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The articles [30], [34], [1], [5], [35], [7], [6], [23], [29], [17], [4], [33], [2], [27], [24],
[26], [31], [9], [25], [37], [12], [18], [11], [10], [28], [3], [14], [36], [15], [32], [13],
[16], [20], [19], [21], [8], and [22] provide the terminology and notation for this
paper.

1. PRELIMINARIES

For simplicity, we follow the rules: n is a natural number, ¢ is an integer, a,
b, r are real numbers, and z is a point of £F.
One can check the following observations:

* 10, 1] is non empty,

* [—1,1] is non empty, and
13
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One can verify the following observations:

* |5, 5[ is non empty.

% the function sin is continuous,

* the function cos is continuous,

* the function arcsin is continuous, and

* the function arccos is continuous.

Next we state two propositions:
(1) sin(a-r+b) = ((the function sin) - AffineMap(a, b))(r).
(2) cos(a-r+b) = ((the function cos) - AffineMap(a, b))(r).
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Let a be a non zero real number and let b be a real number. Note that
AffineMap(a, b) is onto and one-to-one.
Let a, b be real numbers. The functor IntIntervals(a, b) is defined as follows:
(Def. 1) IntIntervals(a,b) = {Ja + n,b+ n| : n ranges over elements of Z}.
One can prove the following proposition
(3) For every set x holds = € IntIntervals(a, b) iff there exists an element n
of Z such that x = |a 4+ n,b + n|.
Let a, b be real numbers. Observe that IntIntervals(a,b) is non empty.
Next we state the proposition
(4) If b—a <1, then IntIntervals(a, b) is mutually-disjoint.
Let a, b be real numbers. Then IntIntervals(a,b) is a family of subsets of
RL.
Let a, b be real numbers. Then IntIntervals(a, b) is an open family of subsets
of RY.

2. CORRESPONDENCE BETWEEN R AND R1

Let r be a real number. The functor R'r yielding a point of R is defined
by:
(Def. 2) R'r =r.
Let A be a subset of R. The functor R'A yielding a subset of R! is defined
by:
(Def. 3) R'A= A.
Let A be a non empty subset of R. Observe that R'A is non empty.
Let A be an open subset of R. Note that R'A is open.
Let A be a closed subset of R. Observe that R'A is closed.
Let A be an open subset of R. Observe that R'[R' A is open.
Let A be a closed subset of R. One can verify that R1[R'A is closed.
Let f be a partial function from R to R. The functor R'f yielding a map
from R'[R! dom f into R'[R! rng f is defined as follows:
(Def. 4) R'f = f.
Let f be a partial function from R to R. One can check that R!f is onto.

Let f be an one-to-one partial function from R to R. Observe that R!f is
one-to-one.

One can prove the following four propositions:
(5) RYRY(Qgr) =RL
(6) For every partial function f from R to R such that dom f = R holds
RI[R!dom f = R1.
(7) Every function f from R into R is a map from R! into R'[R! rng f.
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(8) Every function from R into R is a map from R! into R*.

Let f be a continuous partial function from R to R. Note that R'f is
continuous.

Let a be a non zero real number and let b be a real number. One can verify
that R! AffineMap(a, b) is open.

3. CIRCLES

Let S be a subspace of £4. We say that S satisfies conditions of simple

closed curve if and only if:
(Def. 5) The carrier of S is a simple closed curve.

Let us note that every subspace of 5% which satisfies conditions of simple
closed curve is also non empty, arcwise connected, and compact.

Let r be a positive real number and let « be a point of 5%. Observe that
Sphere(z, r) satisfies conditions of simple closed curve.

Let n be a natural number, let  be a point of £7, and let r be a real number.
The functor Tcircle(z, ) yielding a subspace of £ is defined by:

(Def. 6) Tcircle(z,r) = (E})[ Sphere(x, 7).

Let n be a non empty natural number, let = be a point of £}, and let r be
a non negative real number. Note that Tcircle(z, ) is strict and non empty.

One can prove the following proposition

(9) The carrier of Tcircle(z,r) = Sphere(z, 7).

Let n be a natural number, let x be a point of £}, and let r be an empty
real number. Note that Tcircle(x,r) is trivial.

Next we state the proposition

(10) Tcircle(Og%, r) is a subspace of Trectangle(—r,r, —r,r).

Let « be a point of 5% and let r be a positive real number. One can verify
that Tcircle(z, ) satisfies conditions of simple closed curve.

