Cayley's Theorem

Artur Korniłowicz Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok, Poland

Summary. The article formalizes the Cayley's theorem saying that every group G is isomorphic to a subgroup of the symmetric group on G.

MML identifier: CAYLEY, version: 7.11.07 4.160.1126

The notation and terminology used in this paper have been introduced in the following papers: [3], [6], [4], [5], [10], [11], [7], [2], [1], [9], and [8].

In this paper X, Y denote sets, G denotes a group, and n denotes a natural number.

Let us consider X. Note that $\emptyset_{X,\emptyset}$ is onto.

Let us observe that every set which is permutational is also functional. Let us consider X. The functor permutations X is defined as follows:

(Def. 1) permutations $X = \{f : f \text{ ranges over permutations of } X\}$.

Next we state three propositions:

- (1) For every set f such that $f \in \text{permutations } X$ holds f is a permutation of X.
- (2) permutations $X \subseteq X^X$.
- (3) permutations $\operatorname{Seg} n = \operatorname{the permutations of } n$.

Let us consider X. One can verify that permutations X is non empty and functional.

Let X be a finite set. One can verify that permutations X is finite. Next we state the proposition

(4) permutations $\emptyset = 1$.

Let us consider X. The functor SymGroup X yields a strict constituted functions multiplicative magma and is defined by:

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e) (Def. 2) The carrier of SymGroup X = permutations X and for all elements x, y of SymGroup X holds $x \cdot y = (y \text{ qua function}) \cdot x$.

One can prove the following proposition

(5) Every element of SymGroup X is a permutation of X.

Let us consider X. Note that SymGroup X is non empty, associative, and group-like.

The following propositions are true:

- (6) $\mathbf{1}_{\operatorname{SymGroup} X} = \operatorname{id}_X.$
- (7) For every element x of SymGroup X holds $x^{-1} = (x \text{ qua function})^{-1}$.

Let us consider n. One can verify that A_n is constituted functions. One can prove the following proposition

(8) SymGroup Seg $n = A_n$.

Let X be a finite set. Observe that SymGroup X is finite.

We now state the proposition

(9) SymGroup \emptyset = Trivial-multMagma.

Let us note that SymGroup \emptyset is trivial.

Let us consider X, Y and let p be a function from X into Y. Let us assume that $X \neq \emptyset$ and $Y \neq \emptyset$ and p is bijective. The functor SymGroupsIso p yielding a function from SymGroup X into SymGroup Y is defined by:

(Def. 3) For every element x of SymGroup X holds $(SymGroupsIso p)(x) = p \cdot x \cdot p^{-1}$.

We now state four propositions:

- (10) For all non empty sets X, Y and for every function p from X into Y such that p is bijective holds SymGroupsIso p is multiplicative.
- (11) For all non empty sets X, Y and for every function p from X into Y such that p is bijective holds SymGroupsIso p is one-to-one.
- (12) For all non empty sets X, Y and for every function p from X into Y such that p is bijective holds SymGroupsIso p is onto.
- (13) If $X \approx Y$, then SymGroup X and SymGroup Y are isomorphic.

Let us consider G. The functor CayleyIso G yields a function from G into SymGroup (the carrier of G) and is defined as follows:

(Def. 4) For every element g of G holds $(CayleyIso G)(g) = \cdot g$.

Let us consider G. One can verify that CayleyIso G is multiplicative. Let us consider G. One can verify that CayleyIso G is one-to-one. One can prove the following proposition

(14) G and Im Cayley Iso G are isomorphic.

CAYLEY'S THEOREM

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [7] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- [8] Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.
- [9] Andrzej Trybulec. Classes of independent partitions. Formalized Mathematics, 9(3):623–625, 2001.
- [10] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [11] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.

Received December 29, 2010

Borel-Cantelli Lemma¹

Peter Jaeger Ludwig Maximilians University of Munich Germany

Summary. This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].

 MML identifier: BOR_CANT, version: 7.11.07 4.160.1126

The notation and terminology used here have been introduced in the following papers: [17], [3], [4], [8], [13], [1], [2], [5], [15], [14], [21], [9], [12], [11], [16], [6], [20], [19], and [18].

For simplicity, we adopt the following rules: O_1 is a non empty set, S_1 is a σ -field of subsets of O_1 , P_1 is a probability on S_1 , A is a sequence of subsets of S_1 , and n is an element of \mathbb{N} .

Let D be a set, let x, y be extended real numbers, and let a, b be elements of D. Then $(x > y \rightarrow a, b)$ is an element of D.

We now state two propositions:

- (1) For every element k of \mathbb{N} and for every element x of \mathbb{R} such that k is odd and x > 0 and $x \le 1$ holds $(-x \operatorname{ExpSeq}_{\mathbb{R}})(k+1) + (-x \operatorname{ExpSeq}_{\mathbb{R}})(k+2) \ge 0$.
- (2) For every element x of \mathbb{R} holds $1 + x \leq (\text{the function exp})(x)$.

Let s be a sequence of real numbers. The functor ExpFuncWithElementOf s yielding a sequence of real numbers is defined as follows:

(Def. 1) For every natural number d holds (ExpFuncWithElementOf s) $(d) = \sum -s(d) \operatorname{ExpSeq}_{\mathbb{R}}$.

Next we state two propositions:

(3) (The partial product of ExpFuncWithElementOf $(P_1 \cdot A)$) $(n) = (\text{the func-tion } \exp)(-(\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}(n)).$

 $^1\mathrm{The}$ author wants to thank Prof. F. Merkl for his kind support during the course of this work.

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

PETER JAEGER

(4) (The partial product of $P_1 \cdot A^{\mathbf{c}}(n) \leq$ (the partial product of ExpFuncWithElementOf $(P_1 \cdot A)$)(n).

Let n_1 , n_2 be elements of N. The functor SeqOfIFGT1 (n_1, n_2) yielding a sequence of N is defined by:

(Def. 2) For every element n of \mathbb{N} holds $(\text{SeqOfIFGT1}(n_1, n_2))(n) = (n > n_1 \rightarrow n + n_2, n).$

Let k be an element of N. The SeqOfIFGT2 k yields a sequence of N and is defined by:

(Def. 3) For every element n of N holds (the SeqOfIFGT2 k)(n) = n + k.

Let k be an element of $\mathbb N.$ The SeqOfIFGT3 k yields a sequence of $\mathbb N$ and is defined as follows:

- (Def. 4) For every element n of \mathbb{N} holds (the SeqOfIFGT3 k) $(n) = (n > k \to 0, 1)$. Let n_1, n_2 be elements of \mathbb{N} . The functor SeqOfIFGT4 (n_1, n_2) yielding a sequence of \mathbb{N} is defined as follows:
- (Def. 5) For every element n of \mathbb{N} holds $(\text{SeqOfIFGT4}(n_1, n_2))(n) = (n > n_1 + 1 \rightarrow n + n_2, n).$

Let n_1 , n_2 be elements of N. One can verify that SeqOfIFGT1 (n_1, n_2) is one-to-one and SeqOfIFGT4 (n_1, n_2) is one-to-one.

