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The notation and terminology used in this paper have been introduced in the
following papers: [3], [6], [4], [5], [10], [11], [7], [2], [1], [9], and [8].

In this paper X, Y denote sets, G denotes a group, and n denotes a natural
number.

Let us consider X. Note that ∅X,∅ is onto.
Let us observe that every set which is permutational is also functional.
Let us consider X. The functor permutationsX is defined as follows:

(Def. 1) permutationsX = {f : f ranges over permutations of X}.
Next we state three propositions:

(1) For every set f such that f ∈ permutationsX holds f is a permutation
of X.

(2) permutationsX ⊆ XX .

(3) permutations Seg n = the permutations of n.

Let us consider X. One can verify that permutationsX is non empty and
functional.

Let X be a finite set. One can verify that permutationsX is finite.
Next we state the proposition

(4) permutations ∅ = 1.

Let us consider X. The functor SymGroupX yields a strict constituted func-
tions multiplicative magma and is defined by:
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(Def. 2) The carrier of SymGroupX = permutationsX and for all elements x, y
of SymGroupX holds x · y = (y qua function) ·x.

One can prove the following proposition

(5) Every element of SymGroupX is a permutation of X.

Let us consider X. Note that SymGroupX is non empty, associative, and
group-like.

The following propositions are true:

(6) 1SymGroupX = idX .

(7) For every element x of SymGroupX holds x−1 = (x qua function) −1.

Let us consider n. One can verify that An is constituted functions.
One can prove the following proposition

(8) SymGroup Seg n = An.

Let X be a finite set. Observe that SymGroupX is finite.
We now state the proposition

(9) SymGroup ∅ = Trivial-multMagma .

Let us note that SymGroup ∅ is trivial.
Let us consider X, Y and let p be a function from X into Y . Let us assume

that X 6= ∅ and Y 6= ∅ and p is bijective. The functor SymGroupsIso p yielding
a function from SymGroupX into SymGroupY is defined by:

(Def. 3) For every element x of SymGroupX holds (SymGroupsIso p)(x) = p ·x ·
p−1.

We now state four propositions:

(10) For all non empty sets X, Y and for every function p from X into Y

such that p is bijective holds SymGroupsIso p is multiplicative.

(11) For all non empty sets X, Y and for every function p from X into Y

such that p is bijective holds SymGroupsIso p is one-to-one.

(12) For all non empty sets X, Y and for every function p from X into Y

such that p is bijective holds SymGroupsIso p is onto.

(13) If X ≈ Y, then SymGroupX and SymGroupY are isomorphic.

Let us consider G. The functor CayleyIsoG yields a function from G into
SymGroup (the carrier of G) and is defined as follows:

(Def. 4) For every element g of G holds (CayleyIsoG)(g) = ·g.
Let us consider G. One can verify that CayleyIsoG is multiplicative.
Let us consider G. One can verify that CayleyIsoG is one-to-one.
One can prove the following proposition

(14) G and Im CayleyIsoG are isomorphic.
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The notation and terminology used here have been introduced in the following
papers: [17], [3], [4], [8], [13], [1], [2], [5], [15], [14], [21], [9], [12], [11], [16], [6],
[20], [19], and [18].

For simplicity, we adopt the following rules: O1 is a non empty set, S1 is a
σ-field of subsets of O1, P1 is a probability on S1, A is a sequence of subsets of
S1, and n is an element of N.

Let D be a set, let x, y be extended real numbers, and let a, b be elements
of D. Then (x > y → a, b) is an element of D.

We now state two propositions:

(1) For every element k of N and for every element x of R such that k is odd
and x > 0 and x ≤ 1 holds (−xExpSeqR)(k+1)+(−xExpSeqR)(k+2) ≥ 0.

(2) For every element x of R holds 1 + x ≤ (the function exp)(x).

Let s be a sequence of real numbers. The functor ExpFuncWithElementOf s
yielding a sequence of real numbers is defined as follows:

(Def. 1) For every natural number d holds (ExpFuncWithElementOf s)(d) =∑
−s(d) ExpSeqR .

Next we state two propositions:

(3) (The partial product of ExpFuncWithElementOf(P1·A))(n) = (the func-
tion exp)(−(

∑κ
α=0(P1 ·A)(α))κ∈N(n)).

1The author wants to thank Prof. F. Merkl for his kind support during the course of this
work.
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(4) (The partial product of P1 · Ac)(n) ≤ (the partial product of
ExpFuncWithElementOf(P1 ·A))(n).

Let n1, n2 be elements of N. The functor SeqOfIFGT1(n1, n2) yielding a
sequence of N is defined by:

(Def. 2) For every element n of N holds (SeqOfIFGT1(n1, n2))(n) = (n > n1 →
n+ n2, n).

Let k be an element of N. The SeqOfIFGT2 k yields a sequence of N and is
defined by:

(Def. 3) For every element n of N holds (the SeqOfIFGT2 k)(n) = n+ k.

Let k be an element of N. The SeqOfIFGT3 k yields a sequence of N and is
defined as follows:

(Def. 4) For every element n of N holds (the SeqOfIFGT3 k)(n) = (n > k → 0, 1).

Let n1, n2 be elements of N. The functor SeqOfIFGT4(n1, n2) yielding a
sequence of N is defined as follows:

(Def. 5) For every element n of N holds (SeqOfIFGT4(n1, n2))(n) = (n > n1 +
1→ n+ n2, n).

