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for this paper.

1. PRELIMINARIES

Let X be a non empty set. Observe that {2x is non empty.

Let us observe that every subspace of the metric space of real numbers is
real-membered.

Let S be a real-membered 1-sorted structure. One can check that the carrier
of S is real-membered.

One can check that there exists a real-membered set which is non empty,
finite, lower bounded, and upper bounded.

We now state three propositions:

(1) For every non empty lower bounded real-membered set X and for every
closed subset Y of R such that X C Y holds inf X € Y.

(2) For every non empty upper bounded real-membered set X and for every
closed subset Y of R such that X C Y holds sup X €Y.

(3) For all subsets X, Y of R holds XUY = X UY.
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2. INTERVALS

In the sequel a, b, r, s are real numbers.

Let us consider r, s. One can check the following observations:
x [r, s[ is bounded,

x |r, s] is bounded, and

% |r, s[ is bounded.

Let us consider r, s. One can verify the following observations:
* [r, s] is connected,

% [r,s[ is connected,
% |r,s] is connected, and
% |r, s[ is connected.

Let us observe that there exists a subset of R which is open, bounded,
connected, and non empty.
One can prove the following propositions:

If r < s, then inf[r, s|=r.

(G2 NN

If r < s, then suplr, s[= s.
If r < s, then inf]r, s] = r.

(=2}

If r < s, then sup]r, s] = s.
Ifa<borr<sandif [a,b
Ifa<borr<sandif|a,b
Ifa<borr<sandif|a,b
Ifa<borr<sandif [a,b=[r s, then a =7 and b = s.
If a < b and [a,b[C [r,s], then r < a and b < s.
If a < b and [a,b[C [r,s[, then r < a and b < s.
If a < band |a,b] C [r,s], then r <a and b < s.
If a < b and |a,b] C |r,s], then r <a and b < s.

co

| = [r, s], then a = r and b = s.
[=]r,s[, then a = r and b = s.
| =

|r, s], then a = r and b = s.
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3. HALFLINES

One can prove the following propositions:

(16) [a,b]® =]—o00,a[ U b, +o0.
(17) Ja,b[® =]—o00,a] U [b, +o0.
(18) [a,b[® =]—00,a[ U [b,+o0l.
(19) Ja,b]¢ = ]—=00,a] U]b, +oo].
(20) Ifa <, then [a,b] N (]—o0,a] U[b,4+00]) = {a,b}.

Let us consider a. One can verify the following observations:
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]—00, a] is non lower bounded, upper bounded, and connected,
% |—00,a[ is non lower bounded, upper bounded, and connected,
* [a,+oo[ is lower bounded, non upper bounded, and connected, and
% la, +o0o[ is lower bounded, non upper bounded, and connected.

The following propositions are true:
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sup|—o0, a] = a.

[\
[\

sup|—o0, a[ = a.

inf[a, +oo[ = a.
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inf]a, 400 = a.

4. CONNECTEDNESS

Let us observe that g is connected, non lower bounded, and non upper
bounded.
One can prove the following propositions:

(25) For every bounded connected subset X of R such that inf X € X and
sup X € X holds X = [inf X, sup X].

(26) For every bounded subset X of R such that inf X ¢ X holds X C
Jinf X, sup X].

(27) For every bounded connected subset X of R such that inf X ¢ X and
sup X € X holds X = |inf X, sup X].

(28) For every bounded subset X of R such that sup X ¢ X holds X C
[inf X, sup X|.

(29) For every bounded connected subset X of R such that inf X € X and
sup X ¢ X holds X = [inf X, sup X|.

(30) For every bounded subset X of R such that inf X ¢ X and sup X ¢ X
holds X C Jinf X, sup X|.

(31) For every non empty bounded connected subset X of R such that inf X ¢
X and sup X ¢ X holds X = |inf X, sup X|.

(32) For every subset X of R such that X is upper bounded holds X C
|—00, sup X].

(33) For every connected subset X of R such that X is not lower bounded
and X is upper bounded and sup X € X holds X = |—o0,sup X].

(34) For every subset X of R such that X is upper bounded and sup X ¢ X
holds X C |—o0o,sup X|.

(35) For every non empty connected subset X of R such that X is not lower
bounded and X is upper bounded and sup X ¢ X holds X = |—oo,sup X|.

(36) For every subset X of R such that X is lower bounded holds X C
[inf X, +o00].
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(37) For every connected subset X of R such that X is lower bounded and
X is not upper bounded and inf X € X holds X = [inf X, +00].

(38) For every subset X of R such that X is lower bounded and inf X ¢ X
holds X C Jinf X, +o0[.

(39) For every non empty connected subset X of R such that X is lower
bounded and X is not upper bounded and inf X ¢ X holds X =
Jinf X, +o0].

