Set of Points on Elliptic Curve in Projective Coordinates

Yuichi Futa
Shinshu University
Nagano, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize a set of points on an elliptic curve over $GF(p)$. Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.

MML identifier: EC_PF_1, version: 7.11.07.1160.1126

The notation and terminology used here have been introduced in the following papers: [15], [1], [16], [13], [3], [8], [5], [6], [19], [18], [14], [17], [2], [12], [4], [9], [22], [23], [20], [21], [11], and [7].

1. Finite Prime Field $GF(p)$

For simplicity, we use the following convention: x is a set, i, j are integers, n, n_1, n_2 are natural numbers, and K, K_1, K_2 are fields.

Let K be a field. A field is called a subfield of K if it satisfies the conditions (Def. 1).

(Def. 1)(i) The carrier of it \subseteq the carrier of K,
(ii) the addition of it = (the addition of K) \upharpoonright (the carrier of it),
(iii) the multiplication of it = (the multiplication of K) \upharpoonright (the carrier of it),
(iv) $1_{it} = 1_K$, and
(v) $0_{it} = 0_K$.

We now state two propositions:

This work was supported by JSPS KAKENHI 22300285.
132 YUICHI FUTA et al.

(1) \(K \) is a subfield of \(K \).

(2) Let \(S_1 \) be a non empty double loop structure. Suppose that

(i) the carrier of \(S_1 \) is a subset of the carrier of \(K \),

(ii) the addition of \(S_1 = (\text{the addition of } K) \restriction (\text{the carrier of } S_1) \),

(iii) the multiplication of \(S_1 = (\text{the multiplication of } K) \restriction (\text{the carrier of } S_1) \),

(iv) \(1_{(S_1)} = 1_K \),

(v) \(0_{(S_1)} = 0_K \), and

(vi) \(S_1 \) is right complementable, commutative, almost left invertible, and non degenerated.

Then \(S_1 \) is a subfield of \(K \).

Let \(K \) be a field. One can check that there exists a subfield of \(K \) which is strict.

In the sequel \(S_2, S_3 \) denote subfields of \(K \) and \(e_1, e_2 \) denote elements of \(K \).

We now state several propositions:

(3) If \(K_1 \) is a subfield of \(K_2 \), then for every \(x \) such that \(x \in K_1 \) holds \(x \in K_2 \).

(4) For all strict fields \(K_1, K_2 \) such that \(K_1 \) is a subfield of \(K_2 \) and \(K_2 \) is a subfield of \(K_1 \) holds \(K_1 = K_2 \).

(5) Let \(K_1, K_2, K_3 \) be strict fields. Suppose \(K_1 \) is a subfield of \(K_2 \) and \(K_2 \) is a subfield of \(K_3 \). Then \(K_1 \) is a subfield of \(K_3 \).

(6) \(S_2 \) is a subfield of \(S_3 \) iff the carrier of \(S_2 \subseteq \text{the carrier of } S_3 \).

(7) \(S_2 \) is a subfield of \(S_3 \) iff for every \(x \) such that \(x \in S_2 \) holds \(x \in S_3 \).

(8) For all strict subfields \(S_2, S_3 \) of \(K \) holds \(S_2 = S_3 \) iff the carrier of \(S_2 \) = the carrier of \(S_3 \).

(9) For all strict subfields \(S_2, S_3 \) of \(K \) holds \(S_2 = S_3 \) iff for every \(x \) holds \(x \in S_2 \) iff \(x \in S_3 \).

Let \(K \) be a finite field. Observe that there exists a subfield of \(K \) which is finite. Then \(\overline{K} \) is an element of \(\mathbb{N} \).

Let us mention that there exists a field which is strict and finite.

Next we state the proposition

(10) For every strict finite field \(K \) and for every strict subfield \(S_2 \) of \(K \) such that \(\overline{K} = \overline{S_2} \) holds \(S_2 = K \).

Let \(I_1 \) be a field. We say that \(I_1 \) is prime if and only if:

(Def. 2) If \(K_1 \) is a strict subfield of \(I_1 \), then \(K_1 = I_1 \).

Let \(p \) be a prime number. We introduce \(\text{GF}(p) \) as a synonym of \(\mathbb{Z}_p^R \). One can check that \(\text{GF}(p) \) is finite. One can check that \(\text{GF}(p) \) is prime.

One can check that there exists a field which is prime.
2. Arithmetic in $\text{GF}(p)$

In the sequel b, c denote elements of $\text{GF}(p)$ and F denotes a finite sequence of elements of $\text{GF}(p)$.

