Block Diagonal Matrices

Karol Pąk Institute of Computer Science University of Białystok Poland

Summary. In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.

MML identifier: MATRIXJ1, version: 7.9.01 4.103.1019

The papers [19], [1], [2], [6], [7], [3], [17], [16], [12], [5], [8], [9], [20], [13], [18], [21], [4], [14], [15], [11], and [10] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, m, n, k denote natural numbers, x denotes a set, K denotes a field, a, a_1, a_2 denote elements of K, D denotes a non empty set, d, d_1, d_2 denote elements of D, M, M_1, M_2 denote matrices over D, A, A_1, A_2, B_1, B_2 denote matrices over K, and f, g denote finite sequences of elements of \mathbb{N} .

One can prove the following propositions:

- (1) Let K be a non empty additive loop structure and f_1, f_2, g_1, g_2 be finite sequences of elements of K. If len $f_1 = \text{len } f_2$, then $(f_1 + f_2) \cap (g_1 + g_2) = f_1 \cap g_1 + f_2 \cap g_2$.
- (2) For all finite sequences f, g of elements of D such that $i \in \text{dom } f$ holds $(f \cap g)_{|i|} = (f_{|i|}) \cap g.$
- (3) For all finite sequences f, g of elements of D such that $i \in \text{dom } g$ holds $(f \cap g)_{|i|+||i||} = f \cap (g_{|i|}).$

C 2008 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

KAROL PĄK

- (4) If $i \in \text{Seg}(n+1)$, then $((n+1) \mapsto d)_{\uparrow i} = n \mapsto d$.
- (5) $\prod(n \mapsto a) = \operatorname{power}_K(a, n).$

Let us consider f and let i be a natural number. Let us assume that $i \in \text{Seg}(\sum f)$. The functor $\min(f, i)$ yielding an element of \mathbb{N} is defined by:

(Def. 1) $i \leq \sum f \restriction \min(f, i)$ and $\min(f, i) \in \text{dom } f$ and for every j such that $i \leq \sum f \restriction j$ holds $\min(f, i) \leq j$.

One can prove the following propositions:

- (6) If $i \in \text{dom } f$ and $f(i) \neq 0$, then $\min(f, \sum f | i) = i$.
- (7) If $i \in \text{Seg}(\sum f)$, then $\min(f, i) 1 = \min(f, i) 1$ and $\sum f \upharpoonright (\min(f, i) 1) < i$.
- (8) If $i \in \text{Seg}(\sum f)$, then $\min(f \cap g, i) = \min(f, i)$.
- (9) If $i \in \text{Seg}((\sum f) + \sum g) \setminus \text{Seg}(\sum f)$, then $\min(f \cap g, i) = \min(g, i \sum f) + \text{len } f$ and $i \sum f = i \sum f$.
- (10) If $i \in \text{dom } f$ and $j \in \text{Seg}(f_i)$, then $j + \sum f \upharpoonright (i 1) \in \text{Seg}(\sum f \upharpoonright i)$ and $\min(f, j + \sum f \upharpoonright (i 1)) = i$.
- (11) For all i, j such that $i \leq \text{len } f$ and $j \leq \text{len } f$ and $\sum f | i = \sum f | j$ and if $i \in \text{dom } f$, then $f(i) \neq 0$ and if $j \in \text{dom } f$, then $f(j) \neq 0$ holds i = j.

2. Finite Sequences of Matrices

Let us consider D and let F be a finite sequence of elements of $(D^*)^*$. We say that F is matrix-yielding if and only if:

(Def. 2) For every *i* such that $i \in \text{dom } F$ holds F(i) is a matrix over *D*.

Let us consider D. Observe that there exists a finite sequence of elements of $(D^*)^*$ which is matrix-yielding.

Let us consider D. A finite sequence of matrices over D is a matrix-yielding finite sequence of elements of $(D^*)^*$.

Let us consider K. A finite sequence of matrices over K is a matrix-yielding finite sequence of elements of $((\text{the carrier of } K)^*)^*$.

