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Summary. The article formalizes the proof of Brouwer’s Fixed Point

Theorem for 2-dimensional disks. Assuming, on the contrary, that the theorem

is false, we show that a circle is a retract of a disk. Next, using the retraction,

we prove that any loop in the circle is homotopic to the constant loop what

contradicts with infiniteness of the fundamental group of a circle, see [15].
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The terminology and notation used in this paper are introduced in the following

papers: [26], [9], [29], [2], [22], [28], [30], [6], [8], [7], [5], [4], [12], [3], [25], [16],

[23], [21], [20], [27], [11], [13], [14], [18], [17], [19], [10], [1], and [24].

In this paper n is a natural number, a, r are real numbers, and x is a point

of En
T.

Let S, T be non empty topological spaces. The functor DiffElems(S, T )

yielding a subset of [:S, T :] is defined by:

(Def. 1) DiffElems(S, T ) = {〈〈s, t〉〉; s ranges over points of S, t ranges over points

of T : s 6= t}.
One can prove the following proposition

(1) Let S, T be non empty topological spaces and x be a set. Then x ∈
DiffElems(S, T ) if and only if there exists a point s of S and there exists

a point t of T such that x = 〈〈s, t〉〉 and s 6= t.

1The paper was written during the first author’s post-doctoral fellowship granted by Shinshu

University, Japan.
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Let S be a non trivial non empty topological space and let T be a non empty

topological space. One can check that DiffElems(S, T ) is non empty.

Let S be a non empty topological space and let T be a non trivial non empty

topological space. Note that DiffElems(S, T ) is non empty.

We now state the proposition

(2) Ball(x, 0) = {x}.
Let n be a natural number, let x be a point of En

T, and let r be a real number.

The functor Tdisk(x, r) yields a subspace of En
T and is defined by:

(Def. 2) Tdisk(x, r) = (En
T)↾Ball(x, r).

Let n be a natural number, let x be a point of En
T, and let r be a non negative

real number. Note that Tdisk(x, r) is non empty.

We now state the proposition

(3) The carrier of Tdisk(x, r) = Ball(x, r).

Let n be a natural number, let x be a point of En
T, and let r be a real number.

Note that Tdisk(x, r) is convex.

We adopt the following convention: n denotes a natural number, r denotes

a non negative real number, and s, t, x denote points of En
T.

One can prove the following two propositions:

(4) If s 6= t and s is a point of Tdisk(x, r) and s is not a point of Tcircle(x, r),

then there exists a point e of Tcircle(x, r) such that {e} = halfline(s, t) ∩
Sphere(x, r).

(5) Suppose s 6= t and s ∈ the carrier of Tcircle(x, r) and t is a point of

Tdisk(x, r). Then there exists a point e of Tcircle(x, r) such that e 6= s

and {s, e} = halfline(s, t) ∩ Sphere(x, r).

Let n be a non empty natural number, let o be a point of En
T, let s, t be

points of En
T, and let r be a non negative real number. Let us assume that s

is a point of Tdisk(o, r), and t is a point of Tdisk(o, r) and s 6= t. The functor

HC(s, t, o, r) yields a point of En
T and is defined as follows:

(Def. 3) HC(s, t, o, r) ∈ halfline(s, t) ∩ Sphere(o, r) and HC(s, t, o, r) 6= s.

In the sequel n is a non empty natural number and s, t, o are points of En
T.

We now state three propositions:

(6) If s is a point of Tdisk(o, r) and t is a point of Tdisk(o, r) and s 6= t,

then HC(s, t, o, r) is a point of Tcircle(o, r).

(7) Let S, T , O be elements of Rn. Suppose S = s and T = t and

O = o. Suppose s is a point of Tdisk(o, r) and t is a point of Tdisk(o, r)

and s 6= t and a =
−|(t−s,s−o)|+

√
|(t−s,s−o)|2−

P

2(T−S)·(
P

2(S−O)−r2)
P

2(T−S)
. Then

HC(s, t, o, r) = (1 − a) · s + a · t.
(8) Let r1, r2, s1, s2 be real numbers and s, t, o be points of E2

T. Sup-

pose that s is a point of Tdisk(o, r) and t is a point of Tdisk(o, r) and
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s 6= t and r1 = t1 − s1 and r2 = t2 − s2 and s1 = s1 − o1 and

s2 = s2 − o2 and a =
−(s1·r1+s2·r2)+

√
(s1·r1+s2·r2)2−(r1

2+r2
2)·((s1

2+s2
2)−r2)

r1
2+r2

2 .

Then HC(s, t, o, r) = [s1 + a · r1, s2 + a · r2].

Let n be a non empty natural number, let o be a point of En
T, let r be a non

negative real number, let x be a point of Tdisk(o, r), and let f be a map from

Tdisk(o, r) into Tdisk(o, r). Let us assume that x is not a fixpoint of f . The

functor HC(x, f) yielding a point of Tcircle(o, r) is defined as follows:

(Def. 4) There exist points y, z of En
T such that y = x and z = f(x) and

HC(x, f) = HC(z, y, o, r).

The following two propositions are true:

(9) Let x be a point of Tdisk(o, r) and f be a map from Tdisk(o, r) into

Tdisk(o, r). If x is not a fixpoint of f and x is a point of Tcircle(o, r), then

HC(x, f) = x.

(10) Let r be a positive real number, o be a point of E2
T, and Y be a non empty

subspace of Tdisk(o, r). If Y = Tcircle(o, r), then Y is not a retract of

Tdisk(o, r).

Let n be a non empty natural number, let r be a non negative real number,

let o be a point of En
T, and let f be a map from Tdisk(o, r) into Tdisk(o, r). The

functor BR-map f yielding a map from Tdisk(o, r) into Tcircle(o, r) is defined

as follows:

(Def. 5) For every point x of Tdisk(o, r) holds (BR-map f)(x) = HC(x, f).

The following propositions are true:

(11) Let o be a point of En
T, x be a point of Tdisk(o, r), and f be a map from

Tdisk(o, r) into Tdisk(o, r). If x is not a fixpoint of f and x is a point of

Tcircle(o, r), then (BR-map f)(x) = x.

(12) For every continuous map f from Tdisk(o, r) into Tdisk(o, r) such that

f has no fixpoint holds BR-map f↾Sphere(o, r) = idTcircle(o,r).

(13) Let r be a positive real number, o be a point of E2
T, and f be a continuous

map from Tdisk(o, r) into Tdisk(o, r). If f has no fixpoint, then BR-map f

is continuous.

(14) For every non negative real number r and for every point o of E2
T holds

every continuous map from Tdisk(o, r) into Tdisk(o, r) has a fixpoint.

(15) Let r be a non negative real number, o be a point of E2
T, and f be

a continuous map from Tdisk(o, r) into Tdisk(o, r). Then there exists a

point x of Tdisk(o, r) such that f(x) = x.
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