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Summary. This article is the first in a series of two Mizar articles consti-
tuting a formal proof of the Gödel Completeness theorem [17] for uncountably
large languages. We follow the proof given in [18]. The present article contains
the techniques required to expand formal languages. We prove that consistent
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are formulated in.
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1. Language Extensions

For simplicity, we adopt the following rules: A1 denotes an alphabet, P1 deno-
tes a consistent subset of CQC-WFFA1, p, r denote elements of CQC-WFFA1,

A denotes a non empty set, J denotes an interpretation of A1 and A, v denotes
an element of the valuations in A1 and A, k denotes a natural number, l denotes
a CQC-variable list of k and A1, P denotes a predicate symbol of k and A1, and
x, y denote bound variables of A1.

Let us consider A1 and let A2 be an alphabet. We say that A2 is A1-
expanding if and only if:

(Def. 1) A1 ⊆ A2.

Let us considerA1. Note that there exists an alphabet which isA1-expanding.
Let A3, A4 be countable alphabets. One can check that there exists an

alphabet which is countable, A3-expanding, and A4-expanding.
Let A1, A4 be alphabets and let P be a subset of CQC-WFFA1. We say

that P is A4-consistent if and only if:

(Def. 2) For every subset S of CQC-WFFA4 such that P = S holds S is consi-
stent.

Let us consider A1. One can check that there exists a subset of CQC-WFFA1

which is non empty and consistent.
Let us consider A1. One can check that every subset of CQC-WFFA1 which

is consistent is also A1-consistent and every subset of CQC-WFFA1 which is
A1-consistent is also consistent.

For simplicity, we follow the rules: A4 is an A1-expanding alphabet, J2 is
an interpretation of A4 and A, J1 is an interpretation of A1 and A, v2 is an
element of the valuations in A4 and A, and v1 is an element of the valuations in
A1 and A.

Next we state several propositions:

(1) Arity(P ) = len l.

(2) SymbA1 ⊆ SymbA4.

(3) The predicate symbols of A1 ⊆ the predicate symbols of A4.

(4) The bound variables of A1 ⊆ the bound variables of A4.

(5) For every k holds every l is a CQC-variable list of k and A4.

(6) P is a predicate symbol of k and A4.

(7) For every A1-expanding alphabet A4 holds every p is an element of
CQC-WFFA4.

Let us consider A1, let A4 be an A1-expanding alphabet, and let p be an ele-
ment of CQC-WFFA1. The functorA4 -Cast p yields an element of CQC-WFFA4

and is defined by:

(Def. 3) A4 -Cast p = p.



Transition of consistency and . . . 195

Let us consider A1, let A4 be an A1-expanding alphabet, and let x be a
bound variable of A1. The functor A4 -Castx yields a bound variable of A4 and
is defined as follows:

(Def. 4) A4 -Castx = x.

Let us consider A1, let A4 be an A1-expanding alphabet, let us consider k,
and let P be a predicate symbol of k and A1. The functor A4 -CastP yielding
a predicate symbol of k and A4 is defined as follows:

(Def. 5) A4 -CastP = P.

Let us consider A1, let A4 be an A1-expanding alphabet, let us consider k,
and let l be a CQC-variable list of k and A1. The functor A4 -Cast l yielding a
CQC-variable list of k and A4 is defined as follows:

(Def. 6) A4 -Cast l = l.

Next we state the proposition

(8) Let given p, r, x, P , l and A4 be an A1-expanding alpha-
bet. Then A4 -Cast VERUMA1 = VERUMA4 and A4 -CastP [l] =
(A4 -CastP )[A4 -Cast l] and A4 -Cast¬p = ¬(A4 -Cast p) and A4 -Cast(p∧
r) = (A4 -Cast p)∧ (A4 -Cast r) and A4 -Cast ∀xp = ∀A4 -Castx(A4 -Cast p).

2. Downward Transfer of Consistency and Satisfiability

The following propositions are true:

(9) Suppose J1 = J2�the predicate symbols of A1 and v1 = v2�the bound
variables of A1. Then J2 |=v2 A4 -Cast r if and only if J1 |=v1 r.

(10) Let A4 be an A1-expanding alphabet and T1 be a subset of
CQC-WFFA4. Suppose P1 ⊆ T1. Let A2 be a non empty set, J2 be an
interpretation of A4 and A2, and v2 be an element of the valuations in A4

and A2. If J2 |=v2 T1, then there exist A, J , v such that J |=v P1.

(11) Let f be a finite sequence of elements of CQC-WFFA4 and g be a finite
sequence of elements of CQC-WFFA1. If f = g, then Ant(f) = Ant(g)
and Suc(f) = Suc(g).

(12) For every p holds the still not bound in p = the still not bound in
A4 -Cast p.

(13) Let p2 be an element of CQC-WFFA4, S be a substitution of A1,
S2 be a substitution of A4, x2 be a bound variable of A4, and given
x, p. If p = p2 and S = S2 and x = x2, then RestrictSub(x, p, S) =
RestrictSub(x2, p2, S2).

(14) Let p2 be an element of CQC-WFFA4, S be a finite substitution of A1,
S2 be a finite substitution of A4, and given p. If S = S2 and p = p2, then
upVar(S, p) = upVar(S2, p2).
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(15) Let p2 be an element of CQC-WFFA4, S be a substitution of A1, S2 be a
substitution of A4, x2 be a bound variable of A4, and given x, p. If p = p2

and S = S2 and x = x2, then ExpandSub(x, p,RestrictSub(x,∀xp, S)) =
ExpandSub(x2, p2,RestrictSub(x2, ∀x2p2, S2)).

(16) Let Z be an element of CQC-Sub-WFFA1 and Z2 be an element of
CQC-Sub-WFFA4. Suppose Z1 is universal and (Z2)1 is universal and
Bound(Z1) = Bound((Z2)1) and Scope(Z1) = Scope((Z2)1) and Z = Z2.

Then S-Bound(@ Z) = S-Bound(@ Z2).

(17) Let p2 be an element of CQC-WFFA4, x2, y2 be bound variables of
A4, and given p, x, y. If p = p2 and x = x2 and y = y2, then p(x, y) =
p2(x2, y2).

(18) For every consistent subset P1 of CQC-WFFA4 such that P1 is a subset
of CQC-WFFA1 holds P1 is A1-consistent.

3. Upward Transfer of Consistency and Satisfiability

Next we state two propositions:

(19) For every p there exists a countable alphabet A3 such that p is an element
of CQC-WFFA3 and A1 is A3-expanding.

(20) Let P1 be a finite subset of CQC-WFFA1. Then there exists a countable
alphabet A3 such that P1 is a finite subset of CQC-WFFA3 and A1 is A3-
expanding.

Let us consider A1 and let P1 be a finite subset of CQC-WFFA1. Note that
the still not bound in P1 is finite.

Next we state three propositions:

(21) Let T1 be a subset of CQC-WFFA4. Suppose P1 = T1. Let given A,
J , v. Suppose J |=v P1. Then there exists a non empty set A2 and there
exists an interpretation J2 of A4 and A2 and there exists an element v2 of
the valuations in A4 and A2 such that J2 |=v2 T1.

