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Summary.We continue Mizar formalization of general topology according
to the book [11] by Engelking. In the article, we present the final theorem of
Section 4.1. Namely, the paper includes the formalization of theorems on the
correspondence between the cardinalities of the basis and of some open subcover,
and a discreet (closed) subspaces, and the weight of that metrizable topological
space. We also define Lindelöf spaces and state the above theorem in this special
case. We also introduce the concept of separation among two subsets (see [12]).

MML identifier: METRIZTS, version: 7.11.02 4.125.1059

The articles [21], [13], [20], [2], [1], [3], [10], [9], [7], [16], [4], [6], [19], [23], [22],
[17], [15], [14], [8], [18], and [5] provide the notation and terminology for this
paper.

1. Preliminaries

For simplicity, we follow the rules: T , T1, T2 denote topological spaces, A, B
denote subsets of T , F , G denote families of subsets of T , A1 denotes a subset of
T1, A2 denotes a subset of T2, T3, T4, T5 denote metrizable topological spaces,
A3, B1 denote subsets of T3, F1, G1 denote families of subsets of T3, C denotes
a cardinal number, and i1 denotes an infinite cardinal number.

Let us consider T1, T2, A1, A2. We say that A1 and A2 are homeomorphic
if and only if:

(Def. 1) T1�A1 and T2�A2 are homeomorphic.
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Next we state four propositions:

(1) T1 and T2 are homeomorphic iff Ω(T1) and Ω(T2) are homeomorphic.

(2) Let f be a function from T1 into T2. Suppose f is homeomorphism.
Let g be a function from T1�A1 into T2�f◦A1. If g = f�A1, then g is
homeomorphism.

(3) For every function f from T1 into T2 such that f is homeomorphism
holds A1 and f◦A1 are homeomorphic.

(4) If T1 and T2 are homeomorphic, then weightT1 = weightT2.

Note that every topological space which is empty is also metrizable and
every topological space which is metrizable is also T4 and non empty. Let M be
a metric space. Note that Mtop is metrizable.

Let us consider T3, A3. Observe that T3�A3 is metrizable.
Let us consider T4, T5. Observe that T4 × T5 is metrizable.
Next we state two propositions:

(5) weightT1 × T2 ⊆ weightT1 · weightT2.

(6) If T1 is non empty and T2 is non empty, then weightT1 ⊆ weightT1×T2
and weightT2 ⊆ weightT1 × T2.

Let T1, T2 be second-countable topological spaces. One can check that T1 ×
T2 is second-countable.

One can prove the following propositions:

(7) Card(F �A) ⊆ CardF.

(8) For every basis B2 of T holds B2�A is a basis of T �A.

Let T be a second-countable topological space and let A be a subset of T .
Note that T �A is second-countable.

Let M be a non empty metric space and let A be a non empty subset of
Mtop. One can check that distmin(A) is continuous.

We now state the proposition

(9) For every subset B of T and for every subset F of T �A such that F = B
holds T �A�F = T �B.

Let us consider T3. Observe that every subset of T3 which is open is also Fσ
and every subset of T3 which is closed is also Gδ.

The following propositions are true:

(10) For every subset F of T �B such that A is Fσ and F = A∩B holds F is
Fσ.

(11) For every subset F of T �B such that A is Gδ and F = A∩B holds F is
Gδ.

(12) If T is a T1 space and A is discrete, then A is an open subset of T �A.

(13) Let given T . Suppose that for every F such that F is open and a cover of
T there exists G such that G ⊆ F and G is a cover of T and CardG ⊆ C.
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Let given A. If A is closed and discrete, then CardA ⊆ C.
(14) Let given T3. Suppose that for every A3 such that A3 is closed and

discrete holds CardA3 ⊆ i1. Let given A3. If A3 is discrete, then CardA3 ⊆
i1.

(15) Let given T . Suppose that for every A such that A is discrete holds
CardA ⊆ C. Let given F . Suppose F is open and ∅ /∈ F and for all A, B
such that A, B ∈ F and A 6= B holds A misses B. Then CardF ⊆ C.

(16) For every F such that F is a cover of T there exists G such that G ⊆ F
and G is a cover of T and CardG ⊆ Card(ΩT ).

(17) If A3 is dense, then weightT3 ⊆ Cardω · CardA3.

2. Main Properties

Next we state several propositions:

(18) weightT3 ⊆ i1 if and only if for every F1 such that F1 is open and a
cover of T3 there exists G1 such that G1 ⊆ F1 and G1 is a cover of T3 and
CardG1 ⊆ i1.

