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The papers [31], [36], [3], [37], [27], [18], [9], [38], [10], [22], [14], [4], [34], [5], [39],

[1], [33], [30], [2], [23], [21], [6], [20], [35], [29], [24], [28], [40], [17], [13], [12], [26],

[15], [8], [11], [16], [19], [25], [32], and [7] provide the notation and terminology

for this paper.

1. Preliminaries

Let X be a non empty set. Observe that ΩX is non empty.

Let us observe that every subspace of the metric space of real numbers is

real-membered.

Let S be a real-membered 1-sorted structure. One can check that the carrier

of S is real-membered.

One can check that there exists a real-membered set which is non empty,

finite, lower bounded, and upper bounded.

We now state three propositions:

(1) For every non empty lower bounded real-membered set X and for every

closed subset Y of R such that X ⊆ Y holds inf X ∈ Y.

(2) For every non empty upper bounded real-membered set X and for every

closed subset Y of R such that X ⊆ Y holds supX ∈ Y.

(3) For all subsets X, Y of R holds X ∪ Y = X ∪ Y .

1The paper was written during the author’s post-doctoral fellowship granted by Shinshu

University, Japan.
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2. Intervals

In the sequel a, b, r, s are real numbers.

Let us consider r, s. One can check the following observations:

∗ [r, s[ is bounded,

∗ ]r, s] is bounded, and

∗ ]r, s[ is bounded.

Let us consider r, s. One can verify the following observations:

∗ [r, s] is connected,

∗ [r, s[ is connected,

∗ ]r, s] is connected, and

∗ ]r, s[ is connected.

Let us observe that there exists a subset of R which is open, bounded,

connected, and non empty.

One can prove the following propositions:

(4) If r < s, then inf[r, s[= r.

(5) If r < s, then sup[r, s[= s.

(6) If r < s, then inf]r, s] = r.

(7) If r < s, then sup]r, s] = s.

(8) If a ≤ b or r ≤ s and if [a, b] = [r, s], then a = r and b = s.

(9) If a < b or r < s and if ]a, b[ = ]r, s[, then a = r and b = s.

(10) If a < b or r < s and if ]a, b] = ]r, s], then a = r and b = s.

(11) If a < b or r < s and if [a, b[= [r, s[, then a = r and b = s.

(12) If a < b and [a, b[⊆ [r, s], then r ≤ a and b ≤ s.

(13) If a < b and [a, b[⊆ [r, s[, then r ≤ a and b ≤ s.

(14) If a < b and ]a, b] ⊆ [r, s], then r ≤ a and b ≤ s.

(15) If a < b and ]a, b] ⊆ ]r, s], then r ≤ a and b ≤ s.

3. Halflines

One can prove the following propositions:

(16) [a, b]c = ]−∞, a[ ∪ ]b, +∞[.

(17) ]a, b[c = ]−∞, a] ∪ [b, +∞[.

(18) [a, b[c = ]−∞, a[ ∪ [b, +∞[.

(19) ]a, b]c = ]−∞, a] ∪ ]b, +∞[.

(20) If a ≤ b, then [a, b] ∩ (]−∞, a] ∪ [b, +∞[) = {a, b}.

Let us consider a. One can verify the following observations:
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∗ ]−∞, a] is non lower bounded, upper bounded, and connected,

∗ ]−∞, a[ is non lower bounded, upper bounded, and connected,

∗ [a,+∞[ is lower bounded, non upper bounded, and connected, and

∗ ]a,+∞[ is lower bounded, non upper bounded, and connected.

The following propositions are true:

(21) sup]−∞, a] = a.

(22) sup]−∞, a[ = a.

(23) inf[a,+∞[ = a.

(24) inf]a,+∞[ = a.

4. Connectedness

Let us observe that ΩR is connected, non lower bounded, and non upper

bounded.

One can prove the following propositions:

(25) For every bounded connected subset X of R such that inf X ∈ X and

supX ∈ X holds X = [inf X, supX].

(26) For every bounded subset X of R such that inf X /∈ X holds X ⊆

]inf X, supX].

(27) For every bounded connected subset X of R such that inf X /∈ X and

supX ∈ X holds X = ]inf X, supX].

(28) For every bounded subset X of R such that supX /∈ X holds X ⊆

[inf X, supX[.

(29) For every bounded connected subset X of R such that inf X ∈ X and

supX /∈ X holds X = [inf X, supX[.

(30) For every bounded subset X of R such that inf X /∈ X and supX /∈ X

holds X ⊆ ]inf X, supX[.

(31) For every non empty bounded connected subset X of R such that inf X /∈

X and supX /∈ X holds X = ]inf X, supX[.

(32) For every subset X of R such that X is upper bounded holds X ⊆

]−∞, supX].

(33) For every connected subset X of R such that X is not lower bounded

and X is upper bounded and supX ∈ X holds X = ]−∞, supX].

(34) For every subset X of R such that X is upper bounded and supX /∈ X

holds X ⊆ ]−∞, supX[.

(35) For every non empty connected subset X of R such that X is not lower

bounded and X is upper bounded and supX /∈ X holds X = ]−∞, supX[.