We now state the proposition

(12) \emptyset is a finite sequence of matrices over D.

We adopt the following rules: F, F_1 , F_2 are finite sequences of matrices over D and G, G', G_1 , G_2 are finite sequences of matrices over K.

Let us consider D, F, x. Then F(x) is a matrix over D.

Let us consider D, F_1, F_2 . Then $F_1 \cap F_2$ is a finite sequence of matrices over D.

Let us consider D, M_1 . Then $\langle M_1 \rangle$ is a finite sequence of matrices over D. Let us consider M_2 . Then $\langle M_1, M_2 \rangle$ is a finite sequence of matrices over D.

260

Let us consider D, F, n. Then $F \upharpoonright n$ is a finite sequence of matrices over D. Then $F_{\lfloor n \rfloor}$ is a finite sequence of matrices over D.

3. Sequences of Sizes of Matrices in a Finite Sequence

Let us consider D, F. The functor Len F yielding a finite sequence of elements of \mathbb{N} is defined as follows:

(Def. 3) dom Len F = dom F and for every i such that $i \in \text{dom Len } F$ holds (Len F)(i) = len F(i).

The functor Width F yields a finite sequence of elements of \mathbb{N} and is defined by:

(Def. 4) dom Width F = dom F and for every i such that $i \in \text{dom Width } F$ holds (Width F)(i) = width F(i).

Let us consider D, F. Then Len F is an element of $\mathbb{N}^{\text{len }F}$. Then Width F is an element of $\mathbb{N}^{\text{len }F}$.

The following propositions are true:

- (13) If $\sum \text{Len } F = 0$, then $\sum \text{Width } F = 0$.
- (14) $\operatorname{Len}(F_1 \cap F_2) = (\operatorname{Len} F_1) \cap \operatorname{Len} F_2.$
- (15) $\operatorname{Len}\langle M \rangle = \langle \operatorname{len} M \rangle.$
- (16) $\sum \operatorname{Len}\langle M_1, M_2 \rangle = \operatorname{len} M_1 + \operatorname{len} M_2.$
- (17) $\operatorname{Len}(F_1 \restriction n) = \operatorname{Len} F_1 \restriction n.$
- (18) Width $(F_1 \cap F_2) = (Width F_1) \cap Width F_2$.
- (19) Width $\langle M \rangle = \langle \text{width } M \rangle.$
- (20) $\sum \operatorname{Width}\langle M_1, M_2 \rangle = \operatorname{width} M_1 + \operatorname{width} M_2.$
- (21) Width $(F_1 \upharpoonright n)$ = Width $F_1 \upharpoonright n$.

4. BLOCK DIAGONAL MATRICES

Let us consider D, let d be an element of D, and let F be a finite sequence of matrices over D. The d-block diagonal of F is a matrix over D and is defined by the conditions (Def. 5).

- (Def. 5)(i) len (the *d*-block diagonal of F) = $\sum \text{Len } F$,
 - (ii) width (the *d*-block diagonal of F) = \sum Width F, and
 - (iii) for all i, j such that $\langle i, j \rangle \in$ the indices of the dblock diagonal of F holds if $j \leq \sum \text{Width } F \upharpoonright (\min(\text{Len } F, i) - 1)$ 1) or $j > \sum \text{Width } F \upharpoonright \min(\text{Len } F, i)$, then (the d-block diagonal of $F)_{i,j} = d$ and if $\sum \text{Width } F \upharpoonright (\min(\text{Len } F, i) - 1) < j \leq \sum \text{Width } F \upharpoonright \min(\text{Len } F, i)$, then (the d-block diagonal of $F)_{i,j} = F(\min(\text{Len } F, i))_{i-1} \sum \text{Len } F \upharpoonright (\min(\text{Len } F, i) - 1)_{i-1} \sum \text{Width } F \upharpoonright (\min(\text{Len } F, i) - 1)_{i-1}$.

