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Summary. This paper formalizes the Jordan curve theorem following [42]
and [17].
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The articles [44], [47], [9], [1], [45], [48], [5], [8], [6], [4], [7], [10], [43], [21], [2],
[40], [39], [49], [46], [12], [11], [37], [38], [33], [22], [3], [13], [18], [15], [16], [14],
[31], [32], [35], [20], [34], [30], [25], [26], [19], [29], [24], [23], [36], [41], 28], and
[27] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: a, b, ¢, d, r, s denote real
numbers, n denotes a natural number, p, p1, p2 denote points of 5%, x, y denote
points of £, C denotes a simple closed curve, A, B, P denote subsets of 5%,
U, V denote subsets of (5’%) [C® and D denotes a compact middle-intersecting
subset of £2.

Let M be a symmetric triangle Reflexive metric structure and let z, y be
points of M. One can verify that p(x,y) is non negative.

Let n be a natural number and let x, y be points of £F. Note that p(z,y) is
non negative.

Let n be a natural number and let z, y be points of Ef. Observe that |z —y|
is non negative.

We now state several propositions:

(1) For all points py, ps of EF such that p; # po holds 3 - (p1 + p2) # p1.
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(2) If (p1)2 < (p2)2, then (p1)2 < (3 - (p1 + p2))2.

(3) If (p1)2 < (p2)2, then (5 - (p1 + p2))2 < (p2)2-

(4) For every vertical subset A of £2 holds A N B is vertical.

(5) For every horizontal subset A of £2 holds AN B is horizontal.

(6) If pe L(p1,p2) and L(p1,p2) is vertical, then L(p, p2) is vertical.

(7) If p € L(p1,p2) and L(p1,p2) is horizontal, then L(p,p2) is horizontal.

Let P be a subset of £4. One can verify the following observations:
* L(SW-corner(P), SE-corner(P)) is horizontal,
*  L(NW-corner(P), SW-corner(P)) is vertical, and
*  L(NE-corner(P), SE-corner(P)) is vertical.
Let P be a subset of 5%. One can check the following observations:
*  L(SE-corner(P),SW-corner(P)) is horizontal,
*  L(SW-corner(P), NW-corner(P)) is vertical, and
% L(SE-corner(P), NE-corner(P)) is vertical.
Let us note that every subset of S% which is vertical, non empty, and compact
is also middle-intersecting.
The following propositions are true:
(8) For all non empty compact subsets X, Y of £2 such that X C Y but
Wnin(Y) € X or Wpax(Y) € X holds W-bound(X) = W-bound(Y').
(9) For all non empty compact subsets X, ¥ of 5% such that X C Y but
Enin(Y) € X or Epax(Y) € X holds E-bound(X) = E-bound(Y).
(10) For all non empty compact subsets X, Y of £2 such that X C Y but
Nmin(Y) € X or Npax(Y) € X holds N-bound(X) = N-bound(Y).
(11) For all non empty compact subsets X, Y of €% such that X C Y but
Smin(Y) € X or Spax(Y) € X holds S-bound(X) = S-bound(Y).

(12) W-bound(C) = W-bound(NorthArc(C)).

(13) E-bound(C') = E-bound(NorthArc(C)).

(14) W-bound(C) = W-bound(SouthArc(C)).

(15) E-bound(C') = E-bound(SouthArc(C)).

(16) If (p1)1 < r and r < (p2)1, then L(p1,p2) meets VerticalLine(r).
(17) If (p1)2 <r and r < (p2)2, then L(p1,p2) meets HorizontalLine(r).

Let us consider n. One can check that every subset of £ which is empty is
also Bounded and every subset of £F which is non Bounded is also non empty.

Let n be a non empty natural number. Note that there exists a subset of £7
which is open, closed, non Bounded, and convex.

Next we state several propositions:

(18) For every compact subset C of £2 holds NorthHalfline UMP C'\ {UMP C'}
misses C.
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(19) For every compact subset C' of £ holds SouthHalfline LMP C'\ {LMP C'}
misses C'.

(20) For every compact subset C' of &% holds NorthHalfline UMP C \
{UMPC} CUBDC.

21) For every compact subset C of &2 holds SouthHalfline LMP C
T
{LMPC} C UBDC.

