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The articles [21], [25], [2], [20], [26], [5], [27], [6], [3], [1], [24], [10], [18], [16],
9], [4], [13], [11], [19], [23], [17], [7], [8], [22], [12], [15], and [14] provide the
terminology and notation for this paper.
We use the following convention: n is a natural number, p1, p2 are points of
&r, and a, b, ¢, d are real numbers.
Let us consider a, b, ¢, d. One can verify that ClosedInsideOfRectangle(a, b, c,
d) is convex.
Let us consider a, b, ¢, d. Observe that Trectangle(a, b, ¢, d) is convex.
The following propositions are true:
(1) Let e be a positive real number and g be a continuous map from I into
&T. Then there exists a finite sequence h of elements of R such that
) h(1) =0,
) h(lenh) =1,
(iii) 5 <lenh,
) rngh C the carrier of I,
) h is increasing, and
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(vi)  for every natural number ¢ and for every subset @ of I and for every
subset W of £" such that 1 < ¢ and @ < lenh and @ = [h;, hiy1] and
W = ¢°Q holds oW < e.

(2) For every subset P of £} such that P C L(p1,p2) and p1 € P and py € P
and P is connected holds P = L(p1,p2).

(3) For every path g from p; to pg such that rngg C L(p1, p2) holds rng g =
L(p1,p2)-

(4) Let P, Q be non empty subsets of £2, p1, p2, q1, q2 be points of 2, f

be a path from p; to po, and g be a path from ¢; to go. Suppose that

) mgf=P,

) mgg=Q,

(iii) ~ for every point p of % such that p € P holds (p1)1 < p1 and p1 < (p2)1,
) for every point p of £2 such that p € @ holds (p1)1 < p1 and p1 < (p2)1,
) for every point p of €% such that p € P holds (¢1)2 < p2 and p2 < (¢2)2,

and

(vi)  for every point p of €2 such that p € Q holds (q1)2 < p2 and p2 < (g2)2.
Then P meets Q.

(5) Let f, g be continuous maps from I into €% and O, I be points of L.
Suppose that O = 0 and I = 1 and f(O)1 = a and f(I)1 = b and
g(0)2 = c and g(I)2 = d and for every point r of I holds a < f(r)1 and
fr)1 <band a < g(r); and g(r)1 < band ¢ < f(r)2 and f(r)2 < d and
¢ < g(r)2 and g(r)2 < d. Then rng f meets rngg.

(6) Let a1, b1, c1, di be points of Trectangle(a,b,c,d), h be a path from a;
to b1, v be a path from dy to ¢;, and Ay, By, Cy, D1 be points of E%.
Suppose (A1)1 = a and (Bj)1 = b and (C1)2 = ¢ and (D)2 = d and
a1 = Ay and by = By and ¢; = C1 and dy = Dp. Then there exist points
s, t of I such that h(s) = v(t).
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