Set Sequences and Monotone Class

Bo Zhang Shinshu University Nagano, Japan Hiroshi Yamazaki Shinshu University Nagano, Japan Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. In this paper we first defined the partial-union sequence, the partial-intersection sequence, and the partial-difference-union sequence of given sequence of subsets, and then proved the additive theorem of infinite sequences and sub-additive theorem of finite sequences for probability. Further, we defined the monotone class of families of subsets, and discussed the relations between the monotone class and the σ -field which are generated by the field of subsets of a given set.

MML identifier: PROB_3, version: 7.5.01 4.39.921

The articles [4], [3], [2], [20], [23], [19], [9], [21], [22], [18], [16], [6], [1], [13], [11], [24], [7], [8], [15], [14], [10], [12], [26], [25], [17], and [5] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: n, m, k are natural numbers, g is a real number, x, X, Y, Z are sets, A_1 is a sequence of subsets of X, F_1 is a finite sequence of elements of $2^X, R_1$ is a finite sequence of elements of \mathbb{R}, S_1 is a σ -field of subsets of X, O_1 is a non empty set, S_2 is a σ -field of subsets of O_1, A_2, B_1 are sequences of subsets of S_2 , and P is a probability on S_2 .

One can prove the following propositions:

- (1) For every finite sequence f holds $0 \notin \text{dom } f$.
- (2) For every finite sequence f holds $n \in \text{dom } f$ iff $n \neq 0$ and $n \leq \text{len } f$.
- (3) Let f be a sequence of real numbers. Given k such that let given n. If $k \leq n$, then f(n) = g. Then f is convergent and $\lim f = g$.
- $(4) \quad (P \cdot A_2)(n) \ge 0.$
- (5) If $A_2(n) \subseteq B_1(n)$, then $(P \cdot A_2)(n) \le (P \cdot B_1)(n)$.
- (6) If A_2 is non-decreasing, then $P \cdot A_2$ is non-decreasing.
- (7) If A_2 is non-increasing, then $P \cdot A_2$ is non-increasing.

C 2005 University of Białystok ISSN 1426-2630

BO ZHANG et al.

Let A_1 be a function. The partial intersections of A_1 constitute a function defined by the conditions (Def. 1).

(Def. 1)(i) dom (the partial intersections of A_1) = \mathbb{N} ,

- (ii) (the partial intersections of A_1)(0) = A_1 (0), and
- (iii) for every natural number n holds (the partial intersections of A_1)(n + 1) = (the partial intersections of A_1) $(n) \cap A_1(n + 1)$.

Let X be a set and let A_1 be a sequence of subsets of X. Then the partial intersections of A_1 is a sequence of subsets of X.

Let A_1 be a function. The partial unions of A_1 constitute a function defined by the conditions (Def. 2).

- (Def. 2)(i) dom (the partial unions of A_1) = \mathbb{N} ,
 - (ii) (the partial unions of A_1)(0) = A_1 (0), and
 - (iii) for every natural number n holds (the partial unions of A_1)(n+1) = (the partial unions of A_1) $(n) \cup A_1(n+1)$.

Let X be a set and let A_1 be a sequence of subsets of X. Then the partial unions of A_1 is a sequence of subsets of X.

The following propositions are true:

- (8) (The partial intersections of A_1) $(n) \subseteq A_1(n)$.
- (9) $A_1(n) \subseteq (\text{the partial unions of } A_1)(n).$
- (10) The partial intersections of A_1 are non-increasing.
- (11) The partial unions of A_1 are non-decreasing.
- (12) $x \in (\text{the partial intersections of } A_1)(n)$ iff for every k such that $k \leq n$ holds $x \in A_1(k)$.
- (13) $x \in (\text{the partial unions of } A_1)(n)$ iff there exists k such that $k \leq n$ and $x \in A_1(k)$.
- (14) Intersection (the partial intersections of A_1) = Intersection A_1 .
- (15) \bigcup (the partial unions of A_1) = $\bigcup A_1$.

Let A_1 be a function. The partial diff-unions of A_1 constitute a function defined by the conditions (Def. 3).