(22) If A is an inside component of B, then UBD B misses A.
(23) If A is an outside component of B, then BDD B misses A.
One can prove the following propositions:
(24) For every positive real number r and for every point a of &} holds a €
Ball(a, r).
(25) For every non negative real number 7 holds every point p of £} is a point
of Tdisk(p, 7).

Let r be a positive real number, let n be a non empty natural number, and
let p, ¢ be points of £, Observe that Ball(p, ) \ {¢} is non empty.
We now state several propositions:

26) If r <s, then Ball(z,r) C Ball(z, s).
27) Ball(z,r) \ Ball(z,7) = Sphere(z, r).
28) If y € Sphere(z,r), then L(x,y) \ {z,y} C Ball(z,r).
29) If r < s, then Ball(x,7) C Ball(z, s).

30
31
32

Let n be a non empty natural number. Note that every subset of £f which

If r < s, then Sphere(z,r) C Ball(z, s).

For every non zero real number r holds Ball(z,r) = Ball(z, r).

(
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For every non zero real number r holds Fr Ball(x,r) = Sphere(z, ).

is Bounded is also proper.

Let us consider n. Note that there exists a subset of £F which is non empty,
closed, convex, and Bounded and there exists a subset of £F which is non empty,
open, convex, and Bounded.

Let n be a natural number and let A be a Bounded subset of £f. Observe
that A is Bounded.

Let n be a natural number and let A be a Bounded subset of £F. One can
check that Fr A is Bounded.

The following propositions are true:

(33) Let A be a closed subset of £ and p be a point of E}. If p ¢ A, then
there exists a positive real number r such that Ball(p, r) misses A.

(34) For every Bounded subset A of £ and for every point a of £} there
exists a positive real number r such that A C Ball(a,r).

(35) For all topological structures S, T' and for every map f from S into T’
such that f is a homeomorphism holds f is onto.
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(36) Let T be a topological space, S be a subspace of T', A be a subset of T,
and B be a subset of S. If A = B, then T[A = S[B.

Let T be a non empty 75 topological space. Note that every non empty
subspace of T is T5.

Let us consider p, r. Observe that Tdisk(p, r) is closed.

Let us consider p, r. Observe that Tdisk(p,r) is compact.

2. PATHS

Next we state a number of propositions:

(37) Let T be a non empty topological space, a, b be points of T, and f be a
path from a to b. If a, b are connected, then rng f is connected.

(38) Let X be a non empty topological space, Y be a non empty subspace
of X, x1, x2 be points of X, y1, yo be points of Y, and f be a path from
x1 to xo. Suppose x1 = y1 and x2 = yo and x1, T2 are connected and
rng f C the carrier of Y. Then v, yo are connected and f is a path from
y1 to Y.

(39) Let X be an arcwise connected non empty topological space, Y be a non
empty subspace of X, x1, 2 be points of X, y1, y2 be points of Y, and f
be a path from x1 to x2. Suppose x1 = y; and x5 = y9 and rng f C the
carrier of Y. Then y;, y2 are connected and f is a path from y; to ys.

(40) Let T be a non empty topological space, a, b be points of T', and f be a
path from a to b. If a, b are connected, then rng f = rng(—f).

(41) Let T be an arcwise connected non empty topological space, a, b be
points of T', and f be a path from a to b. Then rng f = rng(—f).

(42) Let T be a non empty topological space, a, b, ¢ be points of T, f be a
path from a to b, and g be a path from b to c¢. If a, b are connected and
b, ¢ are connected, then rng f C rng(f + g).

(43) Let T be an arcwise connected non empty topological space, a, b, ¢ be
points of T, f be a path from a to b, and g be a path from b to ¢. Then
g f C rng(f + g).

(44) Let T be a non empty topological space, a, b, ¢ be points of T, f be a
path from b to ¢, and g be a path from a to b. If a, b are connected and
b, ¢ are connected, then rng f C rng(g + f).

(45) Let T be an arcwise connected non empty topological space, a, b, ¢ be
points of T', f be a path from b to ¢, and g be a path from a to b. Then
g f C rng(g + f).

(46) Let T be a non empty topological space, a, b, ¢ be points of T, f be a
path from a to b, and g be a path from b to c¢. If a, b are connected and
b, ¢ are connected, then rng(f + g) = rng f Urngg.
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(47) Let T be an arcwise connected non empty topological space, a, b, ¢ be
points of T, f be a path from a to b, and g be a path from b to ¢. Then
mg(f +g) =rng f Urngg.