(36) For every subset X of R such that X is lower bounded holds X ⊆

[inf X, +∞[.
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(37) For every connected subset X of R such that X is lower bounded and

X is not upper bounded and inf X ∈ X holds X = [inf X, +∞[.

(38) For every subset X of R such that X is lower bounded and inf X /∈ X

holds X ⊆ ]inf X, +∞[.

(39) For every non empty connected subset X of R such that X is lower

bounded and X is not upper bounded and inf X /∈ X holds X =

]inf X, +∞[.

(40) For every connected subset X of R such that X is not upper bounded

and X is not lower bounded holds X = R.

(41) Let X be a connected subset of R. Then X is empty or X = R or there

exists a such that X = ]−∞, a] or there exists a such that X = ]−∞, a[

or there exists a such that X = [a,+∞[ or there exists a such that X =

]a,+∞[ or there exist a, b such that a ≤ b and X = [a, b] or there exist a,

b such that a < b and X = [a, b[ or there exist a, b such that a < b and

X = ]a, b] or there exist a, b such that a < b and X = ]a, b[.

(42) For every non empty connected subset X of R such that r /∈ X holds

r ≤ inf X or supX ≤ r.

(43) Let X, Y be non empty bounded connected subsets of R. Suppose

inf X ≤ inf Y and supY ≤ supX and if inf X = inf Y and inf Y ∈ Y, then

inf X ∈ X and if supX = supY and supY ∈ Y, then supX ∈ X. Then

Y ⊆ X.

Let us observe that there exists a subset of R which is open, closed, con-

nected, non empty, and non bounded.

5. R
1

Next we state several propositions:

(44) For every subset X of R
1 such that a ≤ b and X = [a, b] holds FrX =

{a, b}.

(45) For every subset X of R
1 such that a < b and X = ]a, b[ holds FrX =

{a, b}.

(46) For every subset X of R
1 such that a < b and X = [a, b[ holds FrX =

{a, b}.

(47) For every subset X of R
1 such that a < b and X = ]a, b] holds FrX =

{a, b}.

(48) For every subset X of R
1 such that X = [a, b] holds IntX = ]a, b[.

(49) For every subset X of R
1 such that X = ]a, b[ holds IntX = ]a, b[.

(50) For every subset X of R
1 such that X = [a, b[ holds IntX = ]a, b[.

(51) For every subset X of R
1 such that X = ]a, b] holds IntX = ]a, b[.
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Let X be a convex subset of R
1. Observe that R

1↾X is convex.

Let A be a connected subset of R. One can check that R1A is convex.

We now state the proposition

(52) Let X be a subset of R
1 and Y be a subset of R. If X = Y, then X is

connected iff Y is connected.

6. Topology of Closed Intervals

Let us consider r. Note that [r, r]T is trivial.

The following four propositions are true:

(53) If r ≤ s, then every subset of [r, s]T is a bounded subset of R.

(54) If r ≤ s, then for every subset X of [r, s]T such that X = [a, b[ and r < a

and b ≤ s holds IntX = ]a, b[.

(55) If r ≤ s, then for every subset X of [r, s]T such that X = ]a, b] and r ≤ a

and b < s holds IntX = ]a, b[.

(56) Let X be a subset of [r, s]T and Y be a subset of R. If X = Y, then X

is connected iff Y is connected.

Let T be a topological space. Observe that there exists a subset of T which

is open, closed, and connected.

Let T be a non empty connected topological space. Observe that there exists

a subset of T which is non empty, open, closed, and connected.

We now state the proposition

(57) Suppose r ≤ s. Let X be an open connected subset of [r, s]T. Then

(i) X is empty, or

(ii) X = [r, s], or

(iii) there exists a real number a such that r < a and a ≤ s and X = [r, a[,

or

(iv) there exists a real number a such that r ≤ a and a < s and X = ]a, s],

or

(v) there exist real numbers a, b such that r ≤ a and a < b and b ≤ s and

X = ]a, b[.

7. Minimal Cover of Intervals

Next we state three propositions:

(58) Let T be a 1-sorted structure and F be a family of subsets of T . Then

F is a cover of T if and only if F is a cover of ΩT .

(59) Let T be a 1-sorted structure, F be a finite family of subsets of T , and F1

be a family of subsets of T . Suppose F is a cover of T and F1 = F \{X; X
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ranges over subsets of T : X ∈ F ∧
∨

Y : subset of T
(Y ∈ F ∧ X ⊆ Y ∧ X 6=

Y )}. Then F1 is a cover of T .

(60) Let S be a trivial non empty 1-sorted structure, s be a point of S, and

F be a family of subsets of S. If F is a cover of S, then {s} ∈ F.

Let T be a topological structure and let F be a family of subsets of T . We

say that F is connected if and only if:

(Def. 1) For every subset X of T such that X ∈ F holds X is connected.

Let T be a topological space. Note that there exists a family of subsets of

T which is non empty, open, closed, and connected.

In the sequel n, m are natural numbers and F is a family of subsets of [r, s]T.

The following two propositions are true:

(61) Let L be a topological space and G, G1 be families of subsets of L.