Let n1, n2 be elements of N. One can verify that SeqOfIFGT1(n1, n2) is
one-to-one and SeqOfIFGT4(n1, n2) is one-to-one.

Let n be an element of N. Observe that the SeqOfIFGT2 n is one-to-one.
Let X be a set, let s be an element of N, and let A be a sequence of subsets

of X. The functor ShiftSeq(A, s) yielding a sequence of subsets of X is defined
by:

(Def. 6) ShiftSeq(A, s) = A ↑ s.
Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, let s be an ele-

ment of N, and let A be a sequence of subsets of S1. The functor @ShiftSeq(A, s)
yields a sequence of subsets of S1 and is defined by:

(Def. 7) @ShiftSeq(A, s) = ShiftSeq(A, s).

Next we state the proposition

(5)(i) For all sequences A, B of subsets of S1 such that n > n1 and B =
A · SeqOfIFGT1(n1, n2) holds (the partial product of P1 · B)(n) = (the
partial product of P1 ·A)(n1)·(the partial product of P1 ·@ShiftSeq(A,n1+
n2 + 1))(n− n1 − 1), and

(ii) for all sequences A, B, C of subsets of S1 and for every sequence e of N
such that n > n1 and C = A·e and B = C ·SeqOfIFGT1(n1, n2) holds (the
partial Intersection of B)(n) = (the partial Intersection of C)(n1) ∩ (the
partial Intersection of @ShiftSeq(C, n1 + n2 + 1))(n− n1 − 1).

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, let P1 be a
probability on S1, and let A be a sequence of subsets of S1. We say that A is
all independent w.r.t. P1 if and only if the condition (Def. 8) is satisfied.
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(Def. 8) Let B be a sequence of subsets of S1. Given a sequence e of N such that
e is one-to-one and for every element n of N holds A(e(n)) = B(n). Let
n be an element of N. Then (the partial product of P1 · B)(n) = P1((the
partial Intersection of B)(n)).

The following propositions are true:

(6) Suppose n > n1 and A is all independent w.r.t. P1. Then P1((the partial
Intersection of Ac)(n1)∩(the partial Intersection of @ShiftSeq(A,n1+n2+
1))(n−n1−1)) = (the partial product of P1 ·Ac)(n1) ·(the partial product
of P1 ·@ShiftSeq(A,n1 + n2 + 1))(n− n1 − 1).

(7) (The partial Intersection of Ac)(n) = (the partial Union of A)(n)c.

(8) P1((the partial Intersection of Ac)(n)) = 1 − P1((the partial Union of
A)(n)).

Let X be a set and let A be a sequence of subsets of X. The UnionShiftSeq
A yielding a sequence of subsets of X is defined as follows:

(Def. 9) For every element n of N holds (the UnionShiftSeq A)(n) =⋃
ShiftSeq(A,n).

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A be
a sequence of subsets of S1. The @UnionShiftSeq A yields a sequence of subsets
of S1 and is defined as follows:

(Def. 10) The @UnionShiftSeq A = the UnionShiftSeq A.

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A be
a sequence of subsets of S1. The @lim sup A yielding an event of S1 is defined
as follows:

(Def. 11) The @lim sup A =
⋂

(the @UnionShiftSeq A).

Let X be a set and let A be a sequence of subsets of X. The IntersectShiftSeq
A yields a sequence of subsets of X and is defined as follows:

(Def. 12) For every element n of N holds (the IntersectShiftSeq A)(n) =
Intersection ShiftSeq(A,n).

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A
be a sequence of subsets of S1. The @IntersectShiftSeq A yielding a sequence of
subsets of S1 is defined as follows:

(Def. 13) The @IntersectShiftSeq A = the IntersectShiftSeq A.

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, and let A be
a sequence of subsets of S1. The @lim inf A yielding an event of S1 is defined
by:

(Def. 14) The @lim inf A =
⋃

(the @IntersectShiftSeq A).

The following propositions are true:

(9) (The @IntersectShiftSeq Ac)(n) = (the @UnionShiftSeq A)(n)c.
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(10) Suppose A is all independent w.r.t. P1. Then P1((the partial Intersection
of Ac)(n)) = (the partial product of P1 ·Ac)(n).

(11) Let X be a set and A be a sequence of subsets of X. Then
(i) the superior setsequence A = the UnionShiftSeq A, and

(ii) the inferior setsequence A = the IntersectShiftSeq A.

(12)(i) The superior setsequence A = the @UnionShiftSeq A, and
(ii) the inferior setsequence A = the @IntersectShiftSeq A.

Let O1 be a non empty set, let S1 be a σ-field of subsets of O1, let P1 be
a probability on S1, and let A be a sequence of subsets of S1. The functor
SumShiftSeq(P1, A) yields a sequence of real numbers and is defined by:

(Def. 15) For every element n of N holds (SumShiftSeq(P1, A))(n) =
∑

(P1 ·
@ShiftSeq(A,n)).

We now state several propositions:

(13) If (
∑κ
α=0(P1 ·A)(α))κ∈N is convergent, then P1(the @lim sup A) = 0 and

lim SumShiftSeq(P1, A) = 0 and SumShiftSeq(P1, A) is convergent.

