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Summary. In this article we introduce and prove properties of simplicial
complexes in real linear spaces which are necessary to formulate Sperner’s lemma.
The lemma states that for a function f , which for an arbitrary vertex v of the
barycentric subdivision B of simplex K assigns some vertex from a face of K
which contains v, we can find a simplex S of B which satisfies f(S) = K (see
[10]).

MML identifier: SIMPLEX1, version: 7.11.0 4.1 .1

The notation and terminology used in this paper have been introduced in the
following papers: [2], [11], [19], [9], [6], [7], [1], [5], [3], [4], [13], [15], [12], [22],
[23], [16], [18], [20], [14], [17], [21], and [8].

1. Preliminaries

We follow the rules: x, y, X denote sets and n, k denote natural numbers.
The following two propositions are true:

(1) Let R be a binary relation and C be a cardinal number. If for every x

such that x ∈ X holds Card(R◦x) = C, then CardR = Card(R�(domR \
X)) + C · CardX.

(2) Let Y be a non empty finite set. Suppose CardX = Y + 1. Let f be a
function from X into Y . Suppose f is onto. Then there exists y such that
y ∈ Y and Card(f−1({y})) = 2 and for every x such that x ∈ Y and x 6= y

holds Card(f−1({x})) = 1.
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Let X be a 1-sorted structure. A simplicial complex structure of X is a
simplicial complex structure of the carrier of X. A simplicial complex of X is a
simplicial complex of the carrier of X.

Let X be a 1-sorted structure, let K be a simplicial complex structure of X,
and let A be a subset of K. The functor @A yielding a subset of X is defined
by:

(Def. 1) @A = A.

Let X be a 1-sorted structure, let K be a simplicial complex structure of
X, and let A be a family of subsets of K. The functor @A yielding a family of
subsets of X is defined by:

(Def. 2) @A = A.

We now state the proposition

(3) Let X be a 1-sorted structure and K be a subset-closed simplicial com-
plex structure of X. Suppose K is total. Let S be a finite subset of K.
Suppose S is simplex-like. Then the complex of {@S} is a subsimplicial
complex of K.

2. The Area of an Abstract Simplicial Complex

For simplicity, we adopt the following rules: R1 denotes a non empty RLS
structure, K1, K2, K3 denote simplicial complex structures of R1, V denotes a
real linear space, and K4 denotes a non void simplicial complex of V .

Let us consider R1, K1. The functor |K1| yields a subset of R1 and is defined
by:

(Def. 3) x ∈ |K1| iff there exists a subset A of K1 such that A is simplex-like and
x ∈ conv@A.

One can prove the following propositions:

(4) If the topology of K2 ⊆ the topology of K3, then |K2| ⊆ |K3|.
(5) For every subset A of K1 such that A is simplex-like holds conv@A ⊆
|K1|.

(6) Let K be a subset-closed simplicial complex structure of V . Then x ∈ |K|
if and only if there exists a subset A of K such that A is simplex-like and
x ∈ Int(@A).

(7) |K1| is empty iff K1 is empty-membered.

(8) For every subset A of R1 holds |the complex of {A}| = convA.

(9) For all families A, B of subsets of R1 holds |the complex of A∪B| = |the
complex of A| ∪ |the complex of B|.
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3. The Subdivision of a Simplicial Complex

Let us consider R1, K1. A simplicial complex structure of R1 is said to be a
subdivision structure of K1 if it satisfies the conditions (Def. 4).

(Def. 4)(i) |K1| ⊆ |it|, and
(ii) for every subset A of it such that A is simplex-like there exists a subset

B of K1 such that B is simplex-like and conv@A ⊆ conv@B.

The following proposition is true

(10) For every subdivision structure P of K1 holds |K1| = |P |.
Let us consider R1 and let K1 be a simplicial complex structure of R1 with

a non-empty element. Observe that every subdivision structure of K1 has a
non-empty element.

We now state four propositions:

(11) K1 is a subdivision structure of K1.

(12) The complex of the topology of K1 is a subdivision structure of K1.

(13) Let K be a subset-closed simplicial complex structure of V and S1 be a
family of subsets of K. Suppose S1 = SubFin(the topology of K). Then
the complex of S1 is a subdivision structure of K.

(14) For every subdivision structure P1 of K1 holds every subdivision struc-
ture of P1 is a subdivision structure of K1.

Let us consider V and let K be a simplicial complex structure of V . Note
that there exists a subdivision structure of K which is finite-membered and
subset-closed.

Let us consider V and let K be a simplicial complex structure of V . A
subdivision of K is a finite-membered subset-closed subdivision structure of K.

We now state the proposition

(15) Let K be a simplicial complex of V with empty element. Suppose |K| ⊆
ΩK . Let B be a function from 2the carrier of V+ into the carrier of V . Suppose
that for every simplex S of K such that S is non empty holds B(S) ∈
conv@S. Then subdivision(B,K) is a subdivision structure of K.

Let us consider V , K4. One can verify that there exists a subdivision of K4
which is non void.

4. The Barycentric Subdivision

Let us consider V , K4. Let us assume that |K4| ⊆ Ω(K4). The functor BCSK4
yields a non void subdivision of K4 and is defined by:

(Def. 5) BCSK4 = subdivision(the center of mass of V , K4).

Let us consider n and let us consider V , K4. Let us assume that |K4| ⊆ Ω(K4).
The functor BCS(n,K4) yields a non void subdivision of K4 and is defined by:
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(Def. 6) BCS(n,K4) = subdivision(n, the center of mass of V , K4).

Next we state several propositions:

(16) If |K4| ⊆ Ω(K4), then BCS(0,K4) = K4.

(17) If |K4| ⊆ Ω(K4), then BCS(1,K4) = BCSK4.

(18) If |K4| ⊆ Ω(K4), then ΩBCS(n,K4) = Ω(K4).

(19) If |K4| ⊆ Ω(K4), then |BCS(n,K4)| = |K4|.
(20) If |K4| ⊆ Ω(K4), then BCS(n+ 1,K4) = BCS BCS(n,K4).

(21) If |K4| ⊆ Ω(K4) and degree(K4) ≤ 0, then the topological structure of
K4 = BCSK4.

