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Summary. In this paper we first defined the partial-union sequence, the

partial-intersection sequence, and the partial-difference-union sequence of given

sequence of subsets, and then proved the additive theorem of infinite sequences

and sub-additive theorem of finite sequences for probability. Further, we defined

the monotone class of families of subsets, and discussed the relations between

the monotone class and the σ-field which are generated by the field of subsets of

a given set.
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The articles [4], [3], [2], [20], [23], [19], [9], [21], [22], [18], [16], [6], [1], [13], [11],

[24], [7], [8], [15], [14], [10], [12], [26], [25], [17], and [5] provide the notation and

terminology for this paper.

For simplicity, we adopt the following rules: n, m, k are natural numbers, g

is a real number, x, X, Y , Z are sets, A1 is a sequence of subsets of X, F1 is a

finite sequence of elements of 2X , R1 is a finite sequence of elements of R, S1 is

a σ-field of subsets of X, O1 is a non empty set, S2 is a σ-field of subsets of O1,

A2, B1 are sequences of subsets of S2, and P is a probability on S2.

One can prove the following propositions:

(1) For every finite sequence f holds 0 /∈ dom f.

(2) For every finite sequence f holds n ∈ dom f iff n 6= 0 and n ≤ len f.

(3) Let f be a sequence of real numbers. Given k such that let given n. If

k ≤ n, then f(n) = g. Then f is convergent and lim f = g.

(4) (P · A2)(n) ≥ 0.

(5) If A2(n) ⊆ B1(n), then (P · A2)(n) ≤ (P · B1)(n).

(6) If A2 is non-decreasing, then P · A2 is non-decreasing.

(7) If A2 is non-increasing, then P · A2 is non-increasing.
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Let A1 be a function. The partial intersections of A1 constitute a function

defined by the conditions (Def. 1).

(Def. 1)(i) dom (the partial intersections of A1) = N,

(ii) (the partial intersections of A1)(0) = A1(0), and

(iii) for every natural number n holds (the partial intersections of A1)(n +

1) = (the partial intersections of A1)(n) ∩ A1(n + 1).

Let X be a set and let A1 be a sequence of subsets of X. Then the partial

intersections of A1 is a sequence of subsets of X.

Let A1 be a function. The partial unions of A1 constitute a function defined

by the conditions (Def. 2).

(Def. 2)(i) dom (the partial unions of A1) = N,

(ii) (the partial unions of A1)(0) = A1(0), and

(iii) for every natural number n holds (the partial unions of A1)(n+1) = (the

partial unions of A1)(n) ∪ A1(n + 1).

Let X be a set and let A1 be a sequence of subsets of X. Then the partial

unions of A1 is a sequence of subsets of X.

The following propositions are true:

(8) (The partial intersections of A1)(n) ⊆ A1(n).

(9) A1(n) ⊆ (the partial unions of A1)(n).

(10) The partial intersections of A1 are non-increasing.

(11) The partial unions of A1 are non-decreasing.

(12) x ∈ (the partial intersections of A1)(n) iff for every k such that k ≤ n

holds x ∈ A1(k).

(13) x ∈ (the partial unions of A1)(n) iff there exists k such that k ≤ n and

x ∈ A1(k).

(14) Intersection (the partial intersections of A1) = Intersection A1.

(15)
⋃

(the partial unions of A1) =
⋃

A1.

Let A1 be a function. The partial diff-unions of A1 constitute a function

defined by the conditions (Def. 3).

(Def. 3)(i) dom (the partial diff-unions of A1) = N,

(ii) (the partial diff-unions of A1)(0) = A1(0), and

(iii) for every natural number n holds (the partial diff-unions of A1)(n+1) =

A1(n + 1) \ (the partial unions of A1)(n).

Let X be a set and let A1 be a sequence of subsets of X. Then the partial

diff-unions of A1 is a sequence of subsets of X.

One can prove the following propositions:

(16) x ∈ (the partial diff-unions of A1)(n) iff x ∈ A1(n) and for every k such

that k < n holds x /∈ A1(k).

(17) (The partial diff-unions of A1)(n) ⊆ A1(n).
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(18) (The partial diff-unions of A1)(n) ⊆ (the partial unions of A1)(n).

(19) The partial unions of the partial diff-unions of A1 = the partial unions

of A1.

(20)
⋃

(the partial diff-unions of A1) =
⋃

A1.

Let us consider X, A1. Let us observe that A1 is disjoint valued if and only

if:

(Def. 4) For all m, n such that m 6= n holds A1(m) misses A1(n).