(22) For every subset C1 of CQC-WFFA1 such that C1 ⊆ P1 holds C1 is
consistent.

(23) P1 is A4-consistent.
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für Mathematik und Physik 37, 1930.
[18] W. Thomas H.-D. Ebbinghaus, J. Flum. Einführung in die Mathematische Logik.
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1. Formula-Constant Extension

For simplicity, we use the following convention: A1 denotes an alphabet, P1

denotes a consistent subset of CQC-WFFA1, P2 denotes a subset of
CQC-WFFA1, p, q, r, s denote elements of CQC-WFFA1, A denotes a non
empty set, J denotes an interpretation of A1 and A, v denotes an element of the
valuations in A1 and A, n, k denote elements of N, x denotes a bound variable
of A1, and A2 denotes an A1-expanding alphabet.

Let us consider A1 and let P1 be a subset of CQC-WFFA1. We say that P1

is satisfiable if and only if:

(Def. 1) There exist A, J , v such that J |=v P1.

In the sequel J2 is an interpretation of A2 and A and J1 is an interpretation
of A1 and A.

One can prove the following proposition

(1) There exists a set s such that for all p, x holds 〈〈s, 〈〈x, p〉〉〉〉 /∈ SymbA1.

Let us consider A1. A set is called a free symbol of A1 if:

(Def. 2) For all p, x holds 〈〈it, 〈〈x, p〉〉〉〉 /∈ SymbA1.

Let us consider A1. The functor FCExA1 yielding an A1-expanding alphabet
is defined as follows:

(Def. 3) FCExA1 = N× (SymbA1 ∪ {〈〈 the free symbol of A1, 〈〈x, p〉〉〉〉}).
Let us consider A1, p, x. The example of p and x yielding a bound variable

of FCExA1 is defined as follows:

(Def. 4) The example of p and x = 〈〈4, 〈〈 the free symbol of A1, 〈〈x, p〉〉〉〉〉〉.
Let us consider A1, p, x. The example formula of p and x yielding an element

of CQC-WFF FCExA1 is defined by:

(Def. 5) The example formula of p and x = ¬∃FCExA1 -Castx(FCExA1 -Cast p) ∨
(FCExA1 -Cast p)(FCExA1 -Castx, the example of p and x).

Let us consider A1. The example formulae of A1 yields a subset of
CQC-WFF FCExA1 and is defined as follows:

(Def. 6) The example formulae of A1 = {the example formula of p and x}.
One can prove the following proposition

(2) Let k be an element of N. Suppose k > 0. Then there exists a k-element
finite sequence F such that

(i) for every natural number n such that n ≤ k and 1 ≤ n holds F (n) is
an alphabet,

(ii) F (1) = A1, and
(iii) for every natural number n such that n < k and 1 ≤ n there exists an

alphabet A2 such that F (n) = A2 and F (n+ 1) = FCExA2.



The Gödel completeness theorem for . . . 201

Let us consider A1 and let k be a natural number. A k + 1-element finite
sequence is said to be a FCEx-sequence of A1 and k if it satisfies the conditions
(Def. 7).

(Def. 7)(i) For every natural number n such that n ≤ k + 1 and 1 ≤ n holds
it(n) is an alphabet,

(ii) it(1) = A1, and
(iii) for every natural number n such that n < k+ 1 and 1 ≤ n there exists

an alphabet A2 such that it(n) = A2 and it(n+ 1) = FCExA2.

The following propositions are true:

(3) For every natural number k and for every FCEx-sequence S of A1 and
k holds S(k + 1) is an alphabet.

(4) For every natural number k and for every FCEx-sequence S of A1 and
k holds S(k + 1) is an A1-expanding alphabet.

Let us consider A1 and let k be a natural number. The k-th FCEx of A1

yielding an A1-expanding alphabet is defined as follows:

(Def. 8) The k-th FCEx of A1 = the FCEx-sequence of A1 and k(k + 1).

Let us consider A1, P1. A function is called an EF-sequence of A1 and P1 if
it satisfies the conditions (Def. 9).

(Def. 9)(i) dom it = N,
(ii) it(0) = P1, and
(iii) for every natural number n holds it(n + 1) = it(n) ∪ the example

formulae of the n-th FCEx of A1.

Next we state two propositions:

(5) For every natural number k holds FCEx (the k-th FCEx of A1) = the
(k + 1)-th FCEx of A1.

(6) For all k, n such that n ≤ k holds the n-th FCEx of A1 ⊆ the k-th FCEx
of A1.

Let us consider A1, P1 and let k be a natural number. The k-th EF of A1

and P1 yields a subset of CQC-WFF (the k-th FCEx of A1) and is defined as
follows:

(Def. 10) The k-th EF of A1 and P1 = the EF-sequence of A1 and P1(k).

One can prove the following propositions:

(7) For all r, s, x holds A2 -Cast(r ∨ s) = A2 -Cast r ∨ A2 -Cast s and
A2 -Cast ∃xr = ∃A2 -Castx(A2 -Cast r).

(8) For all p, q, A, J , v holds J |=v p or J |=v q iff J |=v p ∨ q.
(9) P1 ∪ the example formulae of A1 is a consistent subset of

CQC-WFF FCExA1.
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2. The Completeness Theorem

We now state four propositions:

(10) There exists an A1-expanding alphabet A2 and there exists a consistent
subset P2 of CQC-WFFA2 such that P1 ⊆ P2 and P2 has examples.

(11) P1 ∪ {p} is consistent or P1 ∪ {¬p} is consistent.

(12) Let P2 be a consistent subset of CQC-WFFA1. Then there exists a
consistent subset T1 of CQC-WFFA1 such that T1 is negation faithful
and P2 ⊆ T1.

(13) For every consistent subset T1 of CQC-WFFA1 such that P1 ⊆ T1 and
P1 has examples holds T1 has examples.

Let us consider A1. One can check that every subset of CQC-WFFA1 which
is consistent is also satisfiable.

We now state the proposition

(14)2 If P2 |= p, then P2 ` p.
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Summary. In this article we formalize a quotient module of Z-module and
a vector space constructed by the quotient module. We formally prove that for a
Z-module V and a prime number p, a quotient module V/pV has the structure of
a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra,
Lenstra and Lovász) base reduction algorithm and cryptographic systems with
lattices [14]. Some theorems in this article are described by translating theorems
in [20] and [19] into theorems of Z-module.
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1. Quotient Module of Z-module and Vector Space

For simplicity, we follow the rules: x is a set, V is a Z-module, u, v are
vectors of V , F , G, H are finite sequences of elements of V , i is an element of
N, and f , g are sequences of V .

Let V be a Z-module and let a be an integer number. The functor a · V
yielding a non empty subset of V is defined by:

(Def. 1) a · V = {a · v : v ranges over elements of V }.
Let V be a Z-module and let a be an integer number. The functor Zero(a, V )

yielding an element of a · V is defined as follows:

(Def. 2) Zero(a, V ) = 0V .