(14)(i) For every set X and for every sequence A of subsets of X and for
every element n of N and for every set x holds there exists an element k
of N such that x ∈ (ShiftSeq(A,n))(k) iff there exists an element k of N
such that k ≥ n and x ∈ A(k),

(ii) for every set X and for every sequence A of subsets of X and for every
set x holds x ∈ Intersection (the UnionShiftSeq A) iff for every element m
of N there exists an element n of N such that n ≥ m and x ∈ A(n),

(iii) for every sequence A of subsets of S1 and for every set x holds x ∈
⋂

(the
@UnionShiftSeq A) iff for every element m of N there exists an element n
of N such that n ≥ m and x ∈ A(n),

(iv) for every set X and for every sequence A of subsets of X and for every
set x holds x ∈

⋃
(the IntersectShiftSeq A) iff there exists an element n of

N such that for every element k of N such that k ≥ n holds x ∈ A(k),
(v) for every sequence A of subsets of S1 and for every set x holds x ∈

⋃
(the

@IntersectShiftSeq A) iff there exists an element n of N such that for every
element k of N such that k ≥ n holds x ∈ A(k), and

(vi) for every sequence A of subsets of S1 and for every element x of O1
holds x ∈

⋃
(the @IntersectShiftSeq Ac) iff there exists an element n of N

such that for every element k of N such that k ≥ n holds x /∈ A(k).

(15)(i) lim supA = the @lim sup A,
(ii) lim inf A = the @lim inf A,
(iii) the @lim inf Ac = (the @lim sup A)c,
(iv) P1(the @lim inf Ac) + P1(the @lim sup A) = 1, and
(v) P1(lim inf(Ac)) + P1(lim supA) = 1.
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(16)(i) If (
∑κ
α=0(P1 · A)(α))κ∈N is convergent, then P1(lim supA) = 0 and

P1(lim inf(Ac)) = 1, and
(ii) if A is all independent w.r.t. P1 and (

∑κ
α=0(P1 ·A)(α))κ∈N is divergent

to +∞, then P1(lim inf(Ac)) = 0 and P1(lim supA) = 1.

(17) If (
∑κ
α=0(P1 ·A)(α))κ∈N is not convergent and A is all independent w.r.t.

P1, then P1(lim inf(Ac)) = 0 and P1(lim supA) = 1.

(18) If A is all independent w.r.t. P1, then P1(lim inf(Ac)) = 0 or
P1(lim inf(Ac)) = 1 but P1(lim supA) = 0 or P1(lim supA) = 1.

(19) (
∑κ
α=0(P1·@ShiftSeq(A,n1+1))(α))κ∈N(n) ≤ (

∑κ
α=0(P1·A)(α))κ∈N(n1+

1 + n)− (
∑κ
α=0(P1 ·A)(α))κ∈N(n1).

(20) P1((the @IntersectShiftSeq Ac)(n)) = 1 − P1((the @UnionShiftSeq
A)(n)).

(21)(i) If Ac is all independent w.r.t. P1, then P1((the partial Intersection of
A)(n)) = (the partial product of P1 ·A)(n), and

(ii) if A is all independent w.r.t. P1, then 1 − P1((the partial Union of
A)(n)) = (the partial product of P1 ·Ac)(n).
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Summary. In this article we demonstrate basic properties of the continu-
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The terminology and notation used here have been introduced in the following
articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8],
[20], [21], [19], [11], [22], and [6].

For simplicity, we use the following convention: n, i denote elements of N, X,
X1 denote sets, r, p, s, x0, x1, x2 denote real numbers, f , f1, f2 denote partial
functions from R to Rn, and h denotes a partial function from R to the carrier
of 〈En, ‖ · ‖〉.

Let us consider n, f , x0. We say that f is continuous in x0 if and only if:

(Def. 1) There exists a partial function g from R to the carrier of 〈En, ‖ · ‖〉 such
that f = g and g is continuous in x0.

We now state four propositions:

(1) If h = f, then f is continuous in x0 iff h is continuous in x0.

(2) If x0 ∈ X and f is continuous in x0, then f�X is continuous in x0.

1This work was supported by JSPS KAKENHI 22300285.
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(3) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every

x1 such that x1 ∈ dom f and |x1 − x0| < s holds |fx1 − fx0 | < r.

(4) Let r be a real number, z be an element of Rn, and w be a point of
〈En, ‖ · ‖〉. Suppose z = w. Then {y ∈ Rn: |y− z| < r} = {y; y ranges over
points of 〈En, ‖ · ‖〉: ‖y − w‖ < r}.

Let n be an element of N, let Z be a set, and let f be a partial function from
Z to Rn. The functor |f | yielding a partial function from Z to R is defined by:

(Def. 2) dom |f | = dom f and for every set x such that x ∈ dom |f | holds |f |x =
|fx|.

Let n be an element of N, let Z be a non empty set, and let f be a partial
function from Z to Rn. The functor −f yields a partial function from Z to Rn
and is defined by:

(Def. 3) dom(−f) = dom f and for every set c such that c ∈ dom(−f) holds
(−f)c = −fc.

One can prove the following propositions:

(5) Let f1, f2 be partial functions from R to the carrier of 〈En, ‖ · ‖〉 and
g1, g2 be partial functions from R to Rn. If f1 = g1 and f2 = g2, then
f1 + f2 = g1 + g2.

(6) Let f1 be a partial function from R to the carrier of 〈En, ‖ · ‖〉, g1 be a
partial function from R to Rn, and a be a real number. If f1 = g1, then
a · f1 = a · g1.