Let us consider D, let d be an element of D, and let F be a finite sequence of matrices over D. Then the d-block diagonal of F is a matrix over D of dimension $\sum \text{Len } F \times \sum \text{Width } F$.

Next we state a number of propositions:

- (22) For every finite sequence F of matrices over D such that $F = \emptyset$ holds the d-block diagonal of $F = \emptyset$.
- (23) Let M be a matrix over D of dimension $\sum \operatorname{Len}\langle M_1, M_2 \rangle \times \sum \operatorname{Width}\langle M_1, M_2 \rangle$. Then M = the d-block diagonal of $\langle M_1, M_2 \rangle$ if and only if for every i holds if $i \in \operatorname{dom} M_1$, then $\operatorname{Line}(M, i) = \operatorname{Line}(M_1, i) \cap (\operatorname{width} M_2 \mapsto d)$ and if $i \in \operatorname{dom} M_2$, then $\operatorname{Line}(M, i + \operatorname{len} M_1) = (\operatorname{width} M_1 \mapsto d) \cap \operatorname{Line}(M_2, i)$.
- (24) Let M be a matrix over D of dimension $\sum \operatorname{Len}\langle M_1, M_2 \rangle \times \sum \operatorname{Width}\langle M_1, M_2 \rangle$. $M_2\rangle$. Then M = the d-block diagonal of $\langle M_1, M_2 \rangle$ if and only if for every i holds if $i \in \operatorname{Seg width} M_1$, then $M_{\Box,i} = ((M_1)_{\Box,i}) \cap (\operatorname{len} M_2 \mapsto d)$ and if $i \in \operatorname{Seg width} M_2$, then $M_{\Box,i+\operatorname{width} M_1} = (\operatorname{len} M_1 \mapsto d) \cap ((M_2)_{\Box,i})$.
- (25) The indices of the d_1 -block diagonal of F_1 is a subset of the indices of the d_2 -block diagonal of $F_1 \cap F_2$.
- (26) Suppose $\langle i, j \rangle \in$ the indices of the *d*-block diagonal of F_1 . Then (the *d*-block diagonal of F_1)_{*i*,*j*} = (the *d*-block diagonal of $F_1 \cap F_2$)_{*i*,*j*}.
- (27) $\langle i, j \rangle \in$ the indices of the d_1 -block diagonal of F_2 if and only if i > 0 and j > 0 and $\langle i + \sum \operatorname{Len} F_1, j + \sum \operatorname{Width} F_1 \rangle \in$ the indices of the d_2 -block diagonal of $F_1 \cap F_2$.
- (28) Suppose $\langle i, j \rangle \in$ the indices of the *d*-block diagonal of F_2 . Then (the *d*-block diagonal of F_2)_{*i*,*j*} = (the *d*-block diagonal of $F_1 \cap F_2$)_{*i*+ $\sum \operatorname{Len} F_1, j + \sum \operatorname{Width} F_1$.}
- (29) Suppose $\langle i, j \rangle \in$ the indices of the *d*-block diagonal of $F_1 \cap F_2$ but $i \leq \sum \operatorname{Len} F_1$ and $j > \sum \operatorname{Width} F_1$ or $i > \sum \operatorname{Len} F_1$ and $j \leq \sum \operatorname{Width} F_1$. Then (the *d*-block diagonal of $F_1 \cap F_2$)_{*i*,*j*} = *d*.
- (30) Let given i, j, k. Suppose $i \in \text{dom } F$ and $\langle j, k \rangle \in \text{the indices of } F(i)$. Then
 - (i) $\langle j + \sum \operatorname{Len} F \upharpoonright (i 1), k + \sum \operatorname{Width} F \upharpoonright (i 1) \rangle \in \text{the indices of the } d\text{-block diagonal of } F, \text{ and }$
- (ii) $F(i)_{j,k} = (\text{the } d\text{-block diagonal of } F)_{j+\sum \operatorname{Len} F \upharpoonright (i-1), k+\sum \operatorname{Width} F \upharpoonright (i-1)}.$
- (31) If $i \in \operatorname{dom} F$, then $F(i) = \operatorname{Segm}(\operatorname{the} d\operatorname{-block} \operatorname{diagonal} of F, \operatorname{Seg}(\sum \operatorname{Len} F \upharpoonright i) \setminus \operatorname{Seg}(\sum \operatorname{Len} F \upharpoonright (i '1)), \operatorname{Seg}(\sum \operatorname{Width} F \upharpoonright i) \setminus \operatorname{Seg}(\sum \operatorname{Width} F \upharpoonright (i '1))).$
- (32) $M = \text{Segm}(\text{the } d\text{-block diagonal of } \langle M \rangle \cap F, \text{Seg len } M, \text{Seg width } M).$
- (33) $M = \text{Segm}(\text{the } d\text{-block diagonal of } F \cap \langle M \rangle, \text{Seg}(\text{len } M + \sum \text{Len } F) \setminus \text{Seg}(\sum \text{Len } F), \text{Seg}(\text{width } M + \sum \text{Width } F) \setminus \text{Seg}(\sum \text{Width } F)).$
- (34) The *d*-block diagonal of $\langle M \rangle = M$.