(22) If n > 0 and |K4| ⊆ Ω(K4) and degree(K4) ≤ 0, then the topological
structure of K4 = BCS(n,K4).

(23) Let S2 be a non void subsimplicial complex of K4. If |K4| ⊆ Ω(K4) and
|S2| ⊆ Ω(S2), then BCS(n, S2) is a subsimplicial complex of BCS(n,K4).

(24) If |K4| ⊆ Ω(K4), then VerticesK4 ⊆ Vertices BCS(n,K4).

Let us consider n, V and let K be a non void total simplicial complex of V .
Note that BCS(n,K) is total.

Let us consider n, V and let K be a non void finite-vertices total simplicial
complex of V . Note that BCS(n,K) is finite-vertices.

5. Selected Properties of Simplicial Complexes

Let us consider V and let K be a simplicial complex structure of V . We say
that K is affinely-independent if and only if:

(Def. 7) For every subset A of K such that A is simplex-like holds @A is affinely-
independent.

Let us consider R1, K1. We say that K1 is simplex-join-closed if and only if:

(Def. 8) For all subsets A, B of K1 such that A is simplex-like and B is simplex-
like holds conv@A ∩ conv@B = conv@A ∩B.

Let us consider V . Note that every simplicial complex structure of V which is
empty-membered is also affinely-independent. Let F be an affinely-independent
family of subsets of V . Observe that the complex of F is affinely-independent.

Let us consider R1. One can verify that every simplicial complex structure
of R1 which is empty-membered is also simplex-join-closed.

Let us consider V and let I be an affinely-independent subset of V . One can
check that the complex of {I} is simplex-join-closed.

Let us consider V . One can check that there exists a subset of V which is
non empty, trivial, and affinely-independent.

Let us consider V . One can check that there exists a simplicial complex of V
which is finite-vertices, affinely-independent, simplex-join-closed, and total and
has a non-empty element.
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Let us consider V and let K be an affinely-independent simplicial complex
structure of V . One can verify that every subsimplicial complex of K is affinely-
independent.

Let us consider V and let K be a simplex-join-closed simplicial complex
structure of V . One can check that every subsimplicial complex of K is simplex-
join-closed.

Next we state the proposition

(25) Let K be a subset-closed simplicial complex structure of V . Then K

is simplex-join-closed if and only if for all subsets A, B of K such that
A is simplex-like and B is simplex-like and Int(@A) meets Int(@B) holds
A = B.

For simplicity, we follow the rules: K5 is a simplex-join-closed simplicial
complex of V , A1, B1 are subsets of K5, K6 is a non void affinely-independent
simplicial complex of V , K7 is a non void affinely-independent simplex-join-
closed simplicial complex of V , andK is a non void affinely-independent simplex-
join-closed total simplicial complex of V .

Let us consider V , K6 and let S be a simplex of K6. Note that @S is affinely-
independent.

One can prove the following propositions:

(26) If A1 is simplex-like and B1 is simplex-like and Int(@A1) meets conv@B1,
then A1 ⊆ B1.

(27) If A1 is simplex-like and @A1 is affinely-independent and B1 is simplex-
like, then Int(@A1) ⊆ conv@B1 iff A1 ⊆ B1.

(28) If |K6| ⊆ Ω(K6), then BCSK6 is affinely-independent.

Let us consider V and let K6 be a non void affinely-independent total simpli-
cial complex of V . Observe that BCSK6 is affinely-independent. Let us consider
n. Observe that BCS(n,K6) is affinely-independent.

Let us consider V , K7. One can verify that (the center of mass of V )�the
topology of K7 is one-to-one.

We now state the proposition

(29) If |K7| ⊆ Ω(K7), then BCSK7 is simplex-join-closed.

Let us consider V , K. Note that BCSK is simplex-join-closed. Let us con-
sider n. Observe that BCS(n,K) is simplex-join-closed.

The following four propositions are true:

(30) Suppose |K4| ⊆ Ω(K4) and for every n such that n ≤ degree(K4) the-

re exists a simplex S of K4 such that S = n + 1 and @S is affinely-
independent. Then degree(K4) = degree(BCSK4).

(31) If |K6| ⊆ Ω(K6), then degree(K6) = degree(BCSK6).

(32) If |K6| ⊆ Ω(K6), then degree(K6) = degree(BCS(n,K6)).
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(33) Let S be a simplex-like family of subsets of K7. If S has non empty
elements, then CardS = Card((the center of mass of V )◦S).

For simplicity, we adopt the following convention: A2 denotes a finite affinely-
independent subset of V , A3, B2 denote finite subsets of V , B denotes a subset
of V , S, T denote finite families of subsets of V , S3 denotes a ⊆-linear finite
finite-membered family of subsets of V , S4, T1 denote finite simplex-like families
of subsets of K, and A4 denotes a simplex of K.

The following propositions are true:

(34) Let S6, S5 be simplex-like families of subsets of K7. Suppose that
(i) |K7| ⊆ Ω(K7),

(ii) S6 has non empty elements,
(iii) (the center of mass of V )◦S5 is a simplex of BCSK7, and
(iv) (the center of mass of V )◦S6 ⊆ (the center of mass of V )◦S5.

Then S6 ⊆ S5 and S5 is ⊆-linear.

(35) Suppose S has non empty elements and
⋃
S ⊆ A2 and S + n+ 1 ≤ A2 .

Then the following statements are equivalent
(i) B2 is a simplex of n+S and BCS (the complex of {A2}) and (the center

of mass of V )◦S ⊆ B2,
(ii) there exists T such that T misses S and T ∪ S is ⊆-linear and has non

empty elements and T = n + 1 and
⋃
T ⊆ A2 and B2 = (the center of

mass of V )◦S ∪ (the center of mass of V )◦T.

(36) Suppose S3 has non empty elements and
⋃
S3 ⊆ A2. Then the following

statements are equivalent
(i) (the center of mass of V )◦S3 is a simplex of

⋃
S3 − 1 and BCS (the

complex of {A2}),
(ii) for every n such that 0 < n ≤

⋃
S3 there exists x such that x ∈ S3 and

Cardx = n.