(7) For every partial function f1 from R to Rn holds (−1) · f1 = −f1.
(8) Let f1 be a partial function from R to the carrier of 〈En, ‖ · ‖〉 and g1 be

a partial function from R to Rn. If f1 = g1, then −f1 = −g1.
(9) Let f1 be a partial function from R to the carrier of 〈En, ‖ · ‖〉 and g1 be

a partial function from R to Rn. If f1 = g1, then ‖f1‖ = |g1|.
(10) Let f1, f2 be partial functions from R to the carrier of 〈En, ‖ · ‖〉 and

g1, g2 be partial functions from R to Rn. If f1 = g1 and f2 = g2, then
f1 − f2 = g1 − g2.

(11) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every subset N1 of Rn such that there exists a real number r such
that 0 < r and {y ∈ Rn: |y−fx0 | < r} = N1 there exists a neighbourhood
N of x0 such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds
fx1 ∈ N1.

(12) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and
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(ii) for every subset N1 of Rn such that there exists a real number r such
that 0 < r and {y ∈ Rn: |y−fx0 | < r} = N1 there exists a neighbourhood
N of x0 such that f◦N ⊆ N1.

(13) If there exists a neighbourhood N of x0 such that dom f ∩ N = {x0},
then f is continuous in x0.

(14) If x0 ∈ dom f1 ∩ dom f2 and f1 is continuous in x0 and f2 is continuous
in x0, then f1 + f2 is continuous in x0.

(15) If x0 ∈ dom f1 ∩ dom f2 and f1 is continuous in x0 and f2 is continuous
in x0, then f1 − f2 is continuous in x0.

(16) If f is continuous in x0, then r · f is continuous in x0.

(17) If x0 ∈ dom f and f is continuous in x0, then |f | is continuous in x0.

(18) If x0 ∈ dom f and f is continuous in x0, then −f is continuous in x0.

(19) Let S be a real normed space, z be a point of 〈En, ‖ · ‖〉, f1 be a partial
function from R to Rn, and f2 be a partial function from the carrier of
〈En, ‖·‖〉 to the carrier of S. Suppose x0 ∈ dom(f2 ·f1) and f1 is continuous
in x0 and z = (f1)x0 and f2 is continuous in z. Then f2 · f1 is continuous
in x0.

(20) Let S be a real normed space, f1 be a partial function from R to the
carrier of S, and f2 be a partial function from the carrier of S to R.
Suppose x0 ∈ dom(f2 · f1) and f1 is continuous in x0 and f2 is continuous
in (f1)x0 . Then f2 · f1 is continuous in x0.

Let us consider n, let f be a partial function from Rn to R, and let x0 be
an element of Rn. We say that f is continuous in x0 if and only if the condition
(Def. 4) is satisfied.

(Def. 4) There exists a point y0 of 〈En, ‖ · ‖〉 and there exists a partial function
g from the carrier of 〈En, ‖ · ‖〉 to R such that x0 = y0 and f = g and g is
continuous in y0.

One can prove the following two propositions:

(21) Let f be a partial function from Rn to R, h be a partial function from
the carrier of 〈En, ‖ · ‖〉 to R, x0 be an element of Rn, and y0 be a point
of 〈En, ‖ · ‖〉. Suppose f = h and x0 = y0. Then f is continuous in x0 if
and only if h is continuous in y0.

(22) Let f1 be a partial function from R to Rn and f2 be a partial function
from Rn to R. Suppose x0 ∈ dom(f2 · f1) and f1 is continuous in x0 and
f2 is continuous in (f1)x0 . Then f2 · f1 is continuous in x0.

Let us consider n, f . We say that f is continuous if and only if:

(Def. 5) For every x0 such that x0 ∈ dom f holds f is continuous in x0.

One can prove the following propositions:
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(23) Let g be a partial function from R to the carrier of 〈En, ‖ · ‖〉 and f be
a partial function from R to Rn. If g = f, then g is continuous iff f is
continuous.

(24) Suppose X ⊆ dom f. Then f�X is continuous if and only if for all x0, r
such that x0 ∈ X and 0 < r there exists s such that 0 < s and for every
x1 such that x1 ∈ X and |x1 − x0| < s holds |fx1 − fx0 | < r.

Let us consider n. Observe that every partial function from R to Rn which
is constant is also continuous.

Let us consider n. Observe that there exists a partial function from R to Rn
which is continuous.

Let us consider n, let f be a continuous partial function from R to Rn, and
let X be a set. One can verify that f�X is continuous.

One can prove the following proposition

(25) If f�X is continuous and X1 ⊆ X, then f�X1 is continuous.

Let us consider n. Note that every partial function from R to Rn which is
empty is also continuous.

Let us consider n, f and let X be a trivial set. One can verify that f�X is
continuous.

Let us consider n and let f1, f2 be continuous partial functions from R to
Rn. One can check that f1 + f2 is continuous.

The following propositions are true:

(26) If X ⊆ dom f1 ∩dom f2 and f1�X is continuous and f2�X is continuous,
then (f1 + f2)�X is continuous and (f1 − f2)�X is continuous.

(27) If X ⊆ dom f1 and X1 ⊆ dom f2 and f1�X is continuous and f2�X1 is
continuous, then (f1+ f2)�(X ∩X1) is continuous and (f1− f2)�(X ∩X1)
is continuous.

Let us consider n, let f be a continuous partial function from R to Rn, and
let us consider r. Observe that r · f is continuous.

The following propositions are true:

(28) If X ⊆ dom f and f�X is continuous, then (r · f)�X is continuous.

(29) If X ⊆ dom f and f�X is continuous, then |f |�X is continuous and
(−f)�X is continuous.