- (35) The *d*-block diagonal of $F_1 \cap F_2$ = the *d*-block diagonal of \langle the *d*-block diagonal of $F_1 \rangle \cap F_2$.
- (36) The *d*-block diagonal of $F_1 \cap F_2$ = the *d*-block diagonal of $F_1 \cap \langle \text{the } d\text{-block diagonal of } F_2 \rangle$.
- (37) If $i \in \operatorname{Seg}(\Sigma \operatorname{Len} F)$ and $m = \min(\operatorname{Len} F, i)$, then $\operatorname{Line}(\operatorname{the} d\operatorname{-block} \operatorname{diagonal} of F, i) = ((\Sigma \operatorname{Width}(F \restriction (m '1))) \mapsto d) \cap \operatorname{Line}(F(m), i '\Sigma \operatorname{Len}(F \restriction (m '1))) \cap (((\Sigma \operatorname{Width} F) '\Sigma \operatorname{Width}(F \restriction m)) \mapsto d).$
- (38) If $i \in \operatorname{Seg}(\Sigma \operatorname{Width} F)$ and $m = \min(\operatorname{Width} F, i)$, then (the *d*-block diagonal of $F)_{\Box,i} = ((\Sigma \operatorname{Len}(F \upharpoonright (m '1))) \mapsto d) \cap (F(m)_{\Box,i-'\Sigma \operatorname{Width}(F \upharpoonright (m '1))}) \cap (((\Sigma \operatorname{Len} F) '\Sigma \operatorname{Len}(F \upharpoonright m)) \mapsto d).$
- (39) Let M_1 , M_2 , N_1 , N_2 be matrices over D. Suppose len $M_1 = \text{len } N_1$ and width $M_1 = \text{width } N_1$ and len $M_2 = \text{len } N_2$ and width $M_2 = \text{width } N_2$ and the d_1 -block diagonal of $\langle M_1, M_2 \rangle =$ the d_2 -block diagonal of $\langle N_1, N_2 \rangle$. Then $M_1 = N_1$ and $M_2 = N_2$.
- (40) Suppose $M = \emptyset$. Then
 - (i) the *d*-block diagonal of $F \cap \langle M \rangle$ = the *d*-block diagonal of *F*, and
- (ii) the *d*-block diagonal of $\langle M \rangle \cap F$ = the *d*-block diagonal of *F*.
- (41) Suppose $i \in \text{dom } A$ and width A = width (the deleting of *i*-row in A). Then the deleting of *i*-row in the *a*-block diagonal of $\langle A \rangle \cap G = \text{the } a\text{-block}$ diagonal of $\langle \text{the deleting of } i\text{-row in } A \rangle \cap G$.
- (42) Suppose $i \in \text{dom } A$ and width A = width (the deleting of *i*-row in A). Then the deleting of $(\sum \text{Len } G) + i$ -row in the *a*-block diagonal of $G^{\frown}\langle A \rangle =$ the *a*-block diagonal of $G^{\frown}\langle \text{the deleting of } i$ -row in $A \rangle$.
- (43) Suppose $i \in \text{Seg width } A$. Then the deleting of *i*-column in the *a*-block diagonal of $\langle A \rangle \cap G$ = the *a*-block diagonal of $\langle \text{the deleting of } i\text{-column in } A \rangle \cap G$.
- (44) Suppose $i \in \text{Seg width } A$. Then the deleting of $i + \sum \text{Width } G$ -column in the *a*-block diagonal of $G \cap \langle A \rangle = \text{the } a$ -block diagonal of $G \cap \langle \text{the deleting of } i\text{-column in } A \rangle$.

