widthM and len y = lenM and widthM > 0 and len M > 0,

then |(M · x, y)| = |(x,M∗ · y)|.
(65) Let x, y be finite sequences of elements of C and M be a matrix over

C. If len x = lenM and len y = widthM and widthM > 0 and len M > 0
and lenx > 0, then |(x,M · y)| = |(M∗ · x, y)|.
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [1], [3], [4], [5], [6], and [7].

We use the following convention: n is a natural number, a, b, c, d are real
numbers, and s is a sequence of real numbers.

We now state a number of propositions:
(1) (a + b + c)2 = a2 + b2 + c2 + 2 · a · b + 2 · a · c + 2 · b · c.
(2) (a + b)3 = a3 + 3 · a2 · b + 3 · b2 · a + b3.

(3) ((a− b) + c)2 = (((a2 + b2 + c2)− 2 · a · b) + 2 · a · c)− 2 · b · c.
(4) (a− b− c)2 = ((a2 + b2 + c2)− 2 · a · b− 2 · a · c) + 2 · b · c.
(5) (a− b)3 = ((a3 − 3 · a2 · b) + 3 · b2 · a)− b3.

(6) (a + b)4 = a4 + 4 · a3 · b + 6 · a2 · b2 + 4 · b3 · a + b4.

(7) (a + b + c + d)2 = a2 + b2 + c2 + d2 + (2 · a · b + 2 · a · c + 2 · a · d) + (2 · b ·
c + 2 · b · d) + 2 · c · d.
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(8) (a + b + c)3 = a3 + b3 + c3 + (3 · a2 · b + 3 · a2 · c) + (3 · b2 · a + 3 · b2 · c) +
(3 · c2 · a + 3 · c2 · b) + 6 · a · b · c.

(9) If a 6= 0, then (( 1
a)n+1 + an+1)2 = ( 1

a)2·n+2 + a2·n+2 + 2.

(10) If a 6= 1 and for every n holds s(n) = an, then (
∑κ

α=0 s(α))κ∈N(n) =
1−an+1

1−a .

(11) If a 6= 1 and a 6= 0 and for every n holds s(n) = ( 1
a)n, then for every n

holds (
∑κ

α=0 s(α))κ∈N(n) = ( 1
a
)n−a

1−a .

(12) If for every n holds s(n) = 10n + 2 · n + 1, then (
∑κ

α=0 s(α))κ∈N(n) =
(10n+1

9 − 1
9) + (n + 1)2.

(13) If for every n holds s(n) = (2 · n− 1) + (1
2)n, then (

∑κ
α=0 s(α))κ∈N(n) =

(n2 + 1)− (1
2)n.

(14) If for every n holds s(n) = n · (1
2)n, then (

∑κ
α=0 s(α))κ∈N(n) = 2− (2 +

n) · (1
2)n.

(15) If for every n holds s(n) = ((1
2)n + 2n)2, then for every n holds

(
∑κ

α=0 s(α))κ∈N(n) = − ( 1
4
)n

3 + 4n+1

3 + 2 · n + 3.

(16) If for every n holds s(n) = ((1
3)n + 3n)2, then for every n holds

(
∑κ

α=0 s(α))κ∈N(n) = − ( 1
9
)n

8 + 9n+1

8 + 2 · n + 3.

(17) If for every n holds s(n) = n · 2n, then for every n holds
(
∑κ

α=0 s(α))κ∈N(n) = (n · 2n+1 − 2n+1) + 2.

(18) If for every n holds s(n) = (2 · n + 1) · 3n, then for every n holds
(
∑κ

α=0 s(α))κ∈N(n) = n · 3n+1 + 1.

(19) If a 6= 1 and for every n holds s(n) = n · an, then for every n holds
(
∑κ

α=0 s(α))κ∈N(n) = a·(1−an)
(1−a)2

− n·an+1

1−a .

(20) If for every n holds s(n) = 1
(root2(n+1))+(root2(n)) , then (

∑κ
α=0 s(α))κ∈N(n) =

root2(n + 1).

(21) If for every n holds s(n) = 2n + (1
2)n, then for every n holds

(
∑κ

α=0 s(α))κ∈N(n) = (2n+1 − (1
2)n) + 1.

(22) If for every n holds s(n) = n! · n + n
(n+1)! , then for every n such that

n ≥ 1 holds (
∑κ

α=0 s(α))κ∈N(n) = (n + 1)!− 1
(n+1)! .

(23) Suppose a 6= 1 and for every n such that n ≥ 1 holds s(n) = ( a
a−1)n and

s(0) = 0. Let given n. If n ≥ 1, then (
∑κ

α=0 s(α))κ∈N(n) = a ·(( a
a−1)n−1).

(24) If for every n such that n ≥ 1 holds s(n) = 2n · 3·n−1
4 and s(0) = 0, then

for every n such that n ≥ 1 holds (
∑κ

α=0 s(α))κ∈N(n) = 2n · 3·n−4
2 + 2.

(25) If for every n holds s(n) = n+1
n+2 , then (the partial product of s)(n) = 1

n+2 .

(26) If for every n holds s(n) = 1
n+1 , then (the partial product of s)(n) =

1
(n+1)! .
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(27) Suppose that for every n such that n ≥ 1 holds s(n) = n and s(0) = 1.

Let given n. If n ≥ 1, then (the partial product of s)(n) = n!.
(28) Suppose that for every n such that n ≥ 1 holds s(n) = a

n and s(0) = 1.

Let given n. If n ≥ 1, then (the partial product of s)(n) = an

n! .

(29) Suppose that for every n such that n ≥ 1 holds s(n) = a and s(0) = 1.

Let given n. If n ≥ 1, then (the partial product of s)(n) = an.

(30) Suppose that for every n such that n ≥ 2 holds s(n) = 1 − 1
n2 and

s(0) = 1 and s(1) = 1. Let given n. If n ≥ 2, then (the partial product of
s)(n) = n+1

2·n .
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For simplicity, we use the following convention: x, a, b are real numbers,
n is a natural number, Z is an open subset of R, and f , f1, f2, g are partial
functions from R to R.

Next we state a number of propositions:
(1) Suppose Z ⊆ dom(f1

f2
) and for every x such that x ∈ Z holds f1(x) =

a + x and f2(x) = a−x and f2(x) 6= 0. Then f1

f2
is differentiable on Z and

for every x such that x ∈ Z holds (f1

f2
)′�Z(x) = 2·a

(a−x)2
.

(2) Suppose Z ⊆ dom(f1

f2
) and for every x such that x ∈ Z holds f1(x) =

x− a and f2(x) = x + a and f2(x) 6= 0. Then f1

f2
is differentiable on Z and

for every x such that x ∈ Z holds (f1

f2
)′�Z(x) = 2·a

(x+a)2
.
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(3) Suppose Z ⊆ dom(f1

f2
) and for every x such that x ∈ Z holds f1(x) =

x− a and f2(x) = x− b and f2(x) 6= 0. Then f1

f2
is differentiable on Z and

for every x such that x ∈ Z holds (f1

f2
)′�Z(x) = a−b

(x−b)2
.

(4) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = x and
f(x) 6= 0. Then 1

f is differentiable on Z and for every x such that x ∈ Z

holds ( 1
f )′�Z(x) = − 1

x2 .

(5) Suppose Z ⊆ dom((the function sin) · 1f ) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then
(i) (the function sin) · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · 1f )′�Z(x) =
− 1

x2 · (the function cos)( 1
x).

(6) Suppose Z ⊆ dom((the function cos) · 1f ) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then
(i) (the function cos) · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · 1f )′�Z(x) = 1
x2 ·(the

function sin)( 1
x).

(7) Suppose Z ⊆ dom(idZ ((the function sin) · 1f )) and for every x such that
x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) idZ ((the function sin) · 1f ) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ ((the function sin) · 1f ))′�Z(x) =
(the function sin)( 1

x)− 1
x · (the function cos)( 1

x).

(8) Suppose Z ⊆ dom(idZ ((the function cos) · 1f )) and for every x such that
x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) idZ ((the function cos) · 1f ) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (idZ ((the function cos) · 1f ))′�Z(x) =
(the function cos)( 1

x) + 1
x · (the function sin)( 1

x).

(9) Suppose Z ⊆ dom(((the function sin) · 1f ) ((the function cos) · 1f )) and
for every x such that x ∈ Z holds f(x) = x and f(x) 6= 0. Then

(i) ((the function sin) · 1f ) ((the function cos) · 1f ) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (((the function sin) · 1f ) ((the function
cos) · 1f ))′�Z(x) = 1

x2 · ((the function sin)( 1
x)2 − (the function cos)( 1

x)2).

(10) Suppose Z ⊆ dom(((the function sin) ·f) ((n
Z) · (the function sin))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then
(i) ((the function sin) ·f) ((n

Z) · (the function sin)) is differentiable on Z,
and

(ii) for every x such that x ∈ Z holds (((the function sin) ·f) ((n
Z) · (the

function sin)))′�Z(x) = n · (the function sin)(x)n−1
Z · (the function sin)((n+

1) · x).
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(11) Suppose Z ⊆ dom(((the function cos) ·f) ((n
Z) · (the function sin))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then
(i) ((the function cos) ·f) ((n

Z) · (the function sin)) is differentiable on Z,
and

(ii) for every x such that x ∈ Z holds (((the function cos) ·f) ((n
Z) · (the

function sin)))′�Z(x) = n · (the function sin)(x)n−1
Z · (the function cos)((n+

1) · x).
(12) Suppose Z ⊆ dom(((the function cos) ·f) ((n

Z) · (the function cos))) and
n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then

(i) ((the function cos) ·f) ((n
Z) · (the function cos)) is differentiable on Z,

and
(ii) for every x such that x ∈ Z holds (((the function cos) ·f) ((n

Z)·(the func-
tion cos)))′�Z(x) = −n · (the function cos)(x)n−1

Z · (the function sin)((n + 1)
·x).

(13) Suppose Z ⊆ dom(((the function sin) ·f) ((n
Z) · (the function cos))) and

n ≥ 1 and for every x such that x ∈ Z holds f(x) = n · x. Then
(i) ((the function sin) ·f) ((n

Z) · (the function cos)) is differentiable on Z,
and

(ii) for every x such that x ∈ Z holds (((the function sin) ·f) ((n
Z) · (the

function cos)))′�Z(x) = n ·(the function cos)(x)n−1
Z ·(the function cos)((n+

1) · x).
(14) Suppose Z ⊆ dom( 1

f (the function sin)) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then
(i) 1

f (the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

f (the function sin))′�Z(x) = 1
x · (the

function cos)(x)− 1
x2 · (the function sin)(x).

(15) Suppose Z ⊆ dom( 1
f (the function cos)) and for every x such that x ∈ Z

holds f(x) = x and f(x) 6= 0. Then
(i) 1

f (the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

f (the function cos))′�Z(x) =
− 1

x · (the function sin)(x)− 1
x2 · (the function cos)(x).

(16) Suppose Z ⊆ dom((the function sin)+(
1
2
R) · f) and for every x such that

x ∈ Z holds f(x) = x and f(x) > 0. Then

(i) (the function sin)+(
1
2
R) · f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin)+(
1
2
R) · f)′�Z(x) =

(the function cos)(x) + 1
2 · x

− 1
2

R .

(17) Suppose Z ⊆ dom(g ((the function sin) · 1f )) and g = 2
Z and for every x

such that x ∈ Z holds f(x) = x and f(x) 6= 0. Then
(i) g ((the function sin) · 1f ) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (g ((the function sin) · 1f ))′�Z(x) =
2 · x · (the function sin)( 1

x)− (the function cos)( 1
x).

(18) Suppose Z ⊆ dom(g ((the function cos) · 1f )) and g = 2
Z and for every x

such that x ∈ Z holds f(x) = x and f(x) 6= 0. Then
(i) g ((the function cos) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (g ((the function cos) · 1f ))′�Z(x) =

2 · x · (the function cos)( 1
x) + (the function sin)( 1

x).
(19) Suppose Z ⊆ dom(log (e) · f) and for every x such that x ∈ Z holds

f(x) = x and f(x) > 0. Then log (e) · f is differentiable on Z and for
every x such that x ∈ Z holds (log (e) · f)′�Z(x) = 1

x .

(20) Suppose Z ⊆ dom(idZ f) and f = log (e) · f1 and for every x such that
x ∈ Z holds f1(x) = x and f1(x) > 0. Then idZ f is differentiable on Z

and for every x such that x ∈ Z holds (idZ f)′�Z(x) = 1 + (log (e))(x).
(21) Suppose Z ⊆ dom(g f) and g = 2

Z and f = log (e)·f1 and for every x such
that x ∈ Z holds f1(x) = x and f1(x) > 0. Then g f is differentiable on Z

and for every x such that x ∈ Z holds (g f)′�Z(x) = x + 2 · x · (log (e))(x).

(22) Suppose Z ⊆ dom(f1+f2

f1−f2
) and for every x such that x ∈ Z holds f1(x) =

a and f2 = 2
Z and for every x such that x ∈ Z holds (f1 − f2)(x) > 0.

Then f1+f2

f1−f2
is differentiable on Z and for every x such that x ∈ Z holds

(f1+f2

f1−f2
)′�Z(x) = 4·a·x

(a−x2)2
.

(23) Suppose that
(i) Z ⊆ dom(log (e) · f1+f2

f1−f2
),

(ii) for every x such that x ∈ Z holds f1(x) = a,

(iii) f2 = 2
Z,

(iv) for every x such that x ∈ Z holds (f1 − f2)(x) > 0, and
(v) for every x such that x ∈ Z holds (f1 + f2)(x) > 0.

Then log (e) · f1+f2

f1−f2
is differentiable on Z and for every x such that x ∈ Z

holds (log (e) · f1+f2

f1−f2
)′�Z(x) = 4·a·x

a2−x4 .

(24) Suppose Z ⊆ dom( 1
f g) and for every x such that x ∈ Z holds f(x) = x

and g = log (e) · f1 and for every x such that x ∈ Z holds f1(x) = x and
f1(x) > 0. Then 1

f g is differentiable on Z and for every x such that x ∈ Z

holds ( 1
f g)′�Z(x) = 1

x2 · (1− (log (e))(x)).

(25) Suppose Z ⊆ dom( 1
f ) and f = log (e) · f1 and for every x such that

x ∈ Z holds f1(x) = x and f1(x) > 0 and for every x such that x ∈ Z

holds f(x) 6= 0. Then 1
f is differentiable on Z and for every x such that

x ∈ Z holds ( 1
f )′�Z(x) = − 1

x·(log (e))(x)2
.
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The papers [1], [3], [6], [5], [7], [4], and [2] provide the terminology and notation
for this paper.

We follow the rules: x, y, z, w are real numbers and n is a natural number.
One can prove the following propositions:

(1) tanhx = sinh x
cosh x and tanh 0 = 0.

(2) sinhx = 1
cosech x and cosh x = 1

sech x and tanhx = 1
coth x .

(3) sechx ≤ 1 and 0 < sechx and sech 0 = 1.

(4) If x ≥ 0, then tanhx ≥ 0.

(5) cosh x = 1√
1−(tanh x)2

and sinhx = tanh x√
1−(tanh x)2

.

(6) (coshx + sinhx)n = cosh(n · x) + sinh(n · x) and (coshx − sinhx)n =
cosh(n · x)− sinh(n · x).

(7)(i) expx = cosh x + sinhx,

(ii) exp(−x) = coshx− sinhx,

(iii) expx = cosh(x
2
)+sinh(x

2
)

cosh(x
2
)−sinh(x

2
) ,

(iv) exp(−x) = cosh(x
2
)−sinh(x

2
)

cosh(x
2
)+sinh(x

2
) ,

(v) expx = 1+tanh(x
2
)

1−tanh(x
2
) , and

(vi) exp(−x) = 1−tanh(x
2
)

1+tanh(x
2
) .
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(8) If x 6= 0, then expx = coth(x
2
)+1

coth(x
2
)−1 and exp(−x) = coth(x

2
)−1

coth(x
2
)+1 .

(9) cosh x+sinh x
cosh x−sinh x = 1+tanh x

1−tanh x .

(10) If y 6= 0, then coth y + tanh z = cosh(y+z)
sinh y·cosh z and coth y − tanh z =

cosh(y−z)
sinh y·cosh z .

(11) sinh y · sinh z = 1
2 · (cosh(y + z) − cosh(y − z)) and sinh y · cosh z =

1
2 ·(sinh(y+z)+sinh(y−z)) and cosh y ·sinh z = 1

2 ·(sinh(y+z)−sinh(y−z))
and cosh y · cosh z = 1

2 · (cosh(y + z) + cosh(y − z)).

(12) (sinh y)2 − (cosh z)2 = sinh(y + z) · sinh(y − z)− 1.

(13) (sinh y − sinh z)2 − (cosh y − cosh z)2 = 4 · (sinh(y−z
2 ))2 and (cosh y +

cosh z)2 − (sinh y + sinh z)2 = 4 · (cosh(y−z
2 ))2.

(14) sinh y+sinh z
sinh y−sinh z = tanh(y+z

2 ) · coth(y−z
2 ).

(15) cosh y+cosh z
cosh y−cosh z = coth(y+z

2 ) · coth(y−z
2 ).

(16) If y − z 6= 0, then sinh y+sinh z
cosh y+cosh z = cosh y−cosh z

sinh y−sinh z .

(17) If y + z 6= 0, then sinh y−sinh z
cosh y+cosh z = cosh y−cosh z

sinh y+sinh z .

(18) sinh y+sinh z
cosh y+cosh z = tanh(y

2 + z
2) and sinh y−sinh z

cosh y+cosh z = tanh(y
2 −

z
2).

(19) tanh y+tanh z
tanh y−tanh z = sinh(y+z)

sinh(y−z) .

(20) sinh(y−z)+sinh y+sinh(y+z)
cosh(y−z)+cosh y+cosh(y+z) = tanh y.

(21)(i) sinh(y + z +w) = (tanh y +tanh z +tanhw +tanh y · tanh z · tanh w) ·
cosh y · cosh z · coshw,

(ii) cosh(y+z +w) = (1+tanh y · tanh z +tanh z · tanh w+tanhw · tanh y) ·
cosh y · cosh z · coshw, and

(iii) tanh(y + z + w) = tanh y+tanh z+tanh w+tanh y·tanh z·tanh w
1+tanh z·tanh w+tanh w·tanh y+tanh y·tanh z .

(22) cosh(2 · y) + cosh(2 · z) + cosh(2 ·w) + cosh(2 · (y + z + w)) = 4 · cosh(z +
w) · cosh(w + y) · cosh(y + z).

(23) sinh y · sinh z · sinh(z − y) + sinh z · sinhw · sinh(w− z) + sinh w · sinh y ·
sinh(y − w) + sinh(z − y) · sinh(w − z) · sinh(y − w) = 0.

(24) If x ≥ 0, then sinh(x
2 ) =

√
cosh x−1

2 .

(25) If x < 0, then sinh(x
2 ) = −

√
cosh x−1

2 .

(26) sinh(2 · x) = 2 · sinhx · coshx and cosh(2 · x) = 2 · (coshx)2 − 1 and
tanh(2 · x) = 2·tanh x

1+(tanh x)2
.

(27) sinh(2 · x) = 2·tanh x
1−(tanh x)2

and sinh(3 · x) = sinhx · (4 · (coshx)2 − 1) and
sinh(3 · x) = 3 · sinhx− 2 · sinhx · (1− cosh(2 · x)) and cosh(2 · x) = 1 + 2 ·
(sinhx)2 and cosh(2·x) = (coshx)2+(sinhx)2 and cosh(2·x) = 1+(tanh x)2

1−(tanh x)2

and cosh(3·x) = coshx·(4·(sinhx)2+1) and tanh(3·x) = 3·tanh x+(tanh x)3

1+3·(tanh x)2
.
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(28) sinh(5·x)+2·sinh(3·x)+sinh x
sinh(7·x)+2·sinh(5·x)+sinh(3·x) = sinh(3·x)

sinh(5·x) .

(29) If x ≥ 0, then tanh(x
2 ) =

√
cosh x−1
cosh x+1 .