Let n be an element of N. Observe that the SeqOfIFGT2 n is one-to-one.

Let X be a set, let s be an element of \mathbb{N} , and let A be a sequence of subsets of X. The functor ShiftSeq(A, s) yielding a sequence of subsets of X is defined by:

(Def. 6) ShiftSeq $(A, s) = A \uparrow s$.

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , let s be an element of \mathbb{N} , and let A be a sequence of subsets of S_1 . The functor @ShiftSeq(A, s) yields a sequence of subsets of S_1 and is defined by:

(Def. 7) @ShiftSeq(A, s) = ShiftSeq(A, s).

Next we state the proposition

- (5)(i) For all sequences A, B of subsets of S_1 such that $n > n_1$ and $B = A \cdot \text{SeqOfIFGT1}(n_1, n_2)$ holds (the partial product of $P_1 \cdot B)(n) =$ (the partial product of $P_1 \cdot A)(n_1) \cdot$ (the partial product of $P_1 \cdot (a_1 + n_2 + 1))(n n_1 1)$, and
- (ii) for all sequences A, B, C of subsets of S_1 and for every sequence e of \mathbb{N} such that $n > n_1$ and $C = A \cdot e$ and $B = C \cdot \text{SeqOfIFGT1}(n_1, n_2)$ holds (the partial Intersection of B)(n) = (the partial Intersection of C) $(n_1) \cap$ (the partial Intersection of @ShiftSeq $(C, n_1 + n_2 + 1)$) $(n n_1 1)$.

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , let P_1 be a probability on S_1 , and let A be a sequence of subsets of S_1 . We say that A is all independent w.r.t. P_1 if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let B be a sequence of subsets of S_1 . Given a sequence e of \mathbb{N} such that e is one-to-one and for every element n of \mathbb{N} holds A(e(n)) = B(n). Let n be an element of \mathbb{N} . Then (the partial product of $P_1 \cdot B$) $(n) = P_1((\text{the partial Intersection of } B)(n)).$

The following propositions are true:

- (6) Suppose $n > n_1$ and A is all independent w.r.t. P_1 . Then $P_1((\text{the partial Intersection of } A^{\mathbf{c}})(n_1) \cap (\text{the partial Intersection of @ShiftSeq}(A, n_1+n_2+1))(n-n_1-1)) = (\text{the partial product of } P_1 \cdot A^{\mathbf{c}})(n_1) \cdot (\text{the partial product of } P_1 \cdot \mathbb{Q}\text{ShiftSeq}(A, n_1+n_2+1))(n-n_1-1).$
- (7) (The partial Intersection of $A^{\mathbf{c}}(n) = (\text{the partial Union of } A)(n)^{\mathbf{c}}$.
- (8) $P_1((\text{the partial Intersection of } A^{\mathbf{c}})(n)) = 1 P_1((\text{the partial Union of } A)(n)).$

Let X be a set and let A be a sequence of subsets of X. The UnionShiftSeq A yielding a sequence of subsets of X is defined as follows:

(Def. 9) For every element n of \mathbb{N} holds (the UnionShiftSeq A) $(n) = \bigcup$ ShiftSeq(A, n).

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , and let A be a sequence of subsets of S_1 . The @UnionShiftSeq A yields a sequence of subsets of S_1 and is defined as follows:

(Def. 10) The @UnionShiftSeq A = the UnionShiftSeq A.

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , and let A be a sequence of subsets of S_1 . The @lim sup A yielding an event of S_1 is defined as follows:

(Def. 11) The @lim sup $A = \bigcap$ (the @UnionShiftSeq A).

Let X be a set and let A be a sequence of subsets of X. The IntersectShiftSeq A yields a sequence of subsets of X and is defined as follows:

(Def. 12) For every element n of \mathbb{N} holds (the IntersectShiftSeq A)(n) =IntersectionShiftSeq(A, n).

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , and let A be a sequence of subsets of S_1 . The @IntersectShiftSeq A yielding a sequence of subsets of S_1 is defined as follows:

(Def. 13) The @IntersectShiftSeq A = the IntersectShiftSeq A.

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , and let A be a sequence of subsets of S_1 . The @lim inf A yielding an event of S_1 is defined by:

(Def. 14) The @lim inf $A = \bigcup$ (the @IntersectShiftSeq A).

The following propositions are true:

(9) (The @IntersectShiftSeq A^{c}) $(n) = (the @UnionShiftSeq A)(n)^{c}$.

PETER JAEGER

- (10) Suppose A is all independent w.r.t. P_1 . Then $P_1($ (the partial Intersection of $A^{\mathbf{c}}(n)) =$ (the partial product of $P_1 \cdot A^{\mathbf{c}}(n)$).
- (11) Let X be a set and A be a sequence of subsets of X. Then
 - (i) the superior sets equence A = the UnionShiftSeq A, and
 - (ii) the inferior sets equence A =the IntersectShiftSeq A.
- (12)(i) The superior sets equence A = the @UnionShiftSeq A, and
 - (ii) the inferior sets equence A =the @IntersectShiftSeq A.

Let O_1 be a non empty set, let S_1 be a σ -field of subsets of O_1 , let P_1 be a probability on S_1 , and let A be a sequence of subsets of S_1 . The functor SumShiftSeq (P_1, A) yields a sequence of real numbers and is defined by:

(Def. 15) For every element n of \mathbb{N} holds $(\text{SumShiftSeq}(P_1, A))(n) = \sum (P_1 \cdot (\mathbb{Q} + \mathbb{Q}))(n)$

We now state several propositions:

- (13) If $(\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent, then P_1 (the @lim sup A) = 0 and lim SumShiftSeq $(P_1, A) = 0$ and SumShiftSeq (P_1, A) is convergent.
- (14)(i) For every set X and for every sequence A of subsets of X and for every element n of \mathbb{N} and for every set x holds there exists an element k of \mathbb{N} such that $x \in (\text{ShiftSeq}(A, n))(k)$ iff there exists an element k of \mathbb{N} such that $k \ge n$ and $x \in A(k)$,
 - (ii) for every set X and for every sequence A of subsets of X and for every set x holds $x \in$ Intersection (the UnionShiftSeq A) iff for every element m of N there exists an element n of N such that $n \ge m$ and $x \in A(n)$,
- (iii) for every sequence A of subsets of S_1 and for every set x holds $x \in \bigcap$ (the @UnionShiftSeq A) iff for every element m of \mathbb{N} there exists an element n of \mathbb{N} such that $n \ge m$ and $x \in A(n)$,
- (iv) for every set X and for every sequence A of subsets of X and for every set x holds $x \in \bigcup$ (the IntersectShiftSeq A) iff there exists an element n of \mathbb{N} such that for every element k of \mathbb{N} such that $k \ge n$ holds $x \in A(k)$,
- (v) for every sequence A of subsets of S_1 and for every set x holds $x \in \bigcup$ (the @IntersectShiftSeq A) iff there exists an element n of \mathbb{N} such that for every element k of \mathbb{N} such that $k \ge n$ holds $x \in A(k)$, and
- (vi) for every sequence A of subsets of S_1 and for every element x of O_1 holds $x \in \bigcup$ (the @IntersectShiftSeq A^c) iff there exists an element n of \mathbb{N} such that for every element k of \mathbb{N} such that $k \ge n$ holds $x \notin A(k)$.
- (15)(i) $\limsup A =$ the $\bigotimes \lim \sup A$,
 - (ii) $\liminf A = \text{the @lim inf } A$,
- (iii) the $@\lim \inf A^{\mathbf{c}} = (\text{the } @\lim \sup A)^{\mathbf{c}},$
- (iv) P_1 (the @lim inf A^c) + P_1 (the @lim sup A) = 1, and
- (v) $P_1(\liminf(A^{\mathbf{c}})) + P_1(\limsup A) = 1.$