(48) Let T be a non empty topological space, a, b, ¢, d be points of T', f be
a path from a to b, g be a path from b to ¢, and h be a path from c to d.
Suppose a, b are connected and b, ¢ are connected and ¢, d are connected.
Then rmg(f + g+ h) =rng f Urng g Urng h.

(49) Let T be an arcwise connected non empty topological space, a, b, ¢, d
be points of T', f be a path from a to b, g be a path from b to ¢, and h be
a path from ¢ to d. Then rng(f + g+ h) =rng f Urng g Urngh.

(50) For every non empty topological space T" and for every point a of T holds
I —— a is a path from a to a.

(51) Let p1, p2 be points of &F and P be a subset of . Suppose P is an arc
from p; to po. Then there exists a path F' from p; to po and there exists
a map f from I into (E})[P such that rng f = P and F = f.

(52) Let p1, p2 be points of . Then there exists a path F' from p; to p2 and
there exists a map f from I into (E})[L(p1, p2) such that rng f = L(p1,p2)
and F' = f.

(53) Let p1, pa, q1, g2 be points of 2. Suppose P is an arc from p; to ps and
q1 € P and g2 € P and g1 # p1 and q1 # p2 and g2 # p1 and g2 # pa.
Then there exists a path f from ¢ to g2 such that rng f C P and rng f
misses {p1,p2}.

3. RECTANGLES

Next we state three propositions:
(54) If a < b and ¢ < d, then Rectangle(a, b, ¢,d) C ClosedInsideOfRectangle
(a,b,c,d).
(55) InsideOfRectangle(a, b, ¢, d) C ClosedInsideOfRectangle(a, b, ¢, d).
(56) ClosedInsideOfRectangle(a, b, ¢, d) = (OutsideOfRectangle(a, b, ¢, d))°.
Let a, b, ¢, d be real numbers. Note that ClosedInsideOfRectangle(a, b, ¢, d)
is closed.
One can prove the following propositions:
(57) ClosedInsideOfRectangle(a, b, ¢, d) misses OutsideOfRectangle(a, b, ¢, d).
(58) ClosedInsideOfRectangle(a, b, ¢, d) N InsideOfRectangle(a, b, ¢,d) =
InsideOfRectangle(a, b, ¢, d).
(59) If @ < b and ¢ < d, then IntClosedInsideOfRectangle(a,b,c,d) =
InsideOfRectangle(a, b, ¢, d).
(60) If @ < b and ¢ < d, then ClosedInsideOfRectangle(a,b,c,d) \
InsideOfRectangle(a, b, ¢, d) = Rectangle(a, b, ¢, d).
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(61) If a < b and ¢ < d, then FrClosedInsideOfRectangle(a,b,c,d) =
Rectangle(a, b, ¢, d).
(62) Ifa <bandc<d,then W-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =

a

(63) If a <band ¢ < d, then S-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =
c

(64) If a <band c <d, then E-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =
b

(65) If a < band ¢ < d, then N-bound(ClosedInsideOfRectangle(a, b, ¢, d)) =
d

(66) If a« < b and ¢ < d and p; € ClosedInsideOfRectangle(a, b, c,d)
and pa ¢ ClosedInsideOfRectangle(a,b,c,d) and P is an arc from p;
to p2, then Segment (P, p1,p2, p1, FPoint(P, p1, p2, Rectangle(a, b, ¢,d))) C
ClosedInsideOfRectangle(a, b, ¢, d).

4. SOME USEFUL FUNCTIONS

Let S, T be non empty topological spaces and let = be a point of [ .S, T'].
Then x7 is an element of S, and x5 is an element of 7.