(30) If x < 0, then tanh(x
2 ) = −

√
cosh x−1
cosh x+1 .

(31)(i) (sinh x)3 = sinh(3·x)−3·sinh x
4 ,

(ii) (sinh x)4 = (cosh(4·x)−4·cosh(2·x))+3
8 ,

(iii) (sinhx)5 = (sinh(5·x)−5·sinh(3·x))+10·sinh x
16 ,

(iv) (sinh x)6 = ((cosh(6·x)−6·cosh(4·x))+15·cosh(2·x))−10
32 ,

(v) (sinhx)7 = ((sinh(7·x)−7·sinh(5·x))+21·sinh(3·x))−35·sinh x
64 , and

(vi) (sinh x)8 = (((cosh(8·x)−8·cosh(6·x))+28·cosh(4·x))−56·cosh(2·x))+35
128 .

(32)(i) (coshx)3 = cosh(3·x)+3·cosh x
4 ,

(ii) (cosh x)4 = cosh(4·x)+4·cosh(2·x)+3
8 ,

(iii) (coshx)5 = cosh(5·x)+5·cosh(3·x)+10·cosh x
16 ,

(iv) (cosh x)6 = cosh(6·x)+6·cosh(4·x)+15·cosh(2·x)+10
32 ,

(v) (coshx)7 = cosh(7·x)+7·cosh(5·x)+21·cosh(3·x)+35·cosh x
64 , and

(vi) (cosh x)8 = cosh(8·x)+8·cosh(6·x)+28·cosh(4·x)+56·cosh(2·x)+35
128 .

(33) cosh(2 · y) + cos(2 · z) = 2 + 2 · ((sinh y)2 − (sin z)2) and cosh(2 · y) −
cos(2 · z) = 2 · ((sinh y)2 + (sin z)2).
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ing to the book [20] by Engelking. Niemytzki plane is defined as halfplane y ≥ 0

with topology introduced by a neighborhood system. Niemytzki plane is not

T4. Next, the definition of Tychonoff space is given. The characterization of

Tychonoff space by prebasis and the fact that Tychonoff spaces are between T3

and T4 is proved. The final result is that Niemytzki plane is also a Tychonoff

space.
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The notation and terminology used here are introduced in the following papers:
[38], [34], [15], [41], [17], [40], [35], [42], [11], [14], [12], [8], [13], [33], [10], [37],
[4], [2], [1], [3], [5], [32], [39], [22], [25], [23], [29], [27], [26], [28], [43], [18], [31],
[30], [36], [19], [24], [9], [16], [21], [7], and [6].

1. Preliminaries

In this paper x, y are elements of R.
One can prove the following propositions:

(1) For all functions f , g such that f ≈ g and for every set A holds
(f+·g)−1(A) = f−1(A) ∪ g−1(A).

(2) For all functions f , g such that dom f misses dom g and for every set A

holds (f+·g)−1(A) = f−1(A) ∪ g−1(A).
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Let X be a set and let Y be a non empty real-membered set. Note that
every relation between X and Y is real-yielding.

Next we state several propositions:

(3) For all sets x, a and for every function f such that a ∈ dom f holds
(commute(x7−→. f))(a) = x7−→. f(a).

(4) Let b be a set and f be a function. Then b ∈ dom commute(f) if and only
if there exists a set a and there exists a function g such that a ∈ dom f

and g = f(a) and b ∈ dom g.

(5) Let a, b be sets and f be a function. Then a ∈ dom(commute(f))(b) if
and only if there exists a function g such that a ∈ dom f and g = f(a)
and b ∈ dom g.

(6) For all sets a, b and for all functions f , g such that a ∈ dom f and
g = f(a) and b ∈ dom g holds (commute(f))(b)(a) = g(b).

(7) For every set a and for all functions f , g, h such that h = f ∪ g holds
(commute(h))(a) = (commute(f))(a) ∪ (commute(g))(a).

Let us note that every finite subset of R is bounded.
The following propositions are true:

(8) For all real numbers a, b, c, d such that a < b and c ≤ d holds ]a, c[ ∩
[b, d] = [b, c[.

(9) For all real numbers a, b, c, d such that a ≥ b and c > d holds ]a, c[ ∩
[b, d] = ]a, d].

(10) For all real numbers a, b, c, d such that a ≤ b and b < c and c ≤ d holds
[a, c[∪]b, d] = [a, d].

(11) For all real numbers a, b, c, d such that a ≤ b and b < c and c ≤ d holds
[a, c[∩]b, d] = ]b, c[.

(12) For all sets X, Y holds
∏
〈X, Y 〉 ≈ [: X, Y :] and

∏
〈X, Y 〉 = X · Y .

In this article we present several logical schemes. The scheme SCH1 deals
with non empty sets A, B, C, two unary functors F and G yielding sets, and a
unary predicate P, and states that:

There exists a function f from C into B such that for every element
a of A holds
(i) if P[a], then f(a) = F(a), and
(ii) if not P[a], then f(a) = G(a)

provided the parameters meet the following conditions:
• C ⊆ A, and
• For every element a of A such that a ∈ C holds if P[a], then
F(a) ∈ B and if not P[a], then G(a) ∈ B.

The scheme SCH2 deals with non empty sets A, B, C, three unary functors
F , G, and H yielding sets, and two unary predicates P, Q, and states that:
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There exists a function f from C into B such that for every element
a of A holds
(i) if P[a], then f(a) = F(a),
(ii) if not P[a] and Q[a], then f(a) = G(a), and
(iii) if not P[a] and not Q[a], then f(a) = H(a)

provided the parameters meet the following conditions:
• C ⊆ A, and
• For every element a of A such that a ∈ C holds if P[a], then
F(a) ∈ B and if not P[a] and Q[a], then G(a) ∈ B and if not P[a]
and not Q[a], then H(a) ∈ B.

The following four propositions are true:
(13) For all real numbers a, b holds |[a, b]|2 = a2 + b2.

(14) Let X be a topological space, Y be a non empty topological space, A,
B be closed subsets of X, f be a continuous function from X�A into Y ,
and g be a continuous function from X�B into Y . If f ≈ g, then f+·g is
a continuous function from X�(A ∪B) into Y .

(15) Let X be a topological space, Y be a non empty topological space, and
A, B be closed subsets of X. Suppose A misses B. Let f be a continuous
function from X�A into Y and g be a continuous function from X�B into
Y . Then f+·g is a continuous function from X�(A ∪B) into Y .

(16) Let X be a topological space, Y be a non empty topological space, A

be an open closed subset of X, f be a continuous function from X�A into
Y , and g be a continuous function from X�Ac into Y . Then f+·g is a
continuous function from X into Y .

2. Niemytzki Plane

One can prove the following proposition
(17) For every natural number n and for every point a of En

T and for every
positive real number r holds a ∈ Ball(a, r).

The subset (y = 0)-line of E2
T is defined by:

(Def. 1) (y = 0)-line = {[x, 0]}.
The subset (y ≥ 0)-plane of E2

T is defined as follows:

(Def. 2) (y ≥ 0)-plane = {[x, y] : y ≥ 0}.
We now state several propositions:

(18) For all sets a, b holds 〈a, b〉 ∈ (y = 0)-line iff a ∈ R and b = 0.

(19) For all real numbers a, b holds [a, b] ∈ (y = 0)-line iff b = 0.

(20) (y = 0)-line = c.
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(21) For all sets a, b holds 〈a, b〉 ∈ (y ≥ 0)-plane iff a ∈ R and there exists y

such that b = y and y ≥ 0.

(22) For all real numbers a, b holds [a, b] ∈ (y ≥ 0)-plane iff b ≥ 0.

Let us note that (y = 0)-line is non empty and (y ≥ 0)-plane is non empty.
We now state several propositions:

(23) (y = 0)-line ⊆ (y ≥ 0)-plane.
(24) For all real numbers a, b, r such that r > 0 holds Ball([a, b], r) ⊆ (y ≥

0)-plane iff r ≤ b.

(25) For all real numbers a, b, r such that r > 0 and b ≥ 0 holds Ball([a, b], r)
misses (y = 0)-line iff r ≤ b.

(26) Let n be a natural number, a, b be elements of En
T, and r1, r2 be positive

real numbers. If |a− b| ≤ r1 − r2, then Ball(b, r2) ⊆ Ball(a, r1).
(27) For every real number a and for all positive real numbers r1, r2 such

that r1 ≤ r2 holds Ball([a, r1], r1) ⊆ Ball([a, r2], r2).
(28) Let T1, T2 be non empty topological spaces, B1 be a neighborhood system

of T1, and B2 be a neighborhood system of T2. Suppose B1 = B2. Then
the topological structure of T1 = the topological structure of T2.

In the sequel r is an element of R.
Niemytzki plane is a strict non empty topological space and is defined by

the conditions (Def. 3).

(Def. 3)(i) The carrier of Niemytzki plane = (y ≥ 0)-plane, and
(ii) there exists a neighborhood system B of Niemytzki plane such that for

every x holds B([x, 0]) = {Ball([x, r], r) ∪ {[x, 0]} : r > 0} and for all x, y

such that y > 0 holds B([x, y]) = {Ball([x, y], r) ∩ (y ≥ 0)-plane : r > 0}.
The following propositions are true:

(29) (y ≥ 0)-plane \ (y = 0)-line is an open subset of Niemytzki plane.
(30) (y = 0)-line is a closed subset of Niemytzki plane.
(31) Let x be a real number and r be a positive real number. Then Ball([x,

r], r) ∪ {[x, 0]} is an open subset of Niemytzki plane.
(32) Let x be a real number and y, r be positive real numbers. Then Ball([x,

y], r) ∩ (y ≥ 0)-plane is an open subset of Niemytzki plane.
(33) Let x, y be real numbers and r be a positive real number. If r ≤ y, then

Ball([x, y], r) is an open subset of Niemytzki plane.
(34) Let p be a point of Niemytzki plane and r be a positive real number.

Then there exists a point a of E2
T and there exists an open subset U of

Niemytzki plane such that p ∈ U and a ∈ U and for every point b of E2
T

such that b ∈ U holds |b− a| < r.

(35) Let x, y be real numbers and r be a positive real number. Then there
exist rational numbers w, v such that [w, v] ∈ Ball([x, y], r) and [w, v] 6= [x,
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y].
(36) Let A be a subset of Niemytzki plane. If A = ((y ≥ 0)-plane \ (y =

0)-line) ∩
∏
〈Q, Q〉, then for every set x holds A \ {x} = ΩNiemytzki plane.

(37) Let A be a subset of Niemytzki plane. If A = (y ≥ 0)-plane\(y = 0)-line,
then for every set x holds A \ {x} = ΩNiemytzki plane.

(38) For every subset A of Niemytzki plane such that A = (y ≥ 0)-plane\(y =
0)-line holds A = ΩNiemytzki plane.

(39) For every subset A of Niemytzki plane such that A = (y = 0)-line holds
A = A and Int A = ∅.

(40) ((y ≥ 0)-plane \ (y = 0)-line) ∩
∏
〈Q, Q〉 is a dense subset of Niemytzki

plane.
(41) ((y ≥ 0)-plane \ (y = 0)-line) ∩

∏
〈Q, Q〉 is a dense-in-itself subset of

Niemytzki plane.
(42) (y ≥ 0)-plane \ (y = 0)-line is a dense subset of Niemytzki plane.
(43) (y ≥ 0)-plane\ (y = 0)-line is a dense-in-itself subset of Niemytzki plane.
(44) (y = 0)-line is a nowhere dense subset of Niemytzki plane.
(45) For every subset A of Niemytzki plane such that A = (y = 0)-line holds

Der A is empty.
(46) Every subset of (y = 0)-line is a closed subset of Niemytzki plane.
(47) Q is a dense subset of Sorgenfrey line.
(48) Sorgenfrey line is separable.
(49) Niemytzki plane is separable.
(50) Niemytzki plane is a T1 space.
(51) Niemytzki plane is not T4.

3. Tychonoff Spaces

Let T be a topological space. We say that T is Tychonoff if and only if the
conditions (Def. 4) are satisfied.

(Def. 4)(i) T is a T1 space, and
(ii) for every closed subset A of T and for every point a of T such that a ∈ Ac

there exists a continuous function f from T into I such that f(a) = 0 and
f◦A ⊆ {1}.

Let us observe that every topological space which is Tychonoff is also T1 and
T3 and every non empty topological space which is T1 and T4 is also Tychonoff.

We now state the proposition
(52) Let X be a T1 topological space. Suppose X is Tychonoff. Let B be a

prebasis of X, x be a point of X, and V be a subset of X. Suppose x ∈ V
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and V ∈ B. Then there exists a continuous function f from X into I such
that f(x) = 0 and f◦V c ⊆ {1}.

Let X be a set and let Y be a non empty real-membered set. Observe that
every relation between X and Y is real-yielding.

The following propositions are true:

(53) Let X be a topological space, R be a non empty subspace of R1, f , g

be continuous functions from X into R, and A be a subset of X. Suppose
that for every point x of X holds x ∈ A iff f(x) ≤ g(x). Then A is closed.

(54) Let X be a topological space, R be a non empty subspace of R1, and f ,
g be continuous functions from X into R. Then there exists a continuous
function h from X into R such that for every point x of X holds h(x) =
max(f(x), g(x)).

(55) Let X be a non empty topological space, R be a non empty subspace
of R1, A be a finite non empty set, and F be a many sorted function
indexed by A. Suppose that for every set a such that a ∈ A holds F (a)
is a continuous function from X into R. Then there exists a continuous
function f from X into R such that for every point x of X and for every
finite non empty subset S of R if S = rng(commute(F ))(x), then f(x) =
max S.

(56) Let X be a T1 non empty topological space and B be a prebasis of X.
Suppose that for every point x of X and for every subset V of X such
that x ∈ V and V ∈ B there exists a continuous function f from X into I
such that f(x) = 0 and f◦V c ⊆ {1}. Then X is Tychonoff.

(57) Sorgenfrey line is a T1 space.

(58) For every real number x holds ]−∞, x[ is a closed subset of Sorgenfrey
line.

(59) For every real number x holds ]−∞, x] is a closed subset of Sorgenfrey
line.

(60) For every real number x holds [x,+∞[ is a closed subset of Sorgenfrey
line.

(61) For all real numbers x, y holds [x, y[ is a closed subset of Sorgenfrey line.

(62) Let x be a real number and w be a rational number. Suppose x < w.

Then there exists a continuous function f from Sorgenfrey line into I such
that for every point a of Sorgenfrey line holds

(i) if a ∈ [x, w[, then f(a) = 0, and
(ii) if a /∈ [x, w[, then f(a) = 1.

(63) Sorgenfrey line is Tychonoff.
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4. Niemytzki Plane is Tychonoff Space

Let x be a real number and let r be a positive real number. The func-
tor +(x, r) yielding a function from Niemytzki plane into I is defined by the
conditions (Def. 5).

(Def. 5)(i) (+(x, r))([x, 0]) = 0, and
(ii) for every real number a and for every non negative real number b holds

if a 6= x or b 6= 0 and if [a, b] /∈ Ball([x, r], r), then (+(x, r))([a, b]) = 1 and
if [a, b] ∈ Ball([x, r], r), then (+(x, r))([a, b]) = |[x,0]−[a,b]|2

2·r·b .

One can prove the following propositions:

(64) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x be a real number and r

be a positive real number. If (+(x, r))(p) = 0, then p = [x, 0].

(65) For all real numbers x, y and for every positive real number r such that
x 6= y holds (+(x, r))([y, 0]) = 1.

(66) Let p be a point of E2
T, x be a real number, and a, r be positive real

numbers. If a ≤ 1 and |p−[x, r·a]| = r·a and p2 6= 0, then (+(x, r))(p) = a.

(67) Let p be a point of E2
T, x, a be real numbers, and r be a positive real

number. If 0 ≤ a and a ≤ 1 and |p− [x, r ·a]| < r ·a, then (+(x, r))(p) < a.

(68) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x, a be real numbers and r

be a positive real number. If 0 ≤ a and a < 1 and |p − [x, r · a]| > r · a,

then (+(x, r))(p) > a.

(69) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x, a, b be real numbers and

r be a positive real number. Suppose 0 ≤ a and b ≤ 1 and (+(x, r))(p) ∈
]a, b[. Then there exists a positive real number r1 such that r1 ≤ p2 and
Ball(p, r1) ⊆ (+(x, r))−1(]a, b[).

(70) For every real number x and for all positive real numbers a, r holds
Ball([x, r · a], r · a) ⊆ (+(x, r))−1(]0, a[).

(71) For every real number x and for all positive real numbers a, r holds
Ball([x, r · a], r · a) ∪ {[x, 0]} ⊆ (+(x, r))−1([0, a[).

(72) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x, a be real numbers and

r be a positive real number. If 0 < (+(x, r))(p) and (+(x, r))(p) < a and
a ≤ 1, then p ∈ Ball([x, r · a], r · a).

(73) Let p be a point of E2
T. Suppose p2 > 0. Let x, a be real numbers and

r be a positive real number. Suppose 0 ≤ a and a < (+(x, r))(p). Then
there exists a positive real number r1 such that r1 ≤ p2 and Ball(p, r1) ⊆
(+(x, r))−1(]a, 1]).

(74) Let p be a point of E2
T. Suppose p2 = 0. Let x be a real number and r

be a positive real number. Suppose (+(x, r))(p) = 1. Then there exists a
positive real number r1 such that Ball([p1, r1], r1)∪{p} ⊆ (+(x, r))−1({1}).
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(75) Let T be a non empty topological space, S be a subspace of T , and B

be a basis of T . Then {A ∩ ΩS ;A ranges over subsets of T : A ∈ B ∧ A

meets ΩS} is a basis of S.
(76) {]a, b[; a ranges over real numbers, b ranges over real numbers: a < b} is

a basis of R1.
(77) Let T be a topological space, U , V be subsets of T , and B be a set. If

U ∈ B and V ∈ B and B ∪{U ∪V } is a basis of T , then B is a basis of T .
(78) {[0, a[; a ranges over real numbers: 0 < a ∧ a ≤ 1} ∪ {]a, 1]; a ranges

over real numbers: 0 ≤ a ∧ a < 1} ∪ {]a, b[; a ranges over real numbers, b

ranges over real numbers: 0 ≤ a ∧ a < b ∧ b ≤ 1} is a basis of I.
(79) Let T be a non empty topological space and f be a function from T

into I. Then f is continuous if and only if for all real numbers a, b such
that 0 ≤ a and a < 1 and 0 < b and b ≤ 1 holds f−1([0, b[) is open and
f−1(]a, 1]) is open.

Let x be a real number and let r be a positive real number. Note that +(x, r)
is continuous.

We now state the proposition
(80) Let U be a subset of Niemytzki plane and given x, r. Suppose U =

Ball([x, r], r) ∪ {[x, 0]}. Then there exists a continuous function f from
Niemytzki plane into I such that

(i) f([x, 0]) = 0, and
(ii) for all real numbers a, b holds if [a, b] ∈ U c, then f([a, b]) = 1 and if [a,

b] ∈ U \ {[x, 0]}, then f([a, b]) = |[x,0]−[a,b]|2
2·r·b .

Let x, y be real numbers and let r be a positive real number. The functor
+(x, y, r) yields a function from Niemytzki plane into I and is defined by the
condition (Def. 6).

(Def. 6) Let a be a real number and b be a non negative real number. Then
(i) if [a, b] /∈ Ball([x, y], r), then (+(x, y, r))([a, b]) = 1, and
(ii) if [a, b] ∈ Ball([x, y], r), then (+(x, y, r))([a, b]) = |[x,y]−[a,b]|

r .

The following propositions are true:
(81) Let p be a point of E2

T. Suppose p2 ≥ 0. Let x be a real number, y

be a non negative real number, and r be a positive real number. Then
(+(x, y, r))(p) = 0 if and only if p = [x, y].