- If $(\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent, then $P_1(\limsup A) = 0$ and (16)(i) $P_1(\liminf(A^{\mathbf{c}})) = 1$, and
- (ii) if A is all independent w.r.t. P_1 and $(\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}$ is divergent to $+\infty$, then $P_1(\liminf(A^{\mathbf{c}})) = 0$ and $P_1(\limsup A) = 1$.
- (17) If $(\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}$ is not convergent and A is all independent w.r.t. P_1 , then $P_1(\liminf(A^{\mathbf{c}})) = 0$ and $P_1(\limsup A) = 1$.
- (18) If A is all independent w.r.t. P_1 , then $P_1(\liminf(A^c)) = 0$ or $P_1(\liminf(A^{\mathbf{c}})) = 1$ but $P_1(\limsup A) = 0$ or $P_1(\limsup A) = 1$.
- (19) $(\sum_{\alpha=0}^{\kappa} (P_1 \cdot @ShiftSeq(A, n_1+1))(\alpha))_{\kappa \in \mathbb{N}}(n) \le (\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}(n_1+1))(\alpha)$ $1+n) - (\sum_{\alpha=0}^{\kappa} (P_1 \cdot A)(\alpha))_{\kappa \in \mathbb{N}}(n_1).$
- (20) $P_1((\text{the @IntersectShiftSeq } A^{\mathbf{c}})(n)) = 1 P_1((\text{the @UnionShiftSeq}))$ A)(n)).
- (21)(i) If $A^{\mathbf{c}}$ is all independent w.r.t. P_1 , then $P_1($ (the partial Intersection of A(n) =(the partial product of $P_1 \cdot A(n)$, and
- if A is all independent w.r.t. P_1 , then $1 P_1$ (the partial Union of (ii) A)(n) =(the partial product of $P_1 \cdot A^{\mathbf{c}})(n)$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Fuguo Ge and Xiquan Liang. On the partial product of series and related basic inequalities. Formalized Mathematics, 13(3):413-416, 2005.
- Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Stati- $\left[7\right]$ stik. deGruyter, Berlin, 2 edition, 2004.
- Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [10] Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
- [11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [13] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [14] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745–749, 1990.
- [15] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [16] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
- [17] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990. [18]
- [19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

PETER JAEGER

- [20] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347–352, 2005.
 [21] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class.
- Formalized Mathematics, 13(4):435–441, 2005.

Received January 31, 2011

More on the Continuity of Real Functions¹

Keiko Narita Hirosaki-city Aomori, Japan Artur Kornilowicz Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok, Poland

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article we demonstrate basic properties of the continuous functions from \mathbb{R} to \mathcal{R}^n which correspond to state space equations in control engineering.

MML identifier: NFCONT_4, version: 7.11.07 4.160.1126

The terminology and notation used here have been introduced in the following articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8], [20], [21], [19], [11], [22], and [6].

For simplicity, we use the following convention: n, i denote elements of \mathbb{N}, X , X_1 denote sets, r, p, s, x_0, x_1, x_2 denote real numbers, f, f_1, f_2 denote partial functions from \mathbb{R} to \mathcal{R}^n , and h denotes a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$.

Let us consider n, f, x_0 . We say that f is continuous in x_0 if and only if:

(Def. 1) There exists a partial function g from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ such that f = g and g is continuous in x_0 .

We now state four propositions:

- (1) If h = f, then f is continuous in x_0 iff h is continuous in x_0 .
- (2) If $x_0 \in X$ and f is continuous in x_0 , then $f \upharpoonright X$ is continuous in x_0 .

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

¹This work was supported by JSPS KAKENHI 22300285.

KEIKO NARITA et al.

- (3) f is continuous in x_0 if and only if the following conditions are satisfied:
- (i) $x_0 \in \operatorname{dom} f$, and
- (ii) for every r such that 0 < r there exists s such that 0 < s and for every x_1 such that $x_1 \in \text{dom } f$ and $|x_1 x_0| < s$ holds $|f_{x_1} f_{x_0}| < r$.
- (4) Let r be a real number, z be an element of \mathcal{R}^n , and w be a point of $\langle \mathcal{E}^n, \|\cdot\| \rangle$. Suppose z = w. Then $\{y \in \mathcal{R}^n \colon |y z| < r\} = \{y; y \text{ ranges over points of } \langle \mathcal{E}^n, \|\cdot\| \rangle \colon \|y w\| < r\}.$

Let n be an element of \mathbb{N} , let Z be a set, and let f be a partial function from Z to \mathcal{R}^n . The functor |f| yielding a partial function from Z to \mathbb{R} is defined by:

(Def. 2) dom |f| = dom f and for every set x such that $x \in \text{dom } |f|$ holds $|f|_x = |f_x|$.

Let n be an element of N, let Z be a non empty set, and let f be a partial function from Z to \mathcal{R}^n . The functor -f yields a partial function from Z to \mathcal{R}^n and is defined by:

(Def. 3) dom(-f) = dom f and for every set c such that $c \in \text{dom}(-f)$ holds $(-f)_c = -f_c$.

One can prove the following propositions:

- (5) Let f_1 , f_2 be partial functions from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\|\rangle$ and g_1, g_2 be partial functions from \mathbb{R} to \mathcal{R}^n . If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 + f_2 = g_1 + g_2$.
- (6) Let f_1 be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$, g_1 be a partial function from \mathbb{R} to \mathcal{R}^n , and a be a real number. If $f_1 = g_1$, then $a \cdot f_1 = a \cdot g_1$.
- (7) For every partial function f_1 from \mathbb{R} to \mathcal{R}^n holds $(-1) \cdot f_1 = -f_1$.
- (8) Let f_1 be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ and g_1 be a partial function from \mathbb{R} to \mathcal{R}^n . If $f_1 = g_1$, then $-f_1 = -g_1$.
- (9) Let f_1 be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ and g_1 be a partial function from \mathbb{R} to \mathcal{R}^n . If $f_1 = g_1$, then $\|f_1\| = |g_1|$.
- (10) Let f_1 , f_2 be partial functions from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\|\rangle$ and g_1, g_2 be partial functions from \mathbb{R} to \mathcal{R}^n . If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 f_2 = g_1 g_2$.
- (11) f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \operatorname{dom} f$, and
 - (ii) for every subset N_1 of \mathcal{R}^n such that there exists a real number r such that 0 < r and $\{y \in \mathcal{R}^n : |y f_{x_0}| < r\} = N_1$ there exists a neighbourhood N of x_0 such that for every x_1 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f_{x_1} \in N_1$.
- (12) f is continuous in x₀ if and only if the following conditions are satisfied:
 (i) x₀ ∈ dom f, and

