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Summary. In this paper we first introduced the notion of homeomorphism

between finite topological spaces. We also gave a fixed point theorem in finite

topological space. Next, we showed two 2-dimensional concrete models of lattice

spaces. One was 2-dimensional linear finite topological space. Another was 2-

dimensional small finite topological space.
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The articles [10], [6], [12], [1], [13], [4], [5], [2], [7], [9], [8], [3], and [11] provide

the notation and terminology for this paper.

The following propositions are true:

(1) Let X be a set, Y be a non empty set, f be a function from X into Y ,

and A be a subset of X. If f is one-to-one, then (f−1)◦f◦A = A.

(2) For every natural number n holds n > 0 iff Seg n 6= ∅.

Let F1, F2 be finite topology spaces and let h be a map from F1 into F2.

We say that h is a homeomorphism if and only if the conditions (Def. 1) are

satisfied.

(Def. 1)(i) h is one-to-one and onto, and

(ii) for every element x of F1 holds h◦(the neighbour-map of F1)(x) = (the

neighbour-map of F2)(h(x)).

One can prove the following propositions:

(3) Let F1, F2 be non empty finite topology spaces and h be a map from F1

into F2. Suppose h is a homeomorphism. Then there exists a map g from

F2 into F1 such that g = h−1 and g is a homeomorphism.
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(4) Let F1, F2 be non empty finite topology spaces, h be a map from F1 into

F2, n be a natural number, x be an element of F1, and y be an element of

F2. Suppose h is a homeomorphism and y = h(x). Let z be an element of

F1. Then z ∈ U(x, n) if and only if h(z) ∈ U(y, n).

(5) Let F1, F2 be non empty finite topology spaces, h be a map from F1 into

F2, n be a natural number, x be an element of F1, and y be an element of

F2. Suppose h is a homeomorphism and y = h(x). Let v be an element of

F2. Then h−1(v) ∈ U(x, n) if and only if v ∈ U(y, n).

(6) Let n be a non zero natural number and f be a map from FTSL1(n)

into FTSL1(n). If f is continuous 0, then there exists an element p of

FTSL1(n) such that f(p) ∈ U(p, 0).

(7) Let T be a non empty finite topology space, p be an element of T , and

k be a natural number. If T is filled, then U(p, k) ⊆ U(p, k + 1).

(8) Let T be a non empty finite topology space, p be an element of T , and

k be a natural number. If T is filled, then U(p, 0) ⊆ U(p, k).

(9) Let n be a non zero natural number, j1, j, k be natural numbers, and p

be an element of FTSL1(n). If p = j1, then j ∈ U(p, k) iff j ∈ Seg n and

|j1 − j| ≤ k + 1.

(10) Let k1, k2 be natural numbers, n be a non zero natural number, and

f be a map from FTSL1(n) into FTSL1(n). Suppose f is continuous k1

and k2 = ⌈k1

2 ⌉. Then there exists an element p of FTSL1(n) such that

f(p) ∈ U(p, k2).

Let n, m be natural numbers. The functor Nbdl2(n, m) yields a function

from [: Seg n, Seg m :] into 2[: Seg n, Seg m :] and is defined by:

(Def. 2) For every set x such that x ∈ [: Seg n, Seg m :] and for all natural num-

bers i, j such that x = 〈〈i, j〉〉 holds (Nbdl2(n, m))(x) = [: (Nbdl1(n))(i),

(Nbdl1(m))(j) :].

Let n, m be natural numbers. The functor FTSL2(n, m) yielding a strict

finite topology space is defined as follows:

(Def. 3) FTSL2(n, m) = 〈[: Seg n, Seg m :], Nbdl2(n, m)〉.

Let n, m be non zero natural numbers. One can verify that FTSL2(n, m) is

non empty.

We now state three propositions:

(11) For all non zero natural numbers n, m holds FTSL2(n, m) is filled.

(12) For all non zero natural numbers n, m holds FTSL2(n, m) is symmetric.

(13) For every non zero natural number n holds there exists a map from

FTSL2(n, 1) into FTSL1(n) which is a homeomorphism.

Let n, m be natural numbers. The functor Nbds2(n, m) yielding a function

from [: Seg n, Seg m :] into 2[: Seg n, Seg m :] is defined by:
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(Def. 4) For every set x such that x ∈ [: Seg n, Seg m :] and for all natural numbers

i, j such that x = 〈〈i, j〉〉 holds (Nbds2(n, m))(x) = [: {i}, (Nbdl1(m))(j) :]∪

[: (Nbdl1(n))(i), {j} :].

Let n, m be natural numbers. The functor FTSS2(n, m) yielding a strict

finite topology space is defined as follows:

(Def. 5) FTSS2(n, m) = 〈[: Seg n, Seg m :], Nbds2(n, m)〉.

Let n, m be non zero natural numbers. Note that FTSS2(n, m) is non empty.

One can prove the following propositions:

(14) For all non zero natural numbers n, m holds FTSS2(n, m) is filled.

(15) For all non zero natural numbers n, m holds FTSS2(n, m) is symmetric.

(16) For every non zero natural number n holds there exists a map from

FTSS2(n, 1) into FTSL1(n) which is a homeomorphism.
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