(82) Let x be a real number, y be a non negative real number, and r, a

be positive real numbers. If a ≤ 1, then (+(x, y, r))−1([0, a[) = Ball([x,

y], r · a) ∩ (y ≥ 0)-plane.
(83) Let p be a point of E2

T. Suppose p2 > 0. Let x be a real number,
a be a non negative real number, and y, r be positive real numbers. If
(+(x, y, r))(p) > a, then |[x, y]−p| > r·a and Ball(p, |[x, y]−p|−r·a)∩(y ≥
0)-plane ⊆ (+(x, y, r))−1(]a, 1]).
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(84) Let p be a point of E2
T. Suppose p2 = 0. Let x be a real number, a be

a non negative real number, and y, r be positive real numbers. Suppose
(+(x, y, r))(p) > a. Then |[x, y] − p| > r · a and there exists a positive
real number r1 such that r1 = |[x,y]−p|−r·a

2 and Ball([p1, r1], r1) ∪ {p} ⊆
(+(x, y, r))−1(]a, 1]).

Let x be a real number and let y, r be positive real numbers. One can verify
that +(x, y, r) is continuous.

We now state three propositions:
(85) Let U be a subset of Niemytzki plane and given x, y, r. Suppose y > 0

and U = Ball([x, y], r) ∩ (y ≥ 0)-plane. Then there exists a continuous
function f from Niemytzki plane into I such that f([x, y]) = 0 and for all
real numbers a, b holds if [a, b] ∈ U c, then f([a, b]) = 1 and if [a, b] ∈ U,

then f([a, b]) = |[x,y]−[a,b]|
r .

(86) Niemytzki plane is a T1 space.
(87) Niemytzki plane is Tychonoff.
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[15] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[16] Agata Darmochwa l. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[17] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[18] Agata Darmochwa l. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[19] Agata Darmochwa l and Yatsuka Nakamura. Metric spaces as topological spaces – funda-

mental concepts. Formalized Mathematics, 2(4):605–608, 1991.
[20] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN –

Polish Scientific Publishers, Warsaw, 1977.
[21] Adam Grabowski. On the boundary and derivative of a set. Formalized Mathematics,

13(1):139–146, 2005.



524 grzegorz bancerek

[22] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[23] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics,
1(5):841–845, 1990.

[24] Artur Korni lowicz and Yasunari Shidama. Intersections of intervals and balls in En
T.

Formalized Mathematics, 12(3):301–306, 2004.
[25] Jaros law Kotowicz. Convergent real sequences. Upper and lower bound of sets of real

numbers. Formalized Mathematics, 1(3):477–481, 1990.
[26] Jaros law Kotowicz. The limit of a real function at infinity. Formalized Mathematics,

2(1):17–28, 1991.
[27] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics,

10(1):21–22, 2002.
[28] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[29] Konrad Raczkowski and Pawe l Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[30] Agnieszka Sakowicz, Jaros law Gryko, and Adam Grabowski. Sequences in EN

T . Formalized
Mathematics, 5(1):93–96, 1996.

[31] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,
5(2):233–236, 1996.

[32] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[33] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[34] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[35] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[36] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[37] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[38] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341–

347, 2003.
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The notation and terminology used in this paper are introduced in the following
papers: [2], [1], [9], [6], [3], [5], [7], [8], and [4].

For simplicity, we adopt the following rules: a, b, c, d are positive real
numbers, m, u, w, x, y, z are real numbers, n, k are natural numbers, and s, s1

are sequences of real numbers.
Next we state a number of propositions:

(1) (a + b) · ( 1
a + 1

b ) ≥ 4.

(2) a4 + b4 ≥ a3 · b + a · b3.

(3) If a < b, then 1 < b+c
a+c .

(4) If a < b, then a
b <

√
a
b .

(5) If a < b, then
√

a
b <

b+

q
a2+b2

2

a+

q
a2+b2

2

.

(6) If a < b, then a
b <

b+

q
a2+b2

2

a+

q
a2+b2

2

.

(7) 2
1
a
+ 1

b

≤
√

a · b.

(8) a+b
2 ≤

√
a2+b2

2 .

(9) x + y ≤
√

2 · (x2 + y2).
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(10) 2
1
a
+ 1

b

≤ a+b
2 .

(11)
√

a · b ≤
√

a2+b2

2 .

(12) 2
1
a
+ 1

b

≤
√

a2+b2

2 .

(13) If |x| < 1 and |y| < 1, then | x+y
1+x·y | ≤ 1.

(14) |x+y|
1+|x+y| ≤

|x|
1+|x| + |y|

1+|y| .

(15) a
a+b+d + b

a+b+c + c
b+c+d + d

a+c+d > 1.

(16) a
a+b+d + b

a+b+c + c
b+c+d + d

a+c+d < 2.

(17) If a+b > c and b+c > a and a+c > b, then 1
(a+b)−c + 1

(b+c)−a + 1
(c+a)−b ≥

9
a+b+c .

(18)
√

(a + b) · (c + d) ≥
√

a · c +
√

b · d.

(19) (a · b + c · d) · (a · c + b · d) ≥ 4 · a · b · c · d.

(20) a
b + b

c + c
a ≥ 3.

(21) If a · b + b · c + c · a = 1, then a + b + c ≥
√

3.

(22) (b+c)−a
a + (c+a)−b

b + (a+b)−c
c ≥ 3.

(23) (a + 1
a) · (b + 1

b ) ≥ (
√

a · b + 1√
a·b)

2.

(24) b·c
a + a·c

b + a·b
c ≥ a + b + c.

(25) If x > y and y > z, then x2 · y + y2 · z + z2 · x > x · y2 + y · z2 + z · x2.

(26) If a > b and b > c, then b
a−b > c

a−c .

(27) If b > a and c > d, then c
c+a > d

d+b .

(28) m · x + z · y ≤
√

m2 + z2 ·
√

x2 + y2.

(29) (m · x + u · y + w · z)2 ≤ (m2 + u2 + w2) · (x2 + y2 + z2).
(30) 9·a·b·c

a2+b2+c2
≤ a + b + c.

(31) a + b + c ≤
√

a2+a·b+b2

3 +
√

b2+b·c+c2

3 +
√

c2+c·a+a2

3 .

(32)
√

a2+a·b+b2

3 +
√

b2+b·c+c2

3 +
√

c2+c·a+a2

3 ≤
√

a2+b2

2 +
√

b2+c2

2 +
√

c2+a2

2 .

(33)
√

a2+b2

2 +
√

b2+c2

2 +
√

c2+a2

2 ≤
√

3 · (a2 + b2 + c2).

(34)
√

3 · (a2 + b2 + c2) ≤ b·c
a + c·a

b + a·b
c .

(35) If a + b = 1, then ( 1
a2 − 1) · ( 1

b2
− 1) ≥ 9.

(36) If a + b = 1, then a · b + 1
a·b ≥

17
4 .

(37) If a + b + c = 1, then 1
a + 1

b + 1
c ≥ 9.

(38) If a + b + c = 1, then ( 1
a − 1) · (1

b − 1) · (1
c − 1) ≥ 8.

(39) If a + b + c = 1, then (1 + 1
a) · (1 + 1

b ) · (1 + 1
c ) ≥ 64.

(40) If x + y + z = 1, then x2 + y2 + z2 ≥ 1
3 .

(41) If x + y + z = 1, then x · y + y · z + z · x ≤ 1
3 .
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(42) If a · b · c = 1, then
√

a +
√

b +
√

c ≤ 1
a + 1

b + 1
c .

(43) If a > b and b > c, then a2·a · b2·b · c2·c > ab+c · ba+c · ca+b.

(44) If n ≥ 1, then an+1 + bn+1 ≥ an · b + a · bn.

(45) If a2 + b2 = c2 and n ≥ 3, then an+2 + bn+2 < cn+2.

(46) If n ≥ 1, then (1 + 1
n+1)n < (1 + 1

n)n+1.

(47) If n ≥ 1 and k ≥ 1, then (ak + bk) · (an + bn) ≤ 2 · (ak+n + bk+n).
(48) If for every n holds s(n) = 1√

n+1
, then for every n holds

(
∑κ

α=0 s(α))κ∈N(n) < 2 ·
√

n + 1.

(49) If for every n holds s(n) = 1
(n+1)2

, then for every n holds
(
∑κ

α=0 s(α))κ∈N(n) ≤ 2− 1
n+1 .

(50) If for every n holds s(n) = 1
(n+1)2

, then (
∑κ

α=0 s(α))κ∈N(n) < 2.

(51) If for every n holds s(n) < 1, then for every n holds (
∑κ

α=0 s(α))κ∈N(n) <

n + 1.

(52) If for every n holds s(n) > 0 and s(n) < 1, then for every n holds (the
partial product of s)(n) ≥ (

∑κ
α=0 s(α))κ∈N(n)− n.

(53) If for every n holds s(n) > 0 and s1(n) = 1
s(n) , then for every n holds

(
∑κ

α=0(s1)(α))κ∈N(n) > 0.

(54) If for every n holds s(n) > 0 and s1(n) = 1
s(n) , then for every n holds

(
∑κ

α=0 s(α))κ∈N(n) · (
∑κ

α=0(s1)(α))κ∈N(n) ≥ (n + 1)2.

(55) If for every n such that n ≥ 1 holds s(n) =
√

n and s(0) = 0, then for
every n such that n ≥ 1 holds (

∑κ
α=0 s(α))κ∈N(n) < 1

6 · (4 · n + 3) ·
√

n.

(56) If for every n such that n ≥ 1 holds s(n) =
√

n and s(0) = 0, then for
every n such that n ≥ 1 holds (

∑κ
α=0 s(α))κ∈N(n) > 2

3 · n ·
√

n.

(57) Suppose that for every n such that n ≥ 1 holds s(n) = 1 + 1
2·n+1 and

s(0) = 1. Let given n. If n ≥ 1, then (the partial product of s)(n) >
1
2 ·
√

2 · n + 3.

(58) If for every n such that n ≥ 1 holds s(n) =
√

n · (n + 1) and s(0) = 0,

then for every n such that n ≥ 1 holds (
∑κ

α=0 s(α))κ∈N(n) > n·(n+1)
2 .
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The papers [11], [13], [14], [1], [8], [10], [2], [4], [7], [5], [6], [9], [15], [3], and [12]
provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, a denote real numbers, n

denotes a natural number, Z denotes an open subset of R, and f , f1, f2 denote
partial functions from R to R.

One can prove the following propositions:
(1) If a > 0, then exp(x · loge a) = ax

R.

(2) If a > 0, then exp(−x · loge a) = a−x
R .

(3) Suppose Z ⊆ dom(f1 − f2) and for every x such that x ∈ Z holds
f1(x) = a2 and f2 = 2

Z. Then f1 − f2 is differentiable on Z and for every
x such that x ∈ Z holds (f1 − f2)′�Z(x) = −2 · x.

(4) Suppose Z ⊆ dom(f1+f2

f1−f2
) and f2 = 2

Z and for every x such that x ∈ Z

holds f1(x) = a2 and (f1 − f2)(x) 6= 0. Then f1+f2

f1−f2
is differentiable on Z

and for every x such that x ∈ Z holds (f1+f2

f1−f2
)′�Z(x) = 4·a2·x

(a2−x2)2
.
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(5) Suppose Z ⊆ dom f and f = log (e) · f1+f2

f1−f2
and f2 = 2

Z and for every x

such that x ∈ Z holds f1(x) = a2 and (f1−f2)(x) > 0 and a 6= 0. Then f is
differentiable on Z and for every x such that x ∈ Z holds f ′�Z(x) = 4·a2·x

a4−x4 .

(6) Suppose Z ⊆ dom( 1
4·a2 f) and f = log (e) · f1+f2

f1−f2
and f2 = 2

Z and for
every x such that x ∈ Z holds f1(x) = a2 and (f1− f2)(x) > 0 and a 6= 0.

Then 1
4·a2 f is differentiable on Z and for every x such that x ∈ Z holds

( 1
4·a2 f)′�Z(x) = x

a4−x4 .

(7) Suppose Z ⊆ dom( f1

f2+f1
) and f1 = 2

Z and for every x such that x ∈ Z

holds f2(x) = 1 and x 6= 0. Then f1

f2+f1
is differentiable on Z and for every

x such that x ∈ Z holds ( f1

f2+f1
)′�Z(x) = 2·x

(1+x2)2
.

(8) Suppose Z ⊆ dom(1
2 f) and f = log (e) · f1

f2+f1
and f1 = 2

Z and for every
x such that x ∈ Z holds f2(x) = 1 and x 6= 0. Then 1

2 f is differentiable
on Z and for every x such that x ∈ Z holds (1

2 f)′�Z(x) = 1
x·(1+x2)

.

(9) Suppose Z ⊆ dom(log (e) · n
Z) and for every x such that x ∈ Z holds

x > 0. Then log (e) · n
Z is differentiable on Z and for every x such that

x ∈ Z holds (log (e) · n
Z)′�Z(x) = n

x .

(10) Suppose Z ⊆ dom( 1
f2

+ log (e) · f1

f2
) and for every x such that x ∈ Z

holds f2(x) = x and f2(x) > 0 and f1(x) = x − 1 and f1(x) > 0. Then
1
f2

+ log (e) · f1

f2
is differentiable on Z and for every x such that x ∈ Z

holds ( 1
f2

+ log (e) · f1

f2
)′�Z(x) = 1

x2·(x−1)
.

(11) Suppose Z ⊆ dom(exp ·f) and for every x such that x ∈ Z holds f(x) =
x · loge a and a > 0. Then exp ·f is differentiable on Z and for every x such
that x ∈ Z holds (exp ·f)′�Z(x) = (ax

R) · loge a.

(12) Suppose Z ⊆ dom( 1
loge a ((exp ·f1) f2)) and for every x such that x ∈ Z

holds f1(x) = x · loge a and f2(x) = x− 1
loge a and a > 0 and a 6= 1. Then

1
loge a ((exp ·f1) f2) is differentiable on Z and for every x such that x ∈ Z

holds ( 1
loge a ((exp ·f1) f2))′�Z(x) = x · ax

R.

(13) Suppose Z ⊆ dom( 1
1+loge a ((exp ·f) exp)) and for every x such that

x ∈ Z holds f(x) = x · loge a and a > 0 and a 6= 1
e . Then

1
1+loge a ((exp ·f) exp) is differentiable on Z and for every x such that x ∈ Z

holds ( 1
1+loge a ((exp ·f) exp))′�Z(x) = (ax

R) · exp(x).

(14) Suppose Z ⊆ dom(exp ·f) and for every x such that x ∈ Z holds f(x) =
−x. Then exp ·f is differentiable on Z and for every x such that x ∈ Z

holds (exp ·f)′�Z(x) = −exp(−x).

(15) Suppose Z ⊆ dom(f1 (exp ·f2)) and for every x such that x ∈ Z holds
f1(x) = −x − 1 and f2(x) = −x. Then f1 (exp ·f2) is differentiable on Z

and for every x such that x ∈ Z holds (f1 (exp ·f2))′�Z(x) = x
exp x .
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(16) Suppose Z ⊆ dom(−exp ·f) and for every x such that x ∈ Z holds
f(x) = −x · loge a and a > 0. Then −exp ·f is differentiable on Z and for
every x such that x ∈ Z holds (−exp ·f)′�Z(x) = (a−x

R ) · loge a.

(17) Suppose Z ⊆ dom( 1
loge a ((−exp ·f1) f2)) and for every x such that x ∈ Z

holds f1(x) = −x · loge a and f2(x) = x + 1
loge a and a > 0 and a 6= 1.

Then 1
loge a ((−exp ·f1) f2) is differentiable on Z and for every x such that

x ∈ Z holds ( 1
loge a ((−exp ·f1) f2))′�Z(x) = x

ax
R
.

(18) Suppose Z ⊆ dom( 1
loge a−1

exp ·f
exp ) and for every x such that x ∈ Z holds

f(x) = x · loge a and a > 0 and a 6= e. Then 1
loge a−1

exp ·f
exp is differentiable

on Z and for every x such that x ∈ Z holds ( 1
loge a−1

exp ·f
exp )′�Z(x) = ax

R
exp(x) .

(19) Suppose Z ⊆ dom( 1
1−loge a

exp
exp ·f ) and for every x such that x ∈ Z holds

f(x) = x · loge a and a > 0 and a 6= e. Then 1
1−loge a

exp
exp ·f is differentiable

on Z and for every x such that x ∈ Z holds ( 1
1−loge a

exp
exp ·f )′�Z(x) = exp(x)

ax
R

.

(20) Suppose Z ⊆ dom(log (e) · (exp+f)) and for every x such that x ∈ Z

holds f(x) = 1. Then log (e) · (exp+f) is differentiable on Z and for every
x such that x ∈ Z holds (log (e) · (exp+f))′�Z(x) = exp(x)

exp(x)+1 .

(21) Suppose Z ⊆ dom(log (e) · (exp−f)) and for every x such that x ∈ Z

holds f(x) = 1 and (exp−f)(x) > 0. Then log (e) · (exp−f) is dif-
ferentiable on Z and for every x such that x ∈ Z holds (log (e) ·
(exp−f))′�Z(x) = exp(x)

exp(x)−1 .

(22) Suppose Z ⊆ dom(−log (e) · (f − exp)) and for every x such that
x ∈ Z holds f(x) = 1 and (f − exp)(x) > 0. Then −log (e) · (f − exp)
is differentiable on Z and for every x such that x ∈ Z holds
(−log (e) · (f − exp))′�Z(x) = exp(x)

1−exp(x) .

(23) Suppose Z ⊆ dom((2Z) · exp+f) and for every x such that x ∈ Z holds
f(x) = 1. Then (2Z) · exp+f is differentiable on Z and for every x such
that x ∈ Z holds ((2Z) · exp+f)′�Z(x) = 2 · exp(2 · x).

(24) Suppose Z ⊆ dom(1
2 (log (e) · f)) and f = (2Z) · exp+f1 and for every x

such that x ∈ Z holds f1(x) = 1. Then 1
2 (log (e) ·f) is differentiable on Z

and for every x such that x ∈ Z holds (1
2 (log (e)·f))′�Z(x) = exp x

exp x+exp(−x) .

(25) Suppose Z ⊆ dom((2Z) · exp−f) and for every x such that x ∈ Z holds
f(x) = 1. Then (2Z) · exp−f is differentiable on Z and for every x such
that x ∈ Z holds ((2Z) · exp−f)′�Z(x) = 2 · exp(2 · x).

(26) Suppose Z ⊆ dom(1
2 (log (e) · f)) and f = (2Z) · exp−f1 and for every

x such that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then 1
2 (log (e) · f)

is differentiable on Z and for every x such that x ∈ Z holds (1
2 (log (e) ·

f))′�Z(x) = exp x
exp x−exp(−x) .
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(27) Suppose Z ⊆ dom((2Z) · (exp−f)) and for every x such that x ∈ Z holds
f(x) = 1. Then (2Z) · (exp−f) is differentiable on Z and for every x such
that x ∈ Z holds ((2Z) · (exp−f))′�Z(x) = 2 · exp(x) · (exp(x)− 1).

(28) Suppose Z ⊆ dom f and f = log (e) · (2Z)·(exp−f1)
exp and for every x such

that x ∈ Z holds f1(x) = 1 and (exp−f1)(x) > 0. Then f is differentiable
on Z and for every x such that x ∈ Z holds f ′�Z(x) = exp(x)+1

exp(x)−1 .

(29) Suppose Z ⊆ dom((2Z) · (exp+f)) and for every x such that x ∈ Z holds
f(x) = 1. Then (2Z) · (exp+f) is differentiable on Z and for every x such
that x ∈ Z holds ((2Z) · (exp+f))′�Z(x) = 2 · exp(x) · (exp(x) + 1).

(30) Suppose Z ⊆ dom f and f = log (e) · (2Z)·(exp +f1)
exp and for every x such

that x ∈ Z holds f1(x) = 1. Then f is differentiable on Z and for every x

such that x ∈ Z holds f ′�Z(x) = exp(x)−1
exp(x)+1 .

(31) Suppose Z ⊆ dom((2Z) · (f − exp)) and for every x such that x ∈ Z holds
f(x) = 1. Then (2Z) · (f − exp) is differentiable on Z and for every x such
that x ∈ Z holds ((2Z) · (f − exp))′�Z(x) = −2 · exp(x) · (1− exp(x)).

