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Summary. We have formalized the BClI-algebras closely following the
book [7] pp.16-19 and pp.58-65. Firstly, the article focuses on the properties
of the element and then the definition and properties of congruences and quo-
tient algebras are given. Quotient algebras are the basic tools for exploring the
structures of BCI-algebras.

MML identifier: BCTALG_2, version: 7.8.05 4.87.985

The articles [11], [5], [12], [10], [13], [2], [3], [1], [8], [14], [6], [15], [4], and [9]
provide the terminology and notation for this paper.

1. BAsic PROPERTIES OF THE ELEMENT

For simplicity, we adopt the following convention: X is a BCl-algebra, I is
an ideal of X, a, z, y, 2z, u are elements of X, f is a function from N into the
carrier of X, and j, i, k, n, m are elements of N.

Let us consider X, x, y and let n be an element of N. The functor (z \ y)"
yielding an element of X is defined by:

(Def. 1) There exists f such that (z \ y)" = f(n) and f(0) = x and for every
element j of N such that 7 <n holds f(5+1) = f(j) \ y.

One can prove the following propositions:
1) (z\y)’ ==
2) (@\y»'=az\y
(3) (@\y)?=2\y\y
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@) @\ =(=\y)")\y

(5) (z\0x)"* ==

(6) (0x\0x)" = Ox-.

(M) (@\y")\z=((z\2)\y)"

@) (@\(z\(z\y)" = (z\y)"

@) ((Ox \2)")¢ = (0x \ )™
(10) ((@\y)"\y)™ = (@ \y)"*™
(A1) ((z\y)"\2)™ = ((z\ 2)" \y)"
(12) (((0x \2)")9) = (0x \ 2)".
(13) (0x \ &)™™= ((0x \ 2)") \ ((0x \ z)™)°.
(14)  ((0x \ @)™ )¢ = ((0x \2)™)°\ ((0x \ =)").
(15)  ((Ox \ ((0x \2)™))")¢ = (Ox \ )™
(16) If (0x \ )™ = 0x, then (0x \ )" = 0x.
(17) If z\y ==z, then (z\y)" = =x.
(18) (0x \ (\ )" = ((Ox \ )"\ (0x \ )"
(19) If x <y, then (z\2)" < (y\2)"
(20) If x <y, then (z\y)" < (z\x)"
1) ((@\ 2\ (2" <o\ y.
(22) ((@\ @\ )"\ () )" < .

Let us consider X, a. We introduce a is minimal as a synonym of a is atom.
Let us consider X, a. We say that « is positive if and only if:

(Def. 2) 0x < a.
We say that a is least if and only if:

(Def. 3) For every x holds a < z.
We say that a is maximal if and only if:

(Def. 4)  For every z such that a < z holds = = a.
We say that a is greatest if and only if:

(Def. 5) For every z holds z < a.

Let us consider X. Observe that there exists an element of X which is
positive.

Let us consider X. Note that Ox is positive and minimal.

Next we state several propositions:

(23) @ is minimal iff for every z holds a \ x = z°\ a°.

(24) ¢ is minimal iff for every y such that y < z holds z¢ = y°.
(25) ¢ is minimal iff for all y, z holds ((z \ 2\ (v \ 2))¢)¢ = y° \ z€.
(26) If Ox is maximal, then every a is minimal.

(27)

If there exists « which is greatest, then every a is positive.
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(28) =z \ (x°)° is a positive element of X.
(29) a is minimal iff (a®)¢ = a.
(30) a is minimal iff there exists = such that a = x°.
Let us consider X, x. We say that x is nilpotent if and only if:
(Def. 6) There exists a non empty element k of N such that (0x \ 2)¥ = 0x.
Let us consider X. We say that X is nilpotent if and only if:
(Def. 7)  Every element of X is nilpotent.

Let us consider X, x. Let us assume that x is nilpotent. The functor ord(x)
yielding a non empty element of N is defined by:

(Def. 8)  (0x\2)*4®) = 0x and for every element m of N such that (0x\z)™ = Ox
and m # 0 holds ord(z) < m.

Let us consider X. One can verify that Ox is nilpotent.

We now state four propositions:
(31) x is a positive element of X iff x is nilpotent and ord(z) = 1.

(32) X is a BCK-algebra iff for every = holds ord(z) = 1 and « is nilpotent.
(33) (0x \ z°)™ is minimal.

(34)

If x is nilpotent, then ord(z) = ord(z°).

