
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 271–277

University of Bia lystok, 2005

Trees and Graph Components1

Gilbert Lee2

University of Victoria, Victoria, Canada

Summary. In the graph framework of [11] we define connected and acyclic

graphs, components of a graph, and define the notion of cut-vertex (articulation

point).

MML identifier: GLIB 002, version: 7.5.01 4.39.921

The articles [15], [8], [14], [17], [12], [18], [6], [1], [16], [7], [3], [4], [5], [9], [2],

[11], [10], and [13] provide the terminology and notation for this paper.

1. Preliminaries

Let X be a finite set. Observe that 2X is finite.

The following proposition is true

(1) For every finite set X such that 1 < cardX there exist sets x1, x2 such

that x1 ∈ X and x2 ∈ X and x1 6= x2.

2. Definitions

Let G be a graph. We say that G is connected if and only if:

(Def. 1) For all vertices u, v of G holds there exists a walk of G which is walk

from u to v.

Let G be a graph. We say that G is acyclic if and only if:

(Def. 2) There exists no walk of G which is cycle-like.

Let G be a graph. We say that G is tree-like if and only if:

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

271
c© 2005 University of Bia lystok

ISSN 1426–2630



272 gilbert lee

(Def. 3) G is acyclic and connected.

One can verify that every graph which is trivial is also connected.

Let us note that every graph which is trivial and loopless is also tree-like.

Let us note that every graph which is acyclic is also simple.

Let us observe that every graph which is tree-like is also acyclic and con-

nected.

Let us observe that every graph which is acyclic and connected is also tree-

like.

Let G be a graph and let v be a vertex of G. Observe that every subgraph

of G induced by {v} and ∅ is tree-like.

Let G be a graph and let v be a set. We say that G is dtree rooted at v if

and only if:

(Def. 4) G is tree-like and for every vertex x of G holds there exists a dwalk of

G which is walk from v to x.

Let us observe that there exists a graph which is trivial, finite, and tree-like

and there exists a graph which is non trivial, finite, and tree-like.

Let G be a graph. Note that there exists a subgraph of G which is trivial,

finite, and tree-like.

Let G be an acyclic graph. Observe that every subgraph of G is acyclic.

Let G be a graph and let v be a vertex of G. The functor G.reachableFrom(v)

yields a non empty subset of the vertices of G and is defined as follows:

(Def. 5) For every set x holds x ∈ G.reachableFrom(v) iff there exists a walk of

G which is walk from v to x.

Let G be a graph and let v be a vertex of G. The functor G.reachableDFrom(v)

yielding a non empty subset of the vertices of G is defined by:

(Def. 6) For every set x holds x ∈ G.reachableDFrom(v) iff there exists a dwalk

of G which is walk from v to x.

Let G1 be a graph and let G2 be a subgraph of G1. We say that G2 is

component-like if and only if:

(Def. 7) G2 is connected and it is not true that there exists a connected subgraph

G3 of G1 such that G2 ⊂ G3.

Let G be a graph. Note that every subgraph of G which is component-like

is also connected.

Let G be a graph and let v be a vertex of G. Note that every subgraph of

G induced by G.reachableFrom(v) is component-like.

Let G be a graph. Observe that there exists a subgraph of G which is

component-like.

Let G be a graph. A component of G is a component-like subgraph of G.

Let G be a graph. The functor G.componentSet() yielding a non empty

family of subsets of the vertices of G is defined as follows:



trees and graph components 273

(Def. 8) For every set x holds x ∈ G.componentSet() iff there exists a vertex v of

G such that x = G.reachableFrom(v).

Let G be a graph and let X be an element of G.componentSet(). Observe

that every subgraph of G induced by X is component-like.

Let G be a graph. The functor G.numComponents() yielding a cardinal

number is defined by:

(Def. 9) G.numComponents() = G.componentSet() .

Let G be a finite graph. Then G.numComponents() is a non empty natural

number.

Let G be a graph and let v be a vertex of G. We say that v is cut-vertex if

and only if:

(Def. 10) For every subgraph G2 of G with vertex v removed holds

G.numComponents() < G2.numComponents().