Let o be a point of £2. The functor (O2); — 01 yielding a real map of [ £2,
£2] is defined as follows:

(Def. 1) For every point z of [ €2, €21 holds ((Os2)1 — 01)(z) = (w2)1 — 01.
The functor ()2 — 02 yields a real map of [:8%, 5% ] and is defined as follows:
(Def. 2)  For every point z of [ £2, €2 holds ((Os2)2 — 02)(z) = (x2)2 — 02.
The real map (0;)1 — (O2)1 of [ £2, €21 is defined as follows:
(Def. 3) For every point x of [ €2, €27 holds (1)1 — (02)1)(z) = (z1)1 — (72)1-
The real map ()2 — (O2)2 of [ E2, 21 is defined as follows:
(Def. 4) For every point x of | €2, €21 holds ((01)2 — (02)2)(z) = (z1)2 — (72)2.
The real map ((q)y of [ €2, 2] is defined as follows:
(Def. 5)  For every point = of [ £2, €21 holds ((2)1(x) = (z2)1.
The real map (g)2 of [ €2, E2 1 is defined by:
(Def. 6) For every point = of [ 2, €21 holds ((2)2(x) = (2)2.
One can prove the following propositions:
(67) For every point o of £2 holds ((z); — o7 is a continuous map from [ £2,
E2 ] into RL.
(68) For every point o of £2 holds ((Jz)2 — 02 is a continuous map from [ €2,
£%] into RY.
(69) (O1)1 — (Og)1 is a continuous map from [ €2, €27 into R
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(70) (O1)2 — (Og)2 is a continuous map from [ &3, €27 into R
(71) (Os); is a continuous map from [ &2, €2 ] into RL.
(72) (Og)2 is a continuous map from [ &2, £2 ] into RL.
Let o be a point of 5%. One can check that (CJ2); — o1 is continuous and
(O2)2 — 02 is continuous.
One can check the following observations:

* (O1)1 — (Og)1 is continuous,
x (0p)2 — (0g)2 is continuous,
* (Og) is continuous, and

* (Oga)2 is continuous.

Let n be a non empty natural number, let o, p be points of £}, and let r be a
positive real number. Let us assume that p is a point of Tdisk(o,r). The functor
DiskProj(o, 7, p) yielding a map from (€7)[(Ball(o,7) \ {p}) into Tcircle(o,r) is
defined by:

(Def. 7)  For every point = of (E7)[(Ball(o,7) \ {p}) there exists a point y of £
such that z = y and (DiskProj(o,7,p))(z) = HC(p,y,0,r).

The following propositions are true:

(73) Let o, p be points of 5’% and r be a positive real number. If p is a point
of Tdisk(o, ), then DiskProj(o, r, p) is continuous.

(74) Let n be a non empty natural number, o, p be points of
&L, and r be a positive real number. If p € Ball(o,r), then
DiskProj(o, r, p)[ Sphere(o, r) = idgphere(o,r)-

Let n be a non empty natural number, let o, p be points of £F, and let
r be a positive real number. Let us assume that p € Ball(o,r). The functor
RotateCircle(o, , p) yields a map from Tcircle(o, ) into Tcircle(o,r) and is de-
fined by:

(Def. 8) For every point x of Tcircle(o,r) there exists a point y of £F such that
x =y and (RotateCircle(o, r,p))(z) = HC(y, p, 0, 7).

One can prove the following propositions:

(75) For all points o, p of 5’% and for every positive real number r such that
p € Ball(o, ) holds RotateCircle(o, r, p) is continuous.

(76) Let n be a non empty natural number, o, p be points of £}, and r be
a positive real number. If p € Ball(o,r), then RotateCircle(o, r, p) has no
fixpoint.
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The following propositions are true:
(77) If U = P and U is a component of (£2)[C¢ and V is a component of
(2)]C¢ and U # V, then P misses V.
(78) If U is a component of (£2)]C¢, then (£2)[C°|U is arcwise connected.
(79) If U = P and U is a component of (£2)]C¢, then C = Fr P.
One can prove the following propositions:

(80) For every homeomorphism h of £2 holds h°C satisfies conditions of sim-
ple closed curve.

(81) If [-1,0] and [1,0] realize maximal distance in P, then P C
ClosedInsideOfRectangle(—1, 1, —3, 3).

(82) If [-1,0] and [1,0] realize maximal distance in P, then P misses £([—1,
3],[1,3]).

(83) If [-1,0] and [1, 0] realize maximal distance in P, then P misses £(][—1,
-3],[1,-3]).

(84) If [-1,0] and [1,0] realize maximal distance in P, then P N
Rectangle(—1,1,—3,3) = {[-1,0],[1,0]}.

(85) If [-1,0] and [1,0] realize maximal distance in P, then W-bound(P) =
—1.

(86) 1If [—1,0] and [1,0] realize maximal distance in P, then E-bound(P) = 1.