(19) weightT3 ⊆ i1 iff for every A3 such that A3 is closed and discrete holds
CardA3 ⊆ i1.

(20) weightT3 ⊆ i1 iff for everyA3 such thatA3 is discrete holds CardA3 ⊆ i1.
(21) weightT3 ⊆ i1 if and only if for every F1 such that F1 is open and ∅ /∈ F1

and for all A3, B1 such that A3, B1 ∈ F1 and A3 6= B1 holds A3 misses
B1 holds CardF1 ⊆ i1.

(22) weightT3 ⊆ i1 iff density T3 ⊆ i1.
(23) Let B be a basis of T3. Suppose that for every F1 such that F1 is open

and a cover of T3 there exists G1 such that G1 ⊆ F1 and G1 is a cover of
T3 and CardG1 ⊆ i1. Then there exists a basis u1 of T3 such that u1 ⊆ B
and Cardu1 ⊆ i1.

3. Properties of Lindelöf spaces

Let us consider T . We say that T is Lindelöf if and only if:

(Def. 2) For every F such that F is open and a cover of T there exists G such
that G ⊆ F and G is a cover of T and countable.

Next we state the proposition

(24) For every basis B of T3 such that T3 is Lindelöf there exists a basis B′

of T3 such that B′ ⊆ B and B′ is countable.

Let us observe that every metrizable topological space which is Lindelöf is
also second-countable.
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Let us note that every metrizable topological space which is Lindelöf is
also separable and every metrizable topological space which is separable is also
Lindelöf.

One can verify the following observations:

∗ there exists a non empty topological space which is Lindelöf and metri-
zable,

∗ every topological space which is second-countable is also Lindelöf,

∗ every topological space which is T3 and Lindelöf is also T4, and

∗ every topological space which is countable is also Lindelöf.

Let n be a natural number. Note that the topological structure of EnT is
second-countable.

Let T be a Lindelöf topological space and let A be a closed subset of T . One
can verify that T �A is Lindelöf.

Let T3 be a Lindelöf metrizable topological space and let A be a subset of
T3. One can verify that T3�A is Lindelöf.

Let us consider T and let A, B, L be subsets of T . We say that L separates
A, B if and only if:

(Def. 3) There exist open subsets U , W of T such that A ⊆ U and B ⊆ W and
U misses W and L = (U ∪W )c.

The following two propositions are true:

(25) If A3 and B1 are separated, then there exists a subset L of T3 such that
L separates A3, B1.

(26) Let M be a subset of T3, A1, A2 be closed subsets of T3, and V1, V2 be
open subsets of T3. Suppose A1 ⊆ V1 and A2 ⊆ V2 and V1 misses V2. Let
m1, m2, m3 be subsets of T3�M. Suppose m1 =M ∩ V1 and m2 =M ∩ V2
and m3 separates m1, m2. Then there exists a subset L of T3 such that L
separates A1, A2 and M ∩ L ⊆ m3.
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Summary. We present the concept and basic properties of the Menger-
Urysohn small inductive dimension of topological spaces according to the books
[7]. Namely, the paper includes the formalization of main theorems from Sections
1.1 and 1.2.
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The terminology and notation used here are introduced in the following articles:
[17], [8], [15], [5], [16], [6], [18], [14], [1], [2], [3], [13], [11], [9], [12], [19], [20], [10],
and [4].

1. Preliminaries

For simplicity, we adopt the following rules: T , T1, T2 denote topological
spaces, A, B denote subsets of T , F denotes a subset of T �A, G, G1, G2 denote
families of subsets of T , U , W denote open subsets of T �A, p denotes a point of
T �A, n denotes a natural number, and I denotes an integer.

One can prove the following propositions:

(1) Fr(B ∩A) ⊆ FrB ∩A.
(2) T is a T4 space if and only if for all closed subsets A, B of T such that A

misses B there exist open subsets U ,W of T such that A ⊆ U and B ⊆W
and U misses W .

Let us consider T . The sequence of ind of T yields a sequence of subsets of
2the carrier of T and is defined by the conditions (Def. 1).
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(Def. 1)(i) (The sequence of ind of T )(0) = {∅T }, and
(ii) A ∈ (the sequence of ind of T )(n + 1) iff A ∈ (the sequence of ind of
T )(n) or for all p, U such that p ∈ U there exists W such that p ∈W and
W ⊆ U and FrW ∈ (the sequence of ind of T )(n).

Let us consider T . Note that the sequence of ind of T is ascending.
We now state the proposition

(3) For every F such that F = B holds F ∈ (the sequence of ind of T �A)(n)
iff B ∈ (the sequence of ind of T )(n).