Let G be a finite graph and let v be a vertex of G. Let us observe that v is

cut-vertex if and only if:

(Def. 11) For every subgraph G2 of G with vertex v removed holds

G.numComponents() < G2.numComponents().

Let G be a non trivial finite connected graph. Observe that there exists a

vertex of G which is non cut-vertex.

Let G be a non trivial finite tree-like graph. One can check that there exists

a vertex of G which is endvertex.

Let G be a non trivial finite tree-like graph and let v be an endvertex vertex

of G. Observe that every subgraph of G with vertex v removed is tree-like.

Let G4 be a graph sequence. We say that G4 is connected if and only if:

(Def. 12) For every natural number n holds G4.→n is connected.

We say that G4 is acyclic if and only if:

(Def. 13) For every natural number n holds G4.→n is acyclic.

We say that G4 is tree-like if and only if:

(Def. 14) For every natural number n holds G4.→n is tree-like.

One can check the following observations:

∗ every graph sequence which is trivial is also connected,

∗ every graph sequence which is trivial and loopless is also tree-like,

∗ every graph sequence which is acyclic is also simple,

∗ every graph sequence which is tree-like is also acyclic and connected, and

∗ every graph sequence which is acyclic and connected is also tree-like.

Let us note that there exists a graph sequence which is halting, finite, and

tree-like.

Let G4 be a connected graph sequence and let n be a natural number. Note

that G4.→n is connected.



274 gilbert lee

Let G4 be an acyclic graph sequence and let n be a natural number. Observe

that G4.→n is acyclic.

Let G4 be a tree-like graph sequence and let n be a natural number. Note

that G4.→n is tree-like.

3. Theorems

For simplicity, we use the following convention: G, G1, G2 are graphs, e, x,

y are sets, v, v1, v2 are vertices of G, and W is a walk of G.

We now state a number of propositions:

(2) For every non trivial connected graph G and for every vertex v of G

holds v is not isolated.

(3) Let G1 be a non trivial graph, v be a vertex of G1, and G2 be a subgraph

of G1 with vertex v removed. Suppose G2 is connected and there exists

a set e such that e ∈ v.edgesInOut() and e does not join v and v in G1.

Then G1 is connected.

(4) Let G1 be a non trivial connected graph, v be a vertex of G1, and G2

be a subgraph of G1 with vertex v removed. If v is endvertex, then G2 is

connected.

(5) Let G1 be a connected graph, W be a walk of G1, e be a set, and G2 be a

subgraph of G1 with edge e removed. If W is cycle-like and e ∈ W.edges(),

then G2 is connected.

(6) If there exists a vertex v1 of G such that for every vertex v2 of G holds

there exists a walk of G which is walk from v1 to v2, then G is connected.

(7) Every trivial graph is connected.

(8) If G1 =G G2 and G1 is connected, then G2 is connected.

(9) v ∈ G.reachableFrom(v).

(10) If x ∈ G.reachableFrom(v1) and e joins x and y in G, then y ∈

G.reachableFrom(v1).

(11) G.edgesBetween(G.reachableFrom(v)) =

G.edgesInOut(G.reachableFrom(v)).

(12) If v1 ∈ G.reachableFrom(v2), then G.reachableFrom(v1) =

G.reachableFrom(v2).

(13) If v ∈ W.vertices(), then W.vertices() ⊆ G.reachableFrom(v).

(14) Let G1 be a graph, G2 be a subgraph of G1, v1 be a vertex of G1,

and v2 be a vertex of G2. If v1 = v2, then G2.reachableFrom(v2) ⊆

G1.reachableFrom(v1).

(15) If there exists a vertex v of G such that G.reachableFrom(v) = the

vertices of G, then G is connected.



trees and graph components 275

(16) If G is connected, then for every vertex v of G holds G.reachableFrom(v) =

the vertices of G.

(17) For every vertex v1 of G1 and for every vertex v2 of G2 such that G1 =G

G2 and v1 = v2 holds G1.reachableFrom(v1) = G2.reachableFrom(v2).