1This work was supported by JSPS KAKENHI 22300285.
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Let V be a Z-module and let a be an integer number. The functor Add(a, V )
yielding a function from (a · V )× (a · V ) into a · V is defined by:

(Def. 3) Add(a, V ) = (the addition of V )�((a · V )× (a · V )).

Let V be a Z-module and let a be an integer number. The functor Mult(a, V )
yielding a function from Z× (a · V ) into a · V is defined by:

(Def. 4) Mult(a, V ) = (the external multiplication of V )�(Z× (a · V )).

Let V be a Z-module and let a be an integer number. The functor a ◦ V
yields a submodule of V and is defined as follows:

(Def. 5) a ◦ V = 〈〈a · V,Zero(a, V ),Add(a, V ),Mult(a, V )〉〉.
Let V be a Z-module and let W be a submodule of V . The functor

CosetSet(V,W ) yields a non empty family of subsets of V and is defined as
follows:

(Def. 6) CosetSet(V,W ) = {A : A ranges over cosets of W}.
Let V be a Z-module and let W be a submodule of V . The functor

addCoset(V,W ) yields a binary operation on CosetSet(V,W ) and is defined as
follows:

(Def. 7) For all elements A, B of CosetSet(V,W ) and for all vectors a, b of V such
that A = a+W and B = b+W holds (addCoset(V,W ))(A,B) = a+b+W.

Let V be a Z-module and let W be a submodule of V . The functor
zeroCoset(V,W ) yielding an element of CosetSet(V,W ) is defined by:

(Def. 8) zeroCoset(V,W ) = the carrier of W .

Let V be a Z-module and let W be a submodule of V . The functor
lmultCoset(V,W ) yields a function from Z×CosetSet(V,W ) into CosetSet(V,W )
and is defined as follows:

(Def. 9) For every integer z and for every element A of CosetSet(V,W ) and for
every vector a of V such that A = a+W holds (lmultCoset(V,W ))(z,A) =
z · a+W.

Let V be a Z-module and let W be a submodule of V . The functor
Z-ModuleQuot(V,W ) yields a strict Z-module and is defined by the conditions
(Def. 10).

(Def. 10)(i) The carrier of Z-ModuleQuot(V,W ) = CosetSet(V,W ),
(ii) the addition of Z-ModuleQuot(V,W ) = addCoset(V,W ),
(iii) 0Z-ModuleQuot(V,W ) = zeroCoset(V,W ), and
(iv) the external multiplication of Z-ModuleQuot(V,W ) = lmultCoset(V,W ).

The following propositions are true:

(1) Let p be an integer, V be a Z-module, W be a submodule of V , and
x be a vector of Z-ModuleQuot(V,W ). If W = p ◦ V, then p · x =
0Z-ModuleQuot(V,W ).
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(2) Let p, i be integers, V be a Z-module, W be a submodule of V , and
x be a vector of Z-ModuleQuot(V,W ). If p 6= 0 and W = p ◦ V, then
i · x = (i mod p) · x.

(3) Let p, q be integers, V be a Z-module, W be a submodule of V , and v

be a vector of V . Suppose W = p ◦ V and p > 1 and q > 1 and p and q

are relative prime. If q · v = 0V , then v +W = 0Z-ModuleQuot(V,W ).

Let p be a prime number and let V be a Z-module. The functor
MultModpV(V, p) yields a function from (the carrier of GF(p)) × (the carrier
of Z-ModuleQuot(V, p ◦ V )) into the carrier of Z-ModuleQuot(V, p ◦ V ) and is
defined by the condition (Def. 11).

(Def. 11) Let a be an element of GF(p), i be an integer, and x be an element of
Z-ModuleQuot(V, p◦V ). If a = i mod p, then (MultModpV(V, p))(a, x) =
(i mod p) · x.

Let p be a prime number and let V be a Z-module. The functor
Z-MQVectSp(V, p) yielding a non empty strict vector space structure over GF(p)
is defined by:

(Def. 12) Z-MQVectSp(V, p) = 〈the carrier of Z-ModuleQuot(V, p ◦ V ), the ad-
dition of Z-ModuleQuot(V, p ◦ V ), the zero of Z-ModuleQuot(V, p ◦ V ),
MultModpV(V, p)〉.

Let p be a prime number and let V be a Z-module. Observe that
Z-MQVectSp(V, p) is scalar distributive, vector distributive, scalar associative,
scalar unital, add-associative, right zeroed, right complementable, and Abelian.

Let p be a prime number, let V be a Z-module, and let v be a vector of
V . The functor Z-MtoMQV(V, p, v) yields a vector of Z-MQVectSp(V, p) and is
defined as follows:

(Def. 13) Z-MtoMQV(V, p, v) = v + p ◦ V.
Let X be a Z-module. The functor MultINT∗X yielding a function from

(the carrier of (ZR))× (the carrier of X) into the carrier of X is defined by:

(Def. 14) MultINT∗X = the external multiplication of X.

Let X be a Z-module. The functor PreNormsX yielding a non empty strict
vector space structure over ZR is defined by:

(Def. 15) PreNormsX = 〈the carrier of X, the addition of X, the zero of X,
MultINT∗X〉.

Let X be a Z-module. Observe that PreNormsX is Abelian, add-associative,
right zeroed, right complementable, vector distributive, scalar distributive, sca-
lar associative, and scalar unital.

Let X be a left module over ZR. The functor MultINT∗X yielding a function
from Z× the carrier of X into the carrier of X is defined as follows:

(Def. 16) MultINT∗X = the left multiplication of X.
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Let X be a left module over ZR. The functor PreNormsX yields a non empty
strict Z-module structure and is defined as follows:

(Def. 17) PreNormsX = 〈〈the carrier of X, the zero of X, the addition of X,
MultINT∗X〉〉.

Let X be a left module over ZR. Note that PreNormsX is Abelian, add-
associative, right zeroed, right complementable, scalar distributive, vector di-
stributive, scalar associative, and scalar unital.

We now state four propositions:

(4) Let X be a Z-module, v, w be elements of X, and v1, w1 be elements of
PreNormsX. If v = v1 and w = w1, then v + w = v1 + w1 and v − w =
v1 − w1.

(5) Let X be a Z-module, v be an element of X, v1 be an element of
PreNormsX, a be an integer, and a1 be an element of ZR. If v = v1

and a = a1, then a · v = a1 · v1.

(6) Let X be a left module over ZR, v, w be elements of X, and v1, w1 be
elements of PreNormsX. If v = v1 and w = w1, then v+w = v1 +w1 and
v − w = v1 − w1.

(7) Let X be a left module over ZR, v be an element of X, v1 be an element
of PreNormsX, a be an element of ZR, and a1 be an integer. If v = v1

and a = a1, then a · v = a1 · v1.

2. Linear Combination of Z-module

Let V be a non empty zero structure. An element of Zthe carrier of V is said
to be a Z-linear combination of V if:

(Def. 18) There exists a finite subset T of V such that for every element v of V
such that v /∈ T holds it(v) = 0.