Let us consider T , A. We say that A has finite small inductive dimension if
and only if:

(Def. 2) There exists n such that A ∈ (the sequence of ind of T )(n).

Let us consider T , A. We introduce A is finite-ind as a synonym of A has
finite small inductive dimension.

Let us consider T , G. We say that G has finite small inductive dimension if
and only if:

(Def. 3) There exists n such that G ⊆ (the sequence of ind of T )(n).

Let us consider T , G. We introduce G is finite-ind as a synonym of G has
finite small inductive dimension.

The following proposition is true

(4) If A ∈ G and G is finite-ind, then A is finite-ind.

Let us consider T . One can check the following observations:

∗ every subset of T which is finite is also finite-ind,

∗ there exists a subset of T which is finite-ind,

∗ every family of subsets of T which is empty is also finite-ind, and

∗ there exists a family of subsets of T which is non empty and finite-ind.

Let T be a non empty topological space. One can check that there exists a
subset of T which is non empty and finite-ind.

Let us consider T . We say that T has finite small inductive dimension if and
only if:

(Def. 4) ΩT has finite small inductive dimension.

Let us consider T . We introduce T is finite-ind as a synonym of T has finite
small inductive dimension.

One can verify that every topological space which is empty is also finite-ind.
Let X be a set. Note that {X}top is finite-ind.
One can check that there exists a topological space which is non empty and

finite-ind.
In the sequel A1 is a finite-ind subset of T and T3 is a finite-ind topological

space.
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2. Small Inductive Dimension

Let us consider T and let us consider A. Let us assume that A is finite-ind.
The functor indA yields an integer and is defined as follows:

(Def. 5) A ∈ (the sequence of ind of T )(indA+ 1) and A /∈ (the sequence of ind
of T )(indA).

We now state two propositions:

(5) −1 ≤ indA1.

(6) indA1 = −1 iff A1 is empty.

Let T be a non empty topological space and let A be a non empty finite-ind
subset of T . Observe that indA is natural.

The following three propositions are true:

(7) indA1 ≤ n− 1 iff A1 ∈ (the sequence of ind of T )(n).

(8) For every finite subset A of T holds indA < A.

(9) indA1 ≤ n if and only if for every point p of T �A1 and for every open
subset U of T �A1 such that p ∈ U there exists an open subset W of T �A1
such that p ∈W and W ⊆ U and FrW is finite-ind and ind FrW ≤ n− 1.

Let us consider T and let us consider G. Let us assume that G is finite-ind.
The functor indG yielding an integer is defined by the conditions (Def. 6).

(Def. 6)(i) G ⊆ (the sequence of ind of T )(indG+ 1),
(ii) −1 ≤ indG, and
(iii) for every integer i such that −1 ≤ i and G ⊆ (the sequence of ind of
T )(i+ 1) holds indG ≤ i.

The following propositions are true:

(10) indG = −1 and G is finite-ind iff G ⊆ {∅T }.
(11) G is finite-ind and indG ≤ I iff −1 ≤ I and for every A such that A ∈ G

holds A is finite-ind and indA ≤ I.
(12) IfG1 is finite-ind andG2 ⊆ G1, thenG2 is finite-ind and indG2 ≤ indG1.

Let us consider T and let G1, G2 be finite-ind families of subsets of T .
Observe that G1 ∪G2 is finite-ind.

The following proposition is true

(13) If G is finite-ind and G1 is finite-ind and indG ≤ I and indG1 ≤ I, then
ind(G ∪G1) ≤ I.

Let us consider T . The functor indT yields an integer and is defined as
follows:

(Def. 7) indT = ind(ΩT ).

Let T be a non empty finite-ind topological space. One can verify that indT
is natural.

The following three propositions are true:
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(14) For every non empty set X holds ind({X}top) = 0.

(15) Given n such that let p be a point of T and U be an open subset of
T . Suppose p ∈ U. Then there exists an open subset W of T such that
p ∈ W and W ⊆ U and FrW is finite-ind and ind FrW ≤ n− 1. Then T
is finite-ind.

(16) indT3 ≤ n if and only if for every point p of T3 and for every open subset
U of T3 such that p ∈ U there exists an open subset W of T3 such that
p ∈W and W ⊆ U and FrW is finite-ind and ind FrW ≤ n− 1.

3. Monotonicity of the Small Inductive Dimension

Let us consider T3. Observe that every subset of T3 is finite-ind.
Let us consider T , A1. Note that T �A1 is finite-ind.
One can prove the following propositions:

(17) ind(T �A1) = indA1.