(30) If f is total and for all x1, x2 holds fx1+x2 = fx1 + fx2 and there exists
x0 such that f is continuous in x0, then f�R is continuous.

(31) For every subset Y of 〈En, ‖·‖〉 such that dom f is compact and f� dom f

is continuous and Y = rng f holds Y is compact.

(32) Let Y be a subset of R and Z be a subset of 〈En, ‖·‖〉. Suppose Y ⊆ dom f

and Z = f◦Y and Y is compact and f�Y is continuous. Then Z is compact.

Let us consider n, f . We say that f is Lipschitzian if and only if:
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(Def. 6) There exists a partial function g from R to the carrier of 〈En, ‖ · ‖〉 such
that g = f and g is Lipschitzian.

The following propositions are true:

(33) f is Lipschitzian if and only if there exists a real number r such that 0 < r

and for all x1, x2 such that x1, x2 ∈ dom f holds |fx1 − fx2 | ≤ r · |x1−x2|.
(34) If f = h, then f is Lipschitzian iff h is Lipschitzian.

(35) f�X is Lipschitzian if and only if there exists a real number r such that
0 < r and for all x1, x2 such that x1, x2 ∈ dom(f�X) holds |fx1 − fx2 | ≤
r · |x1 − x2|.

Let us consider n. Note that every partial function from R to Rn which is
empty is also Lipschitzian.

Let us consider n. Note that there exists a partial function from R to Rn
which is empty.

Let us consider n, let f be a Lipschitzian partial function from R to Rn, and
let X be a set. Note that f�X is Lipschitzian.

We now state the proposition

(36) If f�X is Lipschitzian and X1 ⊆ X, then f�X1 is Lipschitzian.

Let us consider n and let f1, f2 be Lipschitzian partial functions from R to
Rn. Observe that f1 + f2 is Lipschitzian and f1 − f2 is Lipschitzian.

We now state two propositions:

(37) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1+f2)�(X∩X1)
is Lipschitzian.

(38) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1−f2)�(X∩X1)
is Lipschitzian.

Let us consider n, let f be a Lipschitzian partial function from R to Rn, and
let us consider p. Observe that p · f is Lipschitzian.

Next we state the proposition

(39) If f�X is Lipschitzian and X ⊆ dom f, then (p · f)�X is Lipschitzian.

Let us consider n and let f be a Lipschitzian partial function from R to Rn.
Observe that |f | is Lipschitzian.

Next we state the proposition

(40) If f�X is Lipschitzian, then −f�X is Lipschitzian and |f |�X is Lipschit-
zian and (−f)�X is Lipschitzian.

Let us consider n. One can check that every partial function from R to Rn
which is constant is also Lipschitzian.

Let us consider n. One can verify that every partial function from R to Rn
which is Lipschitzian is also continuous.

The following propositions are true:

(41) For all elements r, p of Rn such that for every x0 such that x0 ∈ X holds
fx0 = x0 · r + p holds f�X is continuous.
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(42) For every element x0 of Rn such that 1 ≤ i ≤ n holds proj(i, n) is
continuous in x0.

(43) Let n be a non empty element of N and h be a partial function from R
to Rn. Then h is continuous in x0 if and only if the following conditions
are satisfied:

(i) x0 ∈ domh, and
(ii) for every element i of N such that i ∈ Seg n holds proj(i, n) · h is

continuous in x0.

(44) Let n be a non empty element of N and h be a partial function from R
to Rn. Then h is continuous if and only if for every element i of N such
that i ∈ Seg n holds proj(i, n) · h is continuous.

(45) For every point x0 of 〈En, ‖ · ‖〉 such that 1 ≤ i ≤ n holds Proj(i, n) is
continuous in x0.

(46) Let n be a non empty element of N and h be a partial function from R
to the carrier of 〈En, ‖ · ‖〉. Then h is continuous in x0 if and only if for
every element i of N such that i ∈ Seg n holds Proj(i, n) · h is continuous
in x0.

(47) Let n be a non empty element of N and h be a partial function from R
to the carrier of 〈En, ‖ · ‖〉. Then h is continuous if and only if for every
element i of N such that i ∈ Seg n holds Proj(i, n) · h is continuous.
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Representation Theorem for Stacks
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Summary. In the paper the concept of stacks is formalized. As the main
result the Theorem of Representation for Stacks is given. Formalization is done
according to [13].
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[21], [20], [3], [18], and [12] provide the terminology and notation for this paper.

1. Introductions

In this paper i is a natural number and x is a set.
Let A be a set and let s1, s2 be finite sequences of elements of A. Then s1as2

is an element of A∗.
Let A be a set, let i be a natural number, and let s be a finite sequence of

elements of A. Then s�i is an element of A∗.
The following two propositions are true:

(1) ∅�i = ∅.
(2) Let D be a non empty set and s be a finite sequence of elements of D.

Suppose s 6= ∅. Then there exists a finite sequence w of elements of D and
there exists an element n of D such that s = 〈n〉 a w.

The scheme IndSeqD deals with a non empty set A and a unary predicate
P, and states that:

For every finite sequence p of elements of A holds P[p]
provided the following conditions are met:
• P[εA], and
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• For every finite sequence p of elements of A and for every element
x of A such that P[p] holds P[〈x〉 a p].

Let C, D be non empty sets and let R be a binary relation. A function from
C × D into D is said to be a binary operation of C and D being congruence
w.r.t. R if:

(Def. 1) For every element x of C and for all elements y1, y2 of D such that 〈〈y1,
y2〉〉 ∈ R holds 〈〈it(x, y1), it(x, y2)〉〉 ∈ R.