Next we state a number of propositions:

(11) $0 = 0_{\text{GF}(p)}$.
(12) $1 = 1_{\text{GF}(p)}$.
(13) There exists n_1 such that $a = n_1 \mod p$.
(14) There exists a such that $a = i \mod p$.
(15) If $a = i \mod p$ and $b = j \mod p$, then $a + b = (i + j) \mod p$.
(16) If $a = i \mod p$, then $-a = (p - i) \mod p$.
(17) If $a = i \mod p$ and $b = j \mod p$, then $a - b = (i - j) \mod p$.
(18) If $a = i \mod p$ and $b = j \mod p$, then $a \cdot b = i \cdot j \mod p$.
(19) If $a = i \mod p$ and $b = j \mod p$, then $a + b = (i + j) \mod p$.
(20) $a = 0$ or $b = 0$ iff $a \cdot b = 0$.
(21) $a^0 = 1_{\text{GF}(p)}$ and $a^0 = 1$.
(22) $a^2 = a \cdot a$.
(23) If $a = n_1 \mod p$, then $a^n = n_1^n \mod p$.
(24) $a^{n+1} = a^n \cdot a$.
(25) If $a \neq 0$, then $a^n \neq 0$.
(26) Let F be an Abelian add-associative right zeroed right complementable associative commutative well unital almost left invertible distributive non empty double loop structure and x, y be elements of F. Then $x \cdot x = y \cdot y$ if and only if $x = y$ or $x = -y$.
(27) For every prime number p and for every element x of $\text{GF}(p)$ such that $2 < p$ and $x + x = 0_{\text{GF}(p)}$ holds $x = 0_{\text{GF}(p)}$.
(28) $a^n \cdot b^n = (a \cdot b)^n$.
(29) If $a \neq 0$, then $(a^{-1})^n = (a^n)^{-1}$.
(30) $a^{n_1} \cdot a^{n_2} = a^{n_1 + n_2}$.
(31) $(a^{n_1})^{n_2} = a^{n_1 \cdot n_2}$.

Let us consider p. One can verify that $\text{MultGroup}(\text{GF}(p))$ is cyclic.

The following two propositions are true:

(32) Let x be an element of $\text{MultGroup}(\text{GF}(p))$, x_1 be an element of $\text{GF}(p)$, and n be a natural number. If $x = x_1$, then $x^n = x_1^n$.
(33) There exists an element g of $\text{GF}(p)$ such that for every element a of $\text{GF}(p)$ if $a \neq 0_{\text{GF}(p)}$, then there exists a natural number n such that $a = g^n$.

3. Relation between Legendre Symbol and the Number of Roots in \(GF(p) \)

Let us consider \(p, a \). We say that \(a \) is quadratic residue if and only if:

(Def. 3) \(a \neq 0 \) and there exists an element \(x \) of \(GF(p) \) such that \(x^2 = a \).

We say that \(a \) is not quadratic residue if and only if:

(Def. 4) \(a \neq 0 \) and it is not true that there exists an element \(x \) of \(GF(p) \) such that \(x^2 = a \).

One can prove the following proposition

(34) If \(a \neq 0 \), then \(a^2 \) is quadratic residue.

Let \(p \) be a prime number. Observe that 1 is quadratic residue.

Let us consider \(p, a \). The functor \(Lege_p \) yields an integer and is defined as follows:

(Def. 5) \(Lege_p a = \begin{cases} 0, & \text{if } a = 0, \\ 1, & \text{if } a \text{ is quadratic residue}, \\ -1, & \text{otherwise}. \end{cases} \)

Next we state several propositions:

(35) \(a \) is not quadratic residue iff \(Lege_p a = -1 \).

(36) \(a \) is quadratic residue iff \(Lege_p a = 1 \).

(37) \(a = 0 \) iff \(Lege_p a = 0 \).

(38) If \(a \neq 0 \), then \(Lege_p(a^2) = 1 \).

(39) \(Lege_p(a \cdot b) = Lege_p a \cdot Lege_p b \).

(40) If \(a \neq 0 \) and \(n \mod 2 = 0 \), then \(Lege_p(a^n) = 1 \).

(41) If \(n \mod 2 = 1 \), then \(Lege_p(a^n) = Lege_p a \).

(42) If \(2 < p \), then \(\{ b : b^2 = a \} = 1 + Lege_p a \).