Let us consider D and let F be a finite sequence of elements of $(D^*)^*$. We say that F is square-matrix-yielding if and only if:

(Def. 6) For every i such that $i \in \text{dom } F$ there exists n such that F(i) is a square matrix over D of dimension n.

Let us consider D. One can verify that there exists a finite sequence of elements of $(D^*)^*$ which is square-matrix-yielding.

Let us consider D. Observe that every finite sequence of elements of $(D^*)^*$ which is square-matrix-yielding is also matrix-yielding.

Let us consider D. A finite sequence of square-matrices over D is a square-matrix-yielding finite sequence of elements of $(D^*)^*$.

Let us consider K. A finite sequence of square-matrices over K is a squarematrix-yielding finite sequence of elements of $((\text{the carrier of } K)^*)^*$.

We use the following convention: S, S_1, S_2 denote finite sequences of squarematrices over D and R, R_1, R_2 denote finite sequences of square-matrices over K.

One can prove the following proposition

(45) \emptyset is a finite sequence of square-matrices over D.

Let us consider D, S, x. Then S(x) is a square matrix over D of dimension len S(x).

Let us consider D, S_1, S_2 . Then $S_1 \cap S_2$ is a finite sequence of square-matrices over D.

Let us consider D, n and let M_1 be a square matrix over D of dimension n. Then $\langle M_1 \rangle$ is a finite sequence of square-matrices over D.

Let us consider D, n, m, let M_1 be a square matrix over D of dimension n, and let M_2 be a square matrix over D of dimension m. Then $\langle M_1, M_2 \rangle$ is a finite sequence of square-matrices over D.

Let us consider D, S, n. Then $S \upharpoonright n$ is a finite sequence of square-matrices over D. Then S_{in} is a finite sequence of square-matrices over D.

The following proposition is true

(46) Len S =Width S.

Let us consider D, let d be an element of D, and let S be a finite sequence of square-matrices over D. Then the d-block diagonal of S is a square matrix over D of dimension $\sum \text{Len } S$.

One can prove the following propositions:

- (47) Let A be a square matrix over K of dimension n. Suppose $i \in \text{dom} A$ and $j \in \text{Seg } n$. Then the deleting of *i*-row and *j*-column in the *a*-block diagonal of $\langle A \rangle \cap R =$ the *a*-block diagonal of $\langle \text{the deleting of } i\text{-row and } j\text{-column in } A \rangle \cap R$.
- (48) Let A be a square matrix over K of dimension n. Suppose $i \in \text{dom } A$ and $j \in \text{Seg } n$. Then the deleting of $i + \sum \text{Len } R$ -row and $j + \sum \text{Len } R$ -column in the *a*-block diagonal of $R \cap \langle A \rangle =$ the *a*-block diagonal of $R \cap \langle \text{the deleting of } i\text{-row and } j\text{-column in } A \rangle$.

Let us consider K, R. The functor Det R yielding a finite sequence of elements of K is defined as follows:

(Def. 7) dom Det R = dom R and for every i such that $i \in \text{dom Det } R$ holds (Det R)(i) = Det R(i).