(37) Let given S. Suppose S is ⊆-linear and has non empty elements and
S = Card

⋃
S. Let given A3, B2. Suppose A3 is non empty and A3 misses⋃

S and
⋃
S ∪ A3 is affinely-independent and

⋃
S ∪ A3 ⊆ B2. Then (the

center of mass of V )◦S∪ (the center of mass of V )◦{
⋃
S∪A3} is a simplex

of S and BCS (the complex of {B2}).
(38) Let given S3. Suppose S3 has non empty elements and S3 =

⋃
S3 .

Let v be an element of V . Suppose v /∈
⋃
S3 and

⋃
S3 ∪ {v} is affinely-

independent. Then {S6;S6 ranges over simplexes of S3 and BCS (the com-
plex of {

⋃
S3 ∪ {v}}): (the center of mass of V )◦S3 ⊆ S6} = {(the center

of mass of V )◦S3 ∪ (the center of mass of V )◦{
⋃
S3 ∪ {v}}}.

(39) Let given S3. Suppose S3 has non empty elements and S3+1 =
⋃
S3 and⋃

S3 is affinely-independent. Then Card{S6;S6 ranges over simplexes of S3
and BCS (the complex of {

⋃
S3}): (the center of mass of V )◦S3 ⊆ S6} = 2.
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(40) Suppose A2 is a simplex of K. Then B is a simplex of BCS (the complex
of {A2}) if and only if B is a simplex of BCSK and convB ⊆ convA2.

(41) Suppose S4 has non empty elements and S4 +n ≤ degree(K). Then the
following statements are equivalent

(i) A3 is a simplex of n + S4 and BCSK and (the center of mass of
V )◦S4 ⊆ A3,

(ii) there exists T1 such that T1 misses S4 and T1 ∪ S4 is ⊆-linear and has
non empty elements and T1 = n + 1 and A3 = (the center of mass of
V )◦S4 ∪ (the center of mass of V )◦T1.

(42) Suppose S4 is ⊆-linear and has non empty elements and S4 =
⋃
S4 and⋃

S4 ⊆ A4 and A4 = S4 + 1. Then {S6;S6 ranges over simplexes of S4
and BCSK : (the center of mass of V )◦S4 ⊆ S6 ∧ conv@S6 ⊆ conv@A4} =
{(the center of mass of V )◦S4 ∪ (the center of mass of V )◦{A4}}.

(43) Suppose S4 is ⊆-linear and has non empty elements and S4 + 1 =
⋃
S4 .

Then Card{S6;S6 ranges over simplexes of S4 and BCSK : (the center of
mass of V )◦S4 ⊆ S6 ∧ conv@S6 ⊆ conv@

⋃
S4} = 2.

(44) Let given A3. Suppose that
(i) K is a subdivision of the complex of {A3},
(ii) A3 = n+ 1,
(iii) degree(K) = n, and
(iv) for every simplex S of n − 1 and K and for every X such that X =
{S6;S6 ranges over simplexes of n and K: S ⊆ S6} holds if conv@S meets
IntA3, then CardX = 2 and if conv@S misses IntA3, then CardX = 1.
Let S be a simplex of n−1 and BCSK and given X such that X = {S6;S6
ranges over simplexes of n and BCSK : S ⊆ S6}. Then

(v) if conv@S meets IntA3, then CardX = 2, and
(vi) if conv@S misses IntA3, then CardX = 1.

(45) Let S be a simplex of n− 1 and BCS(k, the complex of {A2}) such that
A2 = n + 1 and X = {S6;S6 ranges over simplexes of n and BCS(k, the
complex of {A2}): S ⊆ S6}. Then

(i) if conv@S meets IntA2, then CardX = 2, and
(ii) if conv@S misses IntA2, then CardX = 1.

6. The Main Theorem

In the sequel v is a vertex of BCS(k, the complex of {A2}) and F is a function
from Vertices BCS(k, the complex of {A2}) into A2.

The following two propositions are true:

(46) Let given F . Suppose that for all v, B such that B ⊆ A2 and v ∈ convB
holds F (v) ∈ B. Then there exists n such that Card{S;S ranges over
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simplexes of A2 − 1 and BCS(k, the complex of {A2}): F ◦S = A2} =
2 · n+ 1.

(47) Let given F . Suppose that for all v, B such that B ⊆ A2 and v ∈ convB
holds F (v) ∈ B. Then there exists a simplex S of A2 − 1 and BCS(k, the
complex of {A2}) such that F ◦S = A2.
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Summary. The article provides counting derangements of finite sets and
counting non bijective functions. We provide a recursive formula for the number
of derangements of a finite set, together with an explicit formula involving the
number e. We count the number of non-one-to-one functions between to finite
sets and perform a computation to give explicitely a formalization of the birthday
problem. The article is an extension of [10].

MML identifier: CARDFIN2, version: 7.11.0 4.1 .1

The notation and terminology used here have been introduced in the following
papers: [13], [16], [9], [1], [4], [7], [5], [6], [14], [2], [8], [3], [11], [12], [17], [18], and
[15].

1. Preliminaries

In this paper x denotes a set.
One can verify that every finite 0-sequence of Z is integer-valued.
Let n be a natural number. Observe that n! is natural.
Let n be a natural number. One can check that n! is positive.
Let c be a real number. One can verify that exp c is positive.
Let us observe that e is positive.
The following two propositions are true:

1This work has been partially supported by the MNiSW grant NN519 385136.
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(1) id∅ has no fixpoint.

(2) For every real number c such that c < 0 holds exp c < 1.

2. Rounding

Let n be a real number. The functor roundn yielding an integer is defined
by:

(Def. 1) roundn = bn+ 1
2c.

One can prove the following two propositions:

(3) For every integer a holds round a = a.

(4) For every integer a and for every real number b such that |a − b| < 1
2

holds a = round b.

3. Counting Derangements

Next we state two propositions:

(5) Let n be a natural number and a, b be real numbers. Suppose a <

b. Then there exists a real number c such that c ∈ ]a, b[ and exp a =

(
∑κ
α=0(Taylor(the function exp,ΩR, b, a))(α))κ∈N(n) + exp c·(a−b)n+1

(n+1)! .