In the sequel K, L, L1, L2, L3 denote Z-linear combinations of V .
Let V be a non empty additive loop structure and let L be a Z-linear com-

bination of V . The support of L yielding a finite subset of V is defined by:

(Def. 19) The support of L = {v ∈ V : L(v) 6= 0}.
Next we state the proposition

(8) Let V be a non empty additive loop structure, L be a Z-linear combina-
tion of V , and v be an element of V . Then L(v) = 0 if and only if v /∈ the
support of L.

Let V be a non empty additive loop structure. The functor Z-ZeroLCV

yields a Z-linear combination of V and is defined by:

(Def. 20) The support of Z-ZeroLCV = ∅.
One can prove the following proposition
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(9) For every non empty additive loop structure V and for every element v
of V holds (Z-ZeroLCV )(v) = 0.

Let V be a non empty additive loop structure and let A be a subset of V .
A Z-linear combination of V is said to be a Z-linear combination of A if:

(Def. 21) The support of it ⊆ A.
For simplicity, we adopt the following convention: a, b are integers, G, H1,

H2, F , F1, F2, F3 are finite sequences of elements of V , A, B are subsets of V ,
v1, v2, v3, u1, u2, u3 are vectors of V , f is a function from the carrier of V into
Z, i is an element of N, and l, l1, l2 are Z-linear combinations of A.

One can prove the following propositions:

(10) If A ⊆ B, then l is a Z-linear combination of B.

(11) Z-ZeroLCV is a Z-linear combination of A.

(12) For every Z-linear combination l of ∅the carrier of V holds l = Z-ZeroLCV.

Let us consider V , F , f . The functor f ·F yields a finite sequence of elements
of V and is defined by:

(Def. 22) len(f ·F ) = lenF and for every i such that i ∈ dom(f ·F ) holds (f ·F )(i) =
f(Fi) · Fi.

Next we state several propositions:

(13) If i ∈ domF and v = F (i), then (f · F )(i) = f(v) · v.
(14) f · ε(the carrier of V ) = ε(the carrier of V ).

(15) f · 〈v〉 = 〈f(v) · v〉.
(16) f · 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.
(17) f · 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.

Let us consider V , L. The functor
∑
L yielding an element of V is defined

by:

(Def. 23) There exists F such that F is one-to-one and rngF = the support of L
and
∑
L =
∑

(L · F ).

Next we state several propositions:

(18) A 6= ∅ and A is linearly closed iff for every l holds
∑
l ∈ A.

(19)
∑

Z-ZeroLCV = 0V .

(20) For every Z-linear combination l of ∅the carrier of V holds
∑
l = 0V .

(21) For every Z-linear combination l of {v} holds
∑
l = l(v) · v.

(22) If v1 6= v2, then for every Z-linear combination l of {v1, v2} holds
∑
l =

l(v1) · v1 + l(v2) · v2.

(23) If the support of L = ∅, then
∑
L = 0V .

(24) If the support of L = {v}, then
∑
L = L(v) · v.

(25) If the support of L = {v1, v2} and v1 6= v2, then
∑
L = L(v1) · v1 +

L(v2) · v2.
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Let V be a non empty additive loop structure and let L1, L2 be Z-linear
combinations of V . Let us observe that L1 = L2 if and only if:

(Def. 24) For every element v of V holds L1(v) = L2(v).

Let V be a non empty additive loop structure and let L1, L2 be Z-linear
combinations of V . Then L1 + L2 is a Z-linear combination of V and it can be
characterized by the condition:

(Def. 25) For every element v of V holds (L1 + L2)(v) = L1(v) + L2(v).

Let us observe that the functor L1 + L2 is commutative.
The following propositions are true:

(26) The support of L1 + L2 ⊆ (the support of L1) ∪ (the support of L2).

(27) Suppose L1 is a Z-linear combination of A and L2 is a Z-linear combi-
nation of A. Then L1 + L2 is a Z-linear combination of A.

(28) L1 + (L2 + L3) = (L1 + L2) + L3.

Let us consider V , a, L. Note that L+ Z-ZeroLCV reduces to L.
The functor a · L yielding a Z-linear combination of V is defined as follows:

(Def. 26) For every v holds (a · L)(v) = a · L(v).

We now state several propositions:

(29) If a 6= 0, then the support of a · L = the support of L.

(30) 0 · L = Z-ZeroLCV.

(31) If L is a Z-linear combination of A, then a · L is a Z-linear combination
of A.

(32) (a+ b) · L = a · L+ b · L.
(33) a · (L1 + L2) = a · L1 + a · L2.

(34) a · (b · L) = (a · b) · L.
Let us consider V , L. One can check that 1 · L reduces to L.
The functor −L yielding a Z-linear combination of V is defined as follows:

(Def. 27) −L = (−1) · L.
Let us note that the functor −L is involutive.

We now state four propositions:

(35) (−L)(v) = −L(v).

(36) If L1 + L2 = Z-ZeroLCV, then L2 = −L1.

(37) The support of −L = the support of L.

(38) If L is a Z-linear combination of A, then −L is a Z-linear combination
of A.

Let us consider V , L1, L2. The functor L1−L2 yields a Z-linear combination
of V and is defined as follows:

(Def. 28) L1 − L2 = L1 +−L2.

The following four propositions are true:



Quotient module of Z-module 211

(39) (L1 − L2)(v) = L1(v)− L2(v).

(40) The support of L1 − L2 ⊆ (the support of L1) ∪ (the support of L2).

(41) Suppose L1 is a Z-linear combination of A and L2 is a Z-linear combi-
nation of A. Then L1 − L2 is a Z-linear combination of A.

(42) L− L = Z-ZeroLCV.

Let us consider V . The functor LCV yielding a set is defined by:

(Def. 29) x ∈ LCV iff x is a Z-linear combination of V .

Let us consider V . One can verify that LCV is non empty.
In the sequel e, e1, e2 denote elements of LCV .
Let us consider V , e. The functor @e yielding a Z-linear combination of V

is defined by:

(Def. 30) @e = e.

Let us consider V , L. The functor @L yielding an element of LCV is defined
by:

(Def. 31) @L = L.

Let us consider V . The functor +LCV yields a binary operation on LCV and
is defined as follows:

(Def. 32) For all e1, e2 holds +LCV (e1, e2) = (@e1) + @e2.

Let us consider V . The functor ·LCV yields a function from Z × LCV into
LCV and is defined by:

(Def. 33) For all a, e holds ·LCV (〈〈a, e〉〉) = a · (@e).

Let us consider V . The functor LC-Z-ModuleV yielding a Z-module struc-
ture is defined as follows:

(Def. 34) LC-Z-ModuleV = 〈〈LCV ,
@Z-ZeroLCV,+LCV , ·LCV 〉〉.

Let us consider V . One can check that LC-Z-ModuleV is strict and non
empty.

Let us consider V . Observe that LC-Z-ModuleV is Abelian, add-associative,
right zeroed, right complementable, vector distributive, scalar distributive, sca-
lar associative, and scalar unital.

Next we state several propositions:

(43) The carrier of LC-Z-ModuleV = LCV .

(44) 0LC-Z-ModuleV = Z-ZeroLCV.

(45) The addition of LC-Z-ModuleV = +LCV .

(46) The external multiplication of LC-Z-ModuleV = ·LCV .