4. Set of Points on an Elliptic Curve over \(GF(p) \)

Let \(K \) be a field. The functor \(ProjCo K \) yields a non empty subset of \((\text{the carrier of } K) \times (\text{the carrier of } K) \times (\text{the carrier of } K)\) and is defined by:

(Def. 6) \(ProjCo K = ((\text{the carrier of } K) \times (\text{the carrier of } K) \times (\text{the carrier of } K)) \setminus \{(0_K, 0_K, 0_K)\} \).

One can prove the following proposition

(43) \(ProjCo GF(p) = ((\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p))) \setminus \{(0, 0, 0)\} \).

In the sequel \(P_1, P_2, P_3 \) are elements of \(GF(p) \).

Let \(p \) be a prime number and let \(a, b \) be elements of \(GF(p) \). The functor \(Disc(a, b, p) \) yields an element of \(GF(p) \) and is defined as follows:
(Def. 7) For all elements \(g_4, g_{27} \) of \(GF(p) \) such that \(g_4 = 4 \mod p \) and \(g_{27} = 27 \mod p \) holds \(\text{Disc}(a, b, p) = g_4 \cdot a^3 + g_{27} \cdot b^2 \).

Let \(p \) be a prime number and let \(a, b \) be elements of \(GF(p) \). The functor \(\text{EC WEqProjCo}(a, b, p) \) yielding a function from \((\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \) into \(GF(p) \) is defined by the condition (Def. 8).

(Def. 8) Let \(P \) be an element of \((\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \). Then \(\text{(EC WEqProjCo}(a, b, p))(P) = (P_2)^2 \cdot P_3 - ((P_1)^3 + a \cdot P_1 \cdot (P_3)^2 + b \cdot (P_3)^3) \).

We now state the proposition

(44) For all elements \(X, Y, Z \) of \(GF(p) \) holds \(\text{(EC WEqProjCo}(a, b, p))(\{X, Y, Z\}) = Y^2 \cdot Z - (X^3 + a \cdot X \cdot Z^2 + b \cdot Z^3) \).

Let \(p \) be a prime number and let \(a, b \) be elements of \(GF(p) \). The functor \(\text{EC SetProjCo}(a, b, p) \) yielding a non empty subset of \(\text{ProjCo} GF(p) \) is defined by:

(Def. 9) \(\text{EC SetProjCo}(a, b, p) = \{P \in \text{ProjCo} GF(p) : (\text{EC WEqProjCo}(a, b, p))(P) = 0_{GF(p)}\} \).

One can prove the following two propositions:

(45) \(\{0, 1, 0\} \) is an element of \(\text{EC SetProjCo}(a, b, p) \).

(46) Let \(p \) be a prime number and \(a, b, X, Y \) be elements of \(GF(p) \). Then \(Y^2 = X^3 + a \cdot X + b \) if and only if \(\{X, Y, 1\} \) is an element of \(\text{EC SetProjCo}(a, b, p) \).

Let \(p \) be a prime number and let \(P, Q \) be elements of \(\text{ProjCo} GF(p) \). We say that \(P \text{ EQ } Q \) if and only if:

(Def. 10) There exists an element \(a \) of \(GF(p) \) such that \(a \neq 0_{GF(p)} \) and \(P_1 = a \cdot Q_1 \) and \(P_2 = a \cdot Q_2 \) and \(P_3 = a \cdot Q_3 \).

Let us notice that the predicate \(P \text{ EQ } Q \) is reflexive and symmetric.

We now state two propositions:

(47) For every prime number \(p \) and for all elements \(P, Q, R \) of \(\text{ProjCo} GF(p) \) such that \(P \text{ EQ } Q \) and \(Q \text{ EQ } R \) holds \(P \text{ EQ } R \).

(48) Let \(p \) be a prime number, \(a, b \) be elements of \(GF(p) \), \(P, Q \) be elements of \((\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \times (\text{the carrier of } GF(p)) \), and \(d \) be an element of \(GF(p) \). Suppose \(p > 3 \) and \(\text{Disc}(a, b, p) \neq 0_{GF(p)} \) and \(P \in \text{EC SetProjCo}(a, b, p) \) and \(d \neq 0_{GF(p)} \) and \(Q_1 = d \cdot P_1 \) and \(Q_2 = d \cdot P_2 \) and \(Q_3 = d \cdot P_3 \). Then \(Q \in \text{EC SetProjCo}(a, b, p) \).