(18) If T �A is finite-ind, then A is finite-ind.

(19) If A ⊆ A1, then A is finite-ind and indA ≤ indA1.

(20) For every subset A of T3 holds indA ≤ indT3.

(21) If F = B and B is finite-ind, then F is finite-ind and indF = indB.

(22) If F = B and F is finite-ind, then B is finite-ind and indF = indB.

(23) Let T be a non empty topological space. Suppose T is a T3 space. Then
T is finite-ind and indT ≤ n if and only if for every closed subset A of T
and for every point p of T such that p /∈ A there exists a subset L of T
such that L separates {p}, A and L is finite-ind and indL ≤ n− 1.

(24) If T1 and T2 are homeomorphic, then T1 is finite-ind iff T2 is finite-ind.

(25) If T1 and T2 are homeomorphic and T1 is finite-ind, then indT1 = indT2.

(26) Let A2 be a subset of T1 and A3 be a subset of T2. Suppose A2 and A3
are homeomorphic. Then A2 is finite-ind if and only if A3 is finite-ind.

(27) Let A2 be a subset of T1 and A3 be a subset of T2. If A2 and A3 are
homeomorphic and A2 is finite-ind, then indA2 = indA3.

(28) If T1×T2 is finite-ind, then T2×T1 is finite-ind and ind(T1×T2) = ind(T2×
T1).

(29) For every family G3 of subsets of T �A such that G3 is finite-ind and
G3 = G holds G is finite-ind and indG = indG3.

(30) For every family G3 of subsets of T �A such that G is finite-ind and
G3 = G holds G3 is finite-ind and indG = indG3.
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4. Basic Properties 0-dimensional Topological Spaces

Next we state several propositions:

(31) T is finite-ind and indT ≤ n if and only if there exists a basis B1 of
T such that for every A such that A ∈ B1 holds FrA is finite-ind and
ind FrA ≤ n− 1.

(32) Let given T . Suppose that
(i) T is a T1 space, and
(ii) for all closed subsets A, B of T such that A misses B there exist closed

subsets A′, B′ of T such that A′ misses B′ and A′ ∪B′ = ΩT and A ⊆ A′
and B ⊆ B′.
Then T is finite-ind and indT ≤ 0.

(33) Let X be a set and f be a sequence of subsets of X. Then there exists
a sequence g of subsets of X such that

(i)
⋃

rng f =
⋃

rng g,
(ii) for all natural numbers i, j such that i 6= j holds g(i) misses g(j), and
(iii) for every n there exists a finite family f1 of subsets of X such that
f1 = {f(i); i ranges over elements of N: i < n} and g(n) = f(n) \

⋃
f1.

(34) Let given T . Suppose T is finite-ind and indT ≤ 0 and T is Lindelöf.
Let A, B be closed subsets of T . Suppose A misses B. Then there exist
closed subsets A′, B′ of T such that A′ misses B′ and A′ ∪ B′ = ΩT and
A ⊆ A′ and B ⊆ B′.

(35) Let given T . Suppose T is a T1 space and Lindelöf. Then T is finite-ind
and indT ≤ 0 if and only if for all closed subsets A, B of T such that A
misses B holds ∅T separates A, B.

(36) Let given T . Suppose that
(i) T is a T4 space, a T1 space, and Lindelöf, and

(ii) there exists a family F of subsets of T such that F is closed, a cover of
T , countable, and finite-ind and indF ≤ 0.
Then T is finite-ind and indT ≤ 0.

In the sequel T4 is a metrizable topological space.
We now state four propositions:

(37) Let A, B be closed subsets of T4. Suppose A misses B. Let N1 be a finite-
ind subset of T4. Suppose indN1 ≤ 0 and T4�N1 is second-countable. Then
there exists a subset L of T4 such that L separates A, B and L misses N1.

(38) Let N1 be a subset of T4. Suppose T4�N1 is second-countable. Then N1
is finite-ind and indN1 ≤ 0 if and only if for every point p of T4 and for
every open subset U of T4 such that p ∈ U there exists an open subset W
of T4 such that p ∈W and W ⊆ U and N1 misses FrW.
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(39) Let N1 be a subset of T4. Suppose T4�N1 is second-countable. Then N1
is finite-ind and indN1 ≤ 0 if and only if there exists a basis B of T4 such
that for every subset A of T4 such that A ∈ B holds N1 misses FrA.

(40) Let N1, A be subsets of T4. Suppose T4�N1 is second-countable and N1
is finite-ind and A is finite-ind and indN1 ≤ 0. Then A ∪N1 is finite-ind
and ind(A ∪N1) ≤ indA+ 1.
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The articles [2], [3], [1], [4], and [5] provide the terminology and notation for
this paper.