(47) L1
LC-Z-ModuleV + L2

LC-Z-ModuleV = L1 + L2.

(48) a · LLC-Z-ModuleV = a · L.
(49) −LLC-Z-ModuleV = −L.
(50) L1

LC-Z-ModuleV − L2
LC-Z-ModuleV = L1 − L2.
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Let us consider V , A. The functor LC-Z-ModuleA yielding a strict submo-
dule of LC-Z-ModuleV is defined by:

(Def. 35) The carrier of LC-Z-ModuleA = {l}.

3. Linearly Independent Subset of Z-module

For simplicity, we use the following convention: W , W1, W2, W3 are submo-
dules of V , v, v1 are vectors of V , C is a subset of V , T is a finite subset of V ,
L, L1, L2 are Z-linear combinations of V , l is a Z-linear combination of A, and
G is a finite sequence of elements of the carrier of V .

One can prove the following propositions:

(51) f · (F a G) = (f · F ) a (f ·G).

(52)
∑

(L1 + L2) =
∑
L1 +

∑
L2.

(53)
∑

(a · L) = a ·
∑
L.

(54)
∑

(−L) = −
∑
L.

(55)
∑

(L1 − L2) =
∑
L1 −

∑
L2.

Let us consider V , A. We say that A is linearly independent if and only if:

(Def. 36) For every l such that
∑
l = 0V holds the support of l = ∅.

Let us consider V , A. We introduce A is linearly dependent as an antonym
of A is linearly independent.

We now state three propositions:

(56) If A ⊆ B and B is linearly independent, then A is linearly independent.

(57) If A is linearly independent, then 0V /∈ A.
(58) ∅the carrier of V is linearly independent.

Let us consider V . Observe that there exists a subset of V which is linearly
independent.

One can prove the following proposition

(59) If V inherits cancelable on multiplication, then {v} is linearly indepen-
dent iff v 6= 0V .

Let us consider V . Note that {0V } is linearly dependent as a subset of V .
One can prove the following propositions:

(60) If {v1, v2} is linearly independent, then v1 6= 0V .

(61) {v, 0V } is linearly dependent.

(62) Suppose V inherits cancelable on multiplication. Then v1 6= v2 and
{v1, v2} is linearly independent if and only if v2 6= 0V and for all a, b
such that b 6= 0 holds b · v1 6= a · v2.

(63) Suppose V inherits cancelable on multiplication. Then v1 6= v2 and
{v1, v2} is linearly independent if and only if for all a, b such that
a · v1 + b · v2 = 0V holds a = 0 and b = 0.
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Let us consider V , A. The functor Lin(A) yielding a strict submodule of V
is defined as follows:

(Def. 37) The carrier of Lin(A) = {
∑
l}.

The following propositions are true:

(64) x ∈ Lin(A) iff there exists l such that x =
∑
l.

(65) If x ∈ A, then x ∈ Lin(A).

(66) x ∈ 0V iff x = 0V .

(67) Lin(∅the carrier of V ) = 0V .

(68) If Lin(A) = 0V , then A = ∅ or A = {0V }.
(69) For every strict Z-module V and for every subset A of V such that

A = the carrier of V holds Lin(A) = V.

(70) If A ⊆ B, then Lin(A) is a submodule of Lin(B).

(71) For every strict Z-module V and for all subsets A, B of V such that
Lin(A) = V and A ⊆ B holds Lin(B) = V.

(72) Lin(A ∪B) = Lin(A) + Lin(B).

(73) Lin(A ∩B) is a submodule of Lin(A) ∩ Lin(B).

4. Theorems Related to Submodule

One can prove the following propositions:

(74) If W1 is a submodule of W3, then W1 ∩W2 is a submodule of W3.

(75) If W1 is a submodule of W2 and a submodule of W3, then W1 is a
submodule of W2 ∩W3.

(76) If W1 is a submodule of W3 and W2 is a submodule of W3, then W1 +W2

is a submodule of W3.

(77) If W1 is a submodule of W2, then W1 is a submodule of W2 +W3.
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(1) For every finite sequence f such that len f > 0 and n > 0 holds
len(f�n) > 0.

(2) For every finite sequence f such that len f = 0 holds f�n = f.

(3) For all finite sequences f , g such that rng f = rng g holds len f = 0 iff
len g = 0.

Let us consider A, B. The functor UN(A,B) yields an element of the LTLB-
WFF and is defined by:

(Def. 1) UN(A,B) = B ∨ (A&&(A U B)).

One can prove the following proposition

(4) VALg(>t) = 1.

Next we state the proposition

(5) VALg(p ∨ q) = VALg(p) ∨VALg(q).

2. n-Argument Connectives and their Properties

Let us consider f . The functor conjunction f yielding a finite sequence of
elements of the LTLB-WFF is defined as follows:

(Def. 2)(i) len conjunction f = len f and (conjunction f)(1) = f(1) and for
every i such that 1 ≤ i < len f holds (conjunction f)(i + 1) =
(conjunction f)i && fi+1 if len f > 0,

(ii) conjunction f = 〈>t〉, otherwise.

Let us consider f , A. The functor implication(f,A) yielding a finite sequence
of elements of the LTLB-WFF is defined as follows:

(Def. 3)(i) len implication(f,A) = len f and (implication(f,A))(1) = G(f1)⇒ A

and for every i such that 1 ≤ i < len f holds (implication(f,A))(i+ 1) =
G(fi+1)⇒ (implication(f,A))i if len f > 0,

(ii) implication(f,A) = ε(the LTLB-WFF), otherwise.

Let us consider f . The functor negation f yields a finite sequence of elements
of the LTLB-WFF and is defined by:

(Def. 4) len negation f = len f and for every i such that 1 ≤ i ≤ len f holds
(negation f)(i) = ¬(fi).

Let us consider f . The functor next f yields a finite sequence of elements of
the LTLB-WFF and is defined by:

(Def. 5) len next f = len f and for every i such that 1 ≤ i ≤ len f holds
(next f)(i) = X (fi).

We now state a number of propositions:

(6) If len f > 0, then (conjunction f)1 = f1.

(7) For every natural number i such that 1 ≤ i < len f holds
(conjunction f)i+1 = (conjunction f)i && fi+1.
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(8) For every natural number i such that i ∈ dom f holds (negation f)i =
¬(fi).

(9) For every natural number i such that i ∈ dom f holds (next f)i = X (fi).

(10) (conjunction(ε(the LTLB-WFF)))len conjunction(ε(the LTLB-WFF)) = >t.
(11) (conjunction〈A〉)len conjunction〈A〉 = A.

(12) For every k such that n ≤ k holds (conjunction f)(n) =
(conjunction(f�k))(n).

(13) For every k such that n ≤ k and 1 ≤ n ≤ len f holds (conjunction f)n =
(conjunction(f�k))n.

(14) negation〈A〉 = 〈¬A〉.
(15) negation(f a 〈A〉) = (negation f) a 〈¬A〉.
(16) negation(f a f1) = (negation f) a negation f1.

(17) VALg((conjunction(f a f1))len conjunction(faf1)) =
VALg((conjunction f)len conjunction f )∧VALg((conjunction f1)len conjunction f1).