Let \(p \) be a prime number. The functor \(\mathbb{R} - \text{ProjCo } p \) yielding a binary relation on \(\text{ProjCo} GF(p) \) is defined by:

(Def. 11) \(\mathbb{R} - \text{ProjCo } p = \{(P, Q) : P \text{ ranges over elements of } \text{ProjCo} GF(p), Q \text{ ranges over elements of } \text{ProjCo} GF(p) : P \text{ EQ } Q\} \).

One can prove the following proposition
(49) For every prime number p and for all elements P, Q of $\text{ProjCo} \, \text{GF}(p)$ holds $P \, \text{EQ} \, Q$ iff $\langle P, Q \rangle \in \mathbb{R} \cdot \text{ProjCo} \, p$.

Let p be a prime number. Note that $\mathbb{R} \cdot \text{ProjCo} \, p$ is total, symmetric, and transitive.

Let p be a prime number and let a, b be elements of $\text{GF}(p)$. The functor $\mathbb{R} \cdot \text{EllCur}(a, b, p)$ yielding an equivalence relation of $\text{EC SetProjCo}(a, b, p)$ is defined as follows:

(Def. 12) $\mathbb{R} \cdot \text{EllCur}(a, b, p) = \mathbb{R} \cdot \text{ProjCo} \, p \cap \bigvee_{\text{EC SetProjCo}(a, b, p)}$.

Next we state a number of propositions:

(50) Let p be a prime number, a, b be elements of $\text{GF}(p)$, and P, Q be elements of $\text{ProjCo} \, \text{GF}(p)$. Suppose $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$ and $P, Q \in \text{EC SetProjCo}(a, b, p)$. Then $P \, \text{EQ} \, Q$ if and only if $\langle P, Q \rangle \in \mathbb{R} \cdot \text{EllCur}(a, b, p)$.

(51) Let p be a prime number, a, b be elements of $\text{GF}(p)$, and P be an element of $\text{ProjCo} \, \text{GF}(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$ and $P \in \text{EC SetProjCo}(a, b, p)$ and $P_3 \neq 0$. Then there exists an element Q of $\text{ProjCo} \, \text{GF}(p)$ such that $Q \in \text{EC SetProjCo}(a, b, p)$ and $Q \, \text{EQ} \, P$ and $Q_3 = 1$.

(52) Let p be a prime number, a, b be elements of $\text{GF}(p)$, and P be an element of $\text{ProjCo} \, \text{GF}(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$ and $P \in \text{EC SetProjCo}(a, b, p)$ and $P_3 = 0$. Then there exists an element Q of $\text{ProjCo} \, \text{GF}(p)$ such that $Q \in \text{EC SetProjCo}(a, b, p)$ and $Q \, \text{EQ} \, P$ and $Q_1 = 0$ and $Q_2 = 1$ and $Q_3 = 0$.

(53) Let p be a prime number, a, b be elements of $\text{GF}(p)$, and x be a set. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$ and $x \in \text{Classes} \, \mathbb{R} \cdot \text{EllCur}(a, b, p)$. Then

(i) there exists an element P of $\text{ProjCo} \, \text{GF}(p)$ such that $P \in \text{EC SetProjCo}(a, b, p)$ and $P = \{0, 1, 0\}$ and $x = [P]_{\mathbb{R} \cdot \text{EllCur}(a, b, p)}$,

(ii) there exists an element P of $\text{ProjCo} \, \text{GF}(p)$ and there exist elements X, Y of $\text{GF}(p)$ such that $P \in \text{EC SetProjCo}(a, b, p)$ and $P = \{X, Y, 1\}$ and $x = [P]_{\mathbb{R} \cdot \text{EllCur}(a, b, p)}$.

(54) Let p be a prime number and a, b be elements of $\text{GF}(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$. Then $\text{Classes} \, \mathbb{R} \cdot \text{EllCur}(a, b, p) = \{(0, 1, 0)\} \cup \{[P]_{\mathbb{R} \cdot \text{EllCur}(a, b, p)} \mid P \text{ ranges over elements of } \text{ProjCo} \, \text{GF}(p) : P \in \text{EC SetProjCo}(a, b, p) \land \forall X, Y : \text{element of } \text{GF}(p) \ P = \{X, Y, 1\}\}$.