(87) For every compact subset P of % such that [—1,0] and [1,0] realize
maximal distance in P holds Wpest(P) = {[—1,0]}.

(88) For every compact subset P of % such that [—1,0] and [1,0] realize
maximal distance in P holds Enest(P) = {[1,0]}.

(89) Let P be a compact subset of 2. Suppose [—1,0] and [1,0] realize
maximal distance in P. Then Wyin(P) = [—1,0] and Wax(P) = [—1,0].

(90) Let P be a compact subset of 2. Suppose [—1,0] and [1,0] realize
maximal distance in P. Then Enin(P) = [1,0] and Epax(P) = [1,0].

(91) If [-1,0] and [1, 0] realize maximal distance in P, then £([0, 3], UMP P)
is vertical.

(92) 1If [-1,0] and [1, 0] realize maximal distance in P, then £(LMP P, [0, —3])
is vertical.

(93) If [—1,0] and [1, 0] realize maximal distance in P and p € P, then pa < 3.

(94) 1If [-1,0] and [1, 0] realize maximal distance in P and p € P, then —3 <
D2.

(95) If [-1,0] and [1,0] realize maximal distance in D and p € L([0,
3], UMP D), then (UMP D)5 < ps.
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(96) If [-1,0] and [1, 0] realize maximal distance in D and p € L(LMP D, [0,
—3]), then P2 S (LMP D)z

(97) If [-1,0] and [1,0] realize maximal distance in D, then L([0,
3], UMP D) C NorthHalfline UMP D.

(98) If [-1,0] and [1,0] realize maximal distance in D, then £(LMP D, |0,
—3]) € SouthHalfline LMP D.

(99) 1If [-1,0] and [1,0] realize maximal distance in C' and P is an inside
component of C, then £([0, 3], UMP C) misses P.

(100) If [-1,0] and [1,0] realize maximal distance in C' and P is an inside
component of C, then L(LMP C, [0, —3]) misses P.

(101) If[—1,0] and [1,0] realize maximal distance in D, then £([0, 3], UMP D)n
D = {UMP D}.

(102) If [-1,0] and [1,0] realize maximal distance in D, then L([0,
—3|,LMP D)n D = {LMP D}.

(103) Suppose P is compact and [—1,0] and [1,0] realize maximal dis-
tance in P and A is an inside component of P. Then A C
ClosedInsideOfRectangle(—1, 1, —3, 3).

(104) 1If [-1,0] and [1,0] realize maximal distance in C, then £([0, 3], [0, —3])
meets C.

(105) Suppose [—1,0] and [1, 0] realize maximal distance in C. Let Jy, Ja be
compact middle-intersecting subsets of T5. Suppose that J; is an arc from
[—1,0] to [1,0] and J3 is an arc from [—1,0] to [1,0] and C = J; U Jy
and J; N Jy = {[-1,0],[1,0]} and UMPC € J; and LMPC € Jy and
W-bound(C') = W-bound(J1) and E-bound(C) = E-bound(Jy). Let U; be
a subset of £2. Suppose Uy = Component(Down(% - (UMP(L(LMP Jy, [0,
=3]) N J2) + LMP J;),C¢)). Then U; is an inside component of C' and
for every subset V' of Ty such that V is an inside component of C' holds
V = U, where Th = 5%.

(106) Suppose [—1,0] and [1,0] realize maximal distance in C. Let Jj, Jo
be compact middle-intersecting subsets of T5. Suppose that J; is an
arc from [—1,0] to [1,0] and J» is an arc from [—1,0] to [1,0] and
C = JiUJyand J N Jy = {[-1,0],[1,0]} and UMPC € J; and
LMPC € Jy and W-bound(C) = W-bound(J;) and E-bound(C) =
E-bound(J;). Then BDD C' = Component(Down(3 - (UMP(L(LMP Ji, [0,
—3]) N J2) + LMP J;), C°)), where Th = E3.

(107) Let C be a simple closed curve. Then there exist subsets Ay, A of £2
such that

(1) C°= A1 U A,
(i)  A; misses Ao,
(iii) A\ A; = Ag\ Ag, and
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(iv)  for all subsets C1, Cy of (€2)]C° such that C; = A; and Cy = Aj holds
Cy is a component of (£€2)]C¢ and Cs is a component of (2)[C¢.

(108) Every simple closed curve is Jordan.
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