Let us mention that there exists a subspace of 5% which is strict and satisfies
conditions of simple closed curve.

Next we state the proposition

(11) For all subspaces S, T of £% satisfying conditions of simple closed curve
holds S and T are homeomorphic.

Let n be a natural number. The functor TopUnitCirclen yields a subspace
of &1 and is defined by:
(Def. 7)  TopUnitCircle n = Tcircle(Ogx, 1).
Let n be a non empty natural number. Note that TopUnitCirclen is non
empty.
We now state several propositions:
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(12) For every non empty natural number n and for every point = of £} such
that x is a point of TopUnitCirclen holds |z| = 1.

(13) For every point = of £2 such that z is a point of TopUnitCircle 2 holds
—1<zyand z1 <1land -1 <25 and zo < 1.

(14) For every point x of £2 such that z is a point of TopUnitCircle2 and
Tr1 = 1 holds Tro — 0.

(15) For every point z of £2 such that z is a point of TopUnitCircle2 and
x1 = —1 holds xo = 0.

(16) For every point x of £% such that z is a point of TopUnitCircle2 and
z9 = 1 holds 1 = 0.

(17) For every point x of £% such that z is a point of TopUnitCircle2 and
Tro = —1 holds 1 = 0.

The following propositions are true:

(18) TopUnitCircle 2 is a subspace of Trectangle(—1,1, —1,1).

(19) Let n be a non empty natural number, r be a positive real number, x
be a point of £}, and f be a map from TopUnitCircle n into Tcircle(z, r).
Suppose that for every point a of TopUnitCirclen and for every point b of
&R such that a = b holds f(a) =7 -b+ x. Then f is a homeomorphism.

Let us observe that TopUnitCircle2 satisfies conditions of simple closed
curve.
One can prove the following proposition
(20) Let m be a non empty natural number, r, s be positive real numbers,
and z, y be points of £}. Then Tcircle(z,r) and Tcircle(y, s) are homeo-
morphic.
Let = be a point of 5% and let r be a non negative real number. Observe
that Tcircle(x, r) is arcwise connected.
The point ¢[10] of TopUnitCircle 2 is defined as follows:
(Def. 8) ¢[10] = [1,0].
The point ¢[—10] of TopUnitCircle 2 is defined as follows:
(Def. 9) ¢[-10] = [-1,0].
Next we state the proposition
(21) ¢[10] # c[-10].
Let p be a point of TopUnitCircle 2. The functor TopOpenUnitCircle p yield-
ing a strict subspace of TopUnitCircle 2 is defined by:
(Def. 10) The carrier of TopOpenUnitCirclep = (the carrier of TopUnitCircle 2) \
{p}.
Let p be a point of TopUnitCircle 2. Note that TopOpenUnitCircle p is non
empty.
We now state several propositions:
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(22) For every point p of TopUnitCircle2 holds p is not a point of
TopOpenUnitCircle p.

(23) For every point p of TopUnitCircle2 holds TopOpenUnitCirclep =
TopUnitCircle 2| (QropunitCircle2 \ {P})-

(24) For all points p, g of TopUnitCircle 2 such that p # ¢ holds ¢ is a point
of TopOpenUnitCircle p.

(25) For every point p of % such that p is a point of TopOpenUnitCircle ¢[10]
and p2 = 0 holds p = ¢[—10].

(26) For every point p of £2 such that p is a point of TopOpenUnitCircle ¢[—10]
and p2 = 0 holds p = ¢[10].

Next we state three propositions:

(27) Let p be a point of TopUnitCircle2 and z be a point of 3. If z is a
point of TopOpenUnitCirclep, then —1 < 7 and 21 < 1 and —1 < 29
and zo < 1.

(28) For every point  of £2 such that z is a point of TopOpenUnitCircle c[10]
holds —1 < z7 and z1 < 1.

(29) For every point x of £2 such that x is a point of TopOpenUnitCircle ¢[—10]
holds —1 < 7 and x7 < 1.

Let p be a point of TopUnitCircle 2. Note that TopOpenUnitCircle p is open.
We now state two propositions:

(30) For every point p of TopUnitCircle2 holds TopOpenUnitCirclep and
I(01) are homeomorphic.

(31) For all points p, ¢ of TopUnitCircle 2 holds TopOpenUnitCirclep and
TopOpenUnitCircle ¢ are homeomorphic.