(32) Suppose Z ⊆ dom f and f = log (e) · exp
(2Z)·(f1−exp)

and for every x such
that x ∈ Z holds f1(x) = 1 and (f1− exp)(x) > 0. Then f is differentiable
on Z and for every x such that x ∈ Z holds f ′�Z(x) = 1+exp(x)

1−exp(x) .

(33) Suppose Z ⊆ dom f and f = log (e) · exp
(2Z)·(f1+exp)

and for every x such
that x ∈ Z holds f1(x) = 1. Then f is differentiable on Z and for every x

such that x ∈ Z holds f ′�Z(x) = 1−exp(x)
1+exp(x) .

(34) Suppose Z ⊆ dom(log (e) ·f) and f = exp+exp ·f1 and for every x such
that x ∈ Z holds f1(x) = −x. Then log (e) · f is differentiable on Z and
for every x such that x ∈ Z holds (log (e) · f)′�Z(x) = exp x−exp(−x)

exp x+exp(−x) .

(35) Suppose Z ⊆ dom(log (e) ·f) and f = exp− exp ·f1 and for every x such
that x ∈ Z holds f1(x) = −x and f(x) > 0. Then log (e) · f is differen-
tiable on Z and for every x such that x ∈ Z holds (log (e) · f)′�Z(x) =
exp x+exp(−x)
exp x−exp(−x) .

(36) Suppose Z ⊆ dom(2
3 ((

3
2
R) · (f + exp))) and for every x such that x ∈ Z

holds f(x) = 1. Then 2
3 ((

3
2
R) ·(f +exp)) is differentiable on Z and for every

x such that x ∈ Z holds (2
3 ((

3
2
R) · (f +exp)))′�Z(x) = exp(x) · (1+exp(x))

1
2
R.

(37) Suppose Z ⊆ dom( 2
3·loge a ((

3
2
R) · (f + exp ·f1))) and for every x such that

x ∈ Z holds f(x) = 1 and f1(x) = x · loge a and a > 0 and a 6= 1. Then
2

3·loge a ((
3
2
R) · (f + exp ·f1)) is differentiable on Z and for every x such that

x ∈ Z holds ( 2
3·loge a ((

3
2
R) · (f + exp ·f1)))′�Z(x) = (ax

R) · (1 + ax
R)

1
2
R.
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(38) Suppose Z ⊆ dom((−1
2) ((the function cos) ·f)) and for every x such

that x ∈ Z holds f(x) = 2 · x. Then
(i) (−1

2) ((the function cos) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((−1

2) ((the function cos) ·f))′�Z(x) =
sin(2 · x).

(39) Suppose that

(i) Z ⊆ dom(2 ((
1
2
R) · (f − the function cos))), and

(ii) for every x such that x ∈ Z holds f(x) = 1 and (the function sin)(x) > 0
and (the function cos)(x) < 1 and (the function cos)(x) > −1.

Then
(iii) 2 ((

1
2
R) · (f − the function cos)) is differentiable on Z, and

(iv) for every x such that x ∈ Z holds (2 ((
1
2
R)·(f−the function cos)))′�Z(x) =

(1 + (the function cos)(x))
1
2
R.

(40) Suppose that

(i) Z ⊆ dom((−2) ((
1
2
R) · (f + the function cos))), and

(ii) for every x such that x ∈ Z holds f(x) = 1 and (the function sin)(x) > 0
and (the function cos)(x) < 1 and (the function cos)(x) > −1.

Then
(iii) (−2) ((

1
2
R) · (f + the function cos)) is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((−2) ((
1
2
R) · (f + the function

cos)))′�Z(x) = (1− (the function cos)(x))
1
2
R.

(41) Suppose Z ⊆ dom(1
2 (log (e) · f)) and f = f1 + 2 (the function sin) and

for every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then
(i) 1

2 (log (e) · f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (1

2 (log (e) · f))′�Z(x) =
(the function cos)(x)

1+2·(the function sin)(x) .

(42) Suppose Z ⊆ dom((−1
2) (log (e) · f)) and f = f1 + 2 (the function cos)

and for every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0. Then
(i) (−1

2) (log (e) · f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((−1

2) (log (e) · f))′�Z(x) =
(the function sin)(x)

1+2·(the function cos)(x) .

(43) Suppose Z ⊆ dom( 1
4·a ((the function sin) ·f)) and for every x such that

x ∈ Z holds f(x) = 2 · a · x and a 6= 0. Then
(i) 1

4·a ((the function sin) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

4·a ((the function sin) ·f))′�Z(x) =
1
2 · cos(2 · a · x).

(44) Suppose Z ⊆ dom(f1 − 1
4·a ((the function sin) ·f)) and for every x such

that x ∈ Z holds f1(x) = x
2 and f(x) = 2 · a · x and a 6= 0. Then
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(i) f1 − 1
4·a ((the function sin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f1− 1
4·a ((the function sin) ·f))′�Z(x) =

(sin(a · x))2.

(45) Suppose Z ⊆ dom(f1 + 1
4·a ((the function sin) ·f)) and for every x such

that x ∈ Z holds f1(x) = x
2 and f(x) = 2 · a · x and a 6= 0. Then

(i) f1 + 1
4·a ((the function sin) ·f) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f1+ 1
4·a ((the function sin) ·f))′�Z(x) =

(cos(a · x))2.

(46) Suppose Z ⊆ dom( 1
n ((n

Z) · (the function cos))) and n > 0. Then
(i) 1

n ((n
Z) · (the function cos)) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n ((n

Z) · (the function cos)))′�Z(x) =
−((the function cos)(x)n−1

Z ) · (the function sin)(x).
(47) Suppose Z ⊆ dom(1

3 ((3Z) · (the function cos))−the function cos) and
n > 0. Then

(i) 1
3 ((3Z) · (the function cos))−the function cos is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (1
3 ((3Z) · (the function cos))−the

function cos)′�Z(x) = (the function sin)(x)3.

(48) Suppose Z ⊆ dom((the function sin)−1
3 ((3Z) · (the function sin))) and

n > 0. Then
(i) (the function sin)−1

3 ((3Z) · (the function sin)) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin)−1

3 ((3Z) · (the
function sin)))′�Z(x) = (the function cos)(x)3.

(49) Suppose Z ⊆ dom((the function sin) · log (e)). Then
(i) (the function sin) · log (e) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) · log (e))′�Z(x) =

(the function cos)(loge x)
x .

(50) Suppose Z ⊆ dom(−(the function cos) · log (e)). Then
(i) −(the function cos) · log (e) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cos) · log (e))′�Z(x) =

(the function sin)(loge x)
x .
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operations. We include some theorems concerning logical operators.
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The terminology and notation used in this paper are introduced in the following
articles: [4], [3], [2], and [1].

In this paper x, y, z denote boolean sets.
Next we state a number of propositions:

(1) true ⇒ x = x.

(2) false ⇒ x = true.

(3) x ⇒ x = true and ¬(x ⇒ x) = false.

(4) ¬(x ⇒ y) = x ∧ ¬y.

(5) x ⇒ ¬x = ¬x and ¬(x ⇒ ¬x) = x.

(6) ¬x ⇒ x = x.

(7) true ⇔ x = x.

(8) false ⇔ x = ¬x.

(9) x ⇔ x = true and ¬(x ⇔ x) = false.

(10) ¬x ⇔ x = false.

(11) x ∧ (y ⇔ z) = x ∧ (¬y ∨ z) ∧ (¬z ∨ y).
(12) x ∧ (y ′nand′ z) = x ∧ ¬y ∨ x ∧ ¬z.

(13) x ∧ (y ′nor′ z) = x ∧ ¬y ∧ ¬z.

(14) x ∧ (x ∧ y) = x ∧ y.
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(15) x ∧ (x ∨ y) = x ∨ x ∧ y.

(16) x ∧ (x⊕ y) = x ∧ ¬y.

(17) x ∧ (x ⇒ y) = x ∧ y.

(18) x ∧ (x ⇔ y) = x ∧ y.

(19) x ∧ (x ′nand′ y) = x ∧ ¬y.

(20) x ∧ (x ′nor′ y) = false.

(21) x ∨ (y ⊕ z) = x ∨ ¬y ∧ z ∨ y ∧ ¬z.

(22) x ∨ (y ⇔ z) = (x ∨ ¬y ∨ z) ∧ (x ∨ ¬z ∨ y).
(23) x ∨ (y ′nand′ z) = x ∨ ¬y ∨ ¬z.

(24) x∨(y ′nor′ z) = (x∨¬y)∧(x∨¬z) and x∨(y ′nor′ z) = (y ⇒ x)∧(z ⇒ x).
(25) x ∨ (x ∨ y) = x ∨ y.

(26) x ∨ (x ⇒ y) = true.

(27) x ∨ (x ⇔ y) = y ⇒ x.

(28) x ∨ (x ′nand′ y) = true.

(29) x ∨ (x ′nor′ y) = y ⇒ x.

(30) x ⇒ y ⊕ z = ¬x ∨ ¬y ∧ z ∨ y ∧ ¬z.

(31) x ⇒ y ⇔ z = (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z).
(32) x ⇒ y ′nand′ z = ¬x ∨ ¬y ∨ ¬z.

(33) x ⇒ y ′nor′ z = (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) and x ⇒ y ′nor′ z = (x ⇒
¬y) ∧ (x ⇒ ¬z).

(34) x ⇒ x ∧ y = x ⇒ y.

(35) x ⇒ x ∨ y = true.

(36) x ⇒ x⊕ y = ¬x ∨ ¬y.

(37) x ⇒ x ⇒ y = x ⇒ y.

(38) x ⇒ x ⇔ y = x ⇒ y and x ⇒ x ⇔ y = x ⇒ x ⇒ y.

(39) x ⇒ x ′nand′ y = ¬(x ∧ y).
(40) x ⇒ x ′nor′ y = ¬x.

(41) x ′nand′ (y ⇒ z) = (¬x ∨ y) ∧ (¬x ∨ ¬z) and x ′nand′ (y ⇒ z) = (x ⇒
y) ∧ (x ⇒ ¬z).

(42) x ′nand′ (y ⇔ z) = ¬(x ∧ (¬y ∨ z) ∧ (¬z ∨ y)).
(43) x ′nand′ (y ′nand′ z) = (¬x ∨ y) ∧ (¬x ∨ z) and x ′nand′ (y ′nand′ z) =

(x ⇒ y) ∧ (x ⇒ z).
(44) x ′nand′ (y ′nor′ z) = ¬x ∨ y ∨ z.

(45) x ′nand′ x ∧ y = ¬(x ∧ y).
(46) x ′nand′ (x⊕ y) = x ⇒ y.

(47) x ′nand′ (x ⇒ y) = ¬(x ∧ y).
(48) x ′nand′ (x ⇔ y) = ¬(x ∧ y).
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(49) x ′nand′ (x ′nand′ y) = x ⇒ y.

(50) x ′nand′ (x ′nor′ y) = true.

(51) x ′nor′ (y ⊕ z) = ¬(x ∨ ¬y ∧ z ∨ y ∧ ¬z).
(52) x ′nor′ (y ⇔ z) = ¬((x ∨ ¬y ∨ z) ∧ (x ∨ ¬z ∨ y)).
(53) x ′nor′ (y ′nand′ z) = ¬x ∧ y ∧ z.

(54) x ′nor′ (y ′nor′ z) = ¬x ∧ y ∨ ¬x ∧ z.

(55) x ′nor′ x ∧ y = ¬x.

(56) x ′nor′ (x ∨ y) = ¬x ∧ ¬y.

(57) x ′nor′ (x⊕ y) = ¬x ∧ ¬y.

(58) x ′nor′ (x ⇒ y) = false.

(59) x ′nor′ (x ⇔ y) = ¬x ∧ y.

(60) x ′nor′ (x ′nand′ y) = false.

(61) x ′nor′ (x ′nor′ y) = ¬x ∧ y.

(62) x⊕ y ∧ z = (x ∨ y ∧ z) ∧ (¬x ∨ ¬(y ∧ z)).
(63) x⊕ x ∧ y = x ∧ ¬y.

(64) x⊕ (x ∨ y) = ¬x ∧ y.

(65) ¬x ∧ (x⊕ y) = ¬x ∧ y.

(66) x ∧ ¬(x⊕ y) = x ∧ y.

(67) x⊕ (x⊕ y) = y.

(68) x ∧ ¬(x ⇒ y) = x ∧ ¬y.

(69) x⊕ (x ⇒ y) = ¬x ∨ ¬y.

(70) ¬x ∧ (x ⇔ y) = ¬x ∧ ¬y.

(71) x ∧ ¬(x ⇔ y) = x ∧ ¬y.

(72) x⊕ (x ⇔ y) = ¬y.

(73) x⊕ (x ′nand′ y) = x ⇒ y.

(74) x⊕ (x ′nor′ y) = y ⇒ x.

(75) ¬x ∧ (x ⇒ y) = ¬x ∨ ¬x ∧ y.

(76) ¬x ∧ (y ⇔ z) = ¬x ∧ (¬y ∨ z) ∧ (¬z ∨ y).
(77) ¬x ∧ (x ⇔ y) = ¬x ∧ ¬y ∧ (¬x ∨ y).
(78) ¬x ∧ (x ′nand′ y) = ¬x ∨ ¬x ∧ ¬y.

(79) ¬x ∧ (x ′nor′ y) = ¬x ∧ ¬y.

(80) ¬x ∨ (x ⇒ y) = ¬x ∨ y.

(81) ¬x ∨ (x ⇔ y) = ¬x ∨ y.

(82) ¬x ∨ (x ′nand′ y) = ¬x ∨ ¬y.

(83) ¬x⊕ (x ⇒ y) = x ∧ y.

(84) ¬x⊕ (y ⇒ x) = x ∧ (x ∨ ¬y) ∨ ¬x ∧ y.

(85) ¬(x ⇒ y) = x ∧ ¬y.
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(86) ¬(x ⇔ y) = x ∧ ¬y ∨ y ∧ ¬x.

(87) ¬x⊕ (x ⇔ y) = y.
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The terminology and notation used in this paper have been introduced in the
following articles: [8], [3], [11], [12], [1], [10], [9], [6], [2], [4], [5], [13], and [7].

For simplicity, we adopt the following convention: n denotes a natural num-
ber, K denotes a field, a denotes an element of K, and M , M1, M2, M3, M4

denote matrices over K of dimension n.
Let n be a natural number, let K be a field, and let M1, M2 be matrices

over K of dimension n. We say that M1 is permutable with M2 if and only if:
(Def. 1) M1 ·M2 = M2 ·M1.

Let us note that the predicate M1 is permutable with M2 is symmetric.
Let n be a natural number, let K be a field, and let M1, M2 be matrices

over K of dimension n. We say that M1 is reverse of M2 if and only if:

(Def. 2) M1 ·M2 = M2 ·M1 and M1 ·M2 =

 1 0
. . .

0 1


n×n

K

.
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Let us note that the predicate M1 is reverse of M2 is symmetric.

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is reversible if and only if:

(Def. 3) There exists a matrix M2 over K of dimension n such that M1 is reverse
of M2.

Let us consider n, K and let M1 be a matrix over K of dimension n. Then
−M1 is a matrix over K of dimension n.

Let us consider n, K and let M1, M2 be matrices over K of dimension n.
Then M1 + M2 is a matrix over K of dimension n.

Let us consider n, K and let M1, M2 be matrices over K of dimension n.
Then M1 −M2 is a matrix over K of dimension n.

Let us consider n, K and let M1, M2 be matrices over K of dimension n.
Then M1 ·M2 is a matrix over K of dimension n.

The following propositions are true:

(1) For every field K and for every matrix A over K such that

lenA > 0 and width A > 0 holds

 0 . . . 0
...

. . .
...

0 . . . 0


(len A)×(len A)

K

· A =

 0 . . . 0
...

. . .
...

0 . . . 0


(len A)×(width A)

K

.

(2) For every field K and for every matrix A over K such that

lenA > 0 and widthA > 0 holds A ·

 0 . . . 0
...

. . .
...

0 . . . 0


(width A)×(width A)

K

=

 0 . . . 0
...

. . .
...

0 . . . 0


(len A)×(width A)

K

.

(3) If n > 0, then M1 is permutable with

 0 . . . 0
...

. . .
...

0 . . . 0


n×n

K

.

(4) If M1 is permutable with M2 and M2 is permutable with M3 and M1 is
permutable with M3, then M1 is permutable with M2 ·M3.

(5) If M1 is permutable with M2 and permutable with M3 and n > 0, then
M1 is permutable with M2 + M3.
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(6) M1 is permutable with

 1 0
. . .

0 1


n×n

K

.

(7) If M2 is reverse of M3 and M1 is reverse of M3, then M1 = M2.

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. Let us assume that M1 is reversible. The functor M1
` yields a

matrix over K of dimension n and is defined by:

(Def. 4) M1
` is reverse of M1.

We now state a number of propositions:

(8) (

 1 0
. . .

0 1


n×n

K

)` =

 1 0
. . .

0 1


n×n

K

and

 1 0
. . .

0 1


n×n

K

is

reversible.

(9) ((

 1 0
. . .

0 1


n×n

K

)`)` =

 1 0
. . .

0 1


n×n

K

.

(10) If n > 0, then (

 1 0
. . .

0 1


n×n

K

)T =

 1 0
. . .

0 1


n×n

K

.

(11) Let K be a field, n be a natural number, and M be a matrix over K

of dimension n. If M = (

 1 0
. . .

0 1


n×n

K

)T and n > 0, then M` =

 1 0
. . .

0 1


n×n

K

.

(12) If M1
T = M2 and M3 is reverse of M1 and M = M3

T and n > 0, then
M2 is reverse of M .

(13) If M is reversible and n > 0 and M1 = MT and M2 = (M`)T, then
M1

` = M2.

(14) Let K be a field, n be a natural number, and M1, M2, M3, M4 be
matrices over K of dimension n. If M3 is reverse of M1 and M4 is reverse
of M2, then M3 ·M4 is reverse of M2 ·M1.

(15) Let K be a field, n be a natural number, and M1, M2 be matrices over
K of dimension n. If M2 is reverse of M1, then M1 is permutable with
M2.

(16) If M is reversible, then M` is reversible and (M`)` = M.
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(17) If n > 0 and M1 · M2 =

 0 . . . 0
...

. . .
...

0 . . . 0


n×n

K

and M1 is reversible, then

M1 is permutable with M2.
(18) If n > 0 and M1 = M1 ·M2 and M1 is reversible, then M1 is permutable

with M2.
(19) If n > 0 and M1 = M2 ·M1 and M1 is reversible, then M1 is permutable

with M2.
Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is symmetrical if and only if:
(Def. 5) M1

T = M1.

The following propositions are true:

(20) If n > 0, then

 1 0
. . .

0 1


n×n

K

is symmetrical.

(21) If n > 0, then (

 a . . . a
...

. . .
...

a . . . a


n×n

)T =

 a . . . a
...

. . .
...

a . . . a


n×n

.

(22) If n > 0, then

 a . . . a
...

. . .
...

a . . . a


n×n

is symmetrical.

(23) If n > 0 and M1 is symmetrical and M2 is symmetrical, then M1 is
permutable with M2 iff M1 ·M2 is symmetrical.

(24) If n > 0, then (M1 + M2)T = M1
T + M2

T.

(25) If n > 0 and M1 is symmetrical and M2 is symmetrical, then M1 + M2

is symmetrical.
(26) Suppose that

(i) M1 is an upper triangular matrix over K of dimension n and a lower
triangular matrix over K of dimension n, and

(ii) n > 0.

Then M1 is symmetrical.
(27) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. If n > 0, then (−M1)T = −M1
T.

(28) Let K be a field, n be a natural number, and M1, M2 be matrices over K

of dimension n. If M1 is symmetrical and n > 0, then −M1 is symmetrical.
(29) Let K be a field, n be a natural number, and M1, M2 be matrices over

K of dimension n. Suppose n > 0 and M1 is symmetrical and M2 is
symmetrical. Then M1 −M2 is symmetrical.



some properties . . . 545

Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is antisymmetric if and only if:

(Def. 6) M1
T = −M1.