We now state the proposition

(21) The partial diff-unions of A1 are disjoint valued.

Let X be a set, let S1 be a σ-field of subsets of X, and let X1 be a sequence

of subsets of S1. Then the partial intersections of X1 is a sequence of subsets of

S1.

Let X be a set, let S1 be a σ-field of subsets of X, and let X1 be a sequence

of subsets of S1. Then the partial unions of X1 is a sequence of subsets of S1.

Let X be a set, let S1 be a σ-field of subsets of X, and let X1 be a sequence

of subsets of S1. Then the partial diff-unions of X1 is a sequence of subsets of

S1.

Next we state a number of propositions:

(22) P · the partial unions of A2 is non-decreasing.

(23) P · the partial intersections of A2 is non-increasing.

(24) (
∑

κ

α=0
(P · A2)(α))κ∈N is non-decreasing.

(25) (P · the partial unions of A2)(0) = (
∑

κ

α=0
(P · A2)(α))κ∈N(0).

(26)(i) P · the partial unions of A2 is convergent,

(ii) lim(P · the partial unions of A2) = sup(P · the partial unions of A2),

and

(iii) lim(P · the partial unions of A2) = P (
⋃

A2).

(27) If A2 is disjoint valued, then for all n, m such that n < m holds (the

partial unions of A2)(n) misses A2(m).

(28) If A2 is disjoint valued, then (P ·the partial unions of A2)(n) = (
∑

κ

α=0
(P ·

A2)(α))κ∈N(n).

(29) If A2 is disjoint valued, then P · the partial unions of A2 = (
∑

κ

α=0
(P ·

A2)(α))κ∈N.

(30) If A2 is disjoint valued, then (
∑

κ

α=0
(P · A2)(α))κ∈N is convergent

and lim((
∑

κ

α=0
(P · A2)(α))κ∈N) = sup((

∑

κ

α=0
(P · A2)(α))κ∈N) and

lim((
∑

κ

α=0
(P · A2)(α))κ∈N) = P (

⋃

A2).

(31) If A2 is disjoint valued, then P (
⋃

A2) =
∑

(P · A2).

Let us consider X, F1, n. Then F1(n) is a subset of X.

One can prove the following two propositions:
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(32) There exists a finite sequence F1 of elements of 2X such that for every

k such that k ∈ domF1 holds F1(k) = X.

(33) For every finite sequence F1 of elements of 2X holds
⋃

rng F1 is a subset

of X.

Let X be a set and let F1 be a finite sequence of elements of 2X . Then
⋃

F1

is a subset of X.

We now state the proposition

(34) x ∈
⋃

F1 iff there exists k such that k ∈ domF1 and x ∈ F1(k).

Let us consider X, F1. The functor ComplementF1 yields a finite sequence

of elements of 2X and is defined by:

(Def. 5) lenComplementF1 = lenF1 and for every n such that n ∈

dom Complement F1 holds (ComplementF1)(n) = F1(n)c.

Let us consider X, F1. The functor IntersectionF1 yields a subset of X and

is defined by:

(Def. 6) Intersection F1 =

{

(
⋃

Complement F1)
c, if F1 6= ∅,

∅, otherwise.

Next we state several propositions:

(35) dom Complement F1 = domF1.

(36) If F1 6= ∅, then x ∈ Intersection F1 iff for every k such that k ∈ domF1

holds x ∈ F1(k).

(37) If F1 6= ∅, then x ∈
⋂

rng F1 iff for every n such that n ∈ domF1 holds

x ∈ F1(n).

(38) Intersection F1 =
⋂

rng F1.

(39) Let F1 be a finite sequence of elements of 2X . Then there exists a

sequence A1 of subsets of X such that for every k such that k ∈ domF1

holds A1(k) = F1(k) and for every k such that k /∈ domF1 holds A1(k) = ∅.

(40) Let F1 be a finite sequence of elements of 2X and A1 be a sequence of

subsets of X. Suppose for every k such that k ∈ domF1 holds A1(k) =

F1(k) and for every k such that k /∈ domF1 holds A1(k) = ∅. Then

A1(0) = ∅ and
⋃

A1 =
⋃

F1.

Let X be a set and let S1 be a σ-field of subsets of X. A finite sequence of

elements of 2X is said to be a finite sequence of elements of S1 if:

(Def. 7) For every k such that k ∈ dom it holds it(k) ∈ S1.

Let X be a set, let S1 be a σ-field of subsets of X, let F2 be a finite sequence

of elements of S1, and let us consider n. Then F2(n) is an event of S1.