2. CONGRUENCES AND QUOTIENT ALGEBRAS

Let X be a BCl-algebra. An equivalence relation of X is said to be a
congruence of X if:
(Def. 9) For all elements x, y, u, v of X such that (x, y) € it and (u, v) € it
holds (z \ u, y \ v) € it.
Let X be a BCl-algebra. An equivalence relation of X is said to be an
L-congruence of X if:
(Def. 10) For all elements z, y of X such that (x, y) € it and for every element u
of X holds (u\ z, u\ y) € it.
Let X be a BCl-algebra. An equivalence relation of X is said to be an
R-congruence of X if:
(Def. 11) For all elements x, y of X such that (x, y) € it and for every element u
of X holds (z \ u, y \ u) € it.
Let X be a BCI-algebra and let A be an ideal of X. A binary relation on X
is said to be an I-congruence of X by A if:
(Def. 12) For all elements z, y of X holds (z, y) €itiff xt \y € Aand y \ z € A.
Let X be a BCl-algebra and let A be an ideal of X. Note that every I-

congruence of X by A is total, symmetric, and transitive.
Let X be a BCI-algebra. The functor IConSet X is defined as follows:
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(Def. 13) For every set A; holds A; € IConSet X iff there exists an ideal I of X
such that A; is an I-congruence of X by I.

Let X be a BCI-algebra. The functor ConSet X is defined as follows:
(Def. 14) ConSet X = {R : R ranges over congruences of X }.
The functor LConSet X is defined by:
(Def. 15) LConSet X = {R: R ranges over L-congruences of X}.
The functor RConSet X is defined as follows:
(Def. 16) RConSet X = {R : R ranges over R-congruences of X }.

For simplicity, we adopt the following rules: R is an equivalence relation
of X, Ry is an I-congruence of X by I, F is a congruence of X, Rs is an
R-congruence of X, and L, is an L-congruence of X.

We now state three propositions:

(35) For all X, E holds [0x]j is a closed ideal of X.

(36) Risacongruence of X iff R is an R-congruence of X and an L-congruence
of X.

(37) Ry is a congruence of X.

Let X be a BCl-algebra and let I be an ideal of X. We see that the I-
congruence of X by I is a congruence of X.
One can prove the following propositions:

38) [0xn,) C 1.

39) I is closed iff I = [0x]g,)-

40) If (z,y) € E, then z \ y € [0x]z and y \ z € [0x] 5.

41) Let A, I be ideals of X, I} be an I-congruence of X by A, and I3 be an
I-congruence of X by I. If [0x] ;) = [0x] (s, then Iy = I>.

(42) If {z,y) € E and u € [0x]y, then (z, (y \ u)¥) € E.

(43) Suppose that for all X, z, y there exist i, j, m, n such that ((z\ (z\

)\ (w\ ) = ((y\ (y\2))™\ (z\y)" Let given E, I. If I = [0x],
then FE is an I-congruence of X by I.

IConSet X C ConSet X.

ConSet X C LConSet X.

ConSet X C RConSet X.

ConSet X = LConSet X N RConSet X.

If every L is an I-congruence of X by I, then £ = R;.

(
(
(
(

(44
(45
(46
(47
(48
(49
(50

In the sequel E denotes a congruence of X and R; denotes an I-congruence
of X by I.
Let us consider X, E. Note that Classes F is non empty.

If every Rj is an I-congruence of X by I, then F = R;.

~— — — ~— ~— ~— ~—

[0x]f,) is a closed ideal of X.
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Let us consider X, E. The functor EqClaOp FE yielding a binary operation
on Classes E' is defined by:

(Def. 17)  For all elements Wy, W of Classes E and for all z, y such that Wy = [z]g
and Wy = [y]; holds (EqClaOp E) (W7, W) = [z \ y] 5.
Let us consider X, E. The functor zeroEqC FE yields an element of Classes F
and is defined as follows:

(Def. 18) zeroEqC E = [0x] g

Let us consider X, E. The functor X /g yielding a BCI structure with 0 is

defined by:
(Def. 19) X /g = (Classes E, EqClaOp E, zeroEqC E).

Let us consider X and let F be a congruence of X. One can check that X /p
is non empty.

In the sequel W7, Wy denote elements of Classes F.

Let us consider X, E, Wy, W,. The functor W7 \ Wy yielding an element of
Classes E is defined by:

(Def. 20) Wi \ Wy = (EqClaOp E)(W;, Ws).
Next we state the proposition
(51) X /g, is a BCl-algebra.
Let us consider X, I, Ry. Note that X /g, is strict, B, C, I, and BCI-4.
Next we state the proposition

(52) For all X, I such that I = BCK-part X and for every I-congruence R;
of X by I holds X/p, is a p-semisimple BCI-algebra.
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