We now state a number of propositions:

(30) Let K be a Fanoian field, n be a natural number, and M1 be a matrix
over K of dimension n. If M1 is symmetrical and antisymmetric and n > 0,

then M1 =

 0 . . . 0
...

. . .
...

0 . . . 0


n×n

K

.

(31) Let K be a Fanoian field, n, i be natural numbers, and M1 be a matrix
over K of dimension n. If M1 is antisymmetric and n > 0 and i ∈ Seg n,

then M1 ◦ (i, i) = 0K .

(32) Let K be a field, n be a natural number, and M1, M2 be matrices over
K of dimension n. Suppose n > 0 and M1 is antisymmetric and M2 is
antisymmetric. Then M1 + M2 is antisymmetric.

(33) Let K be a field, n be a natural number, and M1, M2 be matrices
over K of dimension n. If M1 is antisymmetric and n > 0, then −M1 is
antisymmetric.

(34) Let K be a field, n be a natural number, and M1, M2 be matrices over
K of dimension n. Suppose n > 0 and M1 is antisymmetric and M2 is
antisymmetric. Then M1 −M2 is antisymmetric.

(35) If M2 = M1 −M1
T and n > 0, then M2 is antisymmetric.

(36) If n > 0, then M1 is permutable with M2 iff (M1 + M2) · (M1 + M2) =
M1 ·M1 + M1 ·M2 + M1 ·M2 + M2 ·M2.

(37) If n > 0 and M1 is reversible and M2 is reversible, then M1 · M2 is
reversible and (M1 ·M2)` = M2

` ·M1
`.

(38) If n > 0 and M1 is reversible and M2 is reversible and M1 is permutable
with M2, then M1 ·M2 is reversible and (M1 ·M2)` = M1

` ·M2
`.

(39) If n > 0 and M1 is reversible and M2 is reversible and M1 · M2 = 1 0
. . .

0 1


n×n

K

, then M1 is reverse of M2.

(40) If n > 0 and M1 is reversible and M2 is reversible and M2 · M1 = 1 0
. . .

0 1


n×n

K

, then M1 is reverse of M2.

(41) If n > 0 and M1 is reversible and permutable with M2, then M1
` is

permutable with M2.
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Let n be a natural number, let K be a field, and let M1 be a matrix over K

of dimension n. We say that M1 is orthogonal if and only if:

(Def. 7) M1 is reversible and M1
T = M1

`.

The following propositions are true:

(42) If n > 0, then M1 · M1
T =

 1 0
. . .

0 1


n×n

K

and M1 is reversible iff

M1 is orthogonal.

(43) If n > 0, then M1 is reversible and M1
T · M1 =

 1 0
. . .

0 1


n×n

K

iff

M1 is orthogonal.

(44) If n > 0 and M1 is orthogonal, then M1
T ·M1 = M1 ·M1

T.

(45) If n > 0 and M1 is orthogonal and permutable with M2 and M3 = M1
T,

then M3 is permutable with M2.

(46) If n > 0 and M1 is reversible and M2 is reversible, then M1 · M2 is
reversible and (M1 ·M2)` = M2

` ·M1
`.

(47) If n > 0 and M1 is orthogonal and M2 is orthogonal, then M1 · M2 is
orthogonal.

(48) If n > 0 and M1 is orthogonal and permutable with M2 and M3 = M1
T,

then M3 is permutable with M2.

(49) If n > 0 and M1 is permutable with M2, then M1 + M1 is permutable
with M2.

(50) If n > 0 and M1 is permutable with M2, then M1 + M2 is permutable
with M2.

(51) If n > 0 and M1 is permutable with M2, then M1 + M1 is permutable
with M2 + M2.

(52) If n > 0 and M1 is permutable with M2, then M1 + M2 is permutable
with M2 + M2.

(53) If n > 0 and M1 is permutable with M2, then M1 + M2 is permutable
with M1 + M2.

(54) If n > 0 and M1 is permutable with M2, then M1 · M2 is permutable
with M2.

(55) If n > 0 and M1 is permutable with M2, then M1 · M1 is permutable
with M2.

(56) If n > 0 and M1 is permutable with M2, then M1 · M1 is permutable
with M2 ·M2.

(57) If n > 0 and M1 is permutable with M2 and M3 = M1
T and M4 = M2

T,
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then M3 is permutable with M4.
(58) Suppose n > 0 and M1 is reversible and M2 is reversible and M3 is

reversible. Then M1 ·M2 ·M3 is reversible and (M1 ·M2 ·M3)` = M3
` ·

M2
` ·M1

`.

(59) If n > 0 and M1 is orthogonal and M2 is orthogonal and M3 is orthogo-
nal, then M1 ·M2 ·M3 is orthogonal.

(60) If n > 0, then

 1 0
. . .

0 1


n×n

K

is orthogonal.

(61) If n > 0 and M1 is orthogonal and M2 is orthogonal, then M1
` ·M2 is

orthogonal.
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Summary. In the article we formalized the concept of the Generalized Full

Addition and Subtraction circuits (GFAs), defined the structures of calculation

units for the redundant signed digit (RSD) operations, and proved the stability

of the circuits. Generally, 1-bit binary full adder assumes positive weights to all

of its three binary inputs and two outputs. We obtained four type of 1-bit GFA

to constract the RSD arithmetic logical units that we generalized full adder to

have both positive and negative weights to inputs and outputs.

MML identifier: GFACIRC1, version: 7.6.01 4.50.934

The articles [15], [14], [18], [13], [1], [21], [5], [6], [7], [2], [4], [16], [20], [8], [12],
[17], [11], [10], [9], [3], and [19] provide the terminology and notation for this
paper.

1. Preliminaries

In this article we present several logical schemes. The scheme 1AryBooleEx
deals with a unary functor F yielding an element of Boolean, and states that:

There exists a function f from Boolean1 into Boolean such that
for every element x of Boolean holds f(〈x〉) = F(x)

for all values of the parameter.
The scheme 1AryBooleUniq deals with a unary functor F yielding an element

of Boolean, and states that:
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Let f1, f2 be functions from Boolean1 into Boolean. Suppose for
every element x of Boolean holds f1(〈x〉) = F(x) and for every
element x of Boolean holds f2(〈x〉) = F(x). Then f1 = f2

for all values of the parameter.
The scheme 1AryBooleDef deals with a unary functor F yielding an element

of Boolean, and states that:
(i) There exists a function f from Boolean1 into Boolean such

that for every element x of Boolean holds f(〈x〉) = F(x), and
(ii) for all functions f1, f2 from Boolean1 into Boolean such
that for every element x of Boolean holds f1(〈x〉) = F(x) and for
every element x of Boolean holds f2(〈x〉) = F(x) holds f1 = f2

for all values of the parameter.
The function inv1 from Boolean1 into Boolean is defined by:

(Def. 1) For every element x of Boolean holds (inv1)(〈x〉) = ¬x.

Next we state the proposition

(1) For every element x of Boolean holds (inv1)(〈x〉) = ¬x and (inv1)(〈x〉) =
nand2(〈x, x〉) and (inv1)(〈0〉) = 1 and (inv1)(〈1〉) = 0.

The function buf1 from Boolean1 into Boolean is defined by:

(Def. 2) For every element x of Boolean holds (buf1)(〈x〉) = x.

One can prove the following proposition

(2) For every element x of Boolean holds (buf1)(〈x〉) = x and (buf1)(〈x〉) =
and2(〈x, x〉) and (buf1)(〈0〉) = 0 and (buf1)(〈1〉) = 1.

The function and2c from Boolean2 into Boolean is defined by:

(Def. 3) For all elements x, y of Boolean holds (and2c)(〈x, y〉) = x ∧ ¬y.

Next we state the proposition

(3) Let x, y be elements of Boolean. Then (and2c)(〈x, y〉) = x ∧ ¬y and
(and2c)(〈x, y〉) = (and2a)(〈y, x〉) and (and2c)(〈x, y〉) = (nor2a)(〈x, y〉) and
(and2c)(〈0, 0〉) = 0 and (and2c)(〈0, 1〉) = 0 and (and2c)(〈1, 0〉) = 1 and
(and2c)(〈1, 1〉) = 0.

The function xor2c from Boolean2 into Boolean is defined by:

(Def. 4) For all elements x, y of Boolean holds (xor2c)(〈x, y〉) = x⊕ ¬y.

We now state several propositions:

(4) Let x, y be elements of Boolean. Then (xor2c)(〈x, y〉) = x ⊕ ¬y and
(xor2c)(〈x, y〉) = (xor2a)(〈x, y〉) and (xor2c)(〈x, y〉) = or2(〈(and2b)(〈x,

y〉), and2(〈x, y〉)〉) and (xor2c)(〈0, 0〉) = 1 and (xor2c)(〈0, 1〉) = 0 and
(xor2c)(〈1, 0〉) = 0 and (xor2c)(〈1, 1〉) = 1.

(5) For all elements x, y of Boolean holds ¬(x⊕ y) = ¬x⊕ y and ¬(x⊕ y) =
x⊕ ¬y and ¬x⊕ ¬y = x⊕ y.
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(6) For all elements x, y of Boolean holds (inv1)(〈xor2(〈x, y〉)〉) = (xor2a)(〈x,

y〉) and (inv1)(〈xor2(〈x, y〉)〉) = (xor2c)(〈x, y〉) and xor2(〈(inv1)(〈x〉),
(inv1)(〈y〉)〉) = xor2(〈x, y〉).

(7) For all elements x, y, z of Boolean holds ¬(x⊕ ¬y ⊕ z) = x⊕ ¬y ⊕ ¬z.

(8) For all elements x, y, z of Boolean holds (inv1)(〈xor2(〈(xor2c)(〈x, y〉),
z〉)〉) = (xor2c)(〈(xor2c)(〈x, y〉), z〉).

(9) For all elements x, y, z of Boolean holds ¬x⊕ y ⊕ ¬z = x⊕ ¬y ⊕ ¬z.

(10) For all elements x, y, z of Boolean holds (xor2c)(〈(xor2a)(〈x, y〉), z〉) =
(xor2c)(〈(xor2c)(〈x, y〉), z〉).

(11) For all elements x, y, z of Boolean holds ¬(¬x⊕ ¬y ⊕ ¬z) = x⊕ y ⊕ z.

(12) For all elements x, y, z of Boolean holds (inv1)(〈(xor2c)(〈(xor2b)(〈x, y〉),
z〉)〉) = xor2(〈xor2(〈x, y〉), z〉).

2. Generalized Full Adder (GFA) Circuit (TYPE-0)

Let x, y, z be sets. The functor GFA0CarryIStr(x, y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined by:

(Def. 5) GFA0CarryIStr(x, y, z) = 1GateCircStr(〈x, y〉, and2)+· 1GateCircStr(〈y,

z〉, and2)+· 1GateCircStr(〈z, x〉, and2).
Let x, y, z be sets. The functor GFA0CarryICirc(x, y, z) yields a strict

Boolean circuit of GFA0CarryIStr(x, y, z) with denotation held in gates and is
defined as follows:

(Def. 6) GFA0CarryICirc(x, y, z) = 1GateCircuit(x, y, and2)+· 1GateCircuit(y, z,

and2)+· 1GateCircuit(z, x, and2).
Let x, y, z be sets. The functor GFA0CarryStr(x, y, z) yields an unsplit

non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined as follows:

(Def. 7) GFA0CarryStr(x, y, z) = GFA0CarryIStr(x, y, z)+· 1GateCircStr(〈〈〈〈x,

y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉, and2 〉〉〉, or3).
Let x, y, z be sets. The functor GFA0CarryCirc(x, y, z) yields a strict

Boolean circuit of GFA0CarryStr(x, y, z) with denotation held in gates and is
defined as follows:

(Def. 8) GFA0CarryCirc(x, y, z) = GFA0CarryICirc(x, y, z)+· 1GateCircuit(〈〈〈x,

y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉, and2 〉〉, or3).
Let x, y, z be sets. The functor GFA0CarryOutput(x, y, z) yielding an

element of InnerVertices(GFA0CarryStr(x, y, z)) is defined as follows:
(Def. 9) GFA0CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉,

and2 〉〉〉, or3 〉〉.
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One can prove the following propositions:
(13) For all sets x, y, z holds InnerVertices(GFA0CarryIStr(x, y, z)) = {〈〈〈x,

y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉, and2 〉〉}.
(14) For all sets x, y, z holds InnerVertices(GFA0CarryStr(x, y, z)) = {〈〈〈x,

y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉, and2 〉〉} ∪ {GFA0CarryOutput(x, y, z)}.
(15) For all sets x, y, z holds InnerVertices(GFA0CarryStr(x, y, z)) is a binary

relation.
(16) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉

and z 6= 〈〈〈x, y〉, and2 〉〉 holds InputVertices(GFA0CarryIStr(x, y, z)) =
{x, y, z}.

(17) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2 〉〉 holds InputVertices(GFA0CarryStr(x, y, z)) =
{x, y, z}.

(18) For all non pair sets x, y, z holds InputVertices(GFA0CarryStr(x, y, z))
has no pairs.

(19) Let x, y, z be sets. Then x ∈ the carrier of GFA0CarryStr(x, y, z)
and y ∈ the carrier of GFA0CarryStr(x, y, z) and z ∈ the
carrier of GFA0CarryStr(x, y, z) and 〈〈〈x, y〉, and2 〉〉 ∈ the car-
rier of GFA0CarryStr(x, y, z) and 〈〈〈y, z〉, and2 〉〉 ∈ the carrier
of GFA0CarryStr(x, y, z) and 〈〈〈z, x〉, and2 〉〉 ∈ the carrier of
GFA0CarryStr(x, y, z) and 〈〈〈〈〈〈x, y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉, and2 〉〉〉,
or3 〉〉 ∈ the carrier of GFA0CarryStr(x, y, z).

(20) For all sets x, y, z holds 〈〈〈x, y〉, and2 〉〉 ∈ InnerVertices(GFA0CarryStr(x,

y, z)) and 〈〈〈y, z〉, and2 〉〉 ∈ InnerVertices(GFA0CarryStr(x, y, z)) and 〈〈〈z,

x〉, and2 〉〉 ∈ InnerVertices(GFA0CarryStr(x, y, z)) and GFA0CarryOutput
(x, y, z) ∈ InnerVertices(GFA0CarryStr(x, y, z)).

(21) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2 〉〉 holds x ∈ InputVertices(GFA0CarryStr(x, y, z))
and y ∈ InputVertices(GFA0CarryStr(x, y, z)) and
z ∈ InputVertices(GFA0CarryStr(x, y, z)).

(22) For all non pair sets x, y, z holds InputVertices(GFA0CarryStr(x, y, z)) =
{x, y, z}.

(23) Let x, y, z be sets, s be a state of GFA0CarryCirc(x, y, z), and a1, a2, a3

be elements of Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s))(〈〈〈x, y〉, and2 〉〉) = a1 ∧ a2 and (Following(s))(〈〈〈y, z〉,
and2 〉〉) = a2 ∧ a3 and (Following(s))(〈〈〈z, x〉, and2 〉〉) = a3 ∧ a1.

(24) Let x, y, z be sets, s be a state of GFA0CarryCirc(x, y, z),
and a1, a2, a3 be elements of Boolean. If a1 = s(〈〈〈x, y〉,
and2 〉〉) and a2 = s(〈〈〈y, z〉, and2 〉〉) and a3 = s(〈〈〈z, x〉, and2 〉〉), then
(Following(s))(GFA0CarryOutput(x, y, z)) = a1 ∨ a2 ∨ a3.
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(25) Let x, y, z be sets. Suppose x 6= 〈〈〈y, z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2 〉〉. Let s be a state of GFA0CarryCirc(x, y, z) and
a1, a2, a3 be elements of Boolean. Suppose a1 = s(x) and a2 = s(y)
and a3 = s(z). Then (Following(s, 2))(GFA0CarryOutput(x, y, z)) = a1 ∧
a2 ∨ a2 ∧ a3 ∨ a3 ∧ a1 and (Following(s, 2))(〈〈〈x, y〉, and2 〉〉) = a1 ∧ a2 and
(Following(s, 2))(〈〈〈y, z〉, and2 〉〉) = a2 ∧ a3 and (Following(s, 2))(〈〈〈z, x〉,
and2 〉〉) = a3 ∧ a1.

(26) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2 〉〉 and for every state s of GFA0CarryCirc(x, y, z)
holds Following(s, 2) is stable.

Let x, y, z be sets. The functor GFA0AdderStr(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 10) GFA0AdderStr(x, y, z) = 2GatesCircStr(x, y, z, xor2).
Let x, y, z be sets. The functor GFA0AdderCirc(x, y, z) yielding a strict

Boolean circuit of GFA0AdderStr(x, y, z) with denotation held in gates is defined
by:

(Def. 11) GFA0AdderCirc(x, y, z) = 2GatesCircuit(x, y, z, xor2).
Let x, y, z be sets. The functor GFA0AdderOutput(x, y, z) yielding an

element of InnerVertices(GFA0AdderStr(x, y, z)) is defined by:
(Def. 12) GFA0AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2).

Next we state a number of propositions:
(27) For all sets x, y, z holds InnerVertices(GFA0AdderStr(x, y, z)) = {〈〈〈x,

y〉, xor2 〉〉} ∪ {GFA0AdderOutput(x, y, z)}.
(28) For all sets x, y, z holds InnerVertices(GFA0AdderStr(x, y, z)) is a binary

relation.
(29) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 holds

InputVertices(GFA0AdderStr(x, y, z)) = {x, y, z}.
(30) For all non pair sets x, y, z holds InputVertices(GFA0AdderStr(x, y, z))

has no pairs.
(31) Let x, y, z be sets. Then

(i) x ∈ the carrier of GFA0AdderStr(x, y, z),
(ii) y ∈ the carrier of GFA0AdderStr(x, y, z),
(iii) z ∈ the carrier of GFA0AdderStr(x, y, z),
(iv) 〈〈〈x, y〉, xor2 〉〉 ∈ the carrier of GFA0AdderStr(x, y, z), and
(v) 〈〈〈〈〈〈x, y〉, xor2 〉〉, z〉, xor2 〉〉 ∈ the carrier of GFA0AdderStr(x, y, z).

(32) For all sets x, y, z holds 〈〈〈x, y〉, xor2 〉〉 ∈ InnerVertices(GFA0AdderStr(x, y,

z)) and GFA0AdderOutput(x, y, z) ∈ InnerVertices(GFA0AdderStr(x, y, z)).
(33) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 holds x ∈

InputVertices(GFA0AdderStr(x, y, z)) and
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y ∈ InputVertices(GFA0AdderStr(x, y, z)) and
z ∈ InputVertices(GFA0AdderStr(x, y, z)).

(34) For all non pair sets x, y, z holds InputVertices(GFA0AdderStr(x, y, z)) =
{x, y, z}.

(35) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be a state of
GFA0AdderCirc(x, y, z) and a1, a2, a3 be elements of Boolean. Suppose
a1 = s(x) and a2 = s(y) and a3 = s(z). Then (Following(s))(〈〈〈x, y〉,
xor2 〉〉) = a1 ⊕ a2 and (Following(s))(x) = a1 and (Following(s))(y) = a2

and (Following(s))(z) = a3.

(36) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be a state of
GFA0AdderCirc(x, y, z) and a4, a1, a2, a3 be elements of Boolean. If
a4 = s(〈〈〈x, y〉, xor2 〉〉) and a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s))(GFA0AdderOutput(x, y, z)) = a4 ⊕ a3.

(37) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be
a state of GFA0AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s, 2))(GFA0AdderOutput(x, y, z)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(〈〈〈x, y〉, xor2 〉〉) = a1 ⊕ a2 and (Following(s, 2))(x) = a1

and (Following(s, 2))(y) = a2 and (Following(s, 2))(z) = a3.

(38) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 and for every state s of
GFA0AdderCirc(x, y, z) holds Following(s, 2) is stable.