(40) For every connected subset X of R such that X is not upper bounded
and X is not lower bounded holds X = R.

(41) Let X be a connected subset of R. Then X is empty or X = R or there
exists a such that X = |—o00,a] or there exists a such that X = |—o0,af
or there exists a such that X = [a,+oo[ or there exists a such that X =
|a, +oo[ or there exist a, b such that a < b and X = [a, b] or there exist a,
b such that a < b and X = [a, b[ or there exist a, b such that a < b and
X =a,b] or there exist a, b such that a < b and X = |a, b|.

(42) For every non empty connected subset X of R such that r ¢ X holds
r<infX orsupX <.

(43) Let X, Y be non empty bounded connected subsets of R. Suppose
inf X <infY and supY < sup X and if inf X =inf Y and inf Y € Y, then
inf X € X and if supX =supY and supY € Y, then sup X € X. Then
Y CX.

Let us observe that there exists a subset of R which is open, closed, con-
nected, non empty, and non bounded.

Next we state several propositions:

(44) For every subset X of R! such that a < b and X = [a, b] holds Fr X =
{a,b}.

(45) For every subset X of Rl such that a < b and X = ]a,b[ holds Fr X =
{a,b}.

(46) TFor every subset X of R such that a < b and X = [a,b] holds Fr X =
{a,b}.

(47) For every subset X of R such that a < b and X = ]a,b] holds Fr X =
{a,b}.

(48) TFor every subset X of R! such that X = [a,b] holds Int X = ]a, b].
(49) For every subset X of R! such that X = ]a,b[ holds Int X = ]a, b|.
(50) For every subset X of R! such that X = [a,b[ holds Int X = ]a, b].
(51) For every subset X of R! such that X = ]a,b] holds Int X = ]a, b].
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Let X be a convex subset of Rl. Observe that R!'[ X is convex.
Let A be a connected subset of R. One can check that R'A is convex.
We now state the proposition

(52) Let X be a subset of R! and Y be a subset of R. If X =Y, then X is
connected iff Y is connected.

6. TOPOLOGY OF CLOSED INTERVALS

Let us consider r. Note that [r, 7| is trivial.
The following four propositions are true:

(563) If r <'s, then every subset of [r, s|T is a bounded subset of R.

(54) If r < s, then for every subset X of [r, s]T such that X = [a,b[ and r < a
and b < s holds Int X = ]a, b[.

(55) If r < s, then for every subset X of [r, s|T such that X = ]a,b] and r < a
and b < s holds Int X = |a, b[.

(56) Let X be a subset of [r, st and Y be a subset of R. If X =Y, then X
is connected iff Y is connected.

Let T be a topological space. Observe that there exists a subset of T" which
is open, closed, and connected.

Let T be a non empty connected topological space. Observe that there exists
a subset of T which is non empty, open, closed, and connected.

We now state the proposition

(57) Suppose r < s. Let X be an open connected subset of [r, s|p. Then
(i) X is empty, or
(i) X =]rs],or
(iii)  there exists a real number a such that r < a and a < s and X = [r, a],
or
(iv)  there exists a real number a such that r < a and a < s and X = ]a, s|,
or
(v)  there exist real numbers a, b such that r < a and a < b and b < s and

X =]a,bl.

7. MINIMAL COVER OF INTERVALS

Next we state three propositions:
(58) Let T be a 1-sorted structure and F' be a family of subsets of 7. Then
Fis a cover of T if and only if F' is a cover of Qp.

(59) Let T be a 1-sorted structure, F' be a finite family of subsets of T', and F
be a family of subsets of T'. Suppose F'is a cover of 7" and F} = F\{X; X
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ranges over subsets of T: X € F A Vy et of 7 (Y EFAXCY AN X #
Y)}. Then Fj is a cover of T

(60) Let S be a trivial non empty 1-sorted structure, s be a point of S, and
F be a family of subsets of S. If F'is a cover of S, then {s} € F.

Let T be a topological structure and let F' be a family of subsets of T'. We
say that F' is connected if and only if:

(Def. 1) For every subset X of T such that X € F holds X is connected.

Let T be a topological space. Note that there exists a family of subsets of
T which is non empty, open, closed, and connected.

In the sequel n, m are natural numbers and F' is a family of subsets of [r, s|.