(Def. 3)(i) dom (the partial diff-unions of A_1) = \mathbb{N} ,

- (ii) (the partial diff-unions of A_1)(0) = A_1 (0), and
- (iii) for every natural number n holds (the partial diff-unions of A_1) $(n+1) = A_1(n+1) \setminus (\text{the partial unions of } A_1)(n).$

Let X be a set and let A_1 be a sequence of subsets of X. Then the partial diff-unions of A_1 is a sequence of subsets of X.

One can prove the following propositions:

- (16) $x \in (\text{the partial diff-unions of } A_1)(n) \text{ iff } x \in A_1(n) \text{ and for every } k \text{ such that } k < n \text{ holds } x \notin A_1(k).$
- (17) (The partial diff-unions of A_1) $(n) \subseteq A_1(n)$.

436

- (18) (The partial diff-unions of A_1) $(n) \subseteq$ (the partial unions of A_1)(n).
- (19) The partial unions of the partial diff-unions of A_1 = the partial unions of A_1 .
- (20) \bigcup (the partial diff-unions of A_1) = $\bigcup A_1$.
- Let us consider X, A_1 . Let us observe that A_1 is disjoint valued if and only if:
- (Def. 4) For all m, n such that $m \neq n$ holds $A_1(m)$ misses $A_1(n)$.

We now state the proposition

(21) The partial diff-unions of A_1 are disjoint valued.

Let X be a set, let S_1 be a σ -field of subsets of X, and let X_1 be a sequence of subsets of S_1 . Then the partial intersections of X_1 is a sequence of subsets of S_1 .

Let X be a set, let S_1 be a σ -field of subsets of X, and let X_1 be a sequence of subsets of S_1 . Then the partial unions of X_1 is a sequence of subsets of S_1 .

Let X be a set, let S_1 be a σ -field of subsets of X, and let X_1 be a sequence of subsets of S_1 . Then the partial diff-unions of X_1 is a sequence of subsets of S_1 .

Next we state a number of propositions:

- (22) $P \cdot \text{the partial unions of } A_2 \text{ is non-decreasing.}$
- (23) $P \cdot \text{the partial intersections of } A_2 \text{ is non-increasing.}$
- (24) $(\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}$ is non-decreasing.
- (25) $(P \cdot \text{the partial unions of } A_2)(0) = (\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}(0).$
- (26)(i) $P \cdot \text{the partial unions of } A_2 \text{ is convergent},$
- (ii) $\lim(P \cdot \text{the partial unions of } A_2) = \sup(P \cdot \text{the partial unions of } A_2),$ and
- (iii) $\lim(P \cdot \text{the partial unions of } A_2) = P(\bigcup A_2).$
- (27) If A_2 is disjoint valued, then for all n, m such that n < m holds (the partial unions of A_2)(n) misses $A_2(m)$.
- (28) If A_2 is disjoint valued, then $(P \cdot \text{the partial unions of } A_2)(n) = (\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}(n)$.
- (29) If A_2 is disjoint valued, then $P \cdot$ the partial unions of $A_2 = (\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}$.
- (30) If A_2 is disjoint valued, then $(\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent and $\lim((\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}) = \sup((\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}})$ and $\lim((\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}) = P(\bigcup A_2).$
- (31) If A_2 is disjoint valued, then $P(\bigcup A_2) = \sum (P \cdot A_2)$. Let us consider X, F_1 , n. Then $F_1(n)$ is a subset of X. One can prove the following two propositions:

BO ZHANG et al.

- (32) There exists a finite sequence F_1 of elements of 2^X such that for every k such that $k \in \text{dom } F_1$ holds $F_1(k) = X$.
- (33) For every finite sequence F_1 of elements of 2^X holds $\bigcup \operatorname{rng} F_1$ is a subset of X.

Let X be a set and let F_1 be a finite sequence of elements of 2^X . Then $\bigcup F_1$ is a subset of X.

We now state the proposition

(34) $x \in \bigcup F_1$ iff there exists k such that $k \in \operatorname{dom} F_1$ and $x \in F_1(k)$.