Let x, y, z be sets. The functor BitGFA0Str(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 13) BitGFA0Str(x, y, z) = GFA0AdderStr(x, y, z)+·GFA0CarryStr(x, y, z).
Let x, y, z be sets. The functor BitGFA0Circ(x, y, z) yielding a strict

Boolean circuit of BitGFA0Str(x, y, z) with denotation held in gates is defined
by:

(Def. 14) BitGFA0Circ(x, y, z) = GFA0AdderCirc(x, y, z)+·GFA0CarryCirc(x, y, z).
We now state several propositions:

(39) For all sets x, y, z holds InnerVertices(BitGFA0Str(x, y, z)) = {〈〈〈x, y〉,
xor2 〉〉}∪{GFA0AdderOutput(x, y, z)}∪{〈〈〈x, y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z,

x〉, and2 〉〉} ∪ {GFA0CarryOutput(x, y, z)}.
(40) For all sets x, y, z holds InnerVertices(BitGFA0Str(x, y, z)) is a binary

relation.
(41) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 and x 6= 〈〈〈y,

z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x, y〉, and2 〉〉 holds
InputVertices(BitGFA0Str(x, y, z)) = {x, y, z}.

(42) For all non pair sets x, y, z holds InputVertices(BitGFA0Str(x, y, z)) =
{x, y, z}.
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(43) For all non pair sets x, y, z holds InputVertices(BitGFA0Str(x, y, z)) has
no pairs.

(44) Let x, y, z be sets. Then x ∈ the carrier of BitGFA0Str(x, y, z)
and y ∈ the carrier of BitGFA0Str(x, y, z) and z ∈ the carrier of
BitGFA0Str(x, y, z) and 〈〈〈x, y〉, xor2 〉〉 ∈ the carrier of BitGFA0Str(x, y, z)
and 〈〈〈〈〈〈x, y〉, xor2 〉〉, z〉, xor2 〉〉 ∈ the carrier of BitGFA0Str(x, y, z) and
〈〈〈x, y〉, and2 〉〉 ∈ the carrier of BitGFA0Str(x, y, z) and 〈〈〈y, z〉, and2 〉〉 ∈
the carrier of BitGFA0Str(x, y, z) and 〈〈〈z, x〉, and2 〉〉 ∈ the carrier
of BitGFA0Str(x, y, z) and 〈〈〈〈〈〈x, y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉, and2 〉〉〉,
or3 〉〉 ∈ the carrier of BitGFA0Str(x, y, z).

(45) Let x, y, z be sets. Then 〈〈〈x, y〉, xor2 〉〉 ∈ InnerVertices(BitGFA0Str(x, y,

z)) and GFA0AdderOutput(x, y, z) ∈ InnerVertices(BitGFA0Str(x, y, z))
and 〈〈〈x, y〉, and2 〉〉 ∈ InnerVertices(BitGFA0Str(x, y, z)) and 〈〈〈y, z〉,
and2 〉〉 ∈ InnerVertices(BitGFA0Str(x, y, z)) and 〈〈〈z, x〉, and2 〉〉 ∈
InnerVertices(BitGFA0Str(x, y, z)) and GFA0CarryOutput(x, y, z) ∈
InnerVertices(BitGFA0Str(x, y, z)).

(46) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉 and
x 6= 〈〈〈y, z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x,

y〉, and2 〉〉. Then x ∈ InputVertices(BitGFA0Str(x, y, z)) and y ∈
InputVertices(BitGFA0Str(x, y, z)) and z ∈ InputVertices(BitGFA0Str(x,

y, z)).

Let x, y, z be sets. The functor BitGFA0CarryOutput(x, y, z) yielding an
element of InnerVertices(BitGFA0Str(x, y, z)) is defined as follows:

(Def. 15) BitGFA0CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2 〉〉, 〈〈〈y, z〉, and2 〉〉, 〈〈〈z, x〉,
and2 〉〉〉, or3 〉〉.

Let x, y, z be sets. The functor BitGFA0AdderOutput(x, y, z) yielding an
element of InnerVertices(BitGFA0Str(x, y, z)) is defined as follows:

(Def. 16) BitGFA0AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2).

One can prove the following two propositions:

(47) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉 and x 6= 〈〈〈y,

z〉, and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x, y〉, and2 〉〉. Let s

be a state of BitGFA0Circ(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s, 2))(GFA0AdderOutput(x, y, z)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(GFA0CarryOutput(x, y, z)) = a1 ∧ a2 ∨ a2 ∧ a3 ∨ a3 ∧ a1.

(48) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉 and x 6= 〈〈〈y, z〉,
and2 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x, y〉, and2 〉〉. Let s be a state
of BitGFA0Circ(x, y, z). Then Following(s, 2) is stable.
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3. Generalized Full Adder (GFA) Circuit (TYPE-1)

Let x, y, z be sets. The functor GFA1CarryIStr(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def. 17) GFA1CarryIStr(x, y, z) = 1GateCircStr(〈x, y〉, and2c)+· 1GateCircStr(〈y,

z〉, and2a)+· 1GateCircStr(〈z, x〉, and2).
Let x, y, z be sets. The functor GFA1CarryICirc(x, y, z) yields a strict

Boolean circuit of GFA1CarryIStr(x, y, z) with denotation held in gates and is
defined as follows:

(Def. 18) GFA1CarryICirc(x, y, z) = 1GateCircuit(x, y, and2c)+· 1GateCircuit(y,

z, and2a)+· 1GateCircuit(z, x, and2).
Let x, y, z be sets. The functor GFA1CarryStr(x, y, z) yielding an unsplit

non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def. 19) GFA1CarryStr(x, y, z) = GFA1CarryIStr(x, y, z)+· 1GateCircStr(〈〈〈〈x,

y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉, and2 〉〉〉, or3).
Let x, y, z be sets. The functor GFA1CarryCirc(x, y, z) yielding a strict

Boolean circuit of GFA1CarryStr(x, y, z) with denotation held in gates is defined
by:

(Def. 20) GFA1CarryCirc(x, y, z) = GFA1CarryICirc(x, y, z)+· 1GateCircuit(〈〈〈x,

y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉, and2 〉〉, or3).
Let x, y, z be sets. The functor GFA1CarryOutput(x, y, z) yielding an

element of InnerVertices(GFA1CarryStr(x, y, z)) is defined as follows:

(Def. 21) GFA1CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉,
and2 〉〉〉, or3 〉〉.

We now state a number of propositions:
(49) For all sets x, y, z holds InnerVertices(GFA1CarryIStr(x, y, z)) = {〈〈〈x,

y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉, and2 〉〉}.
(50) For all sets x, y, z holds InnerVertices(GFA1CarryStr(x, y, z)) = {〈〈〈x,

y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉, and2 〉〉}∪{GFA1CarryOutput(x, y, z)}.
(51) For all sets x, y, z holds InnerVertices(GFA1CarryStr(x, y, z)) is a binary

relation.
(52) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉

and z 6= 〈〈〈x, y〉, and2c 〉〉 holds InputVertices(GFA1CarryIStr(x, y, z)) =
{x, y, z}.

(53) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2c 〉〉 holds InputVertices(GFA1CarryStr(x, y, z)) =
{x, y, z}.
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(54) For all non pair sets x, y, z holds InputVertices(GFA1CarryStr(x, y, z))
has no pairs.

(55) Let x, y, z be sets. Then x ∈ the carrier of GFA1CarryStr(x, y, z)
and y ∈ the carrier of GFA1CarryStr(x, y, z) and z ∈ the
carrier of GFA1CarryStr(x, y, z) and 〈〈〈x, y〉, and2c 〉〉 ∈ the car-
rier of GFA1CarryStr(x, y, z) and 〈〈〈y, z〉, and2a 〉〉 ∈ the carrier
of GFA1CarryStr(x, y, z) and 〈〈〈z, x〉, and2 〉〉 ∈ the carrier of
GFA1CarryStr(x, y, z) and 〈〈〈〈〈〈x, y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉, and2 〉〉〉,
or3 〉〉 ∈ the carrier of GFA1CarryStr(x, y, z).

(56) For all sets x, y, z holds 〈〈〈x, y〉, and2c 〉〉 ∈ InnerVertices(GFA1CarryStr(x,

y, z)) and 〈〈〈y, z〉, and2a 〉〉 ∈ InnerVertices(GFA1CarryStr(x, y, z)) and 〈〈〈z,

x〉, and2 〉〉 ∈ InnerVertices(GFA1CarryStr(x, y, z)) and GFA1CarryOutput
(x, y, z) ∈ InnerVertices(GFA1CarryStr(x, y, z)).

(57) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2c 〉〉 holds x ∈ InputVertices(GFA1CarryStr(x, y, z))
and y ∈ InputVertices(GFA1CarryStr(x, y, z)) and
z ∈ InputVertices(GFA1CarryStr(x, y, z)).

(58) For all non pair sets x, y, z holds InputVertices(GFA1CarryStr(x, y, z)) =
{x, y, z}.

(59) Let x, y, z be sets, s be a state of GFA1CarryCirc(x, y, z), and a1, a2, a3

be elements of Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s))(〈〈〈x, y〉, and2c 〉〉) = a1 ∧ ¬a2 and (Following(s))(〈〈〈y,

z〉, and2a 〉〉) = ¬a2 ∧ a3 and (Following(s))(〈〈〈z, x〉, and2 〉〉) = a3 ∧ a1.

(60) Let x, y, z be sets, s be a state of GFA1CarryCirc(x, y, z),
and a1, a2, a3 be elements of Boolean. If a1 = s(〈〈〈x, y〉,
and2c 〉〉) and a2 = s(〈〈〈y, z〉, and2a 〉〉) and a3 = s(〈〈〈z, x〉, and2 〉〉), then
(Following(s))(GFA1CarryOutput(x, y, z)) = a1 ∨ a2 ∨ a3.

(61) Let x, y, z be sets. Suppose x 6= 〈〈〈y, z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2c 〉〉. Let s be a state of GFA1CarryCirc(x, y, z) and
a1, a2, a3 be elements of Boolean. Suppose a1 = s(x) and a2 = s(y) and
a3 = s(z). Then (Following(s, 2))(GFA1CarryOutput(x, y, z)) = a1∧¬a2∨
¬a2 ∧ a3 ∨ a3 ∧ a1 and (Following(s, 2))(〈〈〈x, y〉, and2c 〉〉) = a1 ∧ ¬a2 and
(Following(s, 2))(〈〈〈y, z〉, and2a 〉〉) = ¬a2 ∧ a3 and (Following(s, 2))(〈〈〈z, x〉,
and2 〉〉) = a3 ∧ a1.

(62) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉
and z 6= 〈〈〈x, y〉, and2c 〉〉 and for every state s of GFA1CarryCirc(x, y, z)
holds Following(s, 2) is stable.

Let x, y, z be sets. The functor GFA1AdderStr(x, y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined as follows:
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(Def. 22) GFA1AdderStr(x, y, z) = 2GatesCircStr(x, y, z, xor2c).
Let x, y, z be sets. The functor GFA1AdderCirc(x, y, z) yielding a strict

Boolean circuit of GFA1AdderStr(x, y, z) with denotation held in gates is defined
by:

(Def. 23) GFA1AdderCirc(x, y, z) = 2GatesCircuit(x, y, z, xor2c).
Let x, y, z be sets. The functor GFA1AdderOutput(x, y, z) yields an element

of InnerVertices(GFA1AdderStr(x, y, z)) and is defined as follows:

(Def. 24) GFA1AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2c).
We now state a number of propositions:

(63) For all sets x, y, z holds InnerVertices(GFA1AdderStr(x, y, z)) = {〈〈〈x,

y〉, xor2c 〉〉} ∪ {GFA1AdderOutput(x, y, z)}.
(64) For all sets x, y, z holds InnerVertices(GFA1AdderStr(x, y, z)) is a binary

relation.
(65) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 holds

InputVertices(GFA1AdderStr(x, y, z)) = {x, y, z}.
(66) For all non pair sets x, y, z holds InputVertices(GFA1AdderStr(x, y, z))

has no pairs.
(67) Let x, y, z be sets. Then

(i) x ∈ the carrier of GFA1AdderStr(x, y, z),
(ii) y ∈ the carrier of GFA1AdderStr(x, y, z),
(iii) z ∈ the carrier of GFA1AdderStr(x, y, z),
(iv) 〈〈〈x, y〉, xor2c 〉〉 ∈ the carrier of GFA1AdderStr(x, y, z), and
(v) 〈〈〈〈〈〈x, y〉, xor2c 〉〉, z〉, xor2c 〉〉 ∈ the carrier of GFA1AdderStr(x, y, z).

(68) For all sets x, y, z holds 〈〈〈x, y〉, xor2c 〉〉 ∈ InnerVertices(GFA1AdderStr(x,

y, z)) and GFA1AdderOutput(x, y, z) ∈ InnerVertices(GFA1AdderStr(x, y,

z)).
(69) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 holds x ∈

InputVertices(GFA1AdderStr(x, y, z)) and
y ∈ InputVertices(GFA1AdderStr(x, y, z)) and
z ∈ InputVertices(GFA1AdderStr(x, y, z)).

(70) For all non pair sets x, y, z holds InputVertices(GFA1AdderStr(x, y, z)) =
{x, y, z}.

(71) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be a state of
GFA1AdderCirc(x, y, z) and a1, a2, a3 be elements of Boolean. Suppose
a1 = s(x) and a2 = s(y) and a3 = s(z). Then (Following(s))(〈〈〈x, y〉,
xor2c 〉〉) = a1⊕¬a2 and (Following(s))(x) = a1 and (Following(s))(y) = a2

and (Following(s))(z) = a3.

(72) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be a state of
GFA1AdderCirc(x, y, z) and a4, a1, a2, a3 be elements of Boolean. If
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a4 = s(〈〈〈x, y〉, xor2c 〉〉) and a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s))(GFA1AdderOutput(x, y, z)) = a4 ⊕ ¬a3.

(73) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be
a state of GFA1AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z). Then
(Following(s, 2))(GFA1AdderOutput(x, y, z)) = a1 ⊕ ¬a2 ⊕ ¬a3 and
(Following(s, 2))(〈〈〈x, y〉, xor2c 〉〉) = a1⊕¬a2 and (Following(s, 2))(x) = a1

and (Following(s, 2))(y) = a2 and (Following(s, 2))(z) = a3.

(74) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be
a state of GFA1AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. If a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s, 2))(GFA1AdderOutput(x, y, z)) = ¬(a1 ⊕ ¬a2 ⊕ a3).

(75) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 and for every state s of
GFA1AdderCirc(x, y, z) holds Following(s, 2) is stable.

Let x, y, z be sets. The functor BitGFA1Str(x, y, z) yields an unsplit non
void strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined as follows:

(Def. 25) BitGFA1Str(x, y, z) = GFA1AdderStr(x, y, z)+·GFA1CarryStr(x, y, z).
Let x, y, z be sets. The functor BitGFA1Circ(x, y, z) yielding a strict

Boolean circuit of BitGFA1Str(x, y, z) with denotation held in gates is defined
by:

(Def. 26) BitGFA1Circ(x, y, z) = GFA1AdderCirc(x, y, z)+·GFA1CarryCirc(x, y, z).
We now state several propositions:

(76) For all sets x, y, z holds InnerVertices(BitGFA1Str(x, y, z)) =
{〈〈〈x, y〉, xor2c 〉〉}∪{GFA1AdderOutput(x, y, z)}∪{〈〈〈x, y〉, and2c 〉〉, 〈〈〈y, z〉,
and2a 〉〉, 〈〈〈z, x〉, and2 〉〉} ∪ {GFA1CarryOutput(x, y, z)}.

(77) For all sets x, y, z holds InnerVertices(BitGFA1Str(x, y, z)) is a binary
relation.

(78) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 and x 6= 〈〈〈y,

z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x, y〉, and2c 〉〉 holds
InputVertices(BitGFA1Str(x, y, z)) = {x, y, z}.

(79) For all non pair sets x, y, z holds InputVertices(BitGFA1Str(x, y, z)) =
{x, y, z}.

(80) For all non pair sets x, y, z holds InputVertices(BitGFA1Str(x, y, z)) has
no pairs.

(81) Let x, y, z be sets. Then x ∈ the carrier of BitGFA1Str(x, y, z)
and y ∈ the carrier of BitGFA1Str(x, y, z) and z ∈ the
carrier of BitGFA1Str(x, y, z) and 〈〈〈x, y〉, xor2c 〉〉 ∈ the car-
rier of BitGFA1Str(x, y, z) and 〈〈〈〈〈〈x, y〉, xor2c 〉〉, z〉, xor2c 〉〉 ∈ the
carrier of BitGFA1Str(x, y, z) and 〈〈〈x, y〉, and2c 〉〉 ∈ the car-
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rier of BitGFA1Str(x, y, z) and 〈〈〈y, z〉, and2a 〉〉 ∈ the carrier of
BitGFA1Str(x, y, z) and 〈〈〈z, x〉, and2 〉〉 ∈ the carrier of BitGFA1Str(x, y, z)
and 〈〈〈〈〈〈x, y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z, x〉, and2 〉〉〉, or3 〉〉 ∈ the carrier
of BitGFA1Str(x, y, z).

(82) Let x, y, z be sets. Then 〈〈〈x, y〉, xor2c 〉〉 ∈ InnerVertices(BitGFA1Str(x,

y, z)) and GFA1AdderOutput(x, y, z) ∈ InnerVertices(BitGFA1Str(x, y, z))
and 〈〈〈x, y〉, and2c 〉〉 ∈ InnerVertices(BitGFA1Str(x, y, z)) and 〈〈〈y, z〉,
and2a 〉〉 ∈ InnerVertices(BitGFA1Str(x, y, z)) and 〈〈〈z, x〉, and2 〉〉 ∈
InnerVertices(BitGFA1Str(x, y, z)) and GFA1CarryOutput(x, y, z) ∈
InnerVertices(BitGFA1Str(x, y, z)).

(83) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉 and
x 6= 〈〈〈y, z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x,

y〉, and2c 〉〉. Then x ∈ InputVertices(BitGFA1Str(x, y, z)) and y ∈
InputVertices(BitGFA1Str(x, y, z)) and z ∈ InputVertices(BitGFA1Str(x,

y, z)).
Let x, y, z be sets. The functor BitGFA1CarryOutput(x, y, z) yielding an

element of InnerVertices(BitGFA1Str(x, y, z)) is defined as follows:
(Def. 27) BitGFA1CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2c 〉〉, 〈〈〈y, z〉, and2a 〉〉, 〈〈〈z,

x〉, and2 〉〉〉, or3 〉〉.
Let x, y, z be sets. The functor BitGFA1AdderOutput(x, y, z) yielding an

element of InnerVertices(BitGFA1Str(x, y, z)) is defined as follows:
(Def. 28) BitGFA1AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2c).

The following two propositions are true:
(84) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉 and x 6= 〈〈〈y,

z〉, and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x, y〉, and2c 〉〉. Let s

be a state of BitGFA1Circ(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z). Then
(Following(s, 2))(GFA1AdderOutput(x, y, z)) = ¬(a1 ⊕ ¬a2 ⊕ a3) and
(Following(s, 2))(GFA1CarryOutput(x, y, z)) = a1∧¬a2∨¬a2∧a3∨a3∧a1.

(85) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉 and x 6= 〈〈〈y, z〉,
and2a 〉〉 and y 6= 〈〈〈z, x〉, and2 〉〉 and z 6= 〈〈〈x, y〉, and2c 〉〉. Let s be a state
of BitGFA1Circ(x, y, z). Then Following(s, 2) is stable.

4. Generalized Full Adder (GFA) Circuit (TYPE-2)

Let x, y, z be sets. The functor GFA2CarryIStr(x, y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined by:

(Def. 29) GFA2CarryIStr(x, y, z) = 1GateCircStr(〈x, y〉, and2a)+· 1GateCircStr(〈y,

z〉, and2c)+· 1GateCircStr(〈z, x〉, and2b).
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Let x, y, z be sets. The functor GFA2CarryICirc(x, y, z) yielding a strict
Boolean circuit of GFA2CarryIStr(x, y, z) with denotation held in gates is de-
fined as follows:

(Def. 30) GFA2CarryICirc(x, y, z) = 1GateCircuit(x, y, and2a)+· 1GateCircuit(y,

z, and2c)+· 1GateCircuit(z, x, and2b).

