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The articles [44], [47], [9], [1], [45], [48], [5], [8], [6], [4], [7], [10], [43], [21], [2],

[40], [39], [49], [46], [12], [11], [37], [38], [33], [22], [3], [13], [18], [15], [16], [14],

[31], [32], [35], [20], [34], [30], [25], [26], [19], [29], [24], [23], [36], [41], [28], and

[27] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: a, b, c, d, r, s denote real

numbers, n denotes a natural number, p, p1, p2 denote points of E2
T, x, y denote

points of En

T, C denotes a simple closed curve, A, B, P denote subsets of E2
T,

U , V denote subsets of (E2
T)↾Cc, and D denotes a compact middle-intersecting

subset of E2
T.

Let M be a symmetric triangle Reflexive metric structure and let x, y be

points of M . One can verify that ρ(x, y) is non negative.

Let n be a natural number and let x, y be points of En

T. Note that ρ(x, y) is

non negative.

Let n be a natural number and let x, y be points of En

T. Observe that |x−y|

is non negative.

We now state several propositions:

(1) For all points p1, p2 of En

T such that p1 6= p2 holds 1
2 · (p1 + p2) 6= p1.
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(2) If (p1)2 < (p2)2, then (p1)2 < (1
2 · (p1 + p2))2.

(3) If (p1)2 < (p2)2, then (1
2 · (p1 + p2))2 < (p2)2.

(4) For every vertical subset A of E2
T holds A ∩ B is vertical.

(5) For every horizontal subset A of E2
T holds A ∩ B is horizontal.

(6) If p ∈ L(p1, p2) and L(p1, p2) is vertical, then L(p, p2) is vertical.

(7) If p ∈ L(p1, p2) and L(p1, p2) is horizontal, then L(p, p2) is horizontal.

Let P be a subset of E2
T. One can verify the following observations:

∗ L(SW-corner(P ), SE-corner(P )) is horizontal,

∗ L(NW-corner(P ),SW-corner(P )) is vertical, and

∗ L(NE-corner(P ), SE-corner(P )) is vertical.

Let P be a subset of E2
T. One can check the following observations:

∗ L(SE-corner(P ),SW-corner(P )) is horizontal,

∗ L(SW-corner(P ), NW-corner(P )) is vertical, and

∗ L(SE-corner(P ),NE-corner(P )) is vertical.

Let us note that every subset of E2
T which is vertical, non empty, and compact

is also middle-intersecting.

The following propositions are true:

(8) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y but

Wmin(Y ) ∈ X or Wmax(Y ) ∈ X holds W-bound(X) = W-bound(Y ).

(9) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y but

Emin(Y ) ∈ X or Emax(Y ) ∈ X holds E-bound(X) = E-bound(Y ).

(10) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y but

Nmin(Y ) ∈ X or Nmax(Y ) ∈ X holds N-bound(X) = N-bound(Y ).

(11) For all non empty compact subsets X, Y of E2
T such that X ⊆ Y but

Smin(Y ) ∈ X or Smax(Y ) ∈ X holds S-bound(X) = S-bound(Y ).

(12) W-bound(C) = W-bound(NorthArc(C)).

(13) E-bound(C) = E-bound(NorthArc(C)).

(14) W-bound(C) = W-bound(SouthArc(C)).

(15) E-bound(C) = E-bound(SouthArc(C)).

(16) If (p1)1 ≤ r and r ≤ (p2)1, then L(p1, p2) meets VerticalLine(r).

(17) If (p1)2 ≤ r and r ≤ (p2)2, then L(p1, p2) meets HorizontalLine(r).

Let us consider n. One can check that every subset of En

T which is empty is

also Bounded and every subset of En

T which is non Bounded is also non empty.

Let n be a non empty natural number. Note that there exists a subset of En

T

which is open, closed, non Bounded, and convex.

Next we state several propositions:

(18) For every compact subset C of E2
T holds NorthHalfline UMPC\{UMPC}

misses C.
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(19) For every compact subset C of E2
T holds SouthHalfline LMPC\{LMPC}

misses C.

(20) For every compact subset C of E2
T holds NorthHalfline UMPC \

{UMPC} ⊆ UBD C.

(21) For every compact subset C of E2
T holds SouthHalfline LMPC \

{LMPC} ⊆ UBD C.

(22) If A is an inside component of B, then UBDB misses A.

(23) If A is an outside component of B, then BDDB misses A.

One can prove the following propositions:

(24) For every positive real number r and for every point a of En

T holds a ∈

Ball(a, r).

(25) For every non negative real number r holds every point p of En

T is a point

of Tdisk(p, r).

