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Summary. We have formalized the BCI-algebras closely following the

book [7] pp.16-19 and pp.58-65. Firstly, the article focuses on the properties

of the element and then the definition and properties of congruences and quo-

tient algebras are given. Quotient algebras are the basic tools for exploring the

structures of BCI-algebras.
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The articles [11], [5], [12], [10], [13], [2], [3], [1], [8], [14], [6], [15], [4], and [9]

provide the terminology and notation for this paper.

1. Basic Properties of the Element

For simplicity, we adopt the following convention: X is a BCI-algebra, I is

an ideal of X, a, x, y, z, u are elements of X, f is a function from N into the

carrier of X, and j, i, k, n, m are elements of N.

Let us consider X, x, y and let n be an element of N. The functor (x \ y)n

yielding an element of X is defined by:

(Def. 1) There exists f such that (x \ y)n = f(n) and f(0) = x and for every

element j of N such that j < n holds f(j + 1) = f(j) \ y.
One can prove the following propositions:

(1) (x \ y)0 = x.

(2) (x \ y)1 = x \ y.
(3) (x \ y)2 = x \ y \ y.
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(4) (x \ y)n+1 = ((x \ y)n) \ y.
(5) (x \ 0X)n+1 = x.

(6) (0X \ 0X)n = 0X .

(7) ((x \ y)n) \ z = ((x \ z) \ y)n.

(8) (x \ (x \ (x \ y)))n = (x \ y)n.

(9) ((0X \ x)n)c = (0X \ xc)n.

(10) ((x \ y)n \ y)m = (x \ y)n+m.

(11) ((x \ y)n \ z)m = ((x \ z)m \ y)n.

(12) (((0X \ x)n)c)c = (0X \ x)n.

(13) (0X \ x)n+m = ((0X \ x)n) \ ((0X \ x)m)c.

(14) ((0X \ x)m+n)c = ((0X \ x)m)c \ ((0X \ x)n).

(15) ((0X \ ((0X \ x)m))n)c = (0X \ x)m·n.

(16) If (0X \ x)m = 0X , then (0X \ x)m·n = 0X .

(17) If x \ y = x, then (x \ y)n = x.

(18) (0X \ (x \ y))n = ((0X \ x)n) \ ((0X \ y)n).

(19) If x ≤ y, then (x \ z)n ≤ (y \ z)n.
(20) If x ≤ y, then (z \ y)n ≤ (z \ x)n.

(21) ((x \ z)n) \ ((y \ z)n) ≤ x \ y.
(22) ((x \ (x \ y))n \ (y \ x))n ≤ x.

Let us consider X, a. We introduce a is minimal as a synonym of a is atom.

Let us consider X, a. We say that a is positive if and only if:

(Def. 2) 0X ≤ a.
We say that a is least if and only if:

(Def. 3) For every x holds a ≤ x.
We say that a is maximal if and only if:

(Def. 4) For every x such that a ≤ x holds x = a.

We say that a is greatest if and only if:

(Def. 5) For every x holds x ≤ a.
Let us consider X. Observe that there exists an element of X which is

positive.

Let us consider X. Note that 0X is positive and minimal.

Next we state several propositions:

(23) a is minimal iff for every x holds a \ x = xc \ ac.

(24) xc is minimal iff for every y such that y ≤ x holds xc = yc.

(25) xc is minimal iff for all y, z holds ((x \ z \ (y \ z))c)c = yc \ xc.

(26) If 0X is maximal, then every a is minimal.

(27) If there exists x which is greatest, then every a is positive.
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(28) x \ (xc)c is a positive element of X.

(29) a is minimal iff (ac)c = a.

(30) a is minimal iff there exists x such that a = xc.

Let us consider X, x. We say that x is nilpotent if and only if:

(Def. 6) There exists a non empty element k of N such that (0X \ x)k = 0X .

Let us consider X. We say that X is nilpotent if and only if:

(Def. 7) Every element of X is nilpotent.

Let us consider X, x. Let us assume that x is nilpotent. The functor ord(x)

yielding a non empty element of N is defined by:

(Def. 8) (0X\x)ord(x) = 0X and for every element m of N such that (0X\x)m = 0X
and m 6= 0 holds ord(x) ≤ m.

Let us consider X. One can verify that 0X is nilpotent.

We now state four propositions:

(31) x is a positive element of X iff x is nilpotent and ord(x) = 1.

(32) X is a BCK-algebra iff for every x holds ord(x) = 1 and x is nilpotent.

(33) (0X \ xc)n is minimal.

(34) If x is nilpotent, then ord(x) = ord(xc).

2. Congruences and Quotient Algebras

Let X be a BCI-algebra. An equivalence relation of X is said to be a

congruence of X if:

(Def. 9) For all elements x, y, u, v of X such that 〈〈x, y〉〉 ∈ it and 〈〈u, v〉〉 ∈ it

holds 〈〈x \ u, y \ v〉〉 ∈ it.