(6) For every positive natural number n and for every real number c such

that c < 0 holds |−n! · exp c·(−1)
n+1

(n+1)! | < 12 .
Let s be a set. The functor derangements s is defined as follows:

(Def. 2) derangements s = {f ; f ranges over permutations of s: f has no fixpoint}.
Let s be a finite set. Observe that derangements s is finite.
Next we state several propositions:

(7) Let s be a finite set. Then derangements s = {h : s → s: h is one-to-
one ∧

∧
x (x ∈ s ⇒ h(x) 6= x)}.

(8) For every non empty finite set s there exists a real number c such that

c ∈ ]−1, 0[ and derangements s − s !
e = −s ! · exp c·(−1)

s+1

(s+1)!
.

(9) For every non empty finite set s holds |derangements s − s !
e | <

1
2 .

(10) For every non empty finite set s holds derangements s = round( s !e ).

(11) derangements ∅ = {∅}.
(12) derangements{x} = ∅.

The function der seq from N into Z is defined as follows:

(Def. 3) (der seq)(0) = 1 and (der seq)(1) = 0 and for every natural number n
holds (der seq)(n+ 2) = (n+ 1) · ((der seq)(n) + (der seq)(n+ 1)).
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Let c be an integer and let F be a finite 0-sequence of Z. Observe that c F
is finite, integer-valued, and transfinite sequence-like.

Let c be a complex number and let F be an empty function. One can check
that c F is empty.

Next we state three propositions:

(13) For every finite 0-sequence F of Z and for every integer c holds c ·
∑
F =∑

((c F )�(lenF −′ 1)) + c · F (lenF −′ 1).

(14) Let X, N be finite 0-sequences of Z. Suppose lenN = lenX + 1. Let c
be an integer. If N� lenX = cX, then

∑
N = c ·

∑
X +N(lenX).

(15) For every finite set s holds (der seq)(s) = derangements s.

4. Counting not-one-to-one Functions and the Birthday Problem

Let s, t be sets. The functor not-one-to-one(s, t) yields a subset of ts and is
defined by:

(Def. 4) not-one-to-one(s, t) = {f : s→ t: f is not one-to-one}.
Let s, t be finite sets. Observe that not-one-to-one(s, t) is finite.
The scheme FraenkelDiff deals with sets A, B and a unary predicate P, and

states that:
{f : A → B : not P[f ]} = BA \ {f : A → B : P[f ]}

provided the following requirement is met:
• If B = ∅, then A = ∅.

We now state three propositions:

(16) For all finite sets s, t such that s ≤ t holds not-one-to-one(s, t) =

t
s
− t !
( t−′ s )!

.

(17) For every finite set s and for every non empty finite set t such that

s = 23 and t = 365 holds 2 · not-one-to-one(s, t) > ts .

(18) For all non empty finite sets s, t such that s = 23 and t = 365 holds
P(not-one-to-one(s, t)) > 12 .
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Summary. In this article, we define the Riemann Integral on functions R
into C and proof the linearity of this operator. Especially, the Riemann integral
of complex functions is constituted by the redefinition about the Riemann sum
of complex numbers. Our method refers to the [19].

MML identifier: INTEGR16, version: 7.11.0 4.1 .1

The terminology and notation used here have been introduced in the following
articles: [5], [1], [16], [18], [4], [6], [7], [15], [10], [13], [11], [12], [2], [3], [8], [17],
[21], [9], [14], and [20].

1. Preliminaries

One can prove the following proposition

(1) For every complex number z and for every real number r holds <(r ·z) =
r · <(z) and =(r · z) = r · =(z).

Let S be a finite sequence of elements of C. The functor <(S) yielding a
finite sequence of elements of R is defined as follows:

(Def. 1) <(S) = <(S qua partial function from N to C).

The functor =(S) yields a finite sequence of elements of R and is defined as
follows:

(Def. 2) =(S) = =(S qua partial function from N to C).
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Let A be a closed-interval subset of R, let f be a function from A into C,
let S be a non empty Division of A, and let D be an element of S. A finite
sequence of elements of C is said to be a middle volume of f and D if it satisfies
the conditions (Def. 3).

(Def. 3)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists an element

c of C such that c ∈ rng(f� divset(D, i)) and it(i) = c · vol(divset(D, i)).

Let A be a closed-interval subset of R, let f be a function from A into C,
let S be a non empty Division of A, let D be an element of S, and let F be a
middle volume of f and D. The functor middle sum(f, F ) yields an element of
C and is defined by:

(Def. 4) middle sum(f, F ) =
∑
F.

Let A be a closed-interval subset of R, let f be a function from A into C,
and let T be a DivSequence of A. A function from N into C∗ is said to be a
middle volume sequence of f and T if:

(Def. 5) For every element k of N holds it(k) is a middle volume of f and T (k).

Let A be a closed-interval subset of R, let f be a function from A into C, let
T be a DivSequence of A, let S be a middle volume sequence of f and T , and
let k be an element of N. Then S(k) is a middle volume of f and T (k).

Let A be a closed-interval subset of R, let f be a function from A into C,
let T be a DivSequence of A, and let S be a middle volume sequence of f and
T . The functor middle sum(f, S) yields a complex sequence and is defined as
follows:

(Def. 6) For every element i of N holds (middle sum(f, S))(i) =
middle sum(f, S(i)).

2. Definition of Riemann Integral of Functions R into C

Next we state two propositions:

(2) For every partial function f from R to C and for every subset A of R
holds <(f�A) = <(f)�A.

(3) For every partial function f from R to C and for every subset A of R
holds =(f�A) = =(f)�A.

Let A be a closed-interval subset of R and let f be a function from A into
C. Observe that <(f) is quasi total and =(f) is quasi total.

We now state several propositions:

(4) Let A be a closed-interval subset of R, f be a function from A into C, s
be a non empty Division of A, D be an element of s, and S be a middle
volume of f and D. Then <(S) is a middle volume of <(f) and D and
=(S) is a middle volume of =(f) and D.
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(5) For every finite sequence F of elements of C and for every element x of
C holds <(F a 〈x〉) = <(F ) a 〈<(x)〉.

(6) For every finite sequence F of elements of C and for every element x of
C holds =(F a 〈x〉) = =(F ) a 〈=(x)〉.