For simplicity, we adopt the following rules: G denotes a group, A, B denote
non empty subsets of G, N , H, H1, H2 denote subgroups of G, and x, a, b
denote elements of G.

Next we state a number of propositions:

(1) For every normal subgroup N of G and for all elements x1, x2 of G holds
x1 ·N · (x2 ·N) = (x1 · x2) ·N.

(2) For every group G and for every subgroup N of G and for all elements
x, y of G such that y ∈ x ·N holds x ·N = y ·N.

(3) Let N be a subgroup of G, H be a subgroup of G, and x be an element
of G. If x · N meets H, then there exists an element y of G such that
y ∈ x ·N and y ∈ H.

(4) For all elements x, y of G and for every normal subgroup N of G such
that y ∈ N holds x · y · x−1 ∈ N.

(5) For every subgroup N of G such that for all elements x, y of G such that
y ∈ N holds x · y · x−1 ∈ N holds N is normal.

(6) x ∈ H1 ·H2 iff there exist a, b such that x = a · b and a ∈ H1 and b ∈ H2.
(7) Let G be a group and N1, N2 be strict normal subgroups of G. Then

there exists a strict subgroupM of G such that the carrier ofM = N1 ·N2.
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(8) Let G be a group and N1, N2 be strict normal subgroups of G. Then
there exists a strict normal subgroup M of G such that the carrier of
M = N1 ·N2.

(9) Let G be a group and N , N1, N2 be subgroups of G. Suppose the carrier
of N = N1 ·N2. Then N1 is a subgroup of N and N2 is a subgroup of N .

(10) Let N , N1, N2 be normal subgroups of G and a, b be elements of G. If
the carrier of N = N1 ·N2, then a ·N1 · (b ·N2) = (a · b) ·N.

(11) For every normal subgroup N of G and for every x holds x ·N ·x−1 ⊆ N.
Let G be a group, let A be a subset of G, and let N be a subgroup of G.

The functor N ‘A yielding a subset of G is defined by:

(Def. 1) N ‘A = {x ∈ G: x ·N ⊆ A}.
The functor N∼A yielding a subset of G is defined as follows:

(Def. 2) N∼A = {x ∈ G: x ·N meets A}.
Next we state a number of propositions:

(12) For every element x of G such that x ∈ N ‘A holds x ·N ⊆ A.
(13) For every element x of G such that x ·N ⊆ A holds x ∈ N ‘A.

(14) For every element x of G such that x ∈ N∼A holds x ·N meets A.

(15) For every element x of G such that x ·N meets A holds x ∈ N∼A.
(16) N ‘A ⊆ A.
(17) A ⊆ N∼A.
(18) N ‘A ⊆ N∼A.
(19) N∼A ∪B = (N∼A) ∪ (N∼B).

(20) N ‘A ∩B = (N ‘A) ∩ (N ‘B).

(21) If A ⊆ B, then N ‘A ⊆ N ‘B.

(22) If A ⊆ B, then N∼A ⊆ N∼B.
(23) (N ‘A) ∪ (N ‘B) ⊆ N ‘(A ∪B).

(24) N∼A ∪B = (N∼A) ∪ (N∼B).

(25) If N is a subgroup of H, then H‘A ⊆ N ‘A.

(26) If N is a subgroup of H, then N∼A ⊆ H∼A.
(27) For every group G and for all non empty subsets A, B of G and for every

normal subgroup N of G holds (N ‘A) · (N ‘B) ⊆ N ‘A ·B.
(28) For every element x of G such that x ∈ N∼A ·B holds x ·N meets A ·B.
(29) For every group G and for all non empty subsets A, B of G and for every

normal subgroup N of G holds (N∼A) · (N∼B) = N∼A ·B.
(30) For every element x of G such that x ∈ N∼N ‘(N∼A) holds x ·N meets
N ‘(N∼A).

(31) For every element x of G such that x ∈ N ‘(N∼A) holds x ·N ⊆ N∼A.
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(32) For every element x of G such that x ∈ N∼N∼A holds x · N meets
N∼A.

(33) For every element x of G such that x ∈ N∼N ‘A holds x ·N meets N ‘A.

(34) N ‘(N ‘A) = N ‘A.

(35) N∼A = N∼N∼A.
(36) N ‘(N ‘A) ⊆ N∼N∼A.
(37) N∼N ‘A ⊆ A.
(38) N ‘(N∼N ‘A) = N ‘A.