4. CORRESPONDENCE BETWEEN THE REAL LINE AND CIRCLES

The map CircleMap from R! into TopUnitCircle 2 is defined by:
(Def. 11)  For every real number z holds CircleMap(z) = [cos(2-7-x),sin(2-7-x)].
Next we state several propositions:
32) CircleMap(r) = CircleMap(r + ).
33) CircleMap(i) = ¢[10].
CircleMap ~1({c[10]}) = Z.
If fracr = 3, then CircleMap(r) = [—1,0].
If fracr = %, then CircleMap(r) = [0, 1].
If fracr = 2, then CircleMap(r) = [0, —1].
For all integers i, j holds CircleMap(r) = [((the function cos)
- AffineMap(2-m, 2-7-1))(r), ((the function sin) - AffineMap(2-7,2-7-3))(r)].
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Let us note that CircleMap is continuous.
The following proposition is true
(39) For every subset B of R! and for every map f from R!|B into
TopUnitCircle2 such that [0,1[C B and f = CircleMap [B holds f is
onto.

Let us observe that CircleMap is onto.

Let r be a real number. One can verify that CircleMap [[r,r + 1] is one-to-
one.

Let r be a real number. One can verify that CircleMap []r,r + 1] is one-to-
one.

One can prove the following two propositions:

(40) If b —a < 1, then for every set d such that d € IntIntervals(a,b) holds
CircleMap [d is one-to-one.

(41) For every set d such that d € IntIntervals(a,b) holds CircleMap®d =
CircleMap® | IntIntervals(a, b).

Let 7 be a point of R'. The functor CircleMapr yielding a map from
RI[RYr,r + 1] into TopOpenUnitCircle CircleMap(r) is defined by:
(Def. 12)  CircleMap r = CircleMap []r, r + 1].
One can prove the following proposition
(42) CircleMap R*(a+i) = CircleMap R'a-(AffineMap(1, —i)[]a+i,a+i+1[).
Let 7 be a point of R!. One can check that CircleMap r is one-to-one, onto,
and continuous.

The map Circle2IntervalR from TopOpenUnitCircle ¢[10] into R R0, 1] is
defined by the condition (Def. 13).

(Def. 13) Let p be a point of TopOpenUnitCircle ¢[10]. Then there exist real num-
bers x, y such that p = [z,y] and if y > 0, then Circle2IntervalR(p) =

AL and if y <0, then Circle2IntervalR (p) = 1 — #55E,
The map Circle2IntervalL. from TopOpenUnitCircle ¢[—10] into R* [ R']3, %[

is defined by the condition (Def. 14).

(Def. 14) Let p be a point of TopOpenUnitCircle ¢[—10]. Then there exist real
numbers z, y such that p = [z, y] and if y > 0, then Circle2IntervalL(p) =
1+ 22258 and if y < 0, then Circle2IntervalL(p) = 1 — #595%,
We now state two propositions:
(43) (CircleMap R'0)~! = Circle2IntervalR .
(44) (CircleMap R'(3))~! = Circle2IntervalL .
Let us observe that Circle2IntervalR is one-to-one, onto, and continuous and
Circle2IntervallL is one-to-one, onto, and continuous.

Let ¢ be an integer. Observe that CircleMap R' is open and
CircleMap R'(5 +4) is open.



SOME PROPERTIES OF CIRCLES ON THE PLANE 123

Let us observe that Circle2IntervalR is open and Circle2Intervall, is open.
Next we state several propositions:

(45) CircleMap R0 is a homeomorphism.

(46) CircleMap R*(3) is a homeomorphism.

(47) Circle2IntervalR is a homeomorphism.

(48) Circle2Intervall. is a homeomorphism.

(49) There exists a family F' of subsets of TopUnitCircle 2 such that

(i) F = {CircleMap®]0, 1], CircleMap®]3, 3[},
(ii)  F is a cover of TopUnitCircle 2 and open, and
(iii)  for every subset U of TopUnitCircle2 holds if U = CircleMap®]0, 1],
then JIntIntervals(0,1) = CircleMap ~}(U) and for every subset d of
R such that d € IntIntervals(0,1) and for every map f from R!|d
into TopUnitCircle 2[U such that f = CircleMap [d holds f is a home-

omorphism and if U = CircleMapO]%,%[, then UIntIntervals(%,%) =
CircleMap ~}(U) and for every subset d of R! such that d &

IntIntervals(%, g) and for every map f from R![d into TopUnitCircle 2[U

such that f = CircleMap [d holds f is a homeomorphism.
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