Let us consider X, F_1 . The functor Complement F_1 yields a finite sequence of elements of 2^X and is defined by:

(Def. 5) len Complement $F_1 = \text{len } F_1$ and for every n such that $n \in \text{dom Complement } F_1$ holds (Complement F_1) $(n) = F_1(n)^c$.

Let us consider X, F_1 . The functor Intersection F_1 yields a subset of X and is defined by:

(Def. 6) Intersection
$$F_1 = \begin{cases} (\bigcup \text{Complement } F_1)^c, \text{ if } F_1 \neq \emptyset, \\ \emptyset, \text{ otherwise.} \end{cases}$$

Next we state several propositions:

- (35) dom Complement $F_1 = \operatorname{dom} F_1$.
- (36) If $F_1 \neq \emptyset$, then $x \in \text{Intersection } F_1$ iff for every k such that $k \in \text{dom } F_1$ holds $x \in F_1(k)$.
- (37) If $F_1 \neq \emptyset$, then $x \in \bigcap \operatorname{rng} F_1$ iff for every n such that $n \in \operatorname{dom} F_1$ holds $x \in F_1(n)$.
- (38) Intersection $F_1 = \bigcap \operatorname{rng} F_1$.
- (39) Let F_1 be a finite sequence of elements of 2^X . Then there exists a sequence A_1 of subsets of X such that for every k such that $k \in \text{dom } F_1$ holds $A_1(k) = F_1(k)$ and for every k such that $k \notin \text{dom } F_1$ holds $A_1(k) = \emptyset$.
- (40) Let F_1 be a finite sequence of elements of 2^X and A_1 be a sequence of subsets of X. Suppose for every k such that $k \in \text{dom } F_1$ holds $A_1(k) = F_1(k)$ and for every k such that $k \notin \text{dom } F_1$ holds $A_1(k) = \emptyset$. Then $A_1(0) = \emptyset$ and $\bigcup A_1 = \bigcup F_1$.

Let X be a set and let S_1 be a σ -field of subsets of X. A finite sequence of elements of 2^X is said to be a finite sequence of elements of S_1 if:

(Def. 7) For every k such that $k \in \text{dom it holds it}(k) \in S_1$.

Let X be a set, let S_1 be a σ -field of subsets of X, let F_2 be a finite sequence of elements of S_1 , and let us consider n. Then $F_2(n)$ is an event of S_1 .

We now state two propositions:

(41) Let F_2 be a finite sequence of elements of S_1 . Then there exists a sequence A_2 of subsets of S_1 such that for every k such that $k \in \text{dom } F_2$ holds $A_2(k) = F_2(k)$ and for every k such that $k \notin \text{dom } F_2$ holds $A_2(k) = \emptyset$.

438

(42) For every finite sequence F_2 of elements of S_1 holds $\bigcup F_2 \in S_1$.

Let X be a set, let S be a σ -field of subsets of X, and let F be a finite sequence of elements of S. The functor F^{c} yielding a finite sequence of elements of S is defined as follows:

(Def. 8) $F^{\mathbf{c}} = \text{Complement } F.$

We now state the proposition

- (43) For every finite sequence F_2 of elements of S_1 holds Intersection $F_2 \in S_1$. In the sequel F_3 denotes a finite sequence of elements of S_2 . The following two propositions are true:
- (44) $\operatorname{dom}(P \cdot F_3) = \operatorname{dom} F_3.$
- (45) $P \cdot F_3$ is a finite sequence of elements of \mathbb{R} .

Let us consider O_1 , S_2 , F_3 , P. Then $P \cdot F_3$ is a finite sequence of elements of \mathbb{R} .