(18) v ∈ G.reachableDFrom(v).

(19) If x ∈ G.reachableDFrom(v1) and e joins x to y in G, then y ∈

G.reachableDFrom(v1).

(20) G.reachableDFrom(v) ⊆ G.reachableFrom(v).

(21) Let G1 be a graph, G2 be a subgraph of G1, v1 be a vertex of G1,

and v2 be a vertex of G2. If v1 = v2, then G2.reachableDFrom(v2) ⊆

G1.reachableDFrom(v1).

(22) For every vertex v1 of G1 and for every vertex v2 of G2 such that G1 =G

G2 and v1 = v2 holds G1.reachableDFrom(v1) = G2.reachableDFrom(v2).

(23) For every graph G1 and for every connected subgraph G2 of G1 such

that G2 is spanning holds G1 is connected.

(24)
⋃

(G.componentSet()) = the vertices of G.

(25) G is connected iff G.componentSet() = {the vertices of G}.

(26) If G1 =G G2, then G1.componentSet() = G2.componentSet().

(27) If x ∈ G.componentSet(), then x is a non empty subset of the vertices

of G.

(28) G is connected iff G.numComponents() = 1.

(29) If G1 =G G2, then G1.numComponents() = G2.numComponents().

(30) G is a component of G iff G is connected.

(31) For every component C of G holds the edges of C = G.edgesBetween(the

vertices of C).

(32) For all components C1, C2 of G holds the vertices of C1 = the vertices

of C2 iff C1 =G C2.

(33) Let C be a component of G and v be a vertex of G. Then v ∈ the

vertices of C if and only if the vertices of C = G.reachableFrom(v).

(34) Let C1, C2 be components of G and v be a set. If v ∈ the vertices of C1

and v ∈ the vertices of C2, then C1 =G C2.

(35) Let G be a connected graph and v be a vertex of G. Then v is non cut-

vertex if and only if for every subgraph G2 of G with vertex v removed

holds G2.numComponents() ≤ G.numComponents().

(36) Let G be a connected graph, v be a vertex of G, and G2 be a subgraph

of G with vertex v removed. If v is not cut-vertex, then G2 is connected.

(37) Let G be a non trivial finite connected graph. Then there exist vertices

v1, v2 of G such that v1 6= v2 and v1 is not cut-vertex and v2 is not

cut-vertex.



276 gilbert lee

(38) If v is cut-vertex, then G is non trivial.

(39) Let v1 be a vertex of G1 and v2 be a vertex of G2. If G1 =G G2 and

v1 = v2, then if v1 is cut-vertex, then v2 is cut-vertex.

(40) For every finite connected graph G holds G.order() ≤ G.size() + 1.

(41) Every acyclic graph is simple.

(42) Let G be an acyclic graph, W be a path of G, and e be a set. If

e /∈ W.edges() and e ∈ W.last().edgesInOut(), then W.addEdge(e) is

path-like.

(43) Let G be a non trivial finite acyclic graph. Suppose the edges of G 6= ∅.

Then there exist vertices v1, v2 of G such that v1 6= v2 and v1 is endvertex

and v2 is endvertex and v2 ∈ G.reachableFrom(v1).

(44) If G1 =G G2 and G1 is acyclic, then G2 is acyclic.

(45) Let G be a non trivial finite tree-like graph. Then there exist vertices

v1, v2 of G such that v1 6= v2 and v1 is endvertex and v2 is endvertex.

(46) For every finite graph G holds G is tree-like iff G is acyclic and

G.order() = G.size() + 1.

(47) For every finite graph G holds G is tree-like iff G is connected and

G.order() = G.size() + 1.

(48) If G1 =G G2 and G1 is tree-like, then G2 is tree-like.

(49) If G is dtree rooted at x, then x is a vertex of G.

(50) If G1 =G G2 and G1 is dtree rooted at x, then G2 is dtree rooted at x.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[9] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[10] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253–269, 2005.
[11] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[13] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-

matics, 6(3):335–338, 1997.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.



trees and graph components 277

[16] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 0, 2005