- (ii) for every subset N_1 of \mathcal{R}^n such that there exists a real number r such that 0 < r and $\{y \in \mathcal{R}^n : |y f_{x_0}| < r\} = N_1$ there exists a neighbourhood N of x_0 such that $f^{\circ}N \subseteq N_1$.
- (13) If there exists a neighbourhood N of x_0 such that dom $f \cap N = \{x_0\}$, then f is continuous in x_0 .
- (14) If $x_0 \in \text{dom } f_1 \cap \text{dom } f_2$ and f_1 is continuous in x_0 and f_2 is continuous in x_0 , then $f_1 + f_2$ is continuous in x_0 .
- (15) If $x_0 \in \text{dom } f_1 \cap \text{dom } f_2$ and f_1 is continuous in x_0 and f_2 is continuous in x_0 , then $f_1 f_2$ is continuous in x_0 .
- (16) If f is continuous in x_0 , then $r \cdot f$ is continuous in x_0 .
- (17) If $x_0 \in \text{dom } f$ and f is continuous in x_0 , then |f| is continuous in x_0 .
- (18) If $x_0 \in \text{dom } f$ and f is continuous in x_0 , then -f is continuous in x_0 .
- (19) Let S be a real normed space, z be a point of $\langle \mathcal{E}^n, \|\cdot\|\rangle$, f_1 be a partial function from \mathbb{R} to \mathcal{R}^n , and f_2 be a partial function from the carrier of $\langle \mathcal{E}^n, \|\cdot\|\rangle$ to the carrier of S. Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and $z = (f_1)_{x_0}$ and f_2 is continuous in z. Then $f_2 \cdot f_1$ is continuous in x_0 .
- (20) Let S be a real normed space, f_1 be a partial function from \mathbb{R} to the carrier of S, and f_2 be a partial function from the carrier of S to \mathbb{R} . Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and f_2 is continuous in $(f_1)_{x_0}$. Then $f_2 \cdot f_1$ is continuous in x_0 .

Let us consider n, let f be a partial function from \mathcal{R}^n to \mathbb{R} , and let x_0 be an element of \mathcal{R}^n . We say that f is continuous in x_0 if and only if the condition (Def. 4) is satisfied.

(Def. 4) There exists a point y_0 of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and there exists a partial function g from the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ to \mathbb{R} such that $x_0 = y_0$ and f = g and g is continuous in y_0 .

One can prove the following two propositions:

- (21) Let f be a partial function from \mathcal{R}^n to \mathbb{R} , h be a partial function from the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ to \mathbb{R} , x_0 be an element of \mathcal{R}^n , and y_0 be a point of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Suppose f = h and $x_0 = y_0$. Then f is continuous in x_0 if and only if h is continuous in y_0 .
- (22) Let f_1 be a partial function from \mathbb{R} to \mathcal{R}^n and f_2 be a partial function from \mathcal{R}^n to \mathbb{R} . Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and f_2 is continuous in $(f_1)_{x_0}$. Then $f_2 \cdot f_1$ is continuous in x_0 .

Let us consider n, f. We say that f is continuous if and only if:

(Def. 5) For every x_0 such that $x_0 \in \text{dom } f$ holds f is continuous in x_0 . One can prove the following propositions:

- (23) Let g be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ and f be a partial function from \mathbb{R} to \mathcal{R}^n . If g = f, then g is continuous iff f is continuous.
- (24) Suppose $X \subseteq \text{dom } f$. Then $f \upharpoonright X$ is continuous if and only if for all x_0, r such that $x_0 \in X$ and 0 < r there exists s such that 0 < s and for every x_1 such that $x_1 \in X$ and $|x_1 x_0| < s$ holds $|f_{x_1} f_{x_0}| < r$.

Let us consider n. Observe that every partial function from \mathbb{R} to \mathcal{R}^n which is constant is also continuous.

Let us consider n. Observe that there exists a partial function from \mathbb{R} to \mathcal{R}^n which is continuous.

Let us consider n, let f be a continuous partial function from \mathbb{R} to \mathcal{R}^n , and let X be a set. One can verify that $f \upharpoonright X$ is continuous.

One can prove the following proposition

(25) If $f \upharpoonright X$ is continuous and $X_1 \subseteq X$, then $f \upharpoonright X_1$ is continuous.

Let us consider n. Note that every partial function from \mathbb{R} to \mathcal{R}^n which is empty is also continuous.

Let us consider n, f and let X be a trivial set. One can verify that $f \upharpoonright X$ is continuous.

Let us consider n and let f_1 , f_2 be continuous partial functions from \mathbb{R} to \mathcal{R}^n . One can check that $f_1 + f_2$ is continuous.

The following propositions are true:

- (26) If $X \subseteq \text{dom } f_1 \cap \text{dom } f_2$ and $f_1 \upharpoonright X$ is continuous and $f_2 \upharpoonright X$ is continuous, then $(f_1 + f_2) \upharpoonright X$ is continuous and $(f_1 - f_2) \upharpoonright X$ is continuous.
- (27) If $X \subseteq \text{dom } f_1$ and $X_1 \subseteq \text{dom } f_2$ and $f_1 \upharpoonright X$ is continuous and $f_2 \upharpoonright X_1$ is continuous, then $(f_1 + f_2) \upharpoonright (X \cap X_1)$ is continuous and $(f_1 f_2) \upharpoonright (X \cap X_1)$ is continuous.

Let us consider n, let f be a continuous partial function from \mathbb{R} to \mathcal{R}^n , and let us consider r. Observe that $r \cdot f$ is continuous.

The following propositions are true:

- (28) If $X \subseteq \text{dom } f$ and $f \upharpoonright X$ is continuous, then $(r \cdot f) \upharpoonright X$ is continuous.
- (29) If $X \subseteq \text{dom } f$ and $f \upharpoonright X$ is continuous, then $|f| \upharpoonright X$ is continuous and $(-f) \upharpoonright X$ is continuous.
- (30) If f is total and for all x_1 , x_2 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists x_0 such that f is continuous in x_0 , then $f \upharpoonright \mathbb{R}$ is continuous.
- (31) For every subset Y of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ such that dom f is compact and $f \upharpoonright \text{dom } f$ is continuous and Y = rng f holds Y is compact.
- (32) Let Y be a subset of \mathbb{R} and Z be a subset of $\langle \mathcal{E}^n, \|\cdot\| \rangle$. Suppose $Y \subseteq \text{dom } f$ and $Z = f^{\circ}Y$ and Y is compact and $f \upharpoonright Y$ is continuous. Then Z is compact.

