
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 305–314

University of Bia lystok, 2005

Correctnesss of Ford-Fulkerson’s Maximum

Flow Algorithm1

Gilbert Lee2

University of Victoria, Victoria, Canada

Summary. We define and prove correctness of Ford-Fulkerson’s maximum

network flow algorithm at the level of graph manipulations.

MML identifier: GLIB 005, version: 7.5.01 4.39.921

The articles [23], [21], [25], [22], [11], [27], [9], [7], [5], [13], [1], [24], [26], [8], [3],

[4], [20], [18], [28], [10], [2], [6], [17], [12], [16], [14], [19], and [15] provide the

notation and terminology for this paper.

1. Preliminary Theorems

Let x be a set and let y be a real number. One can verify that x7−→. y is

real-yielding.

Let x be a set and let y be a natural number. One can verify that x 7−→ y

is natural-yielding.

Let f , g be real-yielding functions. Observe that f+·g is real-yielding.

2. Preliminary Defintions for Ford-Fulkerson Flow Algorithm

Let G be a e-graph. We say that G is complete-elabeled if and only if:

(Def. 1) dom (the elabel of G) = the edges of G.

1This work has been partially supported by NSERC, Alberta Ingenuity Fund and iCORE.
2Part of author’s MSc work.

305
c© 2005 University of Bia lystok

ISSN 1426–2630



306 gilbert lee

Let G be a graph and let X be a many sorted set indexed by the edges of

G. Observe that G.set(ELabelSelector, X) is complete-elabeled.

Let G be a graph, let Y be a non empty set, and let X be a function

from the edges of G into Y . One can check that G.set(ELabelSelector, X) is

complete-elabeled.

Let G1 be a e-graph sequence. We say that G1 is complete-elabeled if and

only if:

(Def. 2) For every natural number x holds G1.→x is complete-elabeled.

Let G be a w-graph. We say that G is natural-weighted if and only if:

(Def. 3) The weight of G is natural-yielding.

Let G be a e-graph. We say that G is natural-elabeled if and only if:

(Def. 4) The elabel of G is natural-yielding.

Let G1 be a w-graph sequence. We say that G1 is natural-weighted if and

only if:

(Def. 5) For every natural number x holds G1.→x is natural-weighted.

Let G1 be a e-graph sequence. We say that G1 is natural-elabeled if and

only if:

(Def. 6) For every natural number x holds G1.→x is natural-elabeled.

One can verify that every w-graph which is natural-weighted is also

nonnegative-weighted.

Let us observe that every e-graph which is natural-elabeled is also real-

elabeled.

One can verify that there exists a wev-graph which is finite, trivial, tree-like,

natural-weighted, natural-elabeled, complete-elabeled, and real-vlabeled.

One can verify that there exists a wev-graph sequence which is finite, natural-

weighted, real-wev, natural-elabeled, and complete-elabeled.

Let G1 be a complete-elabeled e-graph sequence and let x be a natural

number. Note that G1.→x is complete-elabeled.

Let G1 be a natural-elabeled e-graph sequence and let x be a natural number.

One can verify that G1.→x is natural-elabeled.

Let G1 be a natural-weighted w-graph sequence and let x be a natural num-

ber. One can verify that G1.→x is natural-weighted.

Let G be a natural-weighted w-graph. One can check that the weight of G

is natural-yielding.

Let G be a natural-elabeled e-graph. Note that the elabel of G is natural-

yielding.

Let G be a complete-elabeled e-graph. Then the elabel of G is a many sorted

set indexed by the edges of G.

Let G be a natural-weighted w-graph and let X be a set. Note that

G.set(ELabelSelector, X) is natural-weighted and G.set(VLabelSelector, X) is



correctnesss of ford-fulkerson’s maximum . . . 307

natural-weighted.

Let G be a graph and let X be a natural-yielding many sorted set indexed

by the edges of G. Observe that G.set(ELabelSelector, X) is natural-elabeled.

Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and

let s1, s2 be sets. We say that G has valid flow from s1 to s2 if and only if the

conditions (Def. 7) are satisfied.

(Def. 7)(i) s1 is a vertex of G,

(ii) s2 is a vertex of G,

(iii) for every set e such that e ∈ the edges of G holds 0 ≤ (the elabel of

G)(e) and (the elabel of G)(e) ≤ (the weight of G)(e), and

(iv) for every vertex v of G such that v 6= s1 and v 6= s2 holds
∑

((the elabel

of G)↾v.edgesIn()) =
∑

((the elabel of G)↾v.edgesOut()).

Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and

let s1, s2 be sets. Let us assume that G has valid flow from s1 to s2. The functor

G.flow(s1, s2) yields a real number and is defined as follows:

(Def. 8) G.flow(s1, s2) =
∑

((the elabel of G)↾G.edgesInto({s2}))−
∑

((the elabel

of G)↾G.edgesOutOf({s2})).

Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and

let s1, s2 be sets. We say that G has maximum flow from s1 to s2 if and only if

the conditions (Def. 9) are satisfied.

(Def. 9)(i) G has valid flow from s1 to s2, and

(ii) for every finite real-weighted real-elabeled complete-elabeled we-graph

G2 such that G2 =G G and the weight of G = the weight of G2 and G2

has valid flow from s1 to s2 holds G2.flow(s1, s2) ≤ G.flow(s1, s2).

Let G be a real-weighted real-elabeled wev-graph and let e be a set. We

say that e is forward labeling in G if and only if the conditions (Def. 10) are

satisfied.

(Def. 10)(i) e ∈ the edges of G,

(ii) (the source of G)(e) ∈ G.labeledV(),

(iii) (the target of G)(e) /∈ G.labeledV(), and

(iv) (the elabel of G)(e) < (the weight of G)(e).

Let G be a real-elabeled ev-graph and let e be a set. We say that e is

backward labeling in G if and only if:

(Def. 11) e ∈ the edges of G and (the target of G)(e) ∈ G.labeledV() and (the

source of G)(e) /∈ G.labeledV() and 0 < (the elabel of G)(e).

Let G be a real-weighted real-elabeled we-graph and let W be a walk of G.

We say that W is augmenting if and only if the condition (Def. 12) is satisfied.

(Def. 12) Let n be an odd natural number such that n < len W. Then

(i) if W (n+1) joins W (n) to W (n+2) in G, then (the elabel of G)(W (n+

1)) < (the weight of G)(W (n + 1)), and



308 gilbert lee

(ii) if W (n+1) does not join W (n) to W (n+2) in G, then 0 < (the elabel

of G)(W (n + 1)).

Let G be a real-weighted real-elabeled we-graph. One can check that every

walk of G which is trivial is also augmenting.

Let G be a real-weighted real-elabeled we-graph. Note that there exists a

path of G which is vertex-distinct and augmenting.

Let G be a real-weighted real-elabeled we-graph, let W be an augmenting

walk of G, and let m, n be natural numbers. Note that W.cut(m,n) is aug-

menting.

Next we state two propositions:

(1) Let G3, G2 be real-weighted real-elabeled we-graphs, W1 be a walk of

G3, and W2 be a walk of G2. Suppose that

(i) W1 is augmenting,

(ii) G3 =G G2,

(iii) the weight of G3 = the weight of G2,

(iv) the elabel of G3 = the elabel of G2, and

(v) W1 = W2.

Then W2 is augmenting.

(2) Let G be a real-weighted real-elabeled we-graph, W be an augmenting

walk of G, and e, v be sets. Suppose that

(i) v /∈ W.vertices(), and

(ii) e joins W.last() to v in G and (the elabel of G)(e) < (the weight of

G)(e) or e joins v to W.last() in G and 0 < (the elabel of G)(e).

Then W.addEdge(e) is augmenting.

3. Algorithm for Finding Augmenting Path in a Graph

Let G be a real-weighted real-elabeled wev-graph. The functor

AP : NextBestEdges(G) yielding a subset of the edges of G is defined as fol-

lows:

(Def. 13) For every set e holds e ∈ AP : NextBestEdges(G) iff e is forward labeling

in G or backward labeling in G.

Let G be a real-weighted real-elabeled wev-graph. The functor AP : Step(G)

yields a real-weighted real-elabeled wev-graph and is defined by:

(Def. 14) AP : Step(G) =























G, if AP : NextBestEdges(G) = ∅,

G.labelVertex((the source of G)(e), e),

if AP : NextBestEdges(G) 6= ∅ and (the source of G)

(e) /∈ G.labeledV(),

G.labelVertex((the target of G)(e), e), otherwise.

Let G be a finite real-weighted real-elabeled wev-graph. One can check that

AP : Step(G) is finite.



correctnesss of ford-fulkerson’s maximum . . . 309

Let G be a real-weighted real-elabeled we-graph and let s1 be a vertex of G.