Let X be a BCI-algebra. An equivalence relation of X is said to be an

L-congruence of X if:

(Def. 10) For all elements x, y of X such that 〈〈x, y〉〉 ∈ it and for every element u

of X holds 〈〈u \ x, u \ y〉〉 ∈ it.

Let X be a BCI-algebra. An equivalence relation of X is said to be an

R-congruence of X if:

(Def. 11) For all elements x, y of X such that 〈〈x, y〉〉 ∈ it and for every element u

of X holds 〈〈x \ u, y \ u〉〉 ∈ it.

Let X be a BCI-algebra and let A be an ideal of X. A binary relation on X

is said to be an I-congruence of X by A if:

(Def. 12) For all elements x, y of X holds 〈〈x, y〉〉 ∈ it iff x \ y ∈ A and y \ x ∈ A.
Let X be a BCI-algebra and let A be an ideal of X. Note that every I-

congruence of X by A is total, symmetric, and transitive.

Let X be a BCI-algebra. The functor IConSetX is defined as follows:
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(Def. 13) For every set A1 holds A1 ∈ IConSetX iff there exists an ideal I of X

such that A1 is an I-congruence of X by I.

Let X be a BCI-algebra. The functor ConSetX is defined as follows:

(Def. 14) ConSetX = {R : R ranges over congruences of X}.
The functor LConSetX is defined by:

(Def. 15) LConSetX = {R : R ranges over L-congruences of X}.
The functor RConSetX is defined as follows:

(Def. 16) RConSetX = {R : R ranges over R-congruences of X}.
For simplicity, we adopt the following rules: R is an equivalence relation

of X, R1 is an I-congruence of X by I, E is a congruence of X, R2 is an

R-congruence of X, and L1 is an L-congruence of X.

We now state three propositions:

(35) For all X, E holds [0X ]E is a closed ideal of X.

(36) R is a congruence ofX iff R is an R-congruence ofX and an L-congruence

of X.

(37) R1 is a congruence of X.

Let X be a BCI-algebra and let I be an ideal of X. We see that the I-

congruence of X by I is a congruence of X.

One can prove the following propositions:

(38) [0X ](R1) ⊆ I.
(39) I is closed iff I = [0X ](R1).

(40) If 〈〈x, y〉〉 ∈ E, then x \ y ∈ [0X ]E and y \ x ∈ [0X ]E.

(41) Let A, I be ideals of X, I1 be an I-congruence of X by A, and I2 be an

I-congruence of X by I. If [0X ](I1) = [0X ](I2), then I1 = I2.

(42) If 〈〈x, y〉〉 ∈ E and u ∈ [0X ]E, then 〈〈x, (y \ u)k〉〉 ∈ E.
(43) Suppose that for all X, x, y there exist i, j, m, n such that ((x \ (x \

y))i \ (y \ x))j = ((y \ (y \ x))m \ (x \ y))n. Let given E, I. If I = [0X ]E ,

then E is an I-congruence of X by I.

(44) IConSetX ⊆ ConSetX.

(45) ConSetX ⊆ LConSetX.

(46) ConSetX ⊆ RConSetX.

(47) ConSetX = LConSetX ∩RConSetX.

(48) If every L1 is an I-congruence of X by I, then E = R1.

(49) If every R2 is an I-congruence of X by I, then E = R1.

(50) [0X ](L1) is a closed ideal of X.

In the sequel E denotes a congruence of X and R1 denotes an I-congruence

of X by I.

Let us consider X, E. Note that ClassesE is non empty.
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Let us consider X, E. The functor EqClaOpE yielding a binary operation

on ClassesE is defined by:

(Def. 17) For all elements W1, W2 of ClassesE and for all x, y such that W1 = [x]E
and W2 = [y]E holds (EqClaOpE)(W1, W2) = [x \ y]E .

Let us consider X, E. The functor zeroEqCE yields an element of ClassesE

and is defined as follows:

(Def. 18) zeroEqCE = [0X ]E.

Let us consider X, E. The functor X/E yielding a BCI structure with 0 is

defined by:

(Def. 19) X/E = 〈ClassesE,EqClaOpE, zeroEqCE〉.
Let us consider X and let E be a congruence of X. One can check that X/E

is non empty.

In the sequel W1, W2 denote elements of ClassesE.

Let us consider X, E, W1, W2. The functor W1 \W2 yielding an element of

ClassesE is defined by:

(Def. 20) W1 \W2 = (EqClaOpE)(W1, W2).

Next we state the proposition

(51) X/R1 is a BCI-algebra.

Let us consider X, I, R1. Note that X/R1 is strict, B, C, I, and BCI-4.

Next we state the proposition

(52) For all X, I such that I = BCK-partX and for every I-congruence R1

of X by I holds X/R1 is a p-semisimple BCI-algebra.
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