Let r be a positive real number, let n be a non empty natural number, and

let p, q be points of En

T. Observe that Ball(p, r) \ {q} is non empty.

We now state several propositions:

(26) If r ≤ s, then Ball(x, r) ⊆ Ball(x, s).

(27) Ball(x, r) \ Ball(x, r) = Sphere(x, r).

(28) If y ∈ Sphere(x, r), then L(x, y) \ {x, y} ⊆ Ball(x, r).

(29) If r < s, then Ball(x, r) ⊆ Ball(x, s).

(30) If r < s, then Sphere(x, r) ⊆ Ball(x, s).

(31) For every non zero real number r holds Ball(x, r) = Ball(x, r).

(32) For every non zero real number r holds FrBall(x, r) = Sphere(x, r).

Let n be a non empty natural number. Note that every subset of En

T which

is Bounded is also proper.

Let us consider n. Note that there exists a subset of En

T which is non empty,

closed, convex, and Bounded and there exists a subset of En

T which is non empty,

open, convex, and Bounded.

Let n be a natural number and let A be a Bounded subset of En

T. Observe

that A is Bounded.

Let n be a natural number and let A be a Bounded subset of En

T. One can

check that FrA is Bounded.

The following propositions are true:

(33) Let A be a closed subset of En

T and p be a point of En

T. If p /∈ A, then

there exists a positive real number r such that Ball(p, r) misses A.

(34) For every Bounded subset A of En

T and for every point a of En

T there

exists a positive real number r such that A ⊆ Ball(a, r).

(35) For all topological structures S, T and for every map f from S into T

such that f is a homeomorphism holds f is onto.
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(36) Let T be a topological space, S be a subspace of T , A be a subset of T ,

and B be a subset of S. If A = B, then T ↾A = S↾B.

Let T be a non empty T2 topological space. Note that every non empty

subspace of T is T2.

Let us consider p, r. Observe that Tdisk(p, r) is closed.

Let us consider p, r. Observe that Tdisk(p, r) is compact.

2. Paths

Next we state a number of propositions:

(37) Let T be a non empty topological space, a, b be points of T , and f be a

path from a to b. If a, b are connected, then rng f is connected.

(38) Let X be a non empty topological space, Y be a non empty subspace

of X, x1, x2 be points of X, y1, y2 be points of Y , and f be a path from

x1 to x2. Suppose x1 = y1 and x2 = y2 and x1, x2 are connected and

rng f ⊆ the carrier of Y . Then y1, y2 are connected and f is a path from

y1 to y2.

(39) Let X be an arcwise connected non empty topological space, Y be a non

empty subspace of X, x1, x2 be points of X, y1, y2 be points of Y , and f

be a path from x1 to x2. Suppose x1 = y1 and x2 = y2 and rng f ⊆ the

carrier of Y . Then y1, y2 are connected and f is a path from y1 to y2.

(40) Let T be a non empty topological space, a, b be points of T , and f be a

path from a to b. If a, b are connected, then rng f = rng(−f).

(41) Let T be an arcwise connected non empty topological space, a, b be

points of T , and f be a path from a to b. Then rng f = rng(−f).

(42) Let T be a non empty topological space, a, b, c be points of T , f be a

path from a to b, and g be a path from b to c. If a, b are connected and

b, c are connected, then rng f ⊆ rng(f + g).

(43) Let T be an arcwise connected non empty topological space, a, b, c be

points of T , f be a path from a to b, and g be a path from b to c. Then

rng f ⊆ rng(f + g).

(44) Let T be a non empty topological space, a, b, c be points of T , f be a

path from b to c, and g be a path from a to b. If a, b are connected and

b, c are connected, then rng f ⊆ rng(g + f).

(45) Let T be an arcwise connected non empty topological space, a, b, c be

points of T , f be a path from b to c, and g be a path from a to b. Then

rng f ⊆ rng(g + f).

(46) Let T be a non empty topological space, a, b, c be points of T , f be a

path from a to b, and g be a path from b to c. If a, b are connected and

b, c are connected, then rng(f + g) = rng f ∪ rng g.
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(47) Let T be an arcwise connected non empty topological space, a, b, c be

points of T , f be a path from a to b, and g be a path from b to c. Then

rng(f + g) = rng f ∪ rng g.

(48) Let T be a non empty topological space, a, b, c, d be points of T , f be

a path from a to b, g be a path from b to c, and h be a path from c to d.

Suppose a, b are connected and b, c are connected and c, d are connected.

Then rng(f + g + h) = rng f ∪ rng g ∪ rng h.