The functor AP : CompSeq(G, s1) yielding a real-weighted real-elabeled wev-

graph sequence is defined as follows:

(Def. 15) AP : CompSeq(G, s1).→0 = G.set(VLabelSelector, s1 7−→
. 1) and for

every natural number n holds AP : CompSeq(G, s1).→(n + 1) =

AP : Step((AP : CompSeq(G, s1).→n)).

Let G be a finite real-weighted real-elabeled we-graph and let s1 be a vertex

of G. One can check that AP : CompSeq(G, s1) is finite.

The following three propositions are true:

(3) Let G be a real-weighted real-elabeled we-graph and s1 be a vertex of

G. Then

(i) G =G AP : CompSeq(G, s1).→0,

(ii) the weight of G = the weight of AP : CompSeq(G, s1).→0,

(iii) the elabel of G = the elabel of AP : CompSeq(G, s1).→0, and

(iv) (AP : CompSeq(G, s1).→0).labeledV() = {s1}.

(4) Let G be a real-weighted real-elabeled we-graph, s1 be a ver-

tex of G, and i, j be natural numbers. If i ≤ j, then

(AP : CompSeq(G, s1).→i).labeledV() ⊆

(AP : CompSeq(G, s1).→j).labeledV().

(5) Let G be a real-weighted real-elabeled we-graph, s1 be a vertex of G,

and n be a natural number. Then G =G AP : CompSeq(G, s1).→n and

the weight of G = the weight of AP : CompSeq(G, s1).→n and the elabel

of G = the elabel of AP : CompSeq(G, s1).→n.

Let G be a real-weighted real-elabeled we-graph and let s1 be a vertex of

G. The functor AP : FindAugPath(G, s1) yielding a real-weighted real-elabeled

wev-graph is defined as follows:

(Def. 16) AP : FindAugPath(G, s1) = (AP : CompSeq(G, s1)).Result().

We now state two propositions:

(6) For every finite real-weighted real-elabeled we-graph G and for every

vertex s1 of G holds AP : CompSeq(G, s1) is halting.

(7) Let G be a finite real-weighted real-elabeled we-graph, s1 be

a vertex of G, n be a natural number, and v be a set.

If v ∈ (AP : CompSeq(G, s1).→n).labeledV(), then (the vlabel of

AP : CompSeq(G, s1).→n)(v) = (the vlabel of AP : FindAugPath(G, s1))(v).

Let G be a finite real-weighted real-elabeled we-graph and let s1, s2 be

vertices of G. The functor AP : GetAugPath(G, s1, s2) yielding a vertex-distinct

augmenting path of G is defined by:

(Def. 17)(i) AP : GetAugPath(G, s1, s2) is walk from s1 to s2 and for every even

natural number n such that n ∈ dom AP : GetAugPath(G, s1, s2) holds

(AP : GetAugPath(G, s1, s2))(n) = (the vlabel of AP : FindAugPath(G, s1))



310 gilbert lee

((AP : GetAugPath(G, s1, s2))(n + 1)) if s2 ∈ (AP : FindAugPath(G, s1))

.labeledV(),

(ii) AP : GetAugPath(G, s1, s2) = G.walkOf(s1), otherwise.

Next we state three propositions:

(8) Let G be a real-weighted real-elabeled we-graph, s1 be a vertex

of G, n be a natural number, and v be a set. Suppose v ∈

(AP : CompSeq(G, s1).→n).labeledV(). Then there exists a path P of G

such that P is augmenting and walk from s1 to v and P .vertices() ⊆

(AP : CompSeq(G, s1).→n).labeledV().

(9) Let G be a finite real-weighted real-elabeled we-graph, s1 be a vertex of

G, and v be a set. Then v ∈ (AP : FindAugPath(G, s1)).labeledV() if and

only if there exists a path of G which is augmenting and walk from s1 to

v.

(10) Let G be a finite real-weighted real-elabeled we-graph and s1 be a

vertex of G. Then s1 ∈ (AP : FindAugPath(G, s1)).labeledV() and

G =G AP : FindAugPath(G, s1) and the weight of G = the weight

of AP : FindAugPath(G, s1) and the elabel of G = the elabel of

AP : FindAugPath(G, s1).

4. Definition of Ford-Fulkerson Maximum Flow Algorithm

Let G be a real-weighted real-elabeled we-graph and let W be an augmenting

walk of G. The functor W.flowSeq() yields a finite sequence of elements of R

and is defined by the conditions (Def. 18).