(55) Let p be a prime number and a, b, d_1, Y_1, d_2, Y_2 be elements of $\text{GF}(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$ and $\langle d_1, Y_1, 1 \rangle, \langle d_2, Y_2, 1 \rangle \in \text{EC SetProjCo}(a, b, p)$. Then $[\langle d_1, Y_1, 1 \rangle]_{\mathbb{R} \cdot \text{EllCur}(a, b, p)} = [\langle d_2, Y_2, 1 \rangle]_{\mathbb{R} \cdot \text{EllCur}(a, b, p)}$ if and only if $d_1 = d_2$ and $Y_1 = Y_2$.
(56) Let p be a prime number, a, b be elements of $GF(p)$, and F_1, F_2 be sets.

Suppose that

(i) $p > 3$,
(ii) $\text{Disc}(a, b, p) \neq 0_{GF(p)}$,
(iii) $F_1 = \{[0, 1, 0]_{R-\text{EllCur}(a, b, p)}\}$, and
(iv) $F_2 = \{[P]_{R-\text{EllCur}(a, b, p)}; P \text{ ranges over elements of } \text{ProjCo}(a, b, p) \} = 0_{GF(p)}$.

Then F_1 misses F_2.

(57) Let X be a non empty finite set, R be an equivalence relation of X, S be a Classes R-valued function, and i be a set. If $i \in \text{dom } S$, then $S(i)$ is a finite subset of X.

(58) Let X be a non empty set, R be an equivalence relation of X, and S be a Classes R-valued function. If S is one-to-one, then S is disjoint valued.

(59) Let X be a non empty set, R be an equivalence relation of X, and S be a Classes R-valued function. If S is onto, then $\bigcup S = X$.

(60) Let X be a non empty finite set, R be an equivalence relation of X, S be a Classes R-valued function, and L be a finite sequence of elements of \mathbb{N}. Suppose S is one-to-one and onto and $\text{dom } S = \text{dom } L$ and for every natural number i such that $i \in \text{dom } S$ holds $L(i) = \overline{S(i)}$. Then $\overline{X} = \sum L$.

(61) Let p be a prime number, a, b, d be elements of $GF(p)$, and F, G be sets. Suppose that

(i) $p > 3$,
(ii) $\text{Disc}(a, b, p) \neq 0_{GF(p)}$,
(iii) $F = \{Y \in GF(p); Y^2 = d^3 + a \cdot d + b\}$,
(iv) $F \neq \emptyset$, and
(v) $G = \{[\langle d, Y, 1 \rangle]_{R-\text{EllCur}(a, b, p)}; Y \text{ ranges over elements of } GF(p) : \langle d, Y, 1 \rangle \in \text{EC SetProjCo}(a, b, p)\}$.

Then there exists a function from F into G which is onto and one-to-one.

(62) Let p be a prime number and a, b, d be elements of $GF(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{GF(p)}$.

Then $\langle [\langle d, Y, 1 \rangle]_{R-\text{EllCur}(a, b, p)}; Y \text{ ranges over elements of } GF(p) : \langle d, Y, 1 \rangle \in \text{EC SetProjCo}(a, b, p)\rangle = 1 + \text{Lege}_p(d^3 + a \cdot d + b)$.

(63) Let p be a prime number and a, b be elements of $GF(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{GF(p)}$. Then there exists a finite sequence F of elements of \mathbb{N} such that

(i) $\text{len } F = p$,
(ii) for every natural number n such that $n \in \text{Seg } p$ there exists an element d of $GF(p)$ such that $d = n - 1$ and $F(n) = 1 + \text{Lege}_p(d^3 + a \cdot d + b)$, and
(iii) $\langle [P]_{R-\text{EllCur}(a, b, p)}; P \text{ ranges over elements of } \text{ProjCo}(a, b, p) : P \in \text{EC SetProjCo}(a, b, p) \wedge \bigvee_{X, Y : \text{element of } GF(p)} P = \{X, Y, 1\}\rangle = \sum F$.

Let p be a prime number and a, b be elements of $\text{GF}(p)$. Suppose $p > 3$ and $\text{Disc}(a, b, p) \neq 0_{\text{GF}(p)}$. Then there exists a finite sequence F of elements of \mathbb{Z} such that

(i) $\text{len } F = p$,

(ii) for every natural number n such that $n \in \text{Seg } p$ there exists an element d of $\text{GF}(p)$ such that $d = n - 1$ and $F(n) = \text{Leg}_p(d^3 + a \cdot d + b)$, and

(iii) $\text{Classes } \mathbb{R} \cdot \text{EllCur}(a, b, p) = 1 + p + \sum F$.

REFERENCES

Received December 21, 2010