The following two propositions are true:

(61) Let L be a topological space and G, G; be families of subsets of L.
Suppose G is a cover of L and finite. Let A; be a set such that Gy =
G\ {X; X ranges over subsets of L: X € G A Vy.qbset of . (¥ €
G ANXCY ANX#Y)}and A; = {C; C ranges over families of subsets
of L: C'is acover of L A C C G1}. Then A; has the lower Zorn property
w.r.t. Q(Al)'

(62) Let L be a topological space and G, A; be sets. Suppose A1 = {C;C
ranges over families of subsets of L: C' is a cover of L A C C G}. Let
M be a set. Suppose M is minimal in Q(Al) and M € ﬁeld(g(Al)). Let Ay
be a subset of L. Suppose A4 € M. Then it is not true that there exist
subsets As, A3z of L such that Ay € M and A3 € M and Ay C Ay U Ag
and A4 75 A2 and A4 75 A3.

Let 7, s be real numbers and let F' be a family of subsets of [r, s|p. Let us
assume that F' is a cover of [r, s]7 F' is open F' is connected and r < s. A finite
sequence of elements of 2F is said to be an interval cover of F if it satisfies the
conditions (Def. 2).

(Def. 2)(i) rngit C F,

(i) Urngit = [r,s],

(ili)  for every natural number n such that 1 < n holds if n < lenit, then
it, is non empty and if n + 1 < lenit, then inf(it,) < inf(it,4;) and
sup(it,) < sup(itp+1) and inf(it,4+1) < sup(it,) and if n + 2 < lenit, then
sup(it,) < inf(itp42),

(iv) if [r,s] € F, then it = ([r, s]), and

(v) if [r,s] ¢ F, then there exists a real number p such that » < p and
p < s and it(1) = [r,p[ and there exists a real number p such that r < p
and p < s and it(lenit) = |p, s] and for every natural number n such that
1 < n and n < lenit there exist real numbers p, ¢ such that r < p and
p < qand g < s and it(n) = |p, q|.

We now state the proposition
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(63) If F is a cover of [r, s|T, open, and connected and r < s and [r, s] € F,
then ([r, s]) is an interval cover of F.

In the sequel C' denotes an interval cover of F.
One can prove the following propositions:

(64) Let F be a family of subsets of [r, rJr and C be an interval cover of F.
If F' is a cover of [r, r]T, open, and connected, then C' = ([r,7]).

(65) If F is a cover of [r, s, open, and connected and r < s, then 1 < len C.

(66) If F'is a cover of [r, s|T, open, and connected and r < s and len C' = 1,
then C' = ([r, s]).

(67) If F is a cover of [r, s|t, open, and connected and r < s and n € dom C
and m € dom C and n < m, then inf(C),) < inf(Cy,).

(68) If F is a cover of [r, s|T, open, and connected and r < s and n € dom C'
and m € dom C and n < m, then sup(C),) < sup(Cp,).

(69) If F is a cover of [r, s]T, open, and connected and r < s and 1 < n and
n+ 1 <lenC, then |inf(Cp41),sup(Cy)[ is non empty.
(70) If F'is a cover of [r, s|T, open, and connected and r < s, then inf(C}) = r.
(71) If F is a cover of [r, s|T, open, and connected and r < s, then r € Cj.
(72) If F is a cover of [r, s|7, open, and connected and r < s, then
sup(Clenc) = 8.
(73) If Fis a cover of [r, s, open, and connected and r < s, then s € Cley ¢
Let 7, s be real numbers, let F' be a family of subsets of [r, s, and let C' be
an interval cover of F'. Let us assume that F' is a cover of [r, s|7 F is open F is

connected and r < s. A finite sequence of elements of R is said to be a chain of
rivets in interval cover C' if it satisfies the conditions (Def. 3).

(Def. 3)(i) lenit =lenC +1,

(i) it(1) =,
(iii)  it(lenit) = s, and
(iv)  for every natural number n such that 1 < n and n + 1 < lenit holds

it(n+ 1) € Jinf(Cp41),sup(Cy)].
In the sequel G denotes a chain of rivets in interval cover C.
One can prove the following propositions:
(74) If F is a cover of [r, s|T, open, and connected and r < s, then 2 < lenG.
(75) 1If F is a cover of [r, |, open, and connected and r» < s and len C' = 1,
then G = (r, s).
(76) 1If F is a cover of [r, s]T, open, and connected and r < s and 1 < n and
n+1<len@, then G(n + 1) < sup(Cy).

(77) If F is a cover of [r, s]T, open, and connected and r» < s and 1 < n and
n < len C, then inf(C,) < G(n).



322 ARTUR KORNILOWICZ

(78) If F is a cover of [r, s]T, open, and connected and r < s and 1 < n and
n < lenC, then G(n) < inf(Cphi1).

(79) 1If F is a cover of [r, s|t, open, and connected and r < s, then G is
increasing.

(80) If F is a cover of [r, s]T, open, and connected and r» < s and 1 < n and
n < len @G, then [G(n),G(n+ 1)] C C(n).
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