Let us consider n, f. We say that f is Lipschitzian if and only if:

(Def. 6) There exists a partial function g from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ such that g = f and g is Lipschitzian.

The following propositions are true:

- (33) f is Lipschitzian if and only if there exists a real number r such that 0 < rand for all x_1, x_2 such that $x_1, x_2 \in \text{dom } f$ holds $|f_{x_1} - f_{x_2}| \le r \cdot |x_1 - x_2|$.
- (34) If f = h, then f is Lipschitzian iff h is Lipschitzian.
- (35) $f \mid X$ is Lipschitzian if and only if there exists a real number r such that 0 < r and for all x_1, x_2 such that $x_1, x_2 \in \text{dom}(f \mid X)$ holds $|f_{x_1} f_{x_2}| \le r \cdot |x_1 x_2|$.

Let us consider n. Note that every partial function from \mathbb{R} to \mathcal{R}^n which is empty is also Lipschitzian.

Let us consider n. Note that there exists a partial function from \mathbb{R} to \mathcal{R}^n which is empty.

Let us consider n, let f be a Lipschitzian partial function from \mathbb{R} to \mathcal{R}^n , and let X be a set. Note that $f \upharpoonright X$ is Lipschitzian.

We now state the proposition

(36) If $f \upharpoonright X$ is Lipschitzian and $X_1 \subseteq X$, then $f \upharpoonright X_1$ is Lipschitzian.

Let us consider n and let f_1 , f_2 be Lipschitzian partial functions from \mathbb{R} to \mathcal{R}^n . Observe that $f_1 + f_2$ is Lipschitzian and $f_1 - f_2$ is Lipschitzian.

We now state two propositions:

- (37) If $f_1 \upharpoonright X$ is Lipschitzian and $f_2 \upharpoonright X_1$ is Lipschitzian, then $(f_1 + f_2) \upharpoonright (X \cap X_1)$ is Lipschitzian.
- (38) If $f_1 \upharpoonright X$ is Lipschitzian and $f_2 \upharpoonright X_1$ is Lipschitzian, then $(f_1 f_2) \upharpoonright (X \cap X_1)$ is Lipschitzian.

Let us consider n, let f be a Lipschitzian partial function from \mathbb{R} to \mathcal{R}^n , and let us consider p. Observe that $p \cdot f$ is Lipschitzian.

Next we state the proposition

(39) If $f \upharpoonright X$ is Lipschitzian and $X \subseteq \text{dom } f$, then $(p \cdot f) \upharpoonright X$ is Lipschitzian.

```
Let us consider n and let f be a Lipschitzian partial function from \mathbb{R} to \mathcal{R}^n.
Observe that |f| is Lipschitzian.
```

Next we state the proposition

(40) If $f \upharpoonright X$ is Lipschitzian, then $-f \upharpoonright X$ is Lipschitzian and $|f| \upharpoonright X$ is Lipschitzian and $(-f) \upharpoonright X$ is Lipschitzian.

Let us consider n. One can check that every partial function from \mathbb{R} to \mathcal{R}^n which is constant is also Lipschitzian.

Let us consider n. One can verify that every partial function from \mathbb{R} to \mathcal{R}^n which is Lipschitzian is also continuous.

The following propositions are true:

(41) For all elements r, p of \mathcal{R}^n such that for every x_0 such that $x_0 \in X$ holds $f_{x_0} = x_0 \cdot r + p$ holds $f \upharpoonright X$ is continuous.

KEIKO NARITA et al.

- (42) For every element x_0 of \mathcal{R}^n such that $1 \leq i \leq n$ holds $\operatorname{proj}(i, n)$ is continuous in x_0 .
- (43) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^n . Then h is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \operatorname{dom} h$, and
 - (ii) for every element i of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{proj}(i, n) \cdot h$ is continuous in x_0 .
- (44) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathcal{R}^n . Then h is continuous if and only if for every element i of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{proj}(i, n) \cdot h$ is continuous.
- (45) For every point x_0 of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ such that $1 \leq i \leq n$ holds $\operatorname{Proj}(i, n)$ is continuous in x_0 .
- (46) Let *n* be a non empty element of \mathbb{N} and *h* be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Then *h* is continuous in x_0 if and only if for every element *i* of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{Proj}(i, n) \cdot h$ is continuous in x_0 .
- (47) Let n be a non empty element of N and h be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \|\cdot\| \rangle$. Then h is continuous if and only if for every element i of N such that $i \in \text{Seg } n$ holds $\text{Proj}(i, n) \cdot h$ is continuous.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
 [7] A. D. L. D. D. D. L. D. D. D. L. D. D. D. L. D. D
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rⁿ. Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-007-0008-5.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43–60, 2009, doi:10.2478/v10037-009-0005-y.
- [12] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rⁿ. Formalized Mathematics, 17(2):179–185, 2009, doi: 10.2478/v10037-009-0021-y.
- [13] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. *Formalized Mathematics*, 12(3):269–275, 2004.
- [14] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45–49, 2011, doi: 10.2478/v10037-011-0008-3.

- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223–230, 1990.
- [16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [17] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
- 1990.
 [22] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received February 22, 2011

Representation Theorem for Stacks

Grzegorz Bancerek Białystok Technical University Poland

Summary. In the paper the concept of stacks is formalized. As the main result the Theorem of Representation for Stacks is given. Formalization is done according to [13].

MML identifier: STACKS_1, version: 7.11.07 4.160.1126

The papers [6], [15], [14], [2], [4], [7], [16], [8], [9], [10], [5], [1], [17], [11], [19], [21], [20], [3], [18], and [12] provide the terminology and notation for this paper.

1. INTRODUCTIONS

In this paper i is a natural number and x is a set.

Let A be a set and let s_1, s_2 be finite sequences of elements of A. Then $s_1 \cap s_2$ is an element of A^* .

Let A be a set, let i be a natural number, and let s be a finite sequence of elements of A. Then $s_{\uparrow i}$ is an element of A^* .

The following two propositions are true:

(1) $\emptyset_{\uparrow i} = \emptyset.$

(2) Let D be a non empty set and s be a finite sequence of elements of D. Suppose $s \neq \emptyset$. Then there exists a finite sequence w of elements of D and there exists an element n of D such that $s = \langle n \rangle \cap w$.

The scheme IndSeqD deals with a non empty set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every finite sequence p of elements of \mathcal{A} holds $\mathcal{P}[p]$ provided the following conditions are met:

• $\mathcal{P}[\varepsilon_{\mathcal{A}}]$, and

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

GRZEGORZ BANCEREK

• For every finite sequence p of elements of \mathcal{A} and for every element x of \mathcal{A} such that $\mathcal{P}[p]$ holds $\mathcal{P}[\langle x \rangle \cap p]$.