(39) If A ⊆ N ‘(N∼A), then N∼A ⊆ N∼N ‘(N∼A).

(40) N∼N ‘(N∼A) = N∼A.
(41) For every element x of G such that x ∈ N ‘(N ‘A) holds x ·N ⊆ N ‘A.

(42) N ‘(N ‘A) = N∼N ‘A.

(43) N∼N∼A = N ‘(N∼A).

(44) For all subgroups N , N1, N2 of G such that N = N1 ∩N2 holds N∼A ⊆
(N1∼A) ∩ (N2∼A).

(45) For all subgroups N , N1, N2 of G such that N = N1∩N2 holds (N1‘A)∩
(N2‘A) ⊆ N ‘A.

(46) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroup N of G such that the carrier of N = N1 ·N2 and N ‘A ⊆
(N1‘A) ∩ (N2‘A).

(47) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroupN ofG such that the carrier ofN = N1·N2 and (N1∼A)∪
(N2∼A) ⊆ N∼A.

(48) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroup N of G such that the carrier of N = N1 ·N2 and N∼A ⊆
((N1∼A) ·N2) ∩ ((N2∼A) ·N1).

In the sequel N1, N2 are subgroups of G.
Let G be a group and let H, N be subgroups of G. The functor N ‘H yielding

a subset of G is defined by:

(Def. 3) N ‘H = {x ∈ G: x ·N ⊆ H}.
The functor N∼H yields a subset of G and is defined as follows:

(Def. 4) N∼H = {x ∈ G: x ·N meets H}.
We now state a number of propositions:

(49) For every element x of G such that x ∈ N ‘H holds x ·N ⊆ H.
(50) For every element x of G such that x ·N ⊆ H holds x ∈ N ‘H.

(51) For every element x of G such that x ∈ N∼H holds x ·N meets H.

(52) For every element x of G such that x ·N meets H holds x ∈ N∼H.
(53) N ‘H ⊆ H.
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(54) H ⊆ N∼H.
(55) N ‘H ⊆ N∼H.
(56) If H1 is a subgroup of H2, then N∼H1 ⊆ N∼H2.
(57) If N1 is a subgroup of N2, then N1∼H ⊆ N2∼H.
(58) If N1 is a subgroup of N2, then N1∼N1 ⊆ N2∼N2.
(59) If H1 is a subgroup of H2, then N ‘H1 ⊆ N ‘H2.

(60) If N1 is a subgroup of N2, then N2‘H ⊆ N1‘H.
(61) If N1 is a subgroup of N2, then N2‘N1 ⊆ N1‘N2.
(62) For every normal subgroup N of G holds (N ‘H1) · (N ‘H2) ⊆ N ‘H1 ·H2.
(63) For every normal subgroupN ofG holds (N∼H1)·(N∼H2) = N∼H1·H2.
(64) For all subgroups N , N1, N2 of G such that N = N1∩N2 holds N∼H ⊆

(N1∼H) ∩ (N2∼H).

(65) For all subgroups N , N1, N2 of G such that N = N1∩N2 holds (N1‘H)∩
(N2‘H) ⊆ N ‘H.

(66) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroup N of G such that the carrier of N = N1 ·N2 and N ‘H ⊆
(N1‘H) ∩ (N2‘H).

(67) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroupN ofG such that the carrier ofN = N1·N2 and (N1∼H)∪
(N2∼H) ⊆ N∼H.

(68) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroup N of G such that the carrier of N = N1 ·N2 and (N1‘H) ·
(N2‘H) ⊆ N ‘H.

(69) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroup N of G such that the carrier of N = N1 ·N2 and (N1∼H)·
(N2∼H) ⊆ N∼H.

(70) Let N1, N2 be strict normal subgroups of G. Then there exists a strict
normal subgroup N of G such that the carrier of N = N1 ·N2 and N∼H ⊆
((N1∼H) ·N2) ∩ ((N2∼H) ·N1).

(71) Let H be a subgroup of G and N be a normal subgroup of G. Then there
exists a strict subgroup M of G such that the carrier of M = N∼H.

(72) Let H be a subgroup of G and N be a normal subgroup of G. Suppose
N is a subgroup of H. Then there exists a strict subgroup M of G such
that the carrier of M = N ‘H.

(73) For all normal subgroupsH,N of G there exists a strict normal subgroup
M of G such that the carrier of M = N∼H.

(74) Let H, N be normal subgroups of G. Suppose N is a subgroup of H.
Then there exists a strict normal subgroup M of G such that the carrier
of M = N ‘H.
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(75) Let N , N1 be normal subgroups of G. Suppose N1 is a subgroup of N .
Then there exist strict normal subgroups N2, N3 of G such that the carrier
of N2 = N1∼N and the carrier of N3 = N1‘N and N2‘N ⊆ N3‘N.