(Def. 18)(i) dom(W.flowSeq()) = dom(W.edgeSeq()), and

(ii) for every natural number n such that n ∈ dom(W.flowSeq()) holds if

W (2 ·n) joins W (2 ·n−1) to W (2 ·n+1) in G, then W.flowSeq()(n) = (the

weight of G)(W (2 · n)) − (the elabel of G)(W (2 · n)) and if W (2 · n) does

not join W (2 · n − 1) to W (2 · n + 1) in G, then W.flowSeq()(n) = (the

elabel of G)(W (2 · n)).

Let G be a real-weighted real-elabeled we-graph and let W be an augmenting

walk of G. The functor W.tolerance() yielding a real number is defined as

follows:

(Def. 19)(i) W.tolerance() ∈ rng(W.flowSeq()) and for every real number k such

that k ∈ rng(W.flowSeq()) holds W.tolerance() ≤ k if W is non trivial,

(ii) W.tolerance() = 0, otherwise.

Let G be a natural-weighted natural-elabeled we-graph and let W be an

augmenting walk of G. Then W.tolerance() is a natural number.

Let G be a real-weighted real-elabeled we-graph and let P be an augmenting

path of G. The functor FF : PushFlow(G, P ) yielding a many sorted set indexed

by the edges of G is defined by the conditions (Def. 20).



correctnesss of ford-fulkerson’s maximum . . . 311

(Def. 20)(i) For every set e such that e ∈ the edges of G and e /∈ P .edges() holds

(FF : PushFlow(G, P ))(e) = (the elabel of G)(e), and

(ii) for every odd natural number n such that n < len P holds if P (n + 1)

joins P (n) to P (n+2) in G, then (FF : PushFlow(G, P ))(P (n+1)) = (the

elabel of G)(P (n + 1)) + P .tolerance() and if P (n + 1) does not join P (n)

to P (n + 2) in G, then (FF : PushFlow(G, P ))(P (n + 1)) = (the elabel of

G)(P (n + 1)) − P .tolerance().

Let G be a real-weighted real-elabeled we-graph and let P be an augmenting

path of G. Observe that FF : PushFlow(G, P ) is real-yielding.

Let G be a natural-weighted natural-elabeled we-graph and let P be an

augmenting path of G. Note that FF : PushFlow(G, P ) is natural-yielding.

Let G be a real-weighted real-elabeled we-graph and let P be an augmenting

path of G. The functor FF : AugmentPath(G, P ) yielding a real-weighted real-

elabeled complete-elabeled we-graph is defined as follows:

(Def. 21) FF : AugmentPath(G, P ) = G.set(ELabelSelector, FF : PushFlow(G, P )).

Let G be a finite real-weighted real-elabeled we-graph and let P be an aug-

menting path of G. Observe that FF : AugmentPath(G, P ) is finite.

Let G be a finite nonnegative-weighted real-elabeled we-graph and let P be

an augmenting path of G. Note that FF : AugmentPath(G, P ) is nonnegative-

weighted.

Let G be a finite natural-weighted natural-elabeled we-graph and let P be an

augmenting path of G. Note that FF : AugmentPath(G, P ) is natural-weighted

and natural-elabeled.

Let G be a finite real-weighted real-elabeled complete-elabeled we-graph and

let s2, s1 be vertices of G. The functor FF : Step(G, s1, s2) yields a finite real-

weighted real-elabeled complete-elabeled we-graph and is defined by:

(Def. 22) FF : Step(G, s1, s2) =















FF : AugmentPath(G, AP : GetAugPath(G, s1,

s2)), if s2 ∈ (AP : FindAugPath(G, s1))

.labeledV(),

G, otherwise.

Let G be a finite nonnegative-weighted real-elabeled complete-elabeled we-

graph and let s1, s2 be vertices of G. One can check that FF : Step(G, s1, s2) is

nonnegative-weighted.

Let G be a finite natural-weighted natural-elabeled complete-elabeled we-

graph and let s1, s2 be vertices of G. One can verify that FF : Step(G, s1, s2) is

natural-weighted and natural-elabeled.

Let G be a finite real-weighted w-graph and let s1, s2 be vertices of G.

The functor FF : CompSeq(G, s1, s2) yields a finite real-weighted real-elabeled

complete-elabeled we-graph sequence and is defined by the conditions (Def. 23).

(Def. 23)(i) FF : CompSeq(G, s1, s2).→0 = G.set(ELabelSelector, (the edges of

G) 7−→ 0), and



312 gilbert lee

(ii) for every natural number n there exist vertices s′
1
, s′

2
of

FF : CompSeq(G, s1, s2).→n such that s′
1

= s1 and s′
2

= s2 and

FF : CompSeq(G, s1, s2).→(n + 1) =

FF : Step(FF : CompSeq(G, s1, s2).→n, s′
1
, s′

2
).