The scheme LambdaD2 deals with non empty sets A, B, C and a binary
functor F yielding an element of C, and states that:

There exists a function M from A×B into C such that for every
element i ofA and for every element j of B holds M(i, j) = F(i, j)

for all values of the parameters.
Let C, D be non empty sets, let R be an equivalence relation of D, and let b

be a function from C ×D into D. Let us assume that b is a binary operation of
C and D being congruence w.r.t. R. The functor b/R yielding a function from
C × ClassesR into ClassesR is defined as follows:

(Def. 2) For all sets x, y, y1 such that x ∈ C and y ∈ ClassesR and y1 ∈ y holds
b/R(x, y) = [b(x, y1)]R.

Let A, B be non empty sets, let C be a subset of A, let D be a subset of B,
let f be a function from A into B, and let g be a function from C into D. Then
f+·g is a function from A into B.

2. Stack Algebra

We introduce stack systems which are extensions of 2-sorted and are systems
〈 a carrier, a carrier’, empty stacks, a push function, a pop function, a top

function 〉,
where the carrier is a set, the carrier’ is a set, the empty stacks constitute
a subset of the carrier’, the push function is a function from the carrier×the
carrier’ into the carrier’, the pop function is a function from the carrier’ into the
carrier’, and the top function is a function from the carrier’ into the carrier.

Let a1 be a non empty set, let a2 be a set, let a3 be a subset of a2, let a4 be
a function from a1 × a2 into a2, let a5 be a function from a2 into a2, and let a6
be a function from a2 into a1. Observe that stack system〈a1, a2, a3, a4, a5, a6〉 is
non empty.

Let a1 be a set, let a2 be a non empty set, let a3 be a subset of a2, let a4 be a
function from a1×a2 into a2, let a5 be a function from a2 into a2, and let a6 be a
function from a2 into a1. One can verify that stack system〈a1, a2, a3, a4, a5, a6〉
is non void.

Let us note that there exists a stack system which is non empty, non void,
and strict.
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Let X be a stack system. A stack of X is an element of the carrier’ of X.
Let X be a non empty non void stack system and let s be a stack of X. The

predicate empty(s) is defined by:

(Def. 3) s ∈ the empty stacks of X.

The functor pop s yields a stack of X and is defined by:

(Def. 4) pop s = (the pop function of X)(s).

The functor top s yields an element of X and is defined by:

(Def. 5) top s = (the top function of X)(s).

Let e be an element of X. The functor push(e, s) yields a stack of X and is
defined by:

(Def. 6) push(e, s) = (the push function of X)(e,s).

Let A be a non empty set. Standard stack system over A yielding a non
empty non void strict stack system is defined by the conditions (Def. 7).

(Def. 7)(i) The carrier of standard stack system over A = A,

(ii) the carrier’ of standard stack system over A = A∗, and
(iii) for every stack s of standard stack system over A holds empty(s)

iff s is empty and for every finite sequence g such that g = s holds if
not empty(s), then top s = g(1) and pop s = g�1 and if empty(s), then
top s = the element of standard stack system over A and pop s = ∅ and for
every element e of standard stack system over A holds push(e, s) = 〈e〉a g.

In the sequel A denotes a non empty set, c denotes an element of standard
stack system over A, and m denotes a stack of standard stack system over A.

Let us consider A. Note that every stack of standard stack system over A is
relation-like and function-like.

Let us consider A. Observe that every stack of standard stack system over
A is finite sequence-like.

We adopt the following convention: X denotes a non empty non void stack
system, s, s1 denote stacks of X, and e, e1, e2 denote elements of X.

Let us consider X. We say that X is pop-finite if and only if the condition
(Def. 8) is satisfied.

(Def. 8) Let f be a function from N into the carrier’ of X. Then there exists a
natural number i and there exists s such that f(i) = s and if not empty(s),
then f(i+ 1) 6= pop s.

We say that X is push-pop if and only if:

(Def. 9) If not empty(s), then s = push(top s, pop s).

We say that X is top-push if and only if:

(Def. 10) e = top push(e, s).

We say that X is pop-push if and only if:

(Def. 11) s = pop push(e, s).
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We say that X is push-non-empty if and only if:

(Def. 12) not empty(push(e, s)).

Let A be a non empty set. One can verify the following observations:

∗ standard stack system over A is pop-finite,

∗ standard stack system over A is push-pop,

∗ standard stack system over A is top-push,

∗ standard stack system over A is pop-push, and

∗ standard stack system over A is push-non-empty.

Let us observe that there exists a non empty non void stack system which
is pop-finite, push-pop, top-push, pop-push, push-non-empty, and strict.

A stack algebra is a pop-finite push-pop top-push pop-push push-non-empty
non empty non void stack system.

Next we state the proposition

(3) For every non empty non void stack system X such that X is pop-finite
there exists a stack s of X such that empty(s).

Let X be a pop-finite non empty non void stack system. Note that the empty
stacks of X is non empty.

We now state two propositions:

(4) If X is top-push and pop-push and push(e1, s1) = push(e2, s2), then
e1 = e2 and s1 = s2.

(5) If X is push-pop and not empty(s1) and not empty(s2) and pop s1 =
pop s2 and top s1 = top s2, then s1 = s2.