(76) Let N , N1 be normal subgroups of G. Suppose N1 is a subgroup of N .
Then there exist strict normal subgroups N2, N3 of G such that the carrier
of N2 = N1∼N and the carrier of N3 = N1‘N and N3∼N ⊆ N2∼N.

(77) Let N , N1 be normal subgroups of G. Suppose N1 is a subgroup of N .
Then there exist strict normal subgroups N2, N3 of G such that the carrier
of N2 = N1∼N and the carrier of N3 = N1‘N and N2‘N ⊆ N3∼N.

(78) Let N , N1 be normal subgroups of G. Suppose N1 is a subgroup of N .
Then there exist strict normal subgroups N2, N3 of G such that the carrier
of N2 = N1∼N and the carrier of N3 = N1‘N and N3‘N ⊆ N2∼N.

(79) Let N , N1, N2 be normal subgroups of G. Suppose N1 is a subgroup
of N2. Then there exist strict normal subgroups N3, N4 of G such that
the carrier of N3 = N∼N1 and the carrier of N4 = N∼N2 and N3∼N1 ⊆
N4∼N1.

(80) Let N , N1 be normal subgroups of G. Then there exists a strict normal
subgroup N2 of G such that the carrier of N2 = N ‘N and N ‘N1 ⊆ N2‘N1.

(81) Let N , N1 be normal subgroups of G. Then there exists a strict normal
subgroup N2 of G such that the carrier of N2 = N∼N and N∼N1 ⊆
N2∼N1.
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The papers [15], [1], [3], [9], [5], [8], [16], [2], [4], [6], [13], [12], [17], [14], [18], [7],
and [11] provide the terminology and notation for this paper.

1. Order of a Family of Subsets of a Set

In this paper n denotes a natural number, X denotes a set, and F1, G1
denote families of subsets of X.

Let us consider X, F1. We say that F1 is finite-order if and only if:

(Def. 1) There exists n such that for every G1 such that G1 ⊆ F1 and n ∈ CardG1
holds

⋂
G1 is empty.

Let us consider X. Observe that there exists a family of subsets of X which
is finite-order and every family of subsets of X which is finite is also finite-order.

Let us considerX, F1. The functor orderF1 yielding an extended real number
is defined as follows:

(Def. 2)(i) For everyG1 such that orderF1+1 ∈ CardG1 andG1 ⊆ F1 holds
⋂
G1

is empty and there exists G1 such that G1 ⊆ F1 but CardG1 = orderF1+1
but
⋂
G1 is non empty or G1 is empty if F1 is finite-order,

(ii) orderF1 = +∞, otherwise.
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Let us consider X and let F be a finite-order family of subsets of X. Observe
that orderF + 1 is natural and orderF is integer.

Next we state three propositions:

(1) If orderF1 ≤ n, then F1 is finite-order.

(2) If orderF1 ≤ n, then for every G1 such that G1 ⊆ F1 and n+1 ∈ CardG1
holds

⋂
G1 is empty.

(3) If for every finite family G of subsets of X such that G ⊆ F1 and n+1 <
G holds

⋂
G is empty, then orderF1 ≤ n.

2. Basic Properties of n-dimensional Topological Spaces

One can verify that there exists a topological space which is finite-ind,
second-countable, and metrizable.

For simplicity, we adopt the following convention: T1 is a metrizable topolo-
gical space, T2, T3 are finite-ind second-countable metrizable topological spaces,
A, B, L, H are subsets of T1, U , W are open subsets of T1, p is a point of T1,
F , G are finite families of subsets of T1, and I is an integer.

We now state several propositions:

(4) Let given T1. Suppose that
(i) T1 is second-countable, and

(ii) there exists F such that F is closed, a cover of T1, countable, and
finite-ind and indF ≤ n.
Then T1 is finite-ind and indT1 ≤ n.

(5) Let A, B be finite-ind subsets of T1. Suppose A is closed and T1�(A∪B)
is second-countable and indA ≤ I and indB ≤ I. Then ind(A ∪ B) ≤ I
and A ∪B is finite-ind.

(6) Let given T1. Suppose T1 is second-countable and finite-ind and indT1 ≤
n. Then there exist A, B such that Ω(T1) = A ∪ B and A misses B and
indA ≤ n− 1 and indB ≤ 0.