Let x, y, z be sets. The functor GFA2CarryStr(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 31) GFA2CarryStr(x, y, z) = GFA2CarryIStr(x, y, z)+· 1GateCircStr(〈〈〈〈x,

y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉, and2b 〉〉〉,nor3).

Let x, y, z be sets. The functor GFA2CarryCirc(x, y, z) yields a strict
Boolean circuit of GFA2CarryStr(x, y, z) with denotation held in gates and is
defined as follows:

(Def. 32) GFA2CarryCirc(x, y, z) = GFA2CarryICirc(x, y, z)+· 1GateCircuit(〈〈〈x,

y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉, and2b 〉〉,nor3).

Let x, y, z be sets. The functor GFA2CarryOutput(x, y, z) yields an element
of InnerVertices(GFA2CarryStr(x, y, z)) and is defined by:

(Def. 33) GFA2CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉,
and2b 〉〉〉, nor3 〉〉.

We now state a number of propositions:

(86) For all sets x, y, z holds InnerVertices(GFA2CarryIStr(x, y, z)) = {〈〈〈x,

y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉, and2b 〉〉}.
(87) For all sets x, y, z holds InnerVertices(GFA2CarryStr(x, y, z)) = {〈〈〈x,

y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉, and2b 〉〉}∪{GFA2CarryOutput(x, y, z)}.
(88) For all sets x, y, z holds InnerVertices(GFA2CarryStr(x, y, z)) is a binary

relation.

(89) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2a 〉〉 holds InputVertices(GFA2CarryIStr(x, y, z)) =
{x, y, z}.

(90) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2a 〉〉 holds InputVertices(GFA2CarryStr(x, y, z)) =
{x, y, z}.

(91) For all non pair sets x, y, z holds InputVertices(GFA2CarryStr(x, y, z))
has no pairs.

(92) Let x, y, z be sets. Then x ∈ the carrier of GFA2CarryStr(x, y, z)
and y ∈ the carrier of GFA2CarryStr(x, y, z) and z ∈ the
carrier of GFA2CarryStr(x, y, z) and 〈〈〈x, y〉, and2a 〉〉 ∈ the car-
rier of GFA2CarryStr(x, y, z) and 〈〈〈y, z〉, and2c 〉〉 ∈ the car-
rier of GFA2CarryStr(x, y, z) and 〈〈〈z, x〉, and2b 〉〉 ∈ the carrier
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of GFA2CarryStr(x, y, z) and 〈〈〈〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉,
and2b 〉〉〉, nor3 〉〉 ∈ the carrier of GFA2CarryStr(x, y, z).

(93) For all sets x, y, z holds 〈〈〈x, y〉, and2a 〉〉 ∈ InnerVertices(GFA2CarryStr(x,

y, z)) and 〈〈〈y, z〉, and2c 〉〉 ∈ InnerVertices(GFA2CarryStr(x, y, z)) and 〈〈〈z,

x〉, and2b 〉〉 ∈ InnerVertices(GFA2CarryStr(x, y, z)) and GFA2CarryOutput
(x, y, z) ∈ InnerVertices(GFA2CarryStr(x, y, z)).

(94) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2a 〉〉 holds x ∈ InputVertices(GFA2CarryStr(x, y, z))
and y ∈ InputVertices(GFA2CarryStr(x, y, z)) and
z ∈ InputVertices(GFA2CarryStr(x, y, z)).

(95) For all non pair sets x, y, z holds InputVertices(GFA2CarryStr(x, y, z)) =
{x, y, z}.

(96) Let x, y, z be sets, s be a state of GFA2CarryCirc(x, y, z), and a1, a2, a3

be elements of Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s))(〈〈〈x, y〉, and2a 〉〉) = ¬a1 ∧ a2 and (Following(s))(〈〈〈y,

z〉, and2c 〉〉) = a2 ∧ ¬a3 and (Following(s))(〈〈〈z, x〉, and2b 〉〉) = ¬a3 ∧ ¬a1.

(97) Let x, y, z be sets, s be a state of GFA2CarryCirc(x, y, z), and
a1, a2, a3 be elements of Boolean. If a1 = s(〈〈〈x, y〉, and2a 〉〉)
and a2 = s(〈〈〈y, z〉, and2c 〉〉) and a3 = s(〈〈〈z, x〉, and2b 〉〉), then
(Following(s))(GFA2CarryOutput(x, y, z)) = ¬(a1 ∨ a2 ∨ a3).

(98) Let x, y, z be sets. Suppose x 6= 〈〈〈y, z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2a 〉〉. Let s be a state of GFA2CarryCirc(x, y, z) and
a1, a2, a3 be elements of Boolean. Suppose a1 = s(x) and a2 = s(y) and
a3 = s(z). Then (Following(s, 2))(GFA2CarryOutput(x, y, z)) = ¬(¬a1 ∧
a2∨a2∧¬a3∨¬a3∧¬a1) and (Following(s, 2))(〈〈〈x, y〉, and2a 〉〉) = ¬a1∧a2

and (Following(s, 2))(〈〈〈y, z〉, and2c 〉〉) = a2∧¬a3 and (Following(s, 2))(〈〈〈z,

x〉, and2b 〉〉) = ¬a3 ∧ ¬a1.

(99) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2a 〉〉 and for every state s of GFA2CarryCirc(x, y, z)
holds Following(s, 2) is stable.

Let x, y, z be sets. The functor GFA2AdderStr(x, y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined as follows:

(Def. 34) GFA2AdderStr(x, y, z) = 2GatesCircStr(x, y, z, xor2c).
Let x, y, z be sets. The functor GFA2AdderCirc(x, y, z) yielding a strict

Boolean circuit of GFA2AdderStr(x, y, z) with denotation held in gates is defined
as follows:

(Def. 35) GFA2AdderCirc(x, y, z) = 2GatesCircuit(x, y, z, xor2c).
Let x, y, z be sets. The functor GFA2AdderOutput(x, y, z) yields an element

of InnerVertices(GFA2AdderStr(x, y, z)) and is defined by:
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(Def. 36) GFA2AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2c).
One can prove the following propositions:

(100) For all sets x, y, z holds InnerVertices(GFA2AdderStr(x, y, z)) = {〈〈〈x,

y〉, xor2c 〉〉} ∪ {GFA2AdderOutput(x, y, z)}.
(101) For all sets x, y, z holds InnerVertices(GFA2AdderStr(x, y, z)) is a binary

relation.
(102) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 holds

InputVertices(GFA2AdderStr(x, y, z)) = {x, y, z}.
(103) For all non pair sets x, y, z holds InputVertices(GFA2AdderStr(x, y, z))

has no pairs.
(104) Let x, y, z be sets. Then

(i) x ∈ the carrier of GFA2AdderStr(x, y, z),
(ii) y ∈ the carrier of GFA2AdderStr(x, y, z),
(iii) z ∈ the carrier of GFA2AdderStr(x, y, z),
(iv) 〈〈〈x, y〉, xor2c 〉〉 ∈ the carrier of GFA2AdderStr(x, y, z), and
(v) 〈〈〈〈〈〈x, y〉, xor2c 〉〉, z〉, xor2c 〉〉 ∈ the carrier of GFA2AdderStr(x, y, z).

(105) For all sets x, y, z holds 〈〈〈x, y〉, xor2c 〉〉 ∈ InnerVertices(GFA2AdderStr(x,

y, z)) and GFA2AdderOutput(x, y, z) ∈ InnerVertices(GFA2AdderStr(x, y,

z)).
(106) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 holds x ∈

InputVertices(GFA2AdderStr(x, y, z)) and
y ∈ InputVertices(GFA2AdderStr(x, y, z)) and
z ∈ InputVertices(GFA2AdderStr(x, y, z)).

(107) For all non pair sets x, y, z holds InputVertices(GFA2AdderStr(x, y, z)) =
{x, y, z}.

(108) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be a state of
GFA2AdderCirc(x, y, z) and a1, a2, a3 be elements of Boolean. Suppose
a1 = s(x) and a2 = s(y) and a3 = s(z). Then (Following(s))(〈〈〈x, y〉,
xor2c 〉〉) = a1⊕¬a2 and (Following(s))(x) = a1 and (Following(s))(y) = a2

and (Following(s))(z) = a3.

(109) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be a state of
GFA2AdderCirc(x, y, z) and a4, a1, a2, a3 be elements of Boolean. If
a4 = s(〈〈〈x, y〉, xor2c 〉〉) and a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s))(GFA2AdderOutput(x, y, z)) = a4 ⊕ ¬a3.

(110) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be
a state of GFA2AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z). Then
(Following(s, 2))(GFA2AdderOutput(x, y, z)) = a1 ⊕ ¬a2 ⊕ ¬a3 and
(Following(s, 2))(〈〈〈x, y〉, xor2c 〉〉) = a1⊕¬a2 and (Following(s, 2))(x) = a1

and (Following(s, 2))(y) = a2 and (Following(s, 2))(z) = a3.
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(111) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉. Let s be
a state of GFA2AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. If a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s, 2))(GFA2AdderOutput(x, y, z)) = ¬a1 ⊕ a2 ⊕ ¬a3.

(112) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 and for every state s of
GFA2AdderCirc(x, y, z) holds Following(s, 2) is stable.

Let x, y, z be sets. The functor BitGFA2Str(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined as follows:

(Def. 37) BitGFA2Str(x, y, z) = GFA2AdderStr(x, y, z)+·GFA2CarryStr(x, y, z).
Let x, y, z be sets. The functor BitGFA2Circ(x, y, z) yields a strict Boolean

circuit of BitGFA2Str(x, y, z) with denotation held in gates and is defined by:
(Def. 38) BitGFA2Circ(x, y, z) = GFA2AdderCirc(x, y, z)+·GFA2CarryCirc(x, y, z).

Next we state several propositions:
(113) For all sets x, y, z holds InnerVertices(BitGFA2Str(x, y, z)) =

{〈〈〈x, y〉, xor2c 〉〉}∪{GFA2AdderOutput(x, y, z)}∪{〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, z〉,
and2c 〉〉, 〈〈〈z, x〉, and2b 〉〉} ∪ {GFA2CarryOutput(x, y, z)}.

(114) For all sets x, y, z holds InnerVertices(BitGFA2Str(x, y, z)) is a binary
relation.

(115) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2c 〉〉 and x 6= 〈〈〈y,

z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x, y〉, and2a 〉〉 holds
InputVertices(BitGFA2Str(x, y, z)) = {x, y, z}.

(116) For all non pair sets x, y, z holds InputVertices(BitGFA2Str(x, y, z)) =
{x, y, z}.

(117) For all non pair sets x, y, z holds InputVertices(BitGFA2Str(x, y, z)) has
no pairs.

(118) Let x, y, z be sets. Then x ∈ the carrier of BitGFA2Str(x, y, z)
and y ∈ the carrier of BitGFA2Str(x, y, z) and z ∈ the
carrier of BitGFA2Str(x, y, z) and 〈〈〈x, y〉, xor2c 〉〉 ∈ the car-
rier of BitGFA2Str(x, y, z) and 〈〈〈〈〈〈x, y〉, xor2c 〉〉, z〉, xor2c 〉〉 ∈ the
carrier of BitGFA2Str(x, y, z) and 〈〈〈x, y〉, and2a 〉〉 ∈ the car-
rier of BitGFA2Str(x, y, z) and 〈〈〈y, z〉, and2c 〉〉 ∈ the carrier of
BitGFA2Str(x, y, z) and 〈〈〈z, x〉, and2b 〉〉 ∈ the carrier of BitGFA2Str(x, y, z)
and 〈〈〈〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z, x〉, and2b 〉〉〉, nor3 〉〉 ∈ the carrier
of BitGFA2Str(x, y, z).

(119) Let x, y, z be sets. Then 〈〈〈x, y〉, xor2c 〉〉 ∈ InnerVertices(BitGFA2Str(x,

y, z)) and GFA2AdderOutput(x, y, z) ∈ InnerVertices(BitGFA2Str(x, y, z))
and 〈〈〈x, y〉, and2a 〉〉 ∈ InnerVertices(BitGFA2Str(x, y, z)) and 〈〈〈y, z〉,
and2c 〉〉 ∈ InnerVertices(BitGFA2Str(x, y, z)) and 〈〈〈z, x〉, and2b 〉〉 ∈
InnerVertices(BitGFA2Str(x, y, z)) and GFA2CarryOutput(x, y, z) ∈
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InnerVertices(BitGFA2Str(x, y, z)).
(120) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉 and

x 6= 〈〈〈y, z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x,

y〉, and2a 〉〉. Then x ∈ InputVertices(BitGFA2Str(x, y, z)) and y ∈
InputVertices(BitGFA2Str(x, y, z)) and z ∈ InputVertices(BitGFA2Str(x,

y, z)).
Let x, y, z be sets. The functor BitGFA2CarryOutput(x, y, z) yields an

element of InnerVertices(BitGFA2Str(x, y, z)) and is defined by:
(Def. 39) BitGFA2CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, z〉, and2c 〉〉, 〈〈〈z,

x〉, and2b 〉〉〉, nor3 〉〉.
Let x, y, z be sets. The functor BitGFA2AdderOutput(x, y, z) yielding an

element of InnerVertices(BitGFA2Str(x, y, z)) is defined by:
(Def. 40) BitGFA2AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2c).

Next we state two propositions:
(121) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉 and x 6= 〈〈〈y,

z〉, and2c 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x, y〉, and2a 〉〉. Let s

be a state of BitGFA2Circ(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z). Then
(Following(s, 2))(GFA2AdderOutput(x, y, z)) = ¬a1 ⊕ a2 ⊕ ¬a3 and
(Following(s, 2))(GFA2CarryOutput(x, y, z)) = ¬(¬a1 ∧ a2 ∨ a2 ∧ ¬a3 ∨
¬a3 ∧ ¬a1).

(122) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2c 〉〉 and x 6= 〈〈〈y, z〉, and2c 〉〉
and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x, y〉, and2a 〉〉. Let s be a state of
BitGFA2Circ(x, y, z). Then Following(s, 2) is stable.

5. Generalized Full Adder (GFA) Circuit (TYPE-3)

Let x, y, z be sets. The functor GFA3CarryIStr(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def. 41) GFA3CarryIStr(x, y, z) = 1GateCircStr(〈x, y〉, and2b)+· 1GateCircStr(〈y,

z〉, and2b)+· 1GateCircStr(〈z, x〉, and2b).
Let x, y, z be sets. The functor GFA3CarryICirc(x, y, z) yielding a strict

Boolean circuit of GFA3CarryIStr(x, y, z) with denotation held in gates is de-
fined by:

(Def. 42) GFA3CarryICirc(x, y, z) = 1GateCircuit(x, y, and2b)+· 1GateCircuit(y,

z, and2b)+· 1GateCircuit(z, x, and2b).
Let x, y, z be sets. The functor GFA3CarryStr(x, y, z) yielding an unsplit

non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:



566 shin’nosuke yamaguchi et al.

(Def. 43) GFA3CarryStr(x, y, z) = GFA3CarryIStr(x, y, z)+· 1GateCircStr(〈〈〈〈x,

y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉〉,nor3).
Let x, y, z be sets. The functor GFA3CarryCirc(x, y, z) yielding a strict

Boolean circuit of GFA3CarryStr(x, y, z) with denotation held in gates is defined
by:

(Def. 44) GFA3CarryCirc(x, y, z) = GFA3CarryICirc(x, y, z)+· 1GateCircuit(〈〈〈x,

y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉,nor3).
Let x, y, z be sets. The functor GFA3CarryOutput(x, y, z) yields an element

of InnerVertices(GFA3CarryStr(x, y, z)) and is defined as follows:
(Def. 45) GFA3CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉,

and2b 〉〉〉, nor3 〉〉.
The following propositions are true:

(123) For all sets x, y, z holds InnerVertices(GFA3CarryIStr(x, y, z)) = {〈〈〈x,

y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉}.
(124) For all sets x, y, z holds InnerVertices(GFA3CarryStr(x, y, z)) = {〈〈〈x,

y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉}∪{GFA3CarryOutput(x, y, z)}.
(125) For all sets x, y, z holds InnerVertices(GFA3CarryStr(x, y, z)) is a binary

relation.
(126) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉

and z 6= 〈〈〈x, y〉, and2b 〉〉 holds InputVertices(GFA3CarryIStr(x, y, z)) =
{x, y, z}.

(127) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2b 〉〉 holds InputVertices(GFA3CarryStr(x, y, z)) =
{x, y, z}.

(128) For all non pair sets x, y, z holds InputVertices(GFA3CarryStr(x, y, z))
has no pairs.

(129) Let x, y, z be sets. Then x ∈ the carrier of GFA3CarryStr(x, y, z)
and y ∈ the carrier of GFA3CarryStr(x, y, z) and z ∈ the
carrier of GFA3CarryStr(x, y, z) and 〈〈〈x, y〉, and2b 〉〉 ∈ the car-
rier of GFA3CarryStr(x, y, z) and 〈〈〈y, z〉, and2b 〉〉 ∈ the carrier
of GFA3CarryStr(x, y, z) and 〈〈〈z, x〉, and2b 〉〉 ∈ the carrier of
GFA3CarryStr(x, y, z) and 〈〈〈〈〈〈x, y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉〉,
nor3 〉〉 ∈ the carrier of GFA3CarryStr(x, y, z).

(130) For all sets x, y, z holds 〈〈〈x, y〉, and2b 〉〉 ∈ InnerVertices(GFA3CarryStr(x,

y, z)) and 〈〈〈y, z〉, and2b 〉〉 ∈ InnerVertices(GFA3CarryStr(x, y, z)) and 〈〈〈z,

x〉, and2b 〉〉 ∈ InnerVertices(GFA3CarryStr(x, y, z)) and GFA3CarryOutput
(x, y, z) ∈ InnerVertices(GFA3CarryStr(x, y, z)).

(131) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2b 〉〉 holds x ∈ InputVertices(GFA3CarryStr(x, y, z))
and y ∈ InputVertices(GFA3CarryStr(x, y, z)) and
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z ∈ InputVertices(GFA3CarryStr(x, y, z)).

(132) For all non pair sets x, y, z holds InputVertices(GFA3CarryStr(x, y, z)) =
{x, y, z}.

(133) Let x, y, z be sets, s be a state of GFA3CarryCirc(x, y, z), and a1, a2, a3

be elements of Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s))(〈〈〈x, y〉, and2b 〉〉) = ¬a1 ∧¬a2 and (Following(s))(〈〈〈y,

z〉, and2b 〉〉) = ¬a2 ∧¬a3 and (Following(s))(〈〈〈z, x〉, and2b 〉〉) = ¬a3 ∧¬a1.

(134) Let x, y, z be sets, s be a state of GFA3CarryCirc(x, y, z), and
a1, a2, a3 be elements of Boolean. If a1 = s(〈〈〈x, y〉, and2b 〉〉)
and a2 = s(〈〈〈y, z〉, and2b 〉〉) and a3 = s(〈〈〈z, x〉, and2b 〉〉), then
(Following(s))(GFA3CarryOutput(x, y, z)) = ¬(a1 ∨ a2 ∨ a3).

(135) Let x, y, z be sets. Suppose x 6= 〈〈〈y, z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2b 〉〉. Let s be a state of GFA3CarryCirc(x, y, z) and
a1, a2, a3 be elements of Boolean. Suppose a1 = s(x) and a2 = s(y)
and a3 = s(z). Then (Following(s, 2))(GFA3CarryOutput(x, y, z)) =
¬(¬a1 ∧ ¬a2 ∨ ¬a2 ∧ ¬a3 ∨ ¬a3 ∧ ¬a1) and (Following(s, 2))(〈〈〈x, y〉,
and2b 〉〉) = ¬a1 ∧ ¬a2 and (Following(s, 2))(〈〈〈y, z〉, and2b 〉〉) = ¬a2 ∧ ¬a3

and (Following(s, 2))(〈〈〈z, x〉, and2b 〉〉) = ¬a3 ∧ ¬a1.