Let us consider K, R. Then Det R is an element of (the carrier of K)^{len R}.

In the sequel N denotes a square matrix over K of dimension n and N_1 denotes a square matrix over K of dimension m.

The following propositions are true:

- (49) $\operatorname{Det}\langle N \rangle = \langle \operatorname{Det} N \rangle.$
- (50) $\operatorname{Det}(R_1 \cap R_2) = (\operatorname{Det} R_1) \cap \operatorname{Det} R_2.$
- (51) $\operatorname{Det}(R \restriction n) = \operatorname{Det} R \restriction n.$
- (52) Det (the 0_K -block diagonal of $\langle N, N_1 \rangle$) = Det $N \cdot \text{Det } N_1$.
- (53) Det (the 0_K -block diagonal of R) = $\prod \text{Det } R$.
- (54) If len $A_1 \neq$ width A_1 and N = the 0_K -block diagonal of $\langle A_1, A_2 \rangle$, then Det $N = 0_K$.
- (55) Suppose Len $G \neq$ Width G. Let M be a square matrix over K of dimension n. If M = the 0_K -block diagonal of G, then Det $M = 0_K$.

5. AN EXAMPLE OF A FINITE SEQUENCE OF MATRICES

Let us consider K and let f be a finite sequence of elements of N. The functor $I_K^{f \times f}$ yielding a finite sequence of square-matrices over K is defined by:

(Def. 8) $\operatorname{dom}(I_K^{f \times f}) = \operatorname{dom} f$ and for every i such that $i \in \operatorname{dom}(I_K^{f \times f})$ holds $I_K^{f \times f}(i) = I_K^{f(i) \times f(i)}$.

The following propositions are true:

- (56) Len $(I_K^{f \times f}) = f$ and Width $(I_K^{f \times f}) = f$.
- (57) For every element i of \mathbb{N} holds $I_K^{\langle i \rangle \times \langle i \rangle} = \langle I_K^{i \times i} \rangle$.
- (58) $I_K^{(f^\frown g) \times (f^\frown g)} = (I_K^{f \times f}) \cap I_K^{g \times g}.$
- (59) $I_{K}^{(f \upharpoonright n) \times (f \upharpoonright n)} = I_{K}^{f \times f} \upharpoonright n.$
- (60) The 0_K-block diagonal of $\langle I_K^{i \times i}, I_K^{j \times j} \rangle = I_K^{(i+j) \times (i+j)}$.
- (61) The 0_K-block diagonal of $I_K^{f \times f} = I_K^{(\sum f) \times (\sum f)}$.
 - In the sequel p, p_1 are finite sequences of elements of K.

6. Operations on a Finite Sequence of Matrices

Let us consider K, G, p. The functor $p \bullet G$ yielding a finite sequence of matrices over K is defined as follows:

(Def. 9) dom $(p \bullet G) = \text{dom} G$ and for every i such that $i \in \text{dom}(p \bullet G)$ holds $(p \bullet G)(i) = p_i \cdot G(i).$

Let us consider K and let us consider R, p. Then $p \bullet R$ is a finite sequence of square-matrices over K.

The following propositions are true:

- (62) $\operatorname{Len}(p \bullet G) = \operatorname{Len} G$ and $\operatorname{Width}(p \bullet G) = \operatorname{Width} G$.
- (63) $p \bullet \langle A \rangle = \langle p_1 \cdot A \rangle.$
- (64) If len $G = \operatorname{len} p$ and len $G_1 \leq \operatorname{len} p_1$, then $p^{\frown} p_1 \bullet G^{\frown} G_1 = (p \bullet G)^{\frown} (p_1 \bullet G_1)$.