(49) Let T be an arcwise connected non empty topological space, a, b, c, d

be points of T , f be a path from a to b, g be a path from b to c, and h be

a path from c to d. Then rng(f + g + h) = rng f ∪ rng g ∪ rng h.

(50) For every non empty topological space T and for every point a of T holds

I 7−→ a is a path from a to a.

(51) Let p1, p2 be points of En

T and P be a subset of En

T. Suppose P is an arc

from p1 to p2. Then there exists a path F from p1 to p2 and there exists

a map f from I into (En

T)↾P such that rng f = P and F = f.

(52) Let p1, p2 be points of En

T. Then there exists a path F from p1 to p2 and

there exists a map f from I into (En

T)↾L(p1, p2) such that rng f = L(p1, p2)

and F = f.

(53) Let p1, p2, q1, q2 be points of E2
T. Suppose P is an arc from p1 to p2 and

q1 ∈ P and q2 ∈ P and q1 6= p1 and q1 6= p2 and q2 6= p1 and q2 6= p2.

Then there exists a path f from q1 to q2 such that rng f ⊆ P and rng f

misses {p1, p2}.

3. Rectangles

Next we state three propositions:

(54) If a ≤ b and c ≤ d, then Rectangle(a, b, c, d) ⊆ ClosedInsideOfRectangle

(a, b, c, d).

(55) InsideOfRectangle(a, b, c, d) ⊆ ClosedInsideOfRectangle(a, b, c, d).

(56) ClosedInsideOfRectangle(a, b, c, d) = (OutsideOfRectangle(a, b, c, d))c.

Let a, b, c, d be real numbers. Note that ClosedInsideOfRectangle(a, b, c, d)

is closed.

One can prove the following propositions:

(57) ClosedInsideOfRectangle(a, b, c, d) misses OutsideOfRectangle(a, b, c, d).

(58) ClosedInsideOfRectangle(a, b, c, d) ∩ InsideOfRectangle(a, b, c, d) =

InsideOfRectangle(a, b, c, d).

(59) If a < b and c < d, then Int ClosedInsideOfRectangle(a, b, c, d) =

InsideOfRectangle(a, b, c, d).

(60) If a ≤ b and c ≤ d, then ClosedInsideOfRectangle(a, b, c, d) \

InsideOfRectangle(a, b, c, d) = Rectangle(a, b, c, d).
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(61) If a < b and c < d, then FrClosedInsideOfRectangle(a, b, c, d) =

Rectangle(a, b, c, d).

(62) If a ≤ b and c ≤ d, then W-bound(ClosedInsideOfRectangle(a, b, c, d)) =

a.

(63) If a ≤ b and c ≤ d, then S-bound(ClosedInsideOfRectangle(a, b, c, d)) =

c.

(64) If a ≤ b and c ≤ d, then E-bound(ClosedInsideOfRectangle(a, b, c, d)) =

b.

(65) If a ≤ b and c ≤ d, then N-bound(ClosedInsideOfRectangle(a, b, c, d)) =

d.

(66) If a < b and c < d and p1 ∈ ClosedInsideOfRectangle(a, b, c, d)

and p2 /∈ ClosedInsideOfRectangle(a, b, c, d) and P is an arc from p1

to p2, then Segment(P, p1, p2, p1,FPoint(P, p1, p2,Rectangle(a, b, c, d))) ⊆

ClosedInsideOfRectangle(a, b, c, d).

4. Some Useful Functions

Let S, T be non empty topological spaces and let x be a point of [:S, T :].

Then x1 is an element of S, and x2 is an element of T .

Let o be a point of E2
T. The functor (�2)1 − o1 yielding a real map of [: E2

T,

E2
T :] is defined as follows:

(Def. 1) For every point x of [: E2
T, E2

T :] holds ((�2)1 − o1)(x) = (x2)1 − o1.

The functor (�2)2 − o2 yields a real map of [: E2
T, E2

T :] and is defined as follows:

(Def. 2) For every point x of [: E2
T, E2

T :] holds ((�2)2 − o2)(x) = (x2)2 − o2.

The real map (�1)1 − (�2)1 of [: E2
T, E2

T :] is defined as follows:

(Def. 3) For every point x of [: E2
T, E2

T :] holds ((�1)1 − (�2)1)(x) = (x1)1 − (x2)1.

The real map (�1)2 − (�2)2 of [: E2
T, E2

T :] is defined as follows:

(Def. 4) For every point x of [: E2
T, E2

T :] holds ((�1)2 − (�2)2)(x) = (x1)2 − (x2)2.