(18) If n ∈ dom f, then VALg((conjunction f)len conjunction f ) =
VALg((conjunction(f�(n−′ 1)))len conjunction(f�(n−′1))) ∧VALg(fn)∧
VALg((conjunction(f�n))len conjunction(f�n)).

(19) VALg((conjunction f)len conjunction f ) = 1 iff for every natural number i
such that i ∈ dom f holds VALg(fi) = 1.

(20) VALg(¬((conjunction negation f)len conjunction negation f )) = 0 iff for every
natural number i such that i ∈ dom f holds VALg(fi) = 0.

(21) If rng f = rng f1, then VALg((conjunction f)len conjunction f ) =
VALg((conjunction f1)len conjunction f1).

3. Classical Tautologies of Temporal Language

Next we state a number of propositions:

(22) p⇒ >t is tautologically valid.

(23) ¬>t ⇒ p is tautologically valid.

(24) p⇒ p is tautologically valid.

(25) ¬¬p⇒ p is tautologically valid.

(26) p⇒ ¬¬p is tautologically valid.

(27) p&& q ⇒ p is tautologically valid.

(28) p&& q ⇒ q is tautologically valid.

(29) For every natural number k such that k ∈ dom f holds fk ⇒
¬((conjunction negation f)len conjunction negation f ) is tautologically valid.

(30) If rng f ⊆ rng f1, then ¬((conjunction negation f)len conjunction negation f )⇒
¬((conjunction negation f1)len conjunction negation f1) is tautologically valid.
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(31) ¬(p⇒ q)⇒ p is tautologically valid.

(32) ¬(p⇒ q)⇒ ¬q is tautologically valid.

(33) p⇒ (q ⇒ p) is tautologically valid.

(34) p⇒ (q ⇒ (p⇒ q)) is tautologically valid.

(35) ¬(p&& q)⇒ ¬p ∨ ¬q is tautologically valid.

(36) ¬(p ∨ q)⇒ ¬p&&¬q is tautologically valid.

(37) ¬(p&& q)⇒ (p⇒ ¬q) is tautologically valid.

(38) ¬(>t &&¬A)⇒ A is tautologically valid.

(39) ¬(s&& q)⇒ ((p⇒ q)⇒ (p⇒ ¬s)) is tautologically valid.

(40) (p⇒ r)⇒ ((p⇒ s)⇒ (p⇒ r&& s)) is tautologically valid.

(41) ¬(p&& s)⇒ ¬(r&& s&&(p&& q)) is tautologically valid.

(42) ¬(p&& s)⇒ ¬(p&& q&&(r&& s)) is tautologically valid.

(43) (p⇒ q&&¬q)⇒ ¬p is tautologically valid.

(44) (q ⇒ p&& r)⇒ ((p⇒ s)⇒ (q ⇒ s&& r)) is tautologically valid.

(45) (p⇒ q)⇒ ((r ⇒ s)⇒ (p&& r ⇒ q&& s)) is tautologically valid.

(46) (p⇒ q)⇒ ((p⇒ r)⇒ ((r ⇒ p)⇒ (r ⇒ q))) is tautologically valid.

(47) (p⇒ q)⇒ ((p⇒ ¬r)⇒ (p⇒ ¬(q ⇒ r))) is tautologically valid.

(48) (p⇒ q ∨ r)⇒ ((r ⇒ s)⇒ (p⇒ q ∨ s)) is tautologically valid.

(49) (p⇒ r)⇒ ((q ⇒ r)⇒ (p ∨ q ⇒ r)) is tautologically valid.

(50) (r ⇒ UN(p, q))⇒ ((r ⇒ ¬p&&¬q)⇒ ¬r) is tautologically valid.

(51) (r ⇒ UN(p, q))⇒ ((r ⇒ ¬q&&¬(p U q))⇒ ¬r) is tautologically valid.

4. The Derivations of Temporal Logic Formulas within Classical
Logic

One can prove the following propositions:

(52) If X ` p⇒ q and X ` p⇒ r, then X ` p⇒ q&& r.

(53) If X ` p⇒ q and X ` r ⇒ s, then X ` p&& r ⇒ q&& s.

(54) If X ` p⇒ q and X ` p⇒ r and X ` r ⇒ p, then X ` r ⇒ q.

(55) If X ` p⇒ q&&¬q, then X ` ¬p.
(56) If for every natural number i such that i ∈ dom f holds
∅the LTLB-WFF ` p⇒ fi, then
∅the LTLB-WFF ` p⇒ (conjunction f)len conjunction f .

(57) If for every natural number i such that i ∈ dom f holds
∅the LTLB-WFF ` fi ⇒ p, then
∅the LTLB-WFF ` ¬((conjunction negation f)len conjunction negation f )⇒ p.
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5. The Derivations of Temporal Logic Formulas

Next we state several propositions:

(58) X ` (X p⇒ X q)⇒ X (p⇒ q).

(59) X ` X (p&& q)⇒ X p&&X q.
(60) ∅the LTLB-WFF ` (conjunction next f)len conjunction next f ⇒
X ((conjunction f)len conjunction f ).

(61) X ` X p ∨ X q ⇒ X (p ∨ q).
(62) X ` X (p ∨ q)⇒ X p ∨ X q.
(63) X ` ¬(A U B)⇒ X ¬UN(A,B).
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Summary. This is a second preliminary article to prove the completeness
theorem of an extension of basic propositional temporal logic. We base it on the
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1. Preliminaries

For simplicity, we adopt the following convention: A, B, p, q, r are elements
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(1) Let X be a non empty set, t be a finite sequence of elements of X, and
k be a natural number. If k + 1 ≤ len t, then t�k = 〈t(k + 1)〉 a (t�k+1).

(2) N 7−→ ∅ is a LTL Model.

Let us consider X. We say that X is without implication if and only if:

(Def. 1) For every p such that p ∈ X holds p is not conditional.

Let D be a set. The functor D∗1−1 yielding a set is defined by:

(Def. 2) For every x holds x ∈ D∗1−1 iff x is a one-to-one finite sequence of ele-
ments of D.

Let D be a set. One can verify that D∗1−1 is non empty.
Let D be a finite set. Observe that D∗1−1 is finite.
We now state the proposition

(3) For all sets D1, D2 such that D1 ⊆ D2 holds D1
∗
1−1 ⊆ D2

∗
1−1.

Let a1 be a set and let a2 be a subset of a1. Then a2
∗
1−1 is a non empty

subset of a1
∗
1−1.

Next we state the proposition

(4) For all one-to-one finite sequences F , G such that rngF misses rngG
holds F a G is one-to-one.

Let X be a set and let f , g be one-to-one finite sequences of elements of X.
Let us assume that rng f misses rng g. The functor f _ g yielding a one-to-one
finite sequence of elements of X is defined as follows:

(Def. 3) f _ g = f a g.

2. Set of Subformulas where an Until-formula is treated as
Indivisible and its Properties

The function τ̇ from the LTLB-WFF into 2the LTLB-WFF is defined as follows:

(Def. 4) τ̇(⊥t) = {⊥t} and τ̇(propn) = {propn} and τ̇(A ⇒ B) = {A ⇒ B} ∪
τ̇(A) ∪ τ̇(B) and τ̇(A U B) = {A U B}.

