Homeomorphism between Finite Topological Spaces, Two-Dimensional Lattice Spaces and a Fixed Point Theorem

Masami Tanaka Shinshu University Nagano, Japan Hiroshi Imura Shinshu University Nagano, Japan Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. In this paper we first introduced the notion of homeomorphism between finite topological spaces. We also gave a fixed point theorem in finite topological space. Next, we showed two 2-dimensional concrete models of lattice spaces. One was 2-dimensional linear finite topological space. Another was 2-dimensional small finite topological space.

MML identifier: FINTOPO5, version: 7.5.01 4.39.921

The articles [10], [6], [12], [1], [13], [4], [5], [2], [7], [9], [8], [3], and [11] provide the notation and terminology for this paper.

The following propositions are true:

- (1) Let X be a set, Y be a non empty set, f be a function from X into Y, and A be a subset of X. If f is one-to-one, then $(f^{-1})^{\circ}f^{\circ}A = A$.
- (2) For every natural number n holds n > 0 iff $\text{Seg } n \neq \emptyset$.

Let F_1 , F_2 be finite topology spaces and let h be a map from F_1 into F_2 . We say that h is a homeomorphism if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) h is one-to-one and onto, and

(ii) for every element x of F_1 holds h° (the neighbour-map of F_1)(x) = (the neighbour-map of F_2)(h(x)).

One can prove the following propositions:

(3) Let F_1 , F_2 be non empty finite topology spaces and h be a map from F_1 into F_2 . Suppose h is a homeomorphism. Then there exists a map g from F_2 into F_1 such that $g = h^{-1}$ and g is a homeomorphism.

C 2005 University of Białystok ISSN 1426-2630

MASAMI TANAKA et al.

- (4) Let F₁, F₂ be non empty finite topology spaces, h be a map from F₁ into F₂, n be a natural number, x be an element of F₁, and y be an element of F₂. Suppose h is a homeomorphism and y = h(x). Let z be an element of F₁. Then z ∈ U(x, n) if and only if h(z) ∈ U(y, n).
- (5) Let F₁, F₂ be non empty finite topology spaces, h be a map from F₁ into F₂, n be a natural number, x be an element of F₁, and y be an element of F₂. Suppose h is a homeomorphism and y = h(x). Let v be an element of F₂. Then h⁻¹(v) ∈ U(x, n) if and only if v ∈ U(y, n).
- (6) Let n be a non zero natural number and f be a map from FTSL1(n) into FTSL1(n). If f is continuous 0, then there exists an element p of FTSL1(n) such that $f(p) \in U(p, 0)$.
- (7) Let T be a non empty finite topology space, p be an element of T, and k be a natural number. If T is filled, then $U(p,k) \subseteq U(p,k+1)$.
- (8) Let T be a non empty finite topology space, p be an element of T, and k be a natural number. If T is filled, then $U(p,0) \subseteq U(p,k)$.
- (9) Let n be a non zero natural number, j_1 , j, k be natural numbers, and p be an element of FTSL1(n). If $p = j_1$, then $j \in U(p,k)$ iff $j \in \text{Seg } n$ and $|j_1 j| \le k + 1$.
- (10) Let k_1 , k_2 be natural numbers, n be a non zero natural number, and f be a map from FTSL1(n) into FTSL1(n). Suppose f is continuous k_1 and $k_2 = \lceil \frac{k_1}{2} \rceil$. Then there exists an element p of FTSL1(n) such that $f(p) \in U(p, k_2)$.

Let n, m be natural numbers. The functor Nbdl2(n, m) yields a function from [Seg n, Seg m] into $2^{[Seg n, Seg m]}$ and is defined by:

(Def. 2) For every set x such that $x \in [\operatorname{Seg} n, \operatorname{Seg} m]$ and for all natural numbers i, j such that $x = \langle i, j \rangle$ holds $(\operatorname{Nbdl2}(n, m))(x) = [(\operatorname{Nbdl1}(n))(i), (\operatorname{Nbdl1}(m))(j)]$.

Let n, m be natural numbers. The functor FTSL2(n, m) yielding a strict finite topology space is defined as follows:

(Def. 3) $\operatorname{FTSL2}(n,m) = \langle [\operatorname{Seg} n, \operatorname{Seg} m], \operatorname{Nbdl2}(n,m) \rangle.$

Let n, m be non zero natural numbers. One can verify that FTSL2(n, m) is non empty.

We now state three propositions:

- (11) For all non zero natural numbers n, m holds FTSL2(n, m) is filled.
- (12) For all non zero natural numbers n, m holds FTSL2(n, m) is symmetric.
- (13) For every non zero natural number n holds there exists a map from FTSL2(n, 1) into FTSL1(n) which is a homeomorphism.

Let n, m be natural numbers. The functor Nbds2(n, m) yielding a function from $[\operatorname{Seg} n, \operatorname{Seg} m]$ into $2^{[\operatorname{Seg} n, \operatorname{Seg} m]}$ is defined by:

418

(Def. 4) For every set x such that $x \in [\text{Seg } n, \text{Seg } m]$ and for all natural numbers i, j such that $x = \langle i, j \rangle$ holds $(\text{Nbds2}(n, m))(x) = [\{i\}, (\text{Nbdl1}(m))(j)] \cup [(\text{Nbdl1}(n))(i), \{j\}].$

Let n, m be natural numbers. The functor FTSS2(n, m) yielding a strict finite topology space is defined as follows:

(Def. 5) $\operatorname{FTSS2}(n,m) = \langle [\operatorname{Seg} n, \operatorname{Seg} m], \operatorname{Nbds2}(n,m) \rangle.$

Let n, m be non zero natural numbers. Note that FTSS2(n, m) is non empty. One can prove the following propositions:

- (14) For all non zero natural numbers n, m holds FTSS2(n, m) is filled.
- (15) For all non zero natural numbers n, m holds FTSS2(n, m) is symmetric.
- (16) For every non zero natural number n holds there exists a map from FTSS2(n, 1) into FTSL1(n) which is a homeomorphism.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
 [7] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics,
- [7] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, 3(2):189–193, 1992.
- [8] Hiroshi Imura, Masami Tanaka, and Yatsuka Nakamura. Continuous mappings between finite and one-dimensional finite topological spaces. *Formalized Mathematics*, 12(3):381– 384, 2004.
- [9] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125–129, 2004.
 [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [11] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received July 6, 2005