(136) For all sets x, y, z such that x 6= 〈〈〈y, z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉
and z 6= 〈〈〈x, y〉, and2b 〉〉 and for every state s of GFA3CarryCirc(x, y, z)
holds Following(s, 2) is stable.

Let x, y, z be sets. The functor GFA3AdderStr(x, y, z) yields an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates and is defined by:

(Def. 46) GFA3AdderStr(x, y, z) = 2GatesCircStr(x, y, z, xor2).

Let x, y, z be sets. The functor GFA3AdderCirc(x, y, z) yielding a strict
Boolean circuit of GFA3AdderStr(x, y, z) with denotation held in gates is defined
by:

(Def. 47) GFA3AdderCirc(x, y, z) = 2GatesCircuit(x, y, z, xor2).

Let x, y, z be sets. The functor GFA3AdderOutput(x, y, z) yielding an
element of InnerVertices(GFA3AdderStr(x, y, z)) is defined by:

(Def. 48) GFA3AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2).

One can prove the following propositions:

(137) For all sets x, y, z holds InnerVertices(GFA3AdderStr(x, y, z)) = {〈〈〈x,

y〉, xor2 〉〉} ∪ {GFA3AdderOutput(x, y, z)}.
(138) For all sets x, y, z holds InnerVertices(GFA3AdderStr(x, y, z)) is a binary

relation.

(139) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 holds
InputVertices(GFA3AdderStr(x, y, z)) = {x, y, z}.



568 shin’nosuke yamaguchi et al.

(140) For all non pair sets x, y, z holds InputVertices(GFA3AdderStr(x, y, z))
has no pairs.

(141) Let x, y, z be sets. Then
(i) x ∈ the carrier of GFA3AdderStr(x, y, z),
(ii) y ∈ the carrier of GFA3AdderStr(x, y, z),
(iii) z ∈ the carrier of GFA3AdderStr(x, y, z),
(iv) 〈〈〈x, y〉, xor2 〉〉 ∈ the carrier of GFA3AdderStr(x, y, z), and
(v) 〈〈〈〈〈〈x, y〉, xor2 〉〉, z〉, xor2 〉〉 ∈ the carrier of GFA3AdderStr(x, y, z).

(142) For all sets x, y, z holds 〈〈〈x, y〉, xor2 〉〉 ∈ InnerVertices(GFA3AdderStr(x,

y, z)) and GFA3AdderOutput(x, y, z) ∈ InnerVertices(GFA3AdderStr(x, y,

z)).
(143) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 holds x ∈

InputVertices(GFA3AdderStr(x, y, z)) and
y ∈ InputVertices(GFA3AdderStr(x, y, z)) and
z ∈ InputVertices(GFA3AdderStr(x, y, z)).

(144) For all non pair sets x, y, z holds InputVertices(GFA3AdderStr(x, y, z)) =
{x, y, z}.

(145) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be a state of
GFA3AdderCirc(x, y, z) and a1, a2, a3 be elements of Boolean. Suppose
a1 = s(x) and a2 = s(y) and a3 = s(z). Then (Following(s))(〈〈〈x, y〉,
xor2 〉〉) = a1 ⊕ a2 and (Following(s))(x) = a1 and (Following(s))(y) = a2

and (Following(s))(z) = a3.

(146) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be a state of
GFA3AdderCirc(x, y, z) and a4, a1, a2, a3 be elements of Boolean. If
a4 = s(〈〈〈x, y〉, xor2 〉〉) and a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s))(GFA3AdderOutput(x, y, z)) = a4 ⊕ a3.

(147) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be
a state of GFA3AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z).
Then (Following(s, 2))(GFA3AdderOutput(x, y, z)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(〈〈〈x, y〉, xor2 〉〉) = a1 ⊕ a2 and (Following(s, 2))(x) = a1

and (Following(s, 2))(y) = a2 and (Following(s, 2))(z) = a3.

(148) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉. Let s be
a state of GFA3AdderCirc(x, y, z) and a1, a2, a3 be elements of
Boolean. If a1 = s(x) and a2 = s(y) and a3 = s(z), then
(Following(s, 2))(GFA3AdderOutput(x, y, z)) = ¬(¬a1 ⊕ ¬a2 ⊕ ¬a3).

(149) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 and for every state s of
GFA3AdderCirc(x, y, z) holds Following(s, 2) is stable.

Let x, y, z be sets. The functor BitGFA3Str(x, y, z) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
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Boolean denotation held in gates is defined by:
(Def. 49) BitGFA3Str(x, y, z) = GFA3AdderStr(x, y, z)+·GFA3CarryStr(x, y, z).

Let x, y, z be sets. The functor BitGFA3Circ(x, y, z) yields a strict Boolean
circuit of BitGFA3Str(x, y, z) with denotation held in gates and is defined as
follows:

(Def. 50) BitGFA3Circ(x, y, z) = GFA3AdderCirc(x, y, z)+·GFA3CarryCirc(x, y, z).
One can prove the following propositions:

(150) For all sets x, y, z holds InnerVertices(BitGFA3Str(x, y, z)) =
{〈〈〈x, y〉, xor2 〉〉} ∪ {GFA3AdderOutput(x, y, z)} ∪ {〈〈〈x, y〉, and2b 〉〉, 〈〈〈y, z〉,
and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉} ∪ {GFA3CarryOutput(x, y, z)}.

(151) For all sets x, y, z holds InnerVertices(BitGFA3Str(x, y, z)) is a binary
relation.

(152) For all sets x, y, z such that z 6= 〈〈〈x, y〉, xor2 〉〉 and x 6= 〈〈〈y,

z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x, y〉, and2b 〉〉 holds
InputVertices(BitGFA3Str(x, y, z)) = {x, y, z}.

(153) For all non pair sets x, y, z holds InputVertices(BitGFA3Str(x, y, z)) =
{x, y, z}.

(154) For all non pair sets x, y, z holds InputVertices(BitGFA3Str(x, y, z)) has
no pairs.

(155) Let x, y, z be sets. Then x ∈ the carrier of BitGFA3Str(x, y, z)
and y ∈ the carrier of BitGFA3Str(x, y, z) and z ∈ the carrier of
BitGFA3Str(x, y, z) and 〈〈〈x, y〉, xor2 〉〉 ∈ the carrier of BitGFA3Str(x, y, z)
and 〈〈〈〈〈〈x, y〉, xor2 〉〉, z〉, xor2 〉〉 ∈ the carrier of BitGFA3Str(x, y, z) and
〈〈〈x, y〉, and2b 〉〉 ∈ the carrier of BitGFA3Str(x, y, z) and 〈〈〈y, z〉, and2b 〉〉 ∈
the carrier of BitGFA3Str(x, y, z) and 〈〈〈z, x〉, and2b 〉〉 ∈ the carrier of
BitGFA3Str(x, y, z) and 〈〈〈〈〈〈x, y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z, x〉, and2b 〉〉〉,
nor3 〉〉 ∈ the carrier of BitGFA3Str(x, y, z).

(156) Let x, y, z be sets. Then 〈〈〈x, y〉, xor2 〉〉 ∈ InnerVertices(BitGFA3Str(x, y,

z)) and GFA3AdderOutput(x, y, z) ∈ InnerVertices(BitGFA3Str(x, y, z))
and 〈〈〈x, y〉, and2b 〉〉 ∈ InnerVertices(BitGFA3Str(x, y, z)) and 〈〈〈y, z〉,
and2b 〉〉 ∈ InnerVertices(BitGFA3Str(x, y, z)) and 〈〈〈z, x〉, and2b 〉〉 ∈
InnerVertices(BitGFA3Str(x, y, z)) and GFA3CarryOutput(x, y, z) ∈
InnerVertices(BitGFA3Str(x, y, z)).

(157) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉 and
x 6= 〈〈〈y, z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x,

y〉, and2b 〉〉. Then x ∈ InputVertices(BitGFA3Str(x, y, z)) and y ∈
InputVertices(BitGFA3Str(x, y, z)) and z ∈ InputVertices(BitGFA3Str(x,

y, z)).
Let x, y, z be sets. The functor BitGFA3CarryOutput(x, y, z) yields an

element of InnerVertices(BitGFA3Str(x, y, z)) and is defined by:
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(Def. 51) BitGFA3CarryOutput(x, y, z) = 〈〈〈〈〈〈x, y〉, and2b 〉〉, 〈〈〈y, z〉, and2b 〉〉, 〈〈〈z,

x〉, and2b 〉〉〉, nor3 〉〉.
Let x, y, z be sets. The functor BitGFA3AdderOutput(x, y, z) yielding an

element of InnerVertices(BitGFA3Str(x, y, z)) is defined by:
(Def. 52) BitGFA3AdderOutput(x, y, z) = 2GatesCircOutput(x, y, z, xor2).

Next we state two propositions:
(158) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉 and x 6= 〈〈〈y,

z〉, and2b 〉〉 and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x, y〉, and2b 〉〉. Let s

be a state of BitGFA3Circ(x, y, z) and a1, a2, a3 be elements of
Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(z). Then
(Following(s, 2))(GFA3AdderOutput(x, y, z)) = ¬(¬a1 ⊕ ¬a2 ⊕ ¬a3) and
(Following(s, 2))(GFA3CarryOutput(x, y, z)) = ¬(¬a1∧¬a2∨¬a2∧¬a3∨
¬a3 ∧ ¬a1).

(159) Let x, y, z be sets. Suppose z 6= 〈〈〈x, y〉, xor2 〉〉 and x 6= 〈〈〈y, z〉, and2b 〉〉
and y 6= 〈〈〈z, x〉, and2b 〉〉 and z 6= 〈〈〈x, y〉, and2b 〉〉. Let s be a state of
BitGFA3Circ(x, y, z). Then Following(s, 2) is stable.
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1. Preliminaries

Let S be a non empty 1-sorted structure. Note that ΩS is non proper.
The following propositions are true:

(1) Let L be an add-associative right zeroed right complementable non
empty loop structure and a, b be elements of L. Then (a− b) + b = a.

(2) Let L be an add-associative right zeroed right complementable Abelian
non empty loop structure and b, c be elements of L. Then c = b− (b− c).

(3) Let L be an add-associative right zeroed right complementable Abelian
non empty loop structure and a, b, c be elements of L. Then a−b−(c−b) =
a− c.
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2. Ideals

Let K be a non empty groupoid and let S be a subset of K. We say that S

is quasi-prime if and only if:
(Def. 1) For all elements a, b of K such that a · b ∈ S holds a ∈ S or b ∈ S.

Let K be a non empty multiplicative loop structure and let S be a subset
of K. We say that S is prime if and only if:

(Def. 2) S is proper and quasi-prime.
Let R be a non empty double loop structure and let I be a subset of R. We

say that I is quasi-maximal if and only if:
(Def. 3) For every ideal J of R such that I ⊆ J holds J = I or J is non proper.

Let R be a non empty double loop structure and let I be a subset of R. We
say that I is maximal if and only if:

(Def. 4) I is proper and quasi-maximal.
Let K be a non empty multiplicative loop structure. Note that every subset

of K which is prime is also proper and quasi-prime and every subset of K which
is proper and quasi-prime is also prime.

Let R be a non empty double loop structure. One can verify that every subset
of R which is maximal is also proper and quasi-maximal and every subset of R

which is proper and quasi-maximal is also maximal.
Let R be a non empty loop structure. One can verify that ΩR is add closed.
Let R be a non empty groupoid. Observe that ΩR is left ideal and right

ideal.
We now state the proposition

(4) For every integral domain R holds {0R} is prime.

3. Equivalence Relation

In the sequel R denotes a ring, I denotes an ideal of R, and a, b denote
elements of R.

Let R be a ring and let I be an ideal of R. The functor ≈I yielding a binary
relation on R is defined by:

(Def. 5) For all elements a, b of R holds 〈〈a, b〉〉 ∈ ≈I iff a− b ∈ I.

Let R be a ring and let I be an ideal of R. One can verify that ≈I is non
empty, total, symmetric, and transitive.

We now state several propositions:
(5) a ∈ [b]≈I

iff a− b ∈ I.

(6) [a]≈I
= [b]≈I

iff a− b ∈ I.

(7) [a]≈ΩR
= the carrier of R.
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(8) ≈ΩR
= {the carrier of R}.

(9) [a]≈{0R}
= {a}.

(10) ≈{0R} = rng(singletonthe carrier of R).

4. Quotient Ring

Let R be a ring and let I be an ideal of R. The functor R/I yields a strict
double loop structure and is defined by the conditions (Def. 6).

(Def. 6)(i) The carrier of R/I = Classes(≈I),
(ii) the unity of R/I = [1R]≈I

,

(iii) the zero of R/I = [0R]≈I
,

(iv) for all elements x, y of R/I there exist elements a, b of R such that
x = [a]≈I

and y = [b]≈I
and (the addition of R/I )(x, y) = [a + b]≈I

, and

(v) for all elements x, y of R/I there exist elements a, b of R such that
x = [a]≈I

and y = [b]≈I
and (the multiplication of R/I )(x, y) = [a · b]≈I

.

Let R be a ring and let I be an ideal of R. Note that R/I is non empty.
In the sequel x, y denote elements of R/I .
We now state several propositions:

(11) There exists an element a of R such that x = [a]≈I
.

(12) [a]≈I
is an element of R/I .

(13) If x = [a]≈I
and y = [b]≈I

, then x + y = [a + b]≈I
.

(14) If x = [a]≈I
and y = [b]≈I

, then x · y = [a · b]≈I
.

(15) [1R]≈I
= 1R/I

.

Let R be a ring and let I be an ideal of R. Observe that R/I is Abelian,
add-associative, and right zeroed.

Let R be a commutative ring and let I be an ideal of R. Note that R/I is
commutative.

The following propositions are true:
(16) I is proper iff R/I is non degenerated.

(17) I is quasi-prime iff R/I is integral domain-like.
(18) For every commutative ring R and for every ideal I of R holds I is prime

iff R/I is an integral domain.

(19) If R is commutative and I is quasi-maximal, then R/I is field-like.

(20) If R/I is field-like, then I is quasi-maximal.
(21) For every commutative ring R and for every ideal I of R holds I is

maximal iff R/I is a skew field.
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Let R be a non degenerated commutative ring. One can check that every
ideal of R which is maximal is also prime.

Let R be a non degenerated ring. Note that there exists an ideal of R which
is maximal.

Let R be a non degenerated commutative ring and let I be a quasi-prime
ideal of R. Observe that R/I is integral domain-like.

Let R be a non degenerated commutative ring and let I be a quasi-maximal
ideal of R. Observe that R/I is field-like.
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1. The Real Euclidean Space as a Real Linear Space

In this paper n is a natural number.
Let n be a natural number. The functor 〈En, ‖ · ‖〉 yields a strict non empty

normed structure and is defined by the conditions (Def. 1).
(Def. 1)(i) The carrier of 〈En, ‖ · ‖〉 = Rn,

(ii) the zero of 〈En, ‖ · ‖〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉,

(iii) for all elements a, b of Rn holds (the addition of 〈En, ‖·‖〉)(a, b) = a+b,

(iv) for every element r of R and for every element x of Rn holds (the
external multiplication of 〈En, ‖ · ‖〉)(r, x) = r · x, and

(v) for every element x of Rn holds (the norm of 〈En, ‖ · ‖〉)(x) = |x|.
Let n be a natural number. Note that the addition of 〈En, ‖ · ‖〉 is commu-

tative and associative.
Let n be a non empty natural number. Note that 〈En, ‖ · ‖〉 is non trivial.
One can prove the following propositions:

(1) For every vector x of 〈En, ‖ · ‖〉 and for every element y of Rn such that
x = y holds ‖x‖ = |y|.

(2) Let n be a natural number, x, y be vectors of 〈En, ‖ · ‖〉, and a, b be
elements of Rn. If x = a and y = b, then x + y = a + b.
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578 noboru endou and yasunari shidama

(3) For every vector x of 〈En, ‖ · ‖〉 and for every element y of Rn and for
every real number a such that x = y holds a · x = a · y.

Let n be a natural number. Note that 〈En, ‖ · ‖〉 is real normed space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.

One can prove the following propositions:
(4) For every vector x of 〈En, ‖ · ‖〉 and for every element a of Rn such that

x = a holds −x = −a.

(5) For all vectors x, y of 〈En, ‖ · ‖〉 and for all elements a, b of Rn such that
x = a and y = b holds x− y = a− b.

(6) For every finite sequence f of elements of R such that dom f = Seg n

holds f is an element of Rn.
(7) Let n be a natural number and x be an element of Rn. Suppose that for

every natural number i such that i ∈ Seg n holds 0 ≤ x(i). Then 0 ≤
∑

x

and for every natural number i such that i ∈ Seg n holds x(i) ≤
∑

x.

(8) For every element x of Rn and for every natural number i such that
i ∈ Seg n holds |x(i)| ≤ |x|.

(9) Let x be a point of 〈En, ‖ · ‖〉 and y be an element of Rn. If x = y, then
for every natural number i such that i ∈ Seg n holds |y(i)| ≤ ‖x‖.

(10) For every element x of Rn+1 holds |x|2 = |x�n|2 + x(n + 1)2.

Let n be a natural number, let f be a function from N into Rn, and let k

be a natural number. Then f(k) is an element of Rn.
We now state two propositions:

(11) Let n be a natural number, x be a point of 〈En, ‖ · ‖〉, x2 be an element
of Rn, s1 be a sequence of 〈En, ‖ · ‖〉, and x1 be a function from N into
Rn. Suppose x2 = x and x1 = s1. Then s1 is convergent and lim s1 = x

if and only if for every natural number i such that i ∈ Seg n there exists
a sequence r1 of real numbers such that for every natural number k holds
r1(k) = x1(k)(i) and r1 is convergent and x2(i) = lim r1.

(12) For every sequence f of 〈En, ‖ · ‖〉 such that f is Cauchy sequence by
norm holds f is convergent.

Let us consider n. Note that 〈En, ‖ · ‖〉 is complete.

2. The Real Euclidean Space as a Real Normed Space

Let n be a natural number. The functor 〈En, (·|·)〉 yields a strict non empty
unitary space structure and is defined by the conditions (Def. 2).

(Def. 2)(i) The RLS structure of 〈En, (·|·)〉 = the RLS structure of 〈En, ‖·‖〉, and
(ii) for all elements x, y of Rn holds (the scalar product of 〈En, (·|·)〉)(x,

y) =
∑

(x • y).
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Let n be a non empty natural number. One can verify that 〈En, (·|·)〉 is non
trivial.

Let n be a natural number. Observe that 〈En, (·|·)〉 is real unitary space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.

The following propositions are true:
(13) Let n be a natural number, a be a real number, x3, y1 be points of

〈En, ‖ · ‖〉, and x4, y2 be points of 〈En, (·|·)〉. If x3 = x4 and y1 = y2, then
x3 + y1 = x4 + y2 and −x3 = −x4 and a · x3 = a · x4.

(14) For every natural number n and for every point x3 of 〈En, ‖ · ‖〉 and for
every point x4 of 〈En, (·|·)〉 such that x3 = x4 holds ‖x3‖2 = (x4|x4).

(15) Let n be a natural number and f be a set. Then f is a sequence of
〈En, ‖ · ‖〉 if and only if f is a sequence of 〈En, (·|·)〉.

(16) Let n be a natural number, s2 be a sequence of 〈En, ‖ · ‖〉, and s3 be a
sequence of 〈En, (·|·)〉 such that s2 = s3. Then

(i) if s2 is convergent, then s3 is convergent and lim s2 = lim s3, and
(ii) if s3 is convergent, then s2 is convergent and lim s2 = lim s3.

(17) Let n be a natural number, s2 be a sequence of 〈En, ‖ · ‖〉, and s3 be a
sequence of 〈En, (·|·)〉. If s2 = s3 and s2 is Cauchy sequence by norm, then
s3 is Cauchy.

(18) Let n be a natural number, s2 be a sequence of 〈En, ‖ · ‖〉, and s3 be
a sequence of 〈En, (·|·)〉. If s2 = s3 and s3 is Cauchy, then s2 is Cauchy
sequence by norm.

Let us consider n. Note that 〈En, (·|·)〉 is Hilbert.
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