(7) Let F be a finite sequence of elements of C and F1 be a finite sequence
of elements of R. If F1 = <(F ), then

∑
F1 = <(

∑
F ).

(8) Let F be a finite sequence of elements of C and F2 be a finite sequence
of elements of R. If F2 = =(F ), then

∑
F2 = =(

∑
F ).

(9) Let A be a closed-interval subset of R, f be a function from A into C, S
be a non empty Division of A, D be an element of S, F be a middle volume
of f and D, and F1 be a middle volume of <(f) and D. If F1 = <(F ),
then <(middle sum(f, F )) = middle sum(<(f), F1).

(10) Let A be a closed-interval subset of R, f be a function from A into C, S
be a non empty Division of A, D be an element of S, F be a middle volume
of f and D, and F2 be a middle volume of =(f) and D. If F2 = =(F ),
then =(middle sum(f, F )) = middle sum(=(f), F2).

Let A be a closed-interval subset of R and let f be a function from A into
C. We say that f is integrable if and only if:

(Def. 7) <(f) is integrable and =(f) is integrable.

We now state three propositions:

(11) For every partial function f from R to C holds f is bounded iff <(f) is
bounded and =(f) is bounded.

(12) Let A be a non empty subset of R, f be a partial function from R to
C, and g be a function from A into C. If f = g, then <(f) = <(g) and
=(f) = =(g).

(13) Let A be a closed-interval subset of R and f be a function from A into
C. Then f is bounded if and only if <(f) is bounded and =(f) is bounded.

Let A be a closed-interval subset of R and let f be a function from A into
C. The functor integral f yielding an element of C is defined as follows:

(Def. 8) integral f = integral<(f) + integral=(f) · i.
Next we state two propositions:

(14) Let A be a closed-interval subset of R, f be a function from A into C, T be
a DivSequence of A, and S be a middle volume sequence of f and T . Suppo-
se f is bounded and integrable and δT is convergent and lim(δT ) = 0. Then
middle sum(f, S) is convergent and lim middle sum(f, S) = integral f.

(15) Let A be a closed-interval subset of R and f be a function from A into C.
Suppose f is bounded. Then f is integrable if and only if there exists an
element I of C such that for every DivSequence T of A and for every middle
volume sequence S of f and T such that δT is convergent and lim(δT ) = 0
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holds middle sum(f, S) is convergent and lim middle sum(f, S) = I.

Let A be a closed-interval subset of R and let f be a partial function from
R to C. We say that f is integrable on A if and only if:

(Def. 9) <(f) is integrable on A and =(f) is integrable on A.

Let A be a closed-interval subset of R and let f be a partial function from

R to C. The functor
∫
A

f(x)dx yields an element of C and is defined by:

(Def. 10)
∫
A

f(x)dx =
∫
A

<(f)(x)dx+
∫
A

=(f)(x)dx · i.

We now state two propositions:

(16) Let A be a closed-interval subset of R, f be a partial function from R
to C, and g be a function from A into C. Suppose f�A = g. Then f is
integrable on A if and only if g is integrable.

(17) Let A be a closed-interval subset of R, f be a partial function from R
to C, and g be a function from A into C. If f�A = g, then

∫
A

f(x)dx =

integral g.

Let a, b be real numbers and let f be a partial function from R to C. The

functor
b∫
a

f(x)dx yielding an element of C is defined by:

(Def. 11)
b∫
a

f(x)dx =
b∫
a

<(f)(x)dx+
b∫
a

=(f)(x)dx · i.

3. Linearity of the Integration Operator

Next we state several propositions:

(18) Let c be a complex number and f be a partial function from R to C.
Then <(c f) = <(c)<(f)−=(c)=(f) and =(c f) = <(c)=(f)+=(c)<(f).

(19) Let A be a closed-interval subset of R and f1, f2 be partial functions
from R to C. Suppose f1 is integrable on A and f2 is integrable on A

and A ⊆ dom f1 and A ⊆ dom f2 and f1�A is bounded and f2�A is bo-
unded. Then f1 + f2 is integrable on A and f1 − f2 is integrable on A

and
∫
A

(f1 + f2)(x)dx =
∫
A

f1(x)dx +
∫
A

f2(x)dx and
∫
A

(f1 − f2)(x)dx =∫
A

f1(x)dx−
∫
A

f2(x)dx.

(20) Let r be a real number, A be a closed-interval subset of R, and f be a
partial function from R to C. Suppose A ⊆ dom f and f is integrable on
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A and f�A is bounded. Then r f is integrable on A and
∫
A

(r f)(x)dx =

r ·
∫
A

f(x)dx.

(21) Let c be a complex number, A be a closed-interval subset of R, and f

be a partial function from R to C. Suppose A ⊆ dom f and f is integrable

on A and f�A is bounded. Then c f is integrable on A and
∫
A

(c f)(x)dx =

c ·
∫
A

f(x)dx.

(22) Let f be a partial function from R to C, A be a closed-interval subset of

R, and a, b be real numbers. If A = [a, b], then
∫
A

f(x)dx =
b∫
a

f(x)dx.

(23) Let f be a partial function from R to C, A be a closed-interval subset of

R, and a, b be real numbers. If A = [b, a], then −
∫
A

f(x)dx =
b∫
a

f(x)dx.
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Summary. In this article, we define and develop differentiation of vector-
valued functions on n-dimensional real normed linear spaces (refer to [16] and
[17]).
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The papers [8], [14], [2], [3], [4], [5], [13], [18], [1], [12], [6], [10], [15], [11], [9],
[21], [19], [20], and [7] provide the terminology and notation for this paper.

1. The Basic Properties of Differentiation of Functions from Rm
to Rn

In this paper i, n, m are elements of N.
The following propositions are true:

(1) Let f be a set. Then f is a partial function from Rm to Rn if and only
if f is a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉.

(2) Let n, m be non empty elements of N, f be a partial function from Rm
to Rn, g be a partial function from 〈Em, ‖·‖〉 to 〈En, ‖·‖〉, x be an element
of Rm, and y be a point of 〈Em, ‖ · ‖〉. Suppose f = g and x = y. Then f

is differentiable in x if and only if g is differentiable in y.
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(3) Let n, m be non empty elements of N, f be a partial function from
Rm to Rn, g be a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, x be an
element of Rm, and y be a point of 〈Em, ‖ · ‖〉. If f = g and x = y and f

is differentiable in x, then f ′(x) = g′(y).