KAROL PĄK

(65) $a \cdot \text{the } a_1 \text{-block diagonal of } G = \text{the } (a \cdot a_1) \text{-block diagonal of len } G \mapsto a \bullet G.$

Let us consider K and let G_1 , G_2 be finite sequences of matrices over K. The functor $G_1 \oplus G_2$ yields a finite sequence of matrices over K and is defined by:

(Def. 10) $\operatorname{dom}(G_1 \oplus G_2) = \operatorname{dom} G_1$ and for every i such that $i \in \operatorname{dom}(G_1 \oplus G_2)$ holds $(G_1 \oplus G_2)(i) = G_1(i) + G_2(i)$.

Let us consider K and let us consider R, G. Then $R \oplus G$ is a finite sequence of square-matrices over K.

The following propositions are true:

- (66) Len $(G_1 \oplus G_2)$ = Len G_1 and Width $(G_1 \oplus G_2)$ = Width G_1 .
- (67) If len $G = \operatorname{len} G'$, then $G \cap G_1 \oplus G' \cap G_2 = (G \oplus G') \cap (G_1 \oplus G_2)$.
- (68) $\langle A \rangle \oplus G = \langle A + G(1) \rangle.$
- (69) $\langle A_1 \rangle \oplus \langle A_2 \rangle = \langle A_1 + A_2 \rangle.$
- (70) $\langle A_1, B_1 \rangle \oplus \langle A_2, B_2 \rangle = \langle A_1 + A_2, B_1 + B_2 \rangle.$
- (71) Suppose len $A_1 = \text{len } B_1$ and len $A_2 = \text{len } B_2$ and width $A_1 = \text{width } B_1$ and width $A_2 = \text{width } B_2$. Then (the a_1 -block diagonal of $\langle A_1, A_2 \rangle$) + (the a_2 -block diagonal of $\langle B_1, B_2 \rangle$) = the $(a_1 + a_2)$ -block diagonal of $\langle A_1, A_2 \rangle \oplus \langle B_1, B_2 \rangle$.
- (72) Suppose Len R_1 = Len R_2 and Width R_1 = Width R_2 . Then (the a_1 -block diagonal of R_1) + (the a_2 -block diagonal of R_2) = the $(a_1 + a_2)$ -block diagonal of $R_1 \oplus R_2$.

Let us consider K and let G_1 , G_2 be finite sequences of matrices over K. The functor $G_1 G_2$ yielding a finite sequence of matrices over K is defined by:

(Def. 11) $\operatorname{dom}(G_1 G_2) = \operatorname{dom} G_1$ and for every i such that $i \in \operatorname{dom}(G_1 G_2)$ holds $(G_1 G_2)(i) = G_1(i) \cdot G_2(i).$

Next we state several propositions:

- (73) If Width $G_1 = \text{Len } G_2$, then $\text{Len}(G_1 G_2) = \text{Len } G_1$ and $\text{Width}(G_1 G_2) = \text{Width } G_2$.
- (74) If len G = len G', then $(G \cap G_1) (G' \cap G_2) = (G G') \cap (G_1 G_2)$.
- (75) $\langle A \rangle G = \langle A \cdot G(1) \rangle.$
- (76) $\langle A_1 \rangle \langle A_2 \rangle = \langle A_1 \cdot A_2 \rangle.$
- (77) $\langle A_1, B_1 \rangle \langle A_2, B_2 \rangle = \langle A_1 \cdot A_2, B_1 \cdot B_2 \rangle.$
- (78) Suppose width $A_1 = \text{len } B_1$ and width $A_2 = \text{len } B_2$. Then (the 0_K -block diagonal of $\langle A_1, A_2 \rangle$) \cdot (the 0_K -block diagonal of $\langle B_1, B_2 \rangle$) = the 0_K -block diagonal of $\langle A_1, A_2 \rangle \langle B_1, B_2 \rangle$.
- (79) If Width $R_1 = \text{Len } R_2$, then (the 0_K -block diagonal of R_1) \cdot (the 0_K -block diagonal of R_2) = the 0_K -block diagonal of $R_1 R_2$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
- [10] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573–577, 1997.
- Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [14] Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199–211, 2007.
- [15] Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143–150, 2007.
- [16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [17] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [18] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41–47, 1991.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.
- [21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received May 13, 2008