Let C, D be non empty sets and let R be a binary relation. A function from $C \times D$ into D is said to be a binary operation of C and D being congruence w.r.t. R if:

(Def. 1) For every element x of C and for all elements y_1, y_2 of D such that $\langle y_1, y_2 \rangle \in R$ holds $\langle it(x, y_1), it(x, y_2) \rangle \in R$.

The scheme LambdaD2 deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} and a binary functor \mathcal{F} yielding an element of \mathcal{C} , and states that:

There exists a function M from $\mathcal{A} \times \mathcal{B}$ into \mathcal{C} such that for every

element i of \mathcal{A} and for every element j of \mathcal{B} holds $M(i, j) = \mathcal{F}(i, j)$ for all values of the parameters.

Let C, D be non empty sets, let R be an equivalence relation of D, and let b be a function from $C \times D$ into D. Let us assume that b is a binary operation of C and D being congruence w.r.t. R. The functor $b_{/R}$ yielding a function from $C \times$ Classes R into Classes R is defined as follows:

(Def. 2) For all sets x, y, y_1 such that $x \in C$ and $y \in \text{Classes } R$ and $y_1 \in y$ holds $b_{R}(x, y) = [b(x, y_1)]_{R}$.

Let A, B be non empty sets, let C be a subset of A, let D be a subset of B, let f be a function from A into B, and let g be a function from C into D. Then f+g is a function from A into B.

2. Stack Algebra

We introduce stack systems which are extensions of 2-sorted and are systems

 \langle a carrier, a carrier', empty stacks, a push function, a pop function, a top function $\rangle,$

where the carrier is a set, the carrier' is a set, the empty stacks constitute a subset of the carrier', the push function is a function from the carrier \times the carrier' into the carrier', the pop function is a function from the carrier' into the carrier', and the top function is a function from the carrier' into the carrier.

Let a_1 be a non empty set, let a_2 be a set, let a_3 be a subset of a_2 , let a_4 be a function from $a_1 \times a_2$ into a_2 , let a_5 be a function from a_2 into a_2 , and let a_6 be a function from a_2 into a_1 . Observe that stack system $\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle$ is non empty.

Let a_1 be a set, let a_2 be a non empty set, let a_3 be a subset of a_2 , let a_4 be a function from $a_1 \times a_2$ into a_2 , let a_5 be a function from a_2 into a_2 , and let a_6 be a function from a_2 into a_1 . One can verify that stack system $\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle$ is non void.

Let us note that there exists a stack system which is non empty, non void, and strict.

Let X be a stack system. A stack of X is an element of the carrier' of X.

Let X be a non empty non void stack system and let s be a stack of X. The predicate empty(s) is defined by:

(Def. 3) $s \in$ the empty stacks of X.

The functor pop s yields a stack of X and is defined by:

(Def. 4) pop s = (the pop function of X)(s).

The functor top s yields an element of X and is defined by:

(Def. 5) top s = (the top function of X)(s).

Let e be an element of X. The functor push(e, s) yields a stack of X and is defined by:

(Def. 6) push(e, s) = (the push function of X)(e, s).

Let A be a non empty set. Standard stack system over A yielding a non empty non void strict stack system is defined by the conditions (Def. 7).

- (Def. 7)(i) The carrier of standard stack system over A = A,
 - (ii) the carrier' of standard stack system over $A = A^*$, and
 - (iii) for every stack s of standard stack system over A holds empty(s) iff s is empty and for every finite sequence g such that g = s holds if not empty(s), then top s = g(1) and pop $s = g_{\uparrow 1}$ and if empty(s), then top s = the element of standard stack system over A and pop $s = \emptyset$ and for every element e of standard stack system over A holds push $(e, s) = \langle e \rangle^{\frown} g$.

In the sequel A denotes a non empty set, c denotes an element of standard stack system over A, and m denotes a stack of standard stack system over A.

Let us consider A. Note that every stack of standard stack system over A is relation-like and function-like.

Let us consider A. Observe that every stack of standard stack system over A is finite sequence-like.

We adopt the following convention: X denotes a non empty non void stack system, s, s_1 denote stacks of X, and e, e_1 , e_2 denote elements of X.

Let us consider X. We say that X is pop-finite if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let f be a function from \mathbb{N} into the carrier' of X. Then there exists a natural number i and there exists s such that f(i) = s and if not empty(s), then $f(i+1) \neq \text{pop } s$.

We say that X is push-pop if and only if:

(Def. 9) If not empty(s), then s = push(top s, pop s).

We say that X is top-push if and only if:

(Def. 10) $e = \operatorname{top} \operatorname{push}(e, s).$

We say that X is pop-push if and only if:

(Def. 11) s = pop push(e, s).

We say that X is push-non-empty if and only if:

(Def. 12) not empty(push(e, s)).

Let A be a non empty set. One can verify the following observations:

- * standard stack system over A is pop-finite,
- * standard stack system over A is push-pop,
- * standard stack system over A is top-push,
- * standard stack system over A is pop-push, and
- * standard stack system over A is push-non-empty.

Let us observe that there exists a non empty non void stack system which is pop-finite, push-pop, top-push, pop-push, push-non-empty, and strict.

A stack algebra is a pop-finite push-pop top-push pop-push push-non-empty non empty non void stack system.

Next we state the proposition

(3) For every non empty non void stack system X such that X is pop-finite there exists a stack s of X such that empty(s).

Let X be a pop-finite non empty non void stack system. Note that the empty stacks of X is non empty.

We now state two propositions:

- (4) If X is top-push and pop-push and $push(e_1, s_1) = push(e_2, s_2)$, then $e_1 = e_2$ and $s_1 = s_2$.
- (5) If X is push-pop and not $empty(s_1)$ and not $empty(s_2)$ and $pop s_1 = pop s_2$ and $top s_1 = top s_2$, then $s_1 = s_2$.

3. Schemes of Induction

Now we present three schemes. The scheme INDsch deals with a stack algebra \mathcal{A} , a stack \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the following conditions are satisfied:

- For every stack s of \mathcal{A} such that empty(s) holds $\mathcal{P}[s]$, and
- For every stack s of \mathcal{A} and for every element e of \mathcal{A} such that $\mathcal{P}[s]$ holds $\mathcal{P}[\operatorname{push}(e, s)]$.

The scheme *EXsch* deals with a stack algebra \mathcal{A} , a stack \mathcal{B} of \mathcal{A} , a non empty set \mathcal{C} , an element \mathcal{D} of \mathcal{C} , and a binary functor \mathcal{F} yielding an element of \mathcal{C} , and states that:

There exists an element a of C and there exists a function F from the carrier' of A into C such that

(i) $a = F(\mathcal{B}),$

(ii) for every stack s_1 of \mathcal{A} such that $\text{empty}(s_1)$ holds $F(s_1) = \mathcal{D}$, and

(iii) for every stack s_1 of \mathcal{A} and for every element e of \mathcal{A} holds $F(\operatorname{push}(e, s_1)) = \mathcal{F}(e, F(s_1))$

for all values of the parameters.