Next we state several propositions:

- $(46) \quad \operatorname{len}(P \cdot F_3) = \operatorname{len} F_3.$
- (47) If len $R_1 = 0$, then $\sum R_1 = 0$.
- (48) Suppose len $R_1 \ge 1$. Then there exists a sequence f of real numbers such that $f(1) = R_1(1)$ and for every n such that $0 \ne n$ and $n < \text{len } R_1$ holds $f(n+1) = f(n) + R_1(n+1)$ and $\sum R_1 = f(\text{len } R_1)$.
- (49) Let F_3 be a finite sequence of elements of S_2 and A_2 be a sequence of subsets of S_2 . Suppose for every k such that $k \in \text{dom } F_3$ holds $A_2(k) = F_3(k)$ and for every k such that $k \notin \text{dom } F_3$ holds $A_2(k) = \emptyset$. Then $(\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent and $\sum (P \cdot A_2) = (\sum_{\alpha=0}^{\kappa} (P \cdot A_2)(\alpha))_{\kappa \in \mathbb{N}} (\text{len } F_3)$ and $P(\bigcup A_2) \leq \sum (P \cdot A_2)$ and $\sum (P \cdot F_3) = \sum (P \cdot A_2)$.
- (50) $P(\bigcup F_3) \leq \sum (P \cdot F_3)$ and if F_3 is disjoint valued, then $P(\bigcup F_3) = \sum (P \cdot F_3)$.

Let us consider X and let I_1 be a family of subsets of X. We say that I_1 is non-decreasing-union-closed if and only if:

(Def. 9) For every sequence A_1 of subsets of X such that A_1 is non-decreasing and for every n holds $A_1(n) \in I_1$ holds $\bigcup A_1 \in I_1$.

We say that I_1 is non-increasing-intersection-closed if and only if:

- (Def. 10) For every sequence A_1 of subsets of X such that A_1 is non-increasing and for every n holds $A_1(n) \in I_1$ holds Intersection $A_1 \in I_1$. We now state three propositions:
 - (51) Let I_1 be a family of subsets of X. Then I_1 is non-decreasing-unionclosed if and only if for every sequence A_1 of subsets of X such that A_1 is non-decreasing and for every n holds $A_1(n) \in I_1$ holds $\lim A_1 \in I_1$.
 - (52) Let I_1 be a family of subsets of X. Then I_1 is non-increasing-intersectionclosed if and only if for every sequence A_1 of subsets of X such that A_1 is

BO ZHANG et al.

non-increasing and for every n holds $A_1(n) \in I_1$ holds $\lim A_1 \in I_1$.

(53) 2^X is non-decreasing-union-closed and 2^X is non-increasing-intersection-closed.

Let us consider X. A family of subsets of X is said to be a monotone class of X if:

(Def. 11) It is non-decreasing-union-closed and it is non-increasing-intersectionclosed.

Next we state four propositions:

- (54) Z is a monotone class of X if and only if the following conditions are satisfied:
 - (i) $Z \subseteq 2^X$, and
 - (ii) for every sequence A_1 of subsets of X such that A_1 is monotone and for every n holds $A_1(n) \in Z$ holds $\lim A_1 \in Z$.
- (55) Let F be a field of subsets of X. Then F is a σ -field of subsets of X if and only if F is a monotone class of X.
- (56) 2^{O_1} is a monotone class of O_1 .
- (57) Let X be a family of subsets of O_1 . Then there exists a monotone class Y of O_1 such that $X \subseteq Y$ and for every Z such that $X \subseteq Z$ and Z is a monotone class of O_1 holds $Y \subseteq Z$.

Let us consider O_1 and let X be a family of subsets of O_1 . The functor monotone-class(X) yielding a monotone class of O_1 is defined as follows:

(Def. 12) $X \subseteq \text{monotone-class}(X)$ and for every Z such that $X \subseteq Z$ and Z is a monotone class of O_1 holds monotone-class $(X) \subseteq Z$.

We now state two propositions:

- (58) For every field Z of subsets of O_1 holds monotone-class(Z) is a field of subsets of O_1 .
- (59) For every field Z of subsets of O_1 holds $\sigma(Z) = \text{monotone-class}(Z)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [7] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, [9] 1990. Duble in the set of the set
- [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.

- [10] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399–409, 2003.
- [11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [12] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [14] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
- [15] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [17] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449–452, 1991.
- [18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [20] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [21] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [24] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [25] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375–381, 2005.
- [26] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347–352, 2005.

Received August 12, 2005