Suppose G is a cover of L and finite. Let A1 be a set such that G1 =

G \ {X;X ranges over subsets of L: X ∈ G ∧
∨

Y : subset of L
(Y ∈

G ∧ X ⊆ Y ∧ X 6= Y )} and A1 = {C; C ranges over families of subsets

of L: C is a cover of L ∧ C ⊆ G1}. Then A1 has the lower Zorn property

w.r.t. ⊆(A1).

(62) Let L be a topological space and G, A1 be sets. Suppose A1 = {C; C

ranges over families of subsets of L: C is a cover of L ∧ C ⊆ G}. Let

M be a set. Suppose M is minimal in ⊆
(A1) and M ∈ field(⊆(A1)). Let A4

be a subset of L. Suppose A4 ∈ M. Then it is not true that there exist

subsets A2, A3 of L such that A2 ∈ M and A3 ∈ M and A4 ⊆ A2 ∪ A3

and A4 6= A2 and A4 6= A3.

Let r, s be real numbers and let F be a family of subsets of [r, s]T. Let us

assume that F is a cover of [r, s]T F is open F is connected and r ≤ s. A finite

sequence of elements of 2R is said to be an interval cover of F if it satisfies the

conditions (Def. 2).

(Def. 2)(i) rng it ⊆ F,

(ii)
⋃

rng it = [r, s],

(iii) for every natural number n such that 1 ≤ n holds if n ≤ len it, then

itn is non empty and if n + 1 ≤ len it, then inf(itn) ≤ inf(itn+1) and

sup(itn) ≤ sup(itn+1) and inf(itn+1) < sup(itn) and if n + 2 ≤ len it, then

sup(itn) ≤ inf(itn+2),

(iv) if [r, s] ∈ F, then it = 〈[r, s]〉, and

(v) if [r, s] /∈ F, then there exists a real number p such that r < p and

p ≤ s and it(1) = [r, p[ and there exists a real number p such that r ≤ p

and p < s and it(len it) = ]p, s] and for every natural number n such that

1 < n and n < len it there exist real numbers p, q such that r ≤ p and

p < q and q ≤ s and it(n) = ]p, q[.

We now state the proposition
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(63) If F is a cover of [r, s]T, open, and connected and r ≤ s and [r, s] ∈ F,

then 〈[r, s]〉 is an interval cover of F .

In the sequel C denotes an interval cover of F .

One can prove the following propositions:

(64) Let F be a family of subsets of [r, r]T and C be an interval cover of F .

If F is a cover of [r, r]T, open, and connected, then C = 〈[r, r]〉.

(65) If F is a cover of [r, s]T, open, and connected and r ≤ s, then 1 ≤ len C.

(66) If F is a cover of [r, s]T, open, and connected and r ≤ s and lenC = 1,

then C = 〈[r, s]〉.

(67) If F is a cover of [r, s]T, open, and connected and r ≤ s and n ∈ domC

and m ∈ domC and n < m, then inf(Cn) ≤ inf(Cm).

(68) If F is a cover of [r, s]T, open, and connected and r ≤ s and n ∈ domC

and m ∈ domC and n < m, then sup(Cn) ≤ sup(Cm).

(69) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and

n + 1 ≤ len C, then ]inf(Cn+1), sup(Cn)[ is non empty.

(70) If F is a cover of [r, s]T, open, and connected and r ≤ s, then inf(C1) = r.

(71) If F is a cover of [r, s]T, open, and connected and r ≤ s, then r ∈ C1.

(72) If F is a cover of [r, s]T, open, and connected and r ≤ s, then

sup(Clen C) = s.

(73) If F is a cover of [r, s]T, open, and connected and r ≤ s, then s ∈ Clen C .

Let r, s be real numbers, let F be a family of subsets of [r, s]T, and let C be

an interval cover of F . Let us assume that F is a cover of [r, s]T F is open F is

connected and r ≤ s. A finite sequence of elements of R is said to be a chain of

rivets in interval cover C if it satisfies the conditions (Def. 3).

(Def. 3)(i) len it = lenC + 1,

(ii) it(1) = r,

(iii) it(len it) = s, and

(iv) for every natural number n such that 1 ≤ n and n + 1 < len it holds

it(n + 1) ∈ ]inf(Cn+1), sup(Cn)[.

In the sequel G denotes a chain of rivets in interval cover C.

One can prove the following propositions:

(74) If F is a cover of [r, s]T, open, and connected and r ≤ s, then 2 ≤ len G.

(75) If F is a cover of [r, s]T, open, and connected and r ≤ s and lenC = 1,

then G = 〈r, s〉.

(76) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and

n + 1 < len G, then G(n + 1) < sup(Cn).

(77) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 < n and

n ≤ len C, then inf(Cn) < G(n).
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(78) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and

n < len C, then G(n) ≤ inf(Cn+1).

(79) If F is a cover of [r, s]T, open, and connected and r < s, then G is

increasing.

(80) If F is a cover of [r, s]T, open, and connected and r ≤ s and 1 ≤ n and

n < len G, then [G(n), G(n + 1)] ⊆ C(n).
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[9] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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