The scheme UNIQsch deals with a stack algebra \mathcal{A} , a stack \mathcal{B} of \mathcal{A} , a non empty set \mathcal{C} , an element \mathcal{D} of \mathcal{C} , and a binary functor \mathcal{F} yielding an element of \mathcal{C} , and states that:

Let a_1, a_2 be elements of C. Suppose that

(i) there exists a function F from the carrier' of \mathcal{A} into \mathcal{C} such that $a_1 = F(\mathcal{B})$ and for every stack s_1 of \mathcal{A} such that empty (s_1) holds $F(s_1) = \mathcal{D}$ and for every stack s_1 of \mathcal{A} and for every element e of \mathcal{A} holds $F(\text{push}(e, s_1)) = \mathcal{F}(e, F(s_1))$, and

(ii) there exists a function F from the carrier' of \mathcal{A} into \mathcal{C} such that $a_2 = F(\mathcal{B})$ and for every stack s_1 of \mathcal{A} such that $\text{empty}(s_1)$ holds $F(s_1) = \mathcal{D}$ and for every stack s_1 of \mathcal{A} and for every element e of \mathcal{A} holds $F(\text{push}(e, s_1)) = \mathcal{F}(e, F(s_1))$.

Then $a_1 = a_2$

for all values of the parameters.

4. Stack Congruence

We adopt the following rules: X is a stack algebra, s, s_1, s_2, s_3 are stacks of X, and e, e_1, e_2, e_3 are elements of X.

Let us consider X, s. The functor |s| yielding an element of (the carrier of X)^{*} is defined by the condition (Def. 13).

(Def. 13) There exists a function F from the carrier' of X into (the carrier of X)^{*} such that |s| = F(s) and for every s_1 such that $empty(s_1)$ holds $F(s_1) = \emptyset$ and for all s_1 , e holds $F(push(e, s_1)) = \langle e \rangle \cap F(s_1)$.

Next we state several propositions:

- (6) If empty(s), then $|s| = \emptyset$.
- (7) If not empty(s), then $|s| = \langle \operatorname{top} s \rangle \cap |\operatorname{pop} s|$.
- (8) If not empty(s), then $|\operatorname{pop} s| = |s|_{\uparrow 1}$.
- (9) $|\operatorname{push}(e,s)| = \langle e \rangle \cap |s|.$
- (10) If not empty(s), then top s = |s|(1).
- (11) If $|s| = \emptyset$, then empty(s).
- (12) For every stack s of standard stack system over A holds |s| = s.
- (13) For every element x of (the carrier of X)^{*} there exists s such that |s| = x.

Let us consider X, s_1 , s_2 . The predicate $s_1 =_G s_2$ is defined as follows:

(Def. 14) $|s_1| = |s_2|$.

Let us notice that the predicate $s_1 =_G s_2$ is reflexive and symmetric. The following propositions are true:

GRZEGORZ BANCEREK

- (14) If $s_1 =_G s_2$ and $s_2 =_G s_3$, then $s_1 =_G s_3$.
- (15) If $s_1 =_G s_2$ and $empty(s_1)$, then $empty(s_2)$.
- (16) If empty (s_1) and empty (s_2) , then $s_1 =_G s_2$.
- (17) If $s_1 =_G s_2$, then push $(e, s_1) =_G push(e, s_2)$.
- (18) If $s_1 =_G s_2$ and not empty (s_1) , then pop $s_1 =_G pop s_2$.
- (19) If $s_1 =_G s_2$ and not empty (s_1) , then top $s_1 = top s_2$.
 - Let us consider X. We say that X is proper for identity if and only if:
- (Def. 15) For all s_1 , s_2 such that $s_1 =_G s_2$ holds $s_1 = s_2$.

Let us consider A. Observe that standard stack system over A is proper for identity.

Let us consider X. The functor $==_X$ yields a binary relation on the carrier' of X and is defined as follows:

(Def. 16) $\langle s_1, s_2 \rangle \in ==_X \text{ iff } s_1 =_G s_2.$

Let us consider X. Observe that $==_X$ is total, symmetric, and transitive. One can prove the following proposition

(20) If empty(s), then $[s]_{==x}$ = the empty stacks of X.

Let us consider X, s. The functor coset s yielding a subset of the carrier' of X is defined by the conditions (Def. 17).

- (Def. 17)(i) $s \in \operatorname{coset} s$,
 - (ii) for all e, s_1 such that $s_1 \in \operatorname{coset} s$ holds $\operatorname{push}(e, s_1) \in \operatorname{coset} s$ and if not $\operatorname{empty}(s_1)$, then $\operatorname{pop} s_1 \in \operatorname{coset} s$, and
 - (iii) for every subset A of the carrier' of X such that $s \in A$ and for all e, s_1 such that $s_1 \in A$ holds $push(e, s_1) \in A$ and if not $empty(s_1)$, then $pop s_1 \in A$ holds $coset s \subseteq A$.

Next we state three propositions:

- (21) If $push(e, s) \in coset s_1$, then $s \in coset s_1$ and if not empty(s) and $pop s \in coset s_1$, then $s \in coset s_1$.
- (22) $s \in \operatorname{coset} \operatorname{push}(e, s)$ and if not $\operatorname{empty}(s)$, then $s \in \operatorname{coset} \operatorname{pop} s$.
- (23) There exists s_1 such that $empty(s_1)$ and $s_1 \in coset s$.

Let us consider A and let R be a binary relation on A. Note that there exists a reduction sequence w.r.t. R which is A-valued.

Let us consider X. The construction reduction X yielding a binary relation on the carrier' of X is defined as follows:

(Def. 18) $\langle s_1, s_2 \rangle \in$ the construction reduction X iff not empty (s_1) and $s_2 = \text{pop } s_1$ or there exists e such that $s_2 = \text{push}(e, s_1)$.

Next we state the proposition

(24) Let R be a binary relation on A and t be a reduction sequence w.r.t. R. Then $t(1) \in A$ if and only if t is A-valued.

The scheme *PathIND* deals with a non empty set \mathcal{A} , elements \mathcal{B} , \mathcal{C} of \mathcal{A} , a binary relation \mathcal{D} on \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

provided the parameters meet the following conditions:

• $\mathcal{P}[\mathcal{B}],$

 $\mathcal{P}[\mathcal{C}]$

- \mathcal{D} reduces \mathcal{B} to \mathcal{C} , and
- For all elements x, y of \mathcal{A} such that \mathcal{D} reduces \mathcal{B} to x and $\langle x, y \rangle \in \mathcal{D}$ and $\mathcal{P}[x]$ holds $\mathcal{P}[y]$.

One can prove the following propositions:

- (25) For every reduction sequence t w.r.t. the construction reduction X such that s = t(1) holds rng $t \subseteq \text{coset } s$.
- (26) $\operatorname{coset} s = \{s_1 : \text{the construction reduction } X \operatorname{reduces} s \operatorname{to} s_1\}.$

Let us consider X, s. The functor core s yields a stack of X and is defined by the conditions (Def. 19).