3. Schemes of Induction

Now we present three schemes. The scheme INDsch deals with a stack alge-
bra A, a stack B of A, and a unary predicate P, and states that:

P[B]
provided the following conditions are satisfied:
• For every stack s of A such that empty(s) holds P[s], and
• For every stack s of A and for every element e of A such that P[s]

holds P[push(e, s)].
The scheme EXsch deals with a stack algebra A, a stack B of A, a non empty

set C, an element D of C, and a binary functor F yielding an element of C, and
states that:

There exists an element a of C and there exists a function F from
the carrier’ of A into C such that
(i) a = F (B),
(ii) for every stack s1 of A such that empty(s1) holds F (s1) =
D, and
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(iii) for every stack s1 of A and for every element e of A holds
F (push(e, s1)) = F(e, F (s1))

for all values of the parameters.
The scheme UNIQsch deals with a stack algebra A, a stack B of A, a non

empty set C, an element D of C, and a binary functor F yielding an element of
C, and states that:

Let a1, a2 be elements of C. Suppose that
(i) there exists a function F from the carrier’ of A into C such

that a1 = F (B) and for every stack s1 of A such that empty(s1)
holds F (s1) = D and for every stack s1 of A and for every element
e of A holds F (push(e, s1)) = F(e, F (s1)), and
(ii) there exists a function F from the carrier’ of A into C such
that a2 = F (B) and for every stack s1 of A such that empty(s1)
holds F (s1) = D and for every stack s1 of A and for every element
e of A holds F (push(e, s1)) = F(e, F (s1)).

Then a1 = a2
for all values of the parameters.

4. Stack Congruence

We adopt the following rules: X is a stack algebra, s, s1, s2, s3 are stacks of
X, and e, e1, e2, e3 are elements of X.

Let us consider X, s. The functor |s| yielding an element of
(the carrier of X)∗ is defined by the condition (Def. 13).

(Def. 13) There exists a function F from the carrier’ of X into (the carrier of X)∗

such that |s| = F (s) and for every s1 such that empty(s1) holds F (s1) = ∅
and for all s1, e holds F (push(e, s1)) = 〈e〉 a F (s1).

Next we state several propositions:

(6) If empty(s), then |s| = ∅.
(7) If not empty(s), then |s| = 〈top s〉 a | pop s|.
(8) If not empty(s), then |pop s| = |s|�1.
(9) | push(e, s)| = 〈e〉 a |s|.

(10) If not empty(s), then top s = |s|(1).

(11) If |s| = ∅, then empty(s).

(12) For every stack s of standard stack system over A holds |s| = s.

(13) For every element x of (the carrier of X)∗ there exists s such that |s| = x.

Let us consider X, s1, s2. The predicate s1 =G s2 is defined as follows:

(Def. 14) |s1| = |s2|.
Let us notice that the predicate s1 =G s2 is reflexive and symmetric.

The following propositions are true:
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(14) If s1 =G s2 and s2 =G s3, then s1 =G s3.

(15) If s1 =G s2 and empty(s1), then empty(s2).

(16) If empty(s1) and empty(s2), then s1 =G s2.

(17) If s1 =G s2, then push(e, s1) =G push(e, s2).

(18) If s1 =G s2 and not empty(s1), then pop s1 =G pop s2.

(19) If s1 =G s2 and not empty(s1), then top s1 = top s2.

Let us consider X. We say that X is proper for identity if and only if:

(Def. 15) For all s1, s2 such that s1 =G s2 holds s1 = s2.

Let us consider A. Observe that standard stack system over A is proper for
identity.

Let us consider X. The functor ==X yields a binary relation on the carrier’
of X and is defined as follows:

(Def. 16) 〈〈s1, s2〉〉 ∈ ==X iff s1 =G s2.

Let us consider X. Observe that ==X is total, symmetric, and transitive.
One can prove the following proposition

(20) If empty(s), then [s]==X = the empty stacks of X.

Let us consider X, s. The functor coset s yielding a subset of the carrier’ of
X is defined by the conditions (Def. 17).

(Def. 17)(i) s ∈ coset s,
(ii) for all e, s1 such that s1 ∈ coset s holds push(e, s1) ∈ coset s and if

not empty(s1), then pop s1 ∈ coset s, and
(iii) for every subset A of the carrier’ of X such that s ∈ A and for all

e, s1 such that s1 ∈ A holds push(e, s1) ∈ A and if not empty(s1), then
pop s1 ∈ A holds coset s ⊆ A.

Next we state three propositions:

(21) If push(e, s) ∈ coset s1, then s ∈ coset s1 and if not empty(s) and pop s ∈
coset s1, then s ∈ coset s1.

(22) s ∈ coset push(e, s) and if not empty(s), then s ∈ coset pop s.

(23) There exists s1 such that empty(s1) and s1 ∈ coset s.

Let us consider A and let R be a binary relation on A. Note that there exists
a reduction sequence w.r.t. R which is A-valued.

Let us consider X. The construction reduction X yielding a binary relation
on the carrier’ of X is defined as follows:

(Def. 18) 〈〈s1, s2〉〉 ∈ the construction reduction X iff not empty(s1) and s2 =
pop s1 or there exists e such that s2 = push(e, s1).

Next we state the proposition

(24) Let R be a binary relation on A and t be a reduction sequence w.r.t. R.
Then t(1) ∈ A if and only if t is A-valued.
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The scheme PathIND deals with a non empty set A, elements B, C of A, a
binary relation D on A, and a unary predicate P, and states that:

P[C]
provided the parameters meet the following conditions:
• P[B],
• D reduces B to C, and
• For all elements x, y of A such that D reduces B to x and 〈〈x,
y〉〉 ∈ D and P[x] holds P[y].

