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Summary. In this article, we prove some basic properties of the circled

sets. We also define the circled hull, and give the definition of a circled family.
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The articles [15], [19], [14], [3], [4], [12], [5], [11], [13], [18], [9], [8], [2], [17], [16],

[6], [1], [7], and [10] provide the terminology and notation for this paper.

1. Circled Sets

One can prove the following proposition

(1) For every real linear space V and for all circled subsets A, B of V holds

A − B is circled.

Let V be a real linear space and let M , N be circled subsets of V . Note that

M − N is circled.

Next we state the proposition

(2) Let V be a non empty RLS structure and M be a subset of V . Then M

is circled if and only if for every vector u of V and for every real number

r such that |r| ≤ 1 and u ∈ M holds r · u ∈ M.
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Let V be a non empty RLS structure and let M be a subset of V . Let us

observe that M is circled if and only if:

(Def. 1) For every vector u of V and for every real number r such that |r| ≤ 1

and u ∈ M holds r · u ∈ M.

The following propositions are true:

(3) Let V be a real linear space, M be a subset of V , and r be a real number.

If M is circled, then r · M is circled.

(4) Let V be a real linear space, M1, M2 be subsets of V , and r1, r2 be real

numbers. If M1 is circled and M2 is circled, then r1 ·M1+r2 ·M2 is circled.

(5) Let V be a real linear space, M1, M2, M3 be subsets of V , and r1, r2,

r3 be real numbers. Suppose M1 is circled and M2 is circled and M3 is

circled. Then r1 · M1 + r2 · M2 + r3 · M3 is circled.

(6) For every real linear space V holds Up(0V ) is circled.

(7) For every real linear space V holds Up(ΩV ) is circled.

(8) For every real linear space V and for all circled subsets M , N of V holds

M ∩ N is circled.

(9) For every real linear space V and for all circled subsets M , N of V holds

M ∪ N is circled.

2. Circled Hull and Circled Family

Let V be a non empty RLS structure and let M be a subset of V . The functor

Circled-Family M yields a family of subsets of V and is defined as follows:

(Def. 2) For every subset N of V holds N ∈ Circled-Family M iff N is circled

and M ⊆ N.

Let V be a real linear space and let M be a subset of V . The functor CirM

yielding a circled subset of V is defined by:

(Def. 3) CirM =
⋂

Circled-Family M.

Let V be a real linear space and let M be a subset of V . Note that

Circled-Family M is non empty.

We now state several propositions:

(10) For every real linear space V and for all subsets M1, M2 of V such that

M1 ⊆ M2 holds Circled-Family M2 ⊆ Circled-Family M1.

(11) For every real linear space V and for all subsets M1, M2 of V such that

M1 ⊆ M2 holds CirM1 ⊆ CirM2.

(12) For every real linear space V and for every subset M of V holds M ⊆

CirM.

(13) Let V be a real linear space, M be a subset of V , and N be a circled

subset of V . If M ⊆ N, then CirM ⊆ N.
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(14) For every real linear space V and for every circled subset M of V holds

CirM = M.

(15) For every real linear space V holds Cir(∅V ) = ∅.

(16) For every real linear space V and for every subset M of V and for every

real number r holds r · CirM = Cir(r · M).

3. Basic Properties of Combination

Let V be a real linear space and let L be a linear combination of V . We say

that L is circled if and only if the condition (Def. 4) is satisfied.

(Def. 4) There exists a finite sequence F of elements of the carrier of V such that

(i) F is one-to-one,

(ii) rng F = the support of L, and

(iii) there exists a finite sequence f of elements of R such that len f = lenF

and
∑

f = 1 and for every natural number n such that n ∈ dom f holds

f(n) = L(F (n)) and f(n) ≥ 0.

The following propositions are true:

(17) Let V be a real linear space and L be a linear combination of V . If L is

circled, then the support of L 6= ∅.

(18) Let V be a real linear space, L be a linear combination of V , and v be

a vector of V . If L is circled and L(v) ≤ 0, then v /∈ the support of L.

(19) For every real linear space V and for every linear combination L of V

such that L is circled holds L 6= 0LCV
.

(20) For every real linear space V holds there exists a linear combination of

V which is circled.

Let V be a real linear space. One can check that there exists a linear

combination of V which is circled.

Let V be a real linear space. A circled combination of V is a circled linear

combination of V .

We now state the proposition

(21) For every real linear space V and for every non empty subset M of V

holds there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V . Note

that there exists a linear combination of M which is circled.

Let V be a real linear space and let M be a non empty subset of V . A circled

combination of M is a circled linear combination of M .

Let V be a real linear space. The functor circledCombV is defined as follows:

(Def. 5) For every set L holds L ∈ circledComb V iff L is a circled combination

of V .
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Let V be a real linear space and let M be a non empty subset of V . The

functor circledCombM is defined by:

(Def. 6) For every set L holds L ∈ circledComb M iff L is a circled combination

of M .

The following propositions are true:

(22) Let V be a real linear space and v be a vector of V . Then there exists

a circled combination L of V such that
∑

L = v and for every non empty

subset A of V such that v ∈ A holds L is a circled combination of A.

(23) Let V be a real linear space and v1, v2 be vectors of V . Suppose v1 6= v2.

Then there exists a circled combination L of V such that for every non

empty subset A of V if {v1, v2} ⊆ A, then L is a circled combination of A.

(24) Let V be a real linear space, L1, L2 be circled combinations of V , and a, b

be real numbers. Suppose a·b > 0. Then the support of a·L1+b·L2 = (the

support of a · L1) ∪ (the support of b · L2).

(25) Let V be a real linear space, v be a vector of V , and L be a linear

combination of V . If L is circled and the support of L = {v}, then

L(v) = 1 and
∑

L = L(v) · v.

(26) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear

combination of V . Suppose L is circled and the support of L = {v1, v2}

and v1 6= v2. Then L(v1) + L(v2) = 1 and L(v1) ≥ 0 and L(v2) ≥ 0 and
∑

L = L(v1) · v1 + L(v2) · v2.

(27) Let V be a real linear space, v be a vector of V , and L be a linear

combination of {v}. If L is circled, then L(v) = 1 and
∑

L = L(v) · v.

(28) Let V be a real linear space, v1, v2 be vectors of V , and L be a linear

combination of {v1, v2}. Suppose v1 6= v2 and L is circled. Then L(v1) +

L(v2) = 1 and L(v1) ≥ 0 and L(v2) ≥ 0 and
∑

L = L(v1) · v1 + L(v2) · v2.
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