(7) Let given T1. Suppose T1 is second-countable and finite-ind and indT1 ≤
I. Then there exists F such that

(i) F is a cover of T1 and finite-ind,
(ii) indF ≤ 0,
(iii) F ≤ I + 1, and
(iv) for all A, B such that A, B ∈ F and A meets B holds A = B.

(8) Let given T1. Suppose T1 is second-countable and there exists F such
that F is a cover of T1 and finite-ind and indF ≤ 0 and F ≤ I + 1. Then
T1 is finite-ind and indT1 ≤ I.

Let T1 be a second-countable metrizable topological space and let A, B be
finite-ind subsets of T1. One can check that A ∪B is finite-ind.
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Next we state two propositions:

(9) If A is finite-ind and B is finite-ind and T1�(A∪B) is second-countable,
then A ∪B is finite-ind and ind(A ∪B) ≤ indA+ indB + 1.

(10) For all topological spaces T4, T5 and for every subset A1 of T4 and for
every subset A2 of T5 holds Fr(A1 ×A2) = FrA1 ×A2 ∪A1 × FrA2.

Let us consider T2, T3. Observe that T2 × T3 is finite-ind.
We now state several propositions:

(11) Let given A, B. Suppose A is closed and B is closed and A misses B. Let
given H. Suppose indH ≤ n and T1�H is second-countable and finite-ind.
Then there exists L such that L separates A, B and ind(L ∩H) ≤ n− 1.

(12) Let given T1. Suppose T1 is finite-ind and second-countable and indT1 ≤
n. Let given A, B. Suppose A is closed and B is closed and A misses B.
Then there exists L such that L separates A, B and indL ≤ n− 1.

(13) Let givenH. Suppose T1�H is second-countable. ThenH is finite-ind and
indH ≤ n if and only if for all p, U such that p ∈ U there exists W such
that p ∈W and W ⊆ U and H ∩ FrW is finite-ind and ind(H ∩ FrW ) ≤
n− 1.

(14) Let givenH. Suppose T1�H is second-countable. ThenH is finite-ind and
indH ≤ n if and only if there exists a basis B1 of T1 such that for every A
such that A ∈ B1 holds H ∩ FrA is finite-ind and ind(H ∩ FrA) ≤ n− 1.

(15) If T2 is non empty or T3 is non empty, then ind(T2×T3) ≤ indT2+indT3.

(16) If indT3 = 0, then ind(T2 × T3) = indT2.

3. Small Inductive Dimension of Euclidean Spaces

For simplicity, we follow the rules: u denotes a point of E1, U denotes a point
of E1T, r, u1 denote real numbers, and s denotes a real number.

Next we state three propositions:

(17) If 〈u1〉 = u and r > 0, then Ball(u, r) = {〈s〉 : u1− r ≤ s ∧ s ≤ u1+ r}.
(18) If 〈u1〉 = U and r > 0, then Fr Ball(U, r) = {〈u1 − r〉, 〈u1 + r〉}.
(19) Let T be a topological space and A be a countable subset of T . If T �A

is a T4 space, then A is finite-ind and indA ≤ 0.

Let T1 be a metrizable topological space. Observe that every subset of T1
which is countable is also finite-ind.

Let n be a natural number. Observe that EnT is finite-ind.
One can prove the following propositions:

(20) If n ≤ 1, then ind(EnT) = n.

(21) ind(EnT) ≤ n.
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(22) Let given A. Suppose T1�A is second-countable and finite-ind and
indA ≤ 0. Let given F . Suppose F is open and a cover of A. Then there
exists a function g from F into 2the carrier of T1 such that

(i) rng g is open,
(ii) rng g is a cover of A,
(iii) for every set a such that a ∈ F holds g(a) ⊆ a, and
(iv) for all sets a, b such that a, b ∈ F and a 6= b holds g(a) misses g(b).

(23) Let given T1. Suppose T1 is second-countable and finite-ind and indT1 ≤
n. Let given F . Suppose F is open and a cover of T1. Then there exists G
such that G is open, a cover of T1, and finer than F and G ≤ F · (n+ 1)
and orderG ≤ n.

(24) Let given T1. Suppose T1 is finite-ind. Let given A. Suppose ind(Ac) ≤ n
and T1�Ac is second-countable. Let A1, A2 be closed subsets of T1. Suppose
A = A1∪A2. Then there exist closed subsetsX1,X2 of T1 such that Ω(T1) =
X1 ∪X2 and A1 ⊆ X1 and A2 ⊆ X2 and A1 ∩X2 = A1 ∩ A2 = X1 ∩ A2
and ind(X1 ∩X2 \A1 ∩A2) ≤ n− 1.
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