The real map (�2)1 of [: E2
T, E2

T :] is defined as follows:

(Def. 5) For every point x of [: E2
T, E2

T :] holds (�2)1(x) = (x2)1.

The real map (�2)2 of [: E2
T, E2

T :] is defined by:

(Def. 6) For every point x of [: E2
T, E2

T :] holds (�2)2(x) = (x2)2.

One can prove the following propositions:

(67) For every point o of E2
T holds (�2)1 − o1 is a continuous map from [: E2

T,

E2
T :] into R

1.

(68) For every point o of E2
T holds (�2)2 − o2 is a continuous map from [: E2

T,

E2
T :] into R

1.

(69) (�1)1 − (�2)1 is a continuous map from [: E2
T, E2

T :] into R
1.
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(70) (�1)2 − (�2)2 is a continuous map from [: E2
T, E2

T :] into R
1.

(71) (�2)1 is a continuous map from [: E2
T, E2

T :] into R
1.

(72) (�2)2 is a continuous map from [: E2
T, E2

T :] into R
1.

Let o be a point of E2
T. One can check that (�2)1 − o1 is continuous and

(�2)2 − o2 is continuous.

One can check the following observations:

∗ (�1)1 − (�2)1 is continuous,

∗ (�1)2 − (�2)2 is continuous,

∗ (�2)1 is continuous, and

∗ (�2)2 is continuous.

Let n be a non empty natural number, let o, p be points of En

T, and let r be a

positive real number. Let us assume that p is a point of Tdisk(o, r). The functor

DiskProj(o, r, p) yielding a map from (En

T)↾(Ball(o, r) \ {p}) into Tcircle(o, r) is

defined by:

(Def. 7) For every point x of (En

T)↾(Ball(o, r) \ {p}) there exists a point y of En

T

such that x = y and (DiskProj(o, r, p))(x) = HC(p, y, o, r).

The following propositions are true:

(73) Let o, p be points of E2
T and r be a positive real number. If p is a point

of Tdisk(o, r), then DiskProj(o, r, p) is continuous.

(74) Let n be a non empty natural number, o, p be points of

En

T, and r be a positive real number. If p ∈ Ball(o, r), then

DiskProj(o, r, p)↾Sphere(o, r) = idSphere(o,r).

Let n be a non empty natural number, let o, p be points of En

T, and let

r be a positive real number. Let us assume that p ∈ Ball(o, r). The functor

RotateCircle(o, r, p) yields a map from Tcircle(o, r) into Tcircle(o, r) and is de-

fined by:

(Def. 8) For every point x of Tcircle(o, r) there exists a point y of En

T such that

x = y and (RotateCircle(o, r, p))(x) = HC(y, p, o, r).

One can prove the following propositions:

(75) For all points o, p of E2
T and for every positive real number r such that

p ∈ Ball(o, r) holds RotateCircle(o, r, p) is continuous.

(76) Let n be a non empty natural number, o, p be points of En

T, and r be

a positive real number. If p ∈ Ball(o, r), then RotateCircle(o, r, p) has no

fixpoint.
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5. Jordan Curve Theorem

The following propositions are true:

(77) If U = P and U is a component of (E2
T)↾Cc and V is a component of

(E2
T)↾Cc and U 6= V, then P misses V .

(78) If U is a component of (E2
T)↾Cc, then (E2

T)↾Cc↾U is arcwise connected.

(79) If U = P and U is a component of (E2
T)↾Cc, then C = FrP.

One can prove the following propositions:

(80) For every homeomorphism h of E2
T holds h◦C satisfies conditions of sim-

ple closed curve.

(81) If [−1, 0] and [1, 0] realize maximal distance in P , then P ⊆

ClosedInsideOfRectangle(−1, 1,−3, 3).

(82) If [−1, 0] and [1, 0] realize maximal distance in P , then P misses L([−1,

3], [1, 3]).

(83) If [−1, 0] and [1, 0] realize maximal distance in P , then P misses L([−1,

−3], [1,−3]).

(84) If [−1, 0] and [1, 0] realize maximal distance in P , then P ∩

Rectangle(−1, 1,−3, 3) = {[−1, 0], [1, 0]}.

(85) If [−1, 0] and [1, 0] realize maximal distance in P , then W-bound(P ) =

−1.

(86) If [−1, 0] and [1, 0] realize maximal distance in P , then E-bound(P ) = 1.

(87) For every compact subset P of E2
T such that [−1, 0] and [1, 0] realize

maximal distance in P holds Wmost(P ) = {[−1, 0]}.