(4) Let f1, f2 be partial functions from Rm to Rn and g1, g2 be partial
functions from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. If f1 = g1 and f2 = g2, then
f1 + f2 = g1 + g2.

(5) Let f1, f2 be partial functions from Rm to Rn and g1, g2 be partial
functions from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. If f1 = g1 and f2 = g2, then
f1 − f2 = g1 − g2.

(6) Let f be a partial function from Rm to Rn, g be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and a be a real number. If f = g, then a f = a g.

(7) Let f1, f2 be functions from Rm into Rn and g1, g2 be points of the real
norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉. If
f1 = g1 and f2 = g2, then f1 + f2 = g1 + g2.

(8) Let f1, f2 be functions from Rm into Rn and g1, g2 be points of the real
norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉. If
f1 = g1 and f2 = g2, then f1 − f2 = g1 − g2.

(9) Let f be a function from Rm into Rn, g be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, and r be
a real number. If f = g, then r f = r · g.

(10) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x be an element of Rm. Suppose f is differentiable in x. Then
f ′(x) is a point of the real norm space of bounded linear operators from
〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

Let n, m be natural numbers and let I1 be a function from Rm into Rn. We
say that I1 is additive if and only if:

(Def. 1) For all elements x, y of Rm holds I1(x+ y) = I1(x) + I1(y).

We say that I1 is homogeneous if and only if:

(Def. 2) For every element x of Rm and for every real number r holds I1(r · x) =
r · I1(x).

The following three propositions are true:

(11) For every function I1 from Rm into Rn such that I1 is additive holds
I1(〈0, . . . , 0︸ ︷︷ ︸

m

〉) = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(12) Let f be a function from Rm into Rn and g be a function from 〈Em, ‖·‖〉
into 〈En, ‖ · ‖〉. If f = g, then f is additive iff g is additive.

(13) Let f be a function from Rm into Rn and g be a function from 〈Em, ‖·‖〉
into 〈En, ‖ · ‖〉. If f = g, then f is homogeneous iff g is homogeneous.
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Let n, m be natural numbers. One can verify that the function Rm 7−→
〈0, . . . , 0︸ ︷︷ ︸

n

〉 is additive and homogeneous.

Let n, m be natural numbers. Note that there exists a function from Rm
into Rn which is additive and homogeneous.

Let m, n be natural numbers. A linear operator from m into n is defined by
an additive homogeneous function from Rm into Rn.

We now state the proposition

(14) Let f be a set. Then f is a linear operator from m into n if and only if
f is a linear operator from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

Let m, n be natural numbers, let I1 be a function from Rm into Rn, and let
x be an element of Rm. Then I1(x) is an element of Rn.

Let m, n be natural numbers and let I1 be a function from Rm into Rn. We
say that I1 is bounded if and only if:

(Def. 3) There exists a real number K such that 0 ≤ K and for every element x
of Rm holds |I1(x)| ≤ K · |x|.

Next we state three propositions:

(15) Let x1, y1 be finite sequences of elements of Rm. Suppose lenx1 =
len y1 + 1 and x1� len y1 = y1. Then there exists an element v of Rm
such that v = x1(lenx1) and

∑
x1 =

∑
y1 + v.

(16) Let f be a linear operator from m into n, x1 be a finite sequence of
elements of Rm, and y1 be a finite sequence of elements of Rn. Suppose
lenx1 = len y1 and for every element i of N such that i ∈ domx1 holds
y1(i) = f(x1(i)). Then

∑
y1 = f(

∑
x1).

(17) Let x1 be a finite sequence of elements of Rm and y1 be a finite sequence
of elements of R. Suppose lenx1 = len y1 and for every element i of N such
that i ∈ domx1 there exists an element v of Rm such that v = x1(i) and
y1(i) = |v|. Then |

∑
x1| ≤

∑
y1.

Let m, n be natural numbers. Note that every linear operator from m into
n is bounded.

Let us consider m, n. Observe that every linear operator from 〈Em, ‖·‖〉 into
〈En, ‖ · ‖〉 is bounded.

Next we state several propositions:

(18) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x be an element of Rm. Suppose f is differentiable in x. Then
f ′(x) is a linear operator from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

(19) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x be an element of Rm. Suppose f is differentiable in x. Then
f ′(x) is a linear operator from m into n.

(20) Let n, m be non empty elements of N, g1, g2 be partial functions from



210 takao inoué et al.

Rm to Rn, and y0 be an element of Rm. Suppose g1 is differentiable in
y0 and g2 is differentiable in y0. Then g1 + g2 is differentiable in y0 and
(g1 + g2)′(y0) = g1

′(y0) + g2
′(y0).

(21) Let n, m be non empty elements of N, g1, g2 be partial functions from
Rm to Rn, and y0 be an element of Rm. Suppose g1 is differentiable in
y0 and g2 is differentiable in y0. Then g1 − g2 is differentiable in y0 and
(g1 − g2)′(y0) = g1

′(y0)− g2′(y0).
(22) Let n, m be non empty elements of N, g be a partial function from
Rm to Rn, y0 be an element of Rm, and r be a real number. Suppose g is
differentiable in y0. Then r g is differentiable in y0 and (r g)′(y0) = r g′(y0).

(23) Let x0 be an element of Rm, y0 be a point of 〈Em, ‖ · ‖〉, and r be a real
number. Suppose x0 = y0. Then {y ∈ Rm: |y − x0| < r} = {z; z ranges
over points of 〈Em, ‖ · ‖〉: ‖z − y0‖ < r}.

(24) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, x0 be an element of Rm, and L, R be functions from Rm into Rn.
Suppose that

(i) L is a linear operator from m into n, and
(ii) there exists a real number r0 such that 0 < r0 and {y ∈ Rm: |y−x0| <

r0} ⊆ dom f and for every real number r such that r > 0 there exists a
real number d such that d > 0 and for every element z of Rm and for
every element w of Rn such that z 6= 〈0, . . . , 0︸ ︷︷ ︸

m

〉 and |z| < d and w = R(z)

holds |z|−1 · |w| < r and for every element x of Rm such that |x−x0| < r0
holds f(x)− f(x0) = L(x− x0) +R(x− x0).
Then f is differentiable in x0 and f ′(x0) = L.