(Def. 19)(i) = empty(core s), and

(ii) there exists a the carrier' of X-valued reduction sequence t w.r.t. the construction reduction X such that t(1) = s and $t(\operatorname{len} t) = \operatorname{core} s$ and for every i such that $1 \leq i < \operatorname{len} t$ holds not $\operatorname{empty}(t_i)$ and $t_{i+1} = \operatorname{pop}(t_i)$.

The following propositions are true:

- (27) If empty(s), then core s = s.
- (28) $\operatorname{core} \operatorname{push}(e, s) = \operatorname{core} s.$
- (29) If not empty(s), then core pop s = core s.
- (30) core $s \in \text{coset } s$.
- (31) For every element x of (the carrier of X)^{*} there exists s_1 such that $|s_1| = x$ and $s_1 \in \operatorname{coset} s$.
- (32) If $s_1 \in \operatorname{coset} s$, then $\operatorname{core} s_1 = \operatorname{core} s$.
- (33) If $s_1, s_2 \in \text{coset } s$ and $|s_1| = |s_2|$, then $s_1 = s_2$.
- (34) There exists s such that $\operatorname{coset} s_1 \cap [s_2]_{==x} = \{s\}.$

5. QUOTIENT STACK SYSTEM

Let us consider X. The functor $X_{/==}$ yields a strict stack system and is defined by the conditions (Def. 20).

(Def. 20)(i) The carrier of $X_{/==}$ = the carrier of X,

- (ii) the carrier' of $X_{/==} = \text{Classes} = =_X$,
- (iii) the empty stacks of $X_{/==} = \{$ the empty stacks of $X \},$
- (iv) the push function of $X_{/==} = (\text{the push function of } X)_{/==_X}$,
- (v) the pop function of $X_{/==} =$

((the pop function of X)+ \cdot id_{the empty stacks of X})_{==x}, and

GRZEGORZ BANCEREK

(vi) for every choice function f of Classes $==_X$ holds the top function of $X_{/==} =$ (the top function of $X) \cdot f + \cdot$ (the empty stacks of X, the element of the carrier of X).

Let us consider X. One can verify that $X_{/==}$ is non empty and non void. The following propositions are true:

- (35) For every stack S of $X_{/==}$ there exists s such that $S = [s]_{==x}$.
- (36) $[s]_{==_X}$ is a stack of $X_{/==}$.
- (37) For every stack S of $X_{/==}$ such that $S = [s]_{==X}$ holds empty(s) iff empty(S).
- (38) For every stack S of $X_{/==}$ holds empty(S) iff S = the empty stacks of X.
- (39) For every stack S of $X_{/==}$ and for every element E of $X_{/==}$ such that $S = [s]_{==x}$ and E = e holds $push(e,s) \in push(E,S)$ and $[push(e,s)]_{==x} = push(E,S)$.
- (40) For every stack S of $X_{/==}$ such that $S = [s]_{==_X}$ and not empty(s) holds $pop s \in pop S$ and $[pop s]_{==_X} = pop S$.
- (41) For every stack S of $X_{/==}$ such that $S = [s]_{==_X}$ and not empty(s) holds top S = top s.

Let us consider X. One can verify the following observations:

- * $X_{/==}$ is pop-finite,
- * $X_{/==}$ is push-pop,
- * $X_{/==}$ is top-push,
- * $X_{/==}$ is pop-push, and
- * $X_{/==}$ is push-non-empty.

Next we state the proposition

(42) For every stack S of $X_{/==}$ such that $S = [s]_{==x}$ holds |S| = |s|.

Let us consider X. Note that $X_{/==}$ is proper for identity.

Let us note that there exists a stack algebra which is proper for identity.

6. Representation Theorem for Stacks

Let X_1 , X_2 be stack algebras and let F, G be functions. We say that F and G form isomorphism between X_1 and X_2 if and only if the conditions (Def. 21) are satisfied.

(Def. 21) dom F = the carrier of X_1 and rng F = the carrier of X_2 and F is oneto-one and dom G = the carrier' of X_1 and rng G = the carrier' of X_2 and G is one-to-one and for every stack s_1 of X_1 and for every stack s_2 of X_2 such that $s_2 = G(s_1)$ holds empty (s_1) iff empty (s_2) and if not empty (s_1) , then pop $s_2 = G(\text{pop } s_1)$ and top $s_2 = F(\text{top } s_1)$ and for every element

 e_1 of X_1 and for every element e_2 of X_2 such that $e_2 = F(e_1)$ holds $push(e_2, s_2) = G(push(e_1, s_1)).$

We use the following convention: X_1 , X_2 , X_3 are stack algebras and F, F_1 , F_2 , G, G_1 , G_2 are functions.

The following propositions are true:

- (43) id_{the carrier of X} and id_{the carrier' of X} form isomorphism between X and X.
- (44) If F and G form isomorphism between X_1 and X_2 , then F^{-1} and G^{-1} form isomorphism between X_2 and X_1 .
- (45) Suppose F_1 and G_1 form isomorphism between X_1 and X_2 and F_2 and G_2 form isomorphism between X_2 and X_3 . Then $F_2 \cdot F_1$ and $G_2 \cdot G_1$ form isomorphism between X_1 and X_3 .
- (46) Suppose F and G form isomorphism between X_1 and X_2 . Let s_1 be a stack of X_1 and s_2 be a stack of X_2 . If $s_2 = G(s_1)$, then $|s_2| = F \cdot |s_1|$.

Let X_1 , X_2 be stack algebras. We say that X_1 and X_2 are isomorphic if and only if:

(Def. 22) There exist functions F, G such that F and G form isomorphism between X_1 and X_2 .

Let us notice that the predicate X_1 and X_2 are isomorphic is reflexive and symmetric.

We now state four propositions:

- (47) If X_1 and X_2 are isomorphic and X_2 and X_3 are isomorphic, then X_1 and X_3 are isomorphic.
- (48) If X_1 and X_2 are isomorphic and X_1 is proper for identity, then X_2 is proper for identity.
- (49) Let X be a proper for identity stack algebra. Then there exists G such that
 - (i) for every stack s of X holds G(s) = |s|, and
- (ii) $\operatorname{id}_{\operatorname{the carrier of } X}$ and G form isomorphism between X and standard stack system over the carrier of X.
- (50) Let X be a proper for identity stack algebra. Then X and standard stack system over the carrier of X are isomorphic.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. Filters part II. Quotient lattices modulo filters and direct product of two lattices. Formalized Mathematics, 2(3):433–438, 1991.
- [3] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

GRZEGORZ BANCEREK

- [5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [7]Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-[8] 65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Grażyna Mirkowska and Andrzej Salwicki. Algorithmic Logic. PWN-Polish Scientific Publisher, 1987.
- [14] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- [15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [16] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [17] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [20]Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [21] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Received February 22, 2011

Contents

Formaliz. Math. 19 (4)

Cayley's Theorem	
By Artur Korniłowicz	
Borel-Cantelli Lemma	
By Peter Jaeger	
More on the Continuity of Real	Functions
By Keiko Narita et al	
Representation Theorem for Sta	cks
By Grzegorz Bancerek	