(88) For every compact subset P of E2
T such that [−1, 0] and [1, 0] realize

maximal distance in P holds Emost(P ) = {[1, 0]}.

(89) Let P be a compact subset of E2
T. Suppose [−1, 0] and [1, 0] realize

maximal distance in P . Then Wmin(P ) = [−1, 0] and Wmax(P ) = [−1, 0].

(90) Let P be a compact subset of E2
T. Suppose [−1, 0] and [1, 0] realize

maximal distance in P . Then Emin(P ) = [1, 0] and Emax(P ) = [1, 0].

(91) If [−1, 0] and [1, 0] realize maximal distance in P , then L([0, 3],UMPP )

is vertical.

(92) If [−1, 0] and [1, 0] realize maximal distance in P , then L(LMPP, [0,−3])

is vertical.

(93) If [−1, 0] and [1, 0] realize maximal distance in P and p ∈ P, then p2 < 3.

(94) If [−1, 0] and [1, 0] realize maximal distance in P and p ∈ P, then −3 <

p2.

(95) If [−1, 0] and [1, 0] realize maximal distance in D and p ∈ L([0,

3],UMPD), then (UMPD)2 ≤ p2.
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(96) If [−1, 0] and [1, 0] realize maximal distance in D and p ∈ L(LMPD, [0,

−3]), then p2 ≤ (LMPD)2.

(97) If [−1, 0] and [1, 0] realize maximal distance in D, then L([0,

3],UMPD) ⊆ NorthHalfline UMPD.

(98) If [−1, 0] and [1, 0] realize maximal distance in D, then L(LMPD, [0,

−3]) ⊆ SouthHalfline LMPD.

(99) If [−1, 0] and [1, 0] realize maximal distance in C and P is an inside

component of C, then L([0, 3],UMPC) misses P .

(100) If [−1, 0] and [1, 0] realize maximal distance in C and P is an inside

component of C, then L(LMPC, [0,−3]) misses P .

(101) If [−1, 0] and [1, 0] realize maximal distance in D, then L([0, 3], UMPD)∩

D = {UMPD}.

(102) If [−1, 0] and [1, 0] realize maximal distance in D, then L([0,

−3],LMPD) ∩ D = {LMPD}.

(103) Suppose P is compact and [−1, 0] and [1, 0] realize maximal dis-

tance in P and A is an inside component of P . Then A ⊆

ClosedInsideOfRectangle(−1, 1,−3, 3).

(104) If [−1, 0] and [1, 0] realize maximal distance in C, then L([0, 3], [0,−3])

meets C.

(105) Suppose [−1, 0] and [1, 0] realize maximal distance in C. Let J1, J2 be

compact middle-intersecting subsets of T2. Suppose that J1 is an arc from

[−1, 0] to [1, 0] and J2 is an arc from [−1, 0] to [1, 0] and C = J1 ∪ J2

and J1 ∩ J2 = {[−1, 0], [1, 0]} and UMPC ∈ J1 and LMPC ∈ J2 and

W-bound(C) = W-bound(J1) and E-bound(C) = E-bound(J1). Let U1 be

a subset of E2
T. Suppose U1 = Component(Down(1

2 · (UMP(L(LMPJ1, [0,

−3]) ∩ J2) + LMPJ1), C
c)). Then U1 is an inside component of C and

for every subset V of T2 such that V is an inside component of C holds

V = U1, where T2 = E2
T.

(106) Suppose [−1, 0] and [1, 0] realize maximal distance in C. Let J1, J2

be compact middle-intersecting subsets of T2. Suppose that J1 is an

arc from [−1, 0] to [1, 0] and J2 is an arc from [−1, 0] to [1, 0] and

C = J1 ∪ J2 and J1 ∩ J2 = {[−1, 0], [1, 0]} and UMPC ∈ J1 and

LMPC ∈ J2 and W-bound(C) = W-bound(J1) and E-bound(C) =

E-bound(J1). Then BDD C = Component(Down(1
2 · (UMP(L(LMPJ1, [0,

−3]) ∩ J2) + LMPJ1), C
c)), where T2 = E2

T.

(107) Let C be a simple closed curve. Then there exist subsets A1, A2 of E2
T

such that

(i) Cc = A1 ∪ A2,

(ii) A1 misses A2,

(iii) A1 \ A1 = A2 \ A2, and
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(iv) for all subsets C1, C2 of (E2
T)↾Cc such that C1 = A1 and C2 = A2 holds

C1 is a component of (E2
T)↾Cc and C2 is a component of (E2

T)↾Cc.

(108) Every simple closed curve is Jordan.
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