One can prove the following propositions:

(25) For every reduction sequence t w.r.t. the construction reduction X such
that s = t(1) holds rng t ⊆ coset s.

(26) coset s = {s1 : the construction reduction Xreduces s to s1}.
Let us consider X, s. The functor core s yields a stack of X and is defined

by the conditions (Def. 19).

(Def. 19)(i) empty(core s), and
(ii) there exists a the carrier’ of X-valued reduction sequence t w.r.t. the

construction reduction X such that t(1) = s and t(len t) = core s and for
every i such that 1 ≤ i < len t holds not empty(ti) and ti+1 = pop(ti).

The following propositions are true:

(27) If empty(s), then core s = s.

(28) core push(e, s) = core s.

(29) If not empty(s), then core pop s = core s.

(30) core s ∈ coset s.

(31) For every element x of (the carrier of X)∗ there exists s1 such that |s1| =
x and s1 ∈ coset s.

(32) If s1 ∈ coset s, then core s1 = core s.

(33) If s1, s2 ∈ coset s and |s1| = |s2|, then s1 = s2.

(34) There exists s such that coset s1 ∩ [s2]==X = {s}.

5. Quotient Stack System

Let us consider X. The functor X/== yields a strict stack system and is
defined by the conditions (Def. 20).

(Def. 20)(i) The carrier of X/== = the carrier of X,
(ii) the carrier’ of X/== = Classes ==X ,

(iii) the empty stacks of X/== = {the empty stacks of X},
(iv) the push function of X/== = (the push function of X)/==X ,
(v) the pop function of X/== =

((the pop function of X)+·idthe empty stacks of X)/==X , and
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(vi) for every choice function f of Classes ==X holds the top function of
X/== = (the top function of X) ·f+·(the empty stacks of X, the element
of the carrier of X).

Let us consider X. One can verify that X/== is non empty and non void.
The following propositions are true:

(35) For every stack S of X/== there exists s such that S = [s]==X .

(36) [s]==X is a stack of X/==.

(37) For every stack S of X/== such that S = [s]==X holds empty(s) iff
empty(S).

(38) For every stack S of X/== holds empty(S) iff S = the empty stacks of
X.

(39) For every stack S of X/== and for every element E of X/== such
that S = [s]==X and E = e holds push(e, s) ∈ push(E,S) and
[push(e, s)]==X = push(E,S).

(40) For every stack S of X/== such that S = [s]==X and not empty(s) holds
pop s ∈ popS and [pop s]==X = popS.

(41) For every stack S of X/== such that S = [s]==X and not empty(s) holds
topS = top s.

Let us consider X. One can verify the following observations:

∗ X/== is pop-finite,

∗ X/== is push-pop,

∗ X/== is top-push,

∗ X/== is pop-push, and

∗ X/== is push-non-empty.

Next we state the proposition

(42) For every stack S of X/== such that S = [s]==X holds |S| = |s|.
Let us consider X. Note that X/== is proper for identity.
Let us note that there exists a stack algebra which is proper for identity.

6. Representation Theorem for Stacks

Let X1, X2 be stack algebras and let F , G be functions. We say that F and
G form isomorphism between X1 and X2 if and only if the conditions (Def. 21)
are satisfied.

(Def. 21) domF = the carrier of X1 and rngF = the carrier of X2 and F is one-
to-one and domG = the carrier’ of X1 and rngG = the carrier’ of X2 and
G is one-to-one and for every stack s1 of X1 and for every stack s2 of X2
such that s2 = G(s1) holds empty(s1) iff empty(s2) and if not empty(s1),
then pop s2 = G(pop s1) and top s2 = F (top s1) and for every element
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e1 of X1 and for every element e2 of X2 such that e2 = F (e1) holds
push(e2, s2) = G(push(e1, s1)).

We use the following convention: X1, X2, X3 are stack algebras and F , F1,
F2, G, G1, G2 are functions.

The following propositions are true:

(43) idthe carrier of X and idthe carrier’ of X form isomorphism between X and
X.

(44) If F and G form isomorphism between X1 and X2, then F−1 and G−1

form isomorphism between X2 and X1.

(45) Suppose F1 and G1 form isomorphism between X1 and X2 and F2 and
G2 form isomorphism between X2 and X3. Then F2 ·F1 and G2 ·G1 form
isomorphism between X1 and X3.

(46) Suppose F and G form isomorphism between X1 and X2. Let s1 be a
stack of X1 and s2 be a stack of X2. If s2 = G(s1), then |s2| = F · |s1|.

Let X1, X2 be stack algebras. We say that X1 and X2 are isomorphic if and
only if:

(Def. 22) There exist functions F , G such that F and G form isomorphism between
X1 and X2.

Let us notice that the predicate X1 and X2 are isomorphic is reflexive and
symmetric.

We now state four propositions:

(47) If X1 and X2 are isomorphic and X2 and X3 are isomorphic, then X1
and X3 are isomorphic.

(48) If X1 and X2 are isomorphic and X1 is proper for identity, then X2 is
proper for identity.

(49) Let X be a proper for identity stack algebra. Then there exists G such
that

(i) for every stack s of X holds G(s) = |s|, and
(ii) idthe carrier of X and G form isomorphism between X and standard stack

system over the carrier of X.

(50) Let X be a proper for identity stack algebra. Then X and standard stack
system over the carrier of X are isomorphic.
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