(25) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x0 be an element of Rm. Then f is differentiable in x0 if and
only if there exists a real number r0 such that 0 < r0 and {y ∈ Rm:
|y − x0| < r0} ⊆ dom f and there exist functions L, R from Rm into Rn
such that L is a linear operator from m into n and for every real number r
such that r > 0 there exists a real number d such that d > 0 and for every
element z of Rm and for every element w of Rn such that z 6= 〈0, . . . , 0︸ ︷︷ ︸

m

〉

and |z| < d and w = R(z) holds |z|−1 · |w| < r and for every element x of
Rm such that |x− x0| < r0 holds f(x)− f(x0) = L(x− x0) +R(x− x0).
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2. Differentiation of Functions from Normed Linear Spaces Rm to
Normed Linear Spaces Rn

One can prove the following propositions:

(26) For all points y2, y3 of 〈En, ‖ · ‖〉 holds (Proj(i, n))(y2 + y3) =
(Proj(i, n))(y2) + (Proj(i, n))(y3).

(27) For every point y2 of 〈En, ‖ · ‖〉 and for every real number r holds
(Proj(i, n))(r · y2) = r · (Proj(i, n))(y2).

(28) Let m, n be non empty elements of N, g be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, x0 be a point of 〈Em, ‖ · ‖〉, and i be an element of
N. Suppose 1 ≤ i ≤ n and g is differentiable in x0. Then Proj(i, n) · g is
differentiable in x0 and Proj(i, n) · g′(x0) = (Proj(i, n) · g)′(x0).

(29) Let m, n be non empty elements of N, g be a partial function from 〈Em,
‖ · ‖〉 to 〈En, ‖ · ‖〉, and x0 be a point of 〈Em, ‖ · ‖〉. Then g is differentiable
in x0 if and only if for every element i of N such that 1 ≤ i ≤ n holds
Proj(i, n) · g is differentiable in x0.

Let X be a set, let n, m be non empty elements of N, and let f be a partial
function from Rm to Rn. We say that f is differentiable on X if and only if:

(Def. 4) X ⊆ dom f and for every element x of Rm such that x ∈ X holds f�X
is differentiable in x.

The following four propositions are true:

(30) Let X be a set, m, n be non empty elements of N, f be a partial function
from Rm to Rn, and g be a partial function from 〈Em, ‖ · ‖〉 to 〈En,
‖ · ‖〉. Suppose f = g. Then f is differentiable on X if and only if g is
differentiable on X.

(31) Let X be a set, m, n be non empty elements of N, and f be a partial
function from Rm to Rn. If f is differentiable on X, then X is a subset
of Rm.

(32) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and Z be a subset of Rm. Given a subset Z0 of 〈Em, ‖ ·‖〉 such that
Z = Z0 and Z0 is open. Then f is differentiable on Z if and only if the
following conditions are satisfied:

(i) Z ⊆ dom f, and
(ii) for every element x of Rm such that x ∈ Z holds f is differentiable

in x.

(33) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and Z be a subset of Rm. Suppose f is differentiable on Z. Then
there exists a subset Z0 of 〈Em, ‖ · ‖〉 such that Z = Z0 and Z0 is open.
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Summary. In this article we continue formalizing probability and random-
ness started in [13], where we formalized some theorems concerning the proba-
bility and real-valued random variables. In this paper we formalize the variance
of a random variable and prove Chebyshev’s inequality. Next we formalize the
product probability measure on the Cartesian product of discrete spaces. In the
final part of this article we define the algebra of real-valued random variables.

MML identifier: RANDOM 2, version: 7.11.0 4.1 .1

The notation and terminology used here have been introduced in the following
papers: [21], [3], [16], [1], [9], [17], [14], [4], [5], [11], [15], [6], [12], [22], [13], [19],
[20], [8], [10], [18], [2], and [7].

1. Variance

In this paper O1 denotes a non empty set, r denotes a real number, S1
denotes a σ-field of subsets of O1, and P denotes a probability on S1.

One can prove the following two propositions:

(1) For every one-to-one function f and for all subsets A, B of dom f such
that A misses B holds rng(f�A) misses rng(f�B).

(2) For all functions f , g holds rng(f · g) ⊆ rng(f� rng g).

Let us consider O1, S1. Observe that there exists a real-valued random va-
riable of S1 which is non-negative.

Let us consider O1, S1 and let X be a real-valued random variable of S1.
Note that |X| is non-negative.

The following propositions are true:

213
c© 2010 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

7 46 112

http://fm.mizar.org/miz/random_2.miz
http://ftp.mizar.org/


214 hiroyuki okazaki and yasunari shidama

(3) O1 7−→ 1 = χ(O1),O1 .

(4) O1 7−→ r is a real-valued random variable of S1.

(5) For every non empty set X and for every partial function f from X to
R holds f2 = (−f)2 and f2 = |f |2.

(6) Let X be a non empty set and f , g be partial functions from X to R.
Then (f + g)2 = f2 + 2 (f g) + g2 and (f − g)2 = (f2 − 2 (f g)) + g2.

Let us consider O1, S1, P and let X be a real-valued random variable of
S1. Let us assume that X is integrable on P and |X|2 is integrable on P2MP.

The functor variance(X,P ) yielding an element of R is defined by the condition
(Def. 1).

(Def. 1) There exists a real-valued random variable Y of S1 and there exists a
real-valued random variable E of S1 such that E = O1 7−→ EP {X} and
Y = X−E and Y is integrable on P and |Y |2 is integrable on P2MP and
variance(X,P ) =

∫
|Y |2 d P2MP.

2. Chebyshev’s Inequality

One can prove the following proposition

(7) Let given O1, S1, P , r and X be a real-valued random variable of S1.
Suppose 0 < r and X is non-negative and X is integrable on P and
|X|2 is integrable on P2MP. Then P ({t ∈ O1: r ≤ |X(t) − EP {X}|}) ≤
variance(X,P )

r2 .