We now state two propositions:

(41) Let F2 be a finite sequence of elements of S1. Then there exists a se-

quence A2 of subsets of S1 such that for every k such that k ∈ domF2 holds

A2(k) = F2(k) and for every k such that k /∈ domF2 holds A2(k) = ∅.
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(42) For every finite sequence F2 of elements of S1 holds
⋃

F2 ∈ S1.

Let X be a set, let S be a σ-field of subsets of X, and let F be a finite

sequence of elements of S. The functor F c yielding a finite sequence of elements

of S is defined as follows:

(Def. 8) F c = Complement F.

We now state the proposition

(43) For every finite sequence F2 of elements of S1 holds IntersectionF2 ∈ S1.

In the sequel F3 denotes a finite sequence of elements of S2.

The following two propositions are true:

(44) dom(P · F3) = domF3.

(45) P · F3 is a finite sequence of elements of R.

Let us consider O1, S2, F3, P . Then P · F3 is a finite sequence of elements

of R.

Next we state several propositions:

(46) len(P · F3) = len F3.

(47) If lenR1 = 0, then
∑

R1 = 0.

(48) Suppose lenR1 ≥ 1. Then there exists a sequence f of real numbers such

that f(1) = R1(1) and for every n such that 0 6= n and n < len R1 holds

f(n + 1) = f(n) + R1(n + 1) and
∑

R1 = f(lenR1).

(49) Let F3 be a finite sequence of elements of S2 and A2 be a sequence of sub-

sets of S2. Suppose for every k such that k ∈ domF3 holds A2(k) = F3(k)

and for every k such that k /∈ domF3 holds A2(k) = ∅. Then (
∑

κ

α=0
(P ·

A2)(α))κ∈N is convergent and
∑

(P ·A2) = (
∑

κ

α=0
(P ·A2)(α))κ∈N(lenF3)

and P (
⋃

A2) ≤
∑

(P · A2) and
∑

(P · F3) =
∑

(P · A2).

(50) P (
⋃

F3) ≤
∑

(P · F3) and if F3 is disjoint valued, then P (
⋃

F3) =
∑

(P · F3).

Let us consider X and let I1 be a family of subsets of X. We say that I1 is

non-decreasing-union-closed if and only if:

(Def. 9) For every sequence A1 of subsets of X such that A1 is non-decreasing

and for every n holds A1(n) ∈ I1 holds
⋃

A1 ∈ I1.

We say that I1 is non-increasing-intersection-closed if and only if:

(Def. 10) For every sequence A1 of subsets of X such that A1 is non-increasing

and for every n holds A1(n) ∈ I1 holds IntersectionA1 ∈ I1.

We now state three propositions:

(51) Let I1 be a family of subsets of X. Then I1 is non-decreasing-union-

closed if and only if for every sequence A1 of subsets of X such that A1 is

non-decreasing and for every n holds A1(n) ∈ I1 holds limA1 ∈ I1.

(52) Let I1 be a family of subsets of X. Then I1 is non-increasing-intersection-

closed if and only if for every sequence A1 of subsets of X such that A1 is
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non-increasing and for every n holds A1(n) ∈ I1 holds limA1 ∈ I1.

(53) 2X is non-decreasing-union-closed and 2X is non-increasing-intersection-

closed.

Let us consider X. A family of subsets of X is said to be a monotone class

of X if:

(Def. 11) It is non-decreasing-union-closed and it is non-increasing-intersection-

closed.

Next we state four propositions:

(54) Z is a monotone class of X if and only if the following conditions are

satisfied:

(i) Z ⊆ 2X , and

(ii) for every sequence A1 of subsets of X such that A1 is monotone and

for every n holds A1(n) ∈ Z holds limA1 ∈ Z.

(55) Let F be a field of subsets of X. Then F is a σ-field of subsets of X if

and only if F is a monotone class of X.

(56) 2O1 is a monotone class of O1.

(57) Let X be a family of subsets of O1. Then there exists a monotone class

Y of O1 such that X ⊆ Y and for every Z such that X ⊆ Z and Z is a

monotone class of O1 holds Y ⊆ Z.

Let us consider O1 and let X be a family of subsets of O1. The functor

monotone-class(X) yielding a monotone class of O1 is defined as follows:

(Def. 12) X ⊆ monotone-class(X) and for every Z such that X ⊆ Z and Z is a

monotone class of O1 holds monotone-class(X) ⊆ Z.

We now state two propositions:

(58) For every field Z of subsets of O1 holds monotone-class(Z) is a field of

subsets of O1.

(59) For every field Z of subsets of O1 holds σ(Z) = monotone-class(Z).
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[6] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
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