One can prove the following propositions:

(5) If A is not conditional, then τ̇(A) = {A}.
(6) p ∈ τ̇(p).

Let us consider p. Observe that τ̇(p) is non empty and finite.
One can prove the following propositions:

(7) If p⇒ q ∈ τ̇(r), then p, q ∈ τ̇(r).

(8) If p ∈ τ̇(q), then τ̇(p) ⊆ τ̇(q).

(9) If p U q ∈ τ̇(¬A), then p U q ∈ τ̇(A).

(10) If p U q ∈ τ̇(A&&B), then p U q ∈ τ̇(A) or p U q ∈ τ̇(B).

(11) If p ∈ τ̇(q) and p 6= q, then len p < len q.
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(12) τ̇(p) ⊆ τ̇(¬p).
(13) τ̇(q) ⊆ τ̇(p&& q).

(14) τ̇(q) ⊆ τ̇(p ∨ q).
Let us consider X. The functor τ(X) yields a subset of the LTLB-WFF and

is defined as follows:

(Def. 5) x ∈ τ(X) iff there exists A such that A ∈ X and x ∈ τ̇(A).

We now state two propositions:

(15) τ(X) =
⋃
{τ̇(p); p ranges over elements of the LTLB-WFF: p ∈ X}.

(16) X ⊆ τ(X).

Let X be an empty subset of the LTLB-WFF. One can check that τ(X) is
empty.

Let X be a finite subset of the LTLB-WFF. Note that τ(X) is finite.
Let X be a non empty subset of the LTLB-WFF. One can verify that τ(X)

is non empty.
The following propositions are true:

(17) τ(τ(X)) = τ(X).

(18) If X is without implication, then τ(X) = X.

(19) If p⇒ q ∈ τ(X), then p, q ∈ τ(X).

(20) If p&& q ∈ τ(X), then p, q ∈ τ(X).

(21) If p ∨ q ∈ τ(X), then p, q ∈ τ(X).

(22) If UN(p, q) ∈ τ(X), then p, q, p U q ∈ τ(X).

(23) If p ∈ τ(X), then τ̇(p) ⊆ τ(X).

3. Extended Set of Subformulas and its Properties

The function σ̇ from the LTLB-WFF into 2the LTLB-WFF is defined by:

(Def. 6) σ̇(⊥t) = {⊥t} and σ̇(propn) = {propn} and σ̇(A ⇒ B) = {A ⇒ B} ∪
σ̇(A) ∪ σ̇(B) and σ̇(A U B) = τ̇(UN(A,B)) ∪ σ̇(A) ∪ σ̇(B).

One can prove the following propositions:

(24) p U q ∈ σ̇(p U q).
(25) τ̇(p) ⊆ σ̇(p).

Let us consider p. Note that σ̇(p) is non empty and finite.
The following proposition is true

(26) If p ∈ σ̇(A U B), then if A U B ∈ σ̇(q), then p ∈ σ̇(q).

Let us consider X. The functor σ(X) yielding a subset of 2the LTLB-WFF is
defined as follows:

(Def. 7) σ(X) = {σ̇(A);A ranges over elements of the LTLB-WFF: A ∈ X}.
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Let X be a finite subset of the LTLB-WFF. Note that σ(X) is finite and
finite-membered.

4. An Ordered Pair of Finite Sequences of Formulas.
PNP-formula, Consistent PNP and Complete PNP

A positive-negative pair is an element of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

In the sequel P , Q, P1, R are positive-negative pairs.
Let us consider P . Then P1 is a one-to-one finite sequence of elements of

the LTLB-WFF. Then P2 is a one-to-one finite sequence of elements of the
LTLB-WFF.

Let us consider P . The functor rngP yielding a finite subset of the LTLB-
WFF is defined by:

(Def. 8) rngP = rng(P1) ∪ rng(P2).

Let f1, f2 be one-to-one finite sequences of elements of the LTLB-WFF.
Then 〈〈f1, f2〉〉 is a positive-negative pair.

Let us consider P . The functor P̂ yielding an element of the LTLB-WFF is
defined by:

(Def. 9) P̂ = (conjunction(P1))len conjunction(P1)
&&(conjunction negation(P2))len conjunction negation(P2).

We now state three propositions:

(27) F̂ = >t &&>t, where F = 〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉.
(28) If A ∈ rng(P1), then ∅the LTLB-WFF ` P̂ ⇒ A.

(29) If A ∈ rng(P2), then ∅the LTLB-WFF ` P̂ ⇒ ¬A.
Let us consider P . We say that P is inconsistent if and only if:

(Def. 10) ∅the LTLB-WFF ` ¬P̂ .
Let us consider P . We introduce P is consistent as an antonym of P is

inconsistent.
We say that P is complete if and only if:

(Def. 11) τ(rngP ) = rngP.

One can check that 〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉 is consistent as a po-
sitive-negative pair.

Let us observe that 〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉 is complete as a posi-
tive-negative pair.

One can check that there exists a positive-negative pair which is consistent
and complete.

Let P be a consistent positive-negative pair. Observe that 〈〈P1, P2〉〉 is con-
sistent as a positive-negative pair.
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5. The Properties of Consistent PNPs

One can prove the following propositions:

(30) For every consistent positive-negative pair P holds rng(P1) misses
rng(P2).

(31) Let P be a consistent positive-negative pair. If A /∈ rngP, then 〈〈(P1) _
〈A〉, P2〉〉 is consistent or 〈〈P1, (P2) _ 〈A〉〉〉 is consistent.

(32) For every consistent positive-negative pair P holds ⊥t /∈ rng(P1).

(33) Let P be a consistent positive-negative pair. Suppose A, B, A ⇒ B ∈
rngP. Then A⇒ B ∈ rng(P1) if and only if A ∈ rng(P2) or B ∈ rng(P1).

(34) Let P be a consistent positive-negative pair. Then there exists a con-
sistent positive-negative pair P1 such that rng(P1) ⊆ rng((P1)1) and
rng(P2) ⊆ rng((P1)2) and τ(rngP ) = rngP1.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Mariusz Giero. The axiomatization of propositional linear time temporal logic. Formalized
Mathematics, 19(2):113–119, 2011, doi: 10.2478/v10037-011-0018-1.

[14] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics,
20(3):215–219, 2012, doi: 10.2478/v10037-012-0025-x.

[15] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics,
8(1):69–72, 1999.

[16] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.
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1. Preliminaries

For simplicity, we use the following convention: A, B, p, q denote elements
of the LTLB-WFF, M denotes a LTL Model, j, k, n denote elements of N, i
denotes a natural number, X denotes a subset of the LTLB-WFF, F denotes a
finite subset of the LTLB-WFF, f denotes a finite sequence of elements of the
LTLB-WFF, and P , Q, R denote positive-negative pairs.

Let X be a finite set. We see that the enumeration of X is a one-to-one finite
sequence of elements of X.

Let E be a set and let F be a finite subset of E. We see that the enumeration
of F is a one-to-one finite sequence of elements of E.