3. Product Probability Measure

The following propositions are true:

(8) Let O1 be a non empty finite set, f be a function from O1 into R, and
P be a function from 2O1 into R. Suppose that

(i) for every set x such that x ⊆ O1 holds 0 ≤ P (x) ≤ 1,
(ii) P (O1) = 1, and

(iii) for every finite subset z of O1 holds P (z) = setopfunc(z,O1,R, f,+R).
Then P is a probability on the trivial σ-field of O1.

(9) Let D1 be a non empty set, F be a function from D1 into R, and Y be a
finite subset of D1. Then there exists a finite sequence p of elements of D1
such that p is one-to-one and rng p = Y and setopfunc(Y,D1,R, F,+R) =∑

FuncSeq(F, p).

(10) Let D1 be a non empty set, F be a function from D1 into R, Y be a finite
subset of D1, and p be a finite sequence of elements of D1. If p is one-to-one
and rng p = Y, then setopfunc(Y,D1,R, F,+R) =

∑
FuncSeq(F, p).
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(11) Let D2, D3 be non empty sets, F1 be a function from D2 into R, F2 be
a function from D3 into R, G be a function from D2 ×D3 into R, Y1 be a
non empty finite subset of D2, and p1 be a finite sequence of elements of
D2. Suppose p1 is one-to-one and rng p1 = Y1. Let p2 be a finite sequence
of elements of D3, p3 be a finite sequence of elements of D2 ×D3, Y2 be
a non empty finite subset of D3, and Y3 be a finite subset of D2 × D3.
Suppose that

(i) p2 is one-to-one,
(ii) rng p2 = Y2,

(iii) p3 is one-to-one,
(iv) rng p3 = Y3,

(v) Y3 = Y1 × Y2, and
(vi) for all sets x, y such that x ∈ Y1 and y ∈ Y2 holds G(x, y) = F1(x) ·

F2(y).
Then

∑
FuncSeq(G, p3) =

∑
FuncSeq(F1, p1) ·

∑
FuncSeq(F2, p2).

(12) Let D2, D3 be non empty sets, F1 be a function from D2 into R, F2 be
a function from D3 into R, G be a function from D2 ×D3 into R, Y1 be
a non empty finite subset of D2, Y2 be a non empty finite subset of D3,
and Y3 be a finite subset of D2 × D3. Suppose Y3 = Y1 × Y2 and for all
sets x, y such that x ∈ Y1 and y ∈ Y2 holds G(x, y) = F1(x) · F2(y).
Then setopfunc(Y3, D2 × D3,R, G,+R) = setopfunc(Y1, D2,R, F1,+R) ·
setopfunc(Y2, D3,R, F2,+R).

(13) Let D1 be a non empty set, F be a function from D1 into R, and Y be
a finite subset of D1. If for every set x such that x ∈ Y holds 0 ≤ F (x),
then 0 ≤ setopfunc(Y,D1,R, F,+R).

(14) Let D1 be a non empty set, F be a function from D1 into R, and
Y1, Y2 be finite subsets of D1. Suppose Y1 ⊆ Y2 and for every set x

such that x ∈ Y2 holds 0 ≤ F (x). Then setopfunc(Y1, D1,R, F,+R) ≤
setopfunc(Y2, D1,R, F,+R).

(15) Let O1 be a non empty finite set, P be a probability on the trivial σ-field
of O1, Y be a non empty finite subset of O1, and f be a function from O1
into R. Then there exists a finite sequence G of elements of R and there
exists a finite sequence s of elements of Y such that

(i) lenG = Y ,

(ii) s is one-to-one,
(iii) rng s = Y,

(iv) len s = Y ,

(v) for every natural number n such that n ∈ domG holds G(n) = f(s(n)) ·
P ({s(n)}), and

(vi)
∫
f�Y d P2MP =

∑
G.

Let O2, O3 be non empty finite sets, let P1 be a probability on the trivial
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σ-field of O2, and let P2 be a probability on the trivial σ-field of O3. The functor
Product-Probability(O2, O3, P1, P2) yielding a probability on the trivial σ-field
of O2 ×O3 is defined by the condition (Def. 2).

(Def. 2) There exists a function Q from O2 ×O3 into R such that
(i) for all sets x, y such that x ∈ O2 and y ∈ O3 holds Q(x, y) = P1({x}) ·
P2({y}), and

(ii) for every finite subset z ofO2×O3 holds (Product-Probability(O2, O3, P1,
P2))(z) = setopfunc(z,O2 ×O3,R, Q,+R).

Next we state two propositions:

(16) Let O2, O3 be non empty finite sets, P1 be a probability on the trivial
σ-field of O2, P2 be a probability on the trivial σ-field of O3, Y1 be a non
empty finite subset of O2, and Y2 be a non empty finite subset of O3. Then
(Product-Probability(O2, O3, P1, P2))(Y1 × Y2) = P1(Y1) · P2(Y2).

(17) Let O2, O3 be non empty finite sets, P1 be a probability on
the trivial σ-field of O2, P2 be a probability on the trivial σ-
field of O3, and y1, y2 be sets. If y1 ∈ O2 and y2 ∈ O3, then
(Product-Probability(O2, O3, P1, P2))({〈〈y1, y2〉〉}) = P1({y1}) · P2({y2}).

4. Algebra of Real-valued Random Variables

Let O1 be a non empty set and let S1 be a σ-field of subsets of O1. The
R-valued random variables set of S1 yields a non empty subset of RAlgebraO1
and is defined as follows:

(Def. 3) The R-valued random variables set of S1 = {f : f ranges over real-valued
random variables of S1}.

Let us consider O1, S1. Note that the R-valued random variables set of S1
is additively-linearly-closed and multiplicatively-closed.

Let us consider O1, S1. The R algebra of real-valued-random-variables of S1
yielding an algebra is defined by the condition (Def. 4).

(Def. 4) The R algebra of real-valued-random-variables of S1 = 〈the R-
valued random variables set of S1, mult(the R-valued random va-
riables set of S1, RAlgebraO1),Add(the R-valued random varia-
bles set of S1, RAlgebraO1),Mult(the R-valued random variables
set of S1, RAlgebraO1),One(the R-valued random variables set of
S1, RAlgebraO1),Zero(the R-valued random variables set of S1,
RAlgebraO1)〉.
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