Let G be a finite nonnegative-weighted w-graph and let s2, s1 be vertices of

G. One can verify that FF : CompSeq(G, s1, s2) is nonnegative-weighted.

Let G be a finite natural-weighted w-graph and let s2, s1 be vertices of G.

One can check that FF : CompSeq(G, s1, s2) is natural-weighted and natural-

elabeled.

Let G be a finite real-weighted w-graph and let s2, s1 be vertices of G.

The functor FF : MaxFlow(G, s1, s2) yields a finite real-weighted real-elabeled

complete-elabeled we-graph and is defined by:

(Def. 24) FF : MaxFlow(G, s1, s2) = (FF : CompSeq(G, s1, s2)).Result().

5. Theorems for Ford-Fulkerson Maximum Flow Algorithm

One can prove the following propositions:

(11) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,

s1, s2 be sets, and V be a subset of the vertices of G. Suppose G has valid

flow from s1 to s2 and s1 ∈ V and s2 /∈ V. Then G.flow(s1, s2) =
∑

((the

elabel of G)↾G.edgesDBetween(V, (the vertices of G)\V ))−
∑

((the elabel

of G)↾G.edgesDBetween((the vertices of G) \ V, V )).

(12) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,

s1, s2 be sets, and V be a subset of the vertices of G. Suppose G has valid

flow from s1 to s2 and s1 ∈ V and s2 /∈ V. Then G.flow(s1, s2) ≤
∑

((the

weight of G)↾G.edgesDBetween(V, (the vertices of G) \ V )).

(13) Let G be a real-weighted real-elabeled we-graph and P be an augmenting

path of G. Then G =G FF : AugmentPath(G, P ) and the weight of G =

the weight of FF : AugmentPath(G, P ).

(14) Let G be a finite real-weighted real-elabeled we-graph and W be an

augmenting walk of G. If W is non trivial, then 0 < W.tolerance().

(15) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,

s1, s2 be sets, and P be an augmenting path of G. Suppose s1 6= s2

and G has valid flow from s1 to s2 and P is walk from s1 to s2. Then

FF : AugmentPath(G, P ) has valid flow from s1 to s2.

(16) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph,

s1, s2 be sets, and P be an augmenting path of G. Suppose s1 6= s2

and G has valid flow from s1 to s2 and P is walk from s1 to s2. Then

(G.flow(s1, s2)) + P .tolerance() = FF : AugmentPath(G, P ).flow(s1, s2).



correctnesss of ford-fulkerson’s maximum . . . 313

(17) Let G be a finite real-weighted w-graph, s1, s2 be vertices of G, and n

be a natural number. Then FF : CompSeq(G, s1, s2).→n =G G and the

weight of G = the weight of FF : CompSeq(G, s1, s2).→n.

(18) Let G be a finite nonnegative-weighted w-graph, s1, s2 be vertices of G,

and n be a natural number. If s1 6= s2, then FF : CompSeq(G, s1, s2).→n

has valid flow from s1 to s2.

(19) For every finite natural-weighted w-graph G and for all vertices s1, s2 of

G such that s1 6= s2 holds FF : CompSeq(G, s1, s2) is halting.

(20) Let G be a finite real-weighted real-elabeled complete-elabeled we-graph

and s1, s2 be sets such that s1 6= s2 and G has valid flow from s1 to s2 and

there exists no augmenting path of G which is walk from s1 to s2. Then

G has maximum flow from s1 to s2.

(21) Let G be a finite real-weighted w-graph and s1, s2 be vertices of G.

Then G =G FF : MaxFlow(G, s1, s2) and the weight of G = the weight of

FF : MaxFlow(G, s1, s2).

(22) Let G be a finite natural-weighted w-graph and s1, s2 be vertices of G.

If s2 6= s1, then FF : MaxFlow(G, s1, s2) has maximum flow from s1 to s2.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

[10] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[12] Jaros law Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.
[13] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[14] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253–269, 2005.
[15] Gilbert Lee. Weighted and Labeled Graphs. Formalized Mathematics, 13(2):279–293,

2005.
[16] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[18] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics,

12(1):49–58, 2004.



314 gilbert lee

[19] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[20] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number
of variables. Formalized Mathematics, 9(1):95–110, 2001.

[21] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Math-

ematics, 9(2):323–329, 2001.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received February 22, 2005