Let D be a set. One can verify that there exists a set of finite sequences of
D which is non empty and finite.

We now state the proposition

(1) Let X be a set and G be a non empty finite set of finite sequences of X.
Then there exists a finite sequence A such that A ∈ G and for every finite
sequence B such that B ∈ G holds lenB ≤ lenA.

Let T be a decorated tree, let us consider n, and let t be a node of T . Then
t�n is a node of T .

We now state the proposition

(2) p is a finite sequence of elements of N.

Let us consider A. We introduce A is s-until as a synonym of A is conjunctive.
Let us consider A. Let us assume that A is s-until. The right argument of A

yields an element of the LTLB-WFF and is defined by:

(Def. 1) There exists p such that p U the right argument of A = A.

Let us consider A. We say that A is satisfiable if and only if:

(Def. 2) There exist M , n such that SATM (〈〈n, A〉〉) = 1.

We now state four propositions:

(3) ∅the LTLB-WFF |= A iff ¬A is not satisfiable.

(4) If >t &&A is satisfiable, then A is satisfiable.

(5) Let i be an element of N. Then SATM (〈〈i, pU q〉〉) = 1 if and only if there
exists j such that j > i and SATM (〈〈j, q〉〉) = 1 and for every k such that
i < k < j holds SATM (〈〈k, p〉〉) = 1.

(6) SATM (〈〈n, (conjunction f)len conjunction f 〉〉) = 1 iff for every i such that
i ∈ dom f holds SATM (〈〈n, fi〉〉) = 1.

One can prove the following three propositions:

(7) Ŵ = >t &&¬A, where W = 〈〈ε(the LTLB-WFF), 〈A〉〉〉.
(8) For every complete positive-negative pair P such that UN(A,B) ∈ rngP

holds A, B, A U B ∈ rngP.

(9) rngP ⊆
⋃
σ(rngP ).
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2. Set of PNP-formulas. Completions of Formulas and PNPs

In the sequel P is an element of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1.

Let F be a subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1. The func-
tor F̂ yields a subset of the LTLB-WFF and is defined by:

(Def. 3) F̂ = {P̂ : P ∈ F}.
Let F be a non empty subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1.

Note that F̂ is non empty.
Let F be a finite subset of (the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

Observe that F̂ is finite.
We now state the proposition

(10) For all subsets F , G of (the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1

holds F̂ ∪G = F̂ ∪ Ĝ.
One can prove the following proposition

(11) Ŵ = {>t &&>t}, where W = {〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉}.
In the sequel Q denotes a positive-negative pair.
Let F be a finite subset of the LTLB-WFF. The functor compF yielding

a non empty finite subset of (the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is
defined as follows:

(Def. 4) compF = {Q : rngQ = τ(F ) ∧ rng(Q1) misses rng(Q2)}.
Let F be a finite subset of the LTLB-WFF. Note that every element of

compF is complete.
One can prove the following proposition

(12) comp(∅the LTLB-WFF) = {〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉}.
Let us consider P , Q. We say that Q is completion of P if and only if:

(Def. 5) rng(P1) ⊆ rng(Q1) and rng(P2) ⊆ rng(Q2) and τ(rngP ) = rngQ.

We now state the proposition

(13) If Q is completion of P , then Q is complete.

In the sequel Q is a consistent positive-negative pair.
Let us consider P . The functor compP yields a finite subset of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 and is defined by:

(Def. 6) compP = {Q : Q is completion of P}.
Let P be a consistent positive-negative pair. One can check that compP is

non empty. Observe that every element of compP is consistent.
In the sequel P denotes an element of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

Let X be a subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1. The func-
tor compX yields a subset of (the LTLB-WFF)∗1−1× (the LTLB-WFF)∗1−1 and
is defined by:
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(Def. 7) compX =
⋃
{compP : P ∈ X}.

Let X be a finite subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1. One
can check that compX is finite.

We now state four propositions:

(14) For every non empty subset X of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 such that Q ∈ X holds
compQ ⊆ compX.

(15) For every non empty finite subset F of the LTLB-WFF there exists p
such that p ∈ τ(F ) and τ(τ(F ) \ {p}) = τ(F ) \ {p}.

(16) Let F be a finite subset of the LTLB-WFF and f be a finite sequence
of elements of the LTLB-WFF. If rng f = ̂compF , then ∅the LTLB-WFF `
¬((conjunction negation f)len conjunction negation f ).

(17) Let P be a consistent positive-negative pair and f be a finite sequence
of elements of the LTLB-WFF. If rng f = ̂compP , then ∅the LTLB-WFF `
P̂ ⇒ ¬((conjunction negation f)len conjunction negation f ).

3. Set of Possible Next-State PNPs

In the sequel A, B denote elements of the LTLB-WFF.
Let us consider X. The functor UN(X) yields a subset of the LTLB-WFF

and is defined as follows:

(Def. 8) UN(X) = {UN(A,B) : A U B ∈ X}.
Let X be a finite subset of the LTLB-WFF. One can check that UN(X) is

finite.
Let us consider P . The functor UN(P ) yielding a non empty finite subset of

(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is defined by:

(Def. 9) UN(P ) = {Q;Q ranges over positive-negative pairs: rng(Q1) =
UN(rng(P1)) ∧ rng(Q2) = UN(rng(P2))}.

One can prove the following proposition

(18) For every element Q of UN(P ) holds ∅the LTLB-WFF ` P̂ ⇒ X Q̂.
Let P be a consistent positive-negative pair. Note that every element of

UN(P ) is consistent. In the sequel Q denotes an element of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

Let us consider P . The next completion of P yielding a finite subset of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is defined by:

(Def. 10) The next completion of P = {Q : Q ∈ comp UN(P )}.
Let P be a consistent positive-negative pair. One can verify that the next

completion of P is non empty.
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Let P be a consistent positive-negative pair. One can check that every ele-
ment of the next completion of P is consistent.

Next we state two propositions:

(19) If Q ∈ the next completion of P and R ∈ UN(P ), then Q is completion
of R.

(20) If Q ∈ the next completion of P , then Q is complete.

Let P be a consistent positive-negative pair. One can verify that every ele-
ment of the next completion of P is complete.

Next we state several propositions:

(21) If AU B ∈ rng(P2) and Q ∈ the next completion of P , then UN(A,B) ∈
rng(Q2).

(22) If AU B ∈ rng(P1) and Q ∈ the next completion of P , then UN(A,B) ∈
rng(Q1).

(23) If R ∈ the next completion of Q and rngQ ⊆
⋃
σ(rngP ), then rngR ⊆⋃

σ(rngP ).

(24) Let P be a consistent complete positive-negative pair and Q be an ele-
ment of the next completion of P . If A U B ∈ rng(P2), then B ∈ rng(Q2)
but A ∈ rng(Q2) or A U B ∈ rng(Q2).

(25) Let P be a consistent complete positive-negative pair and Q be an ele-
ment of the next completion of P . If A U B ∈ rng(P1), then B ∈ rng(Q1)
or A, A U B ∈ rng(Q1).

4. A PNP-Tree and its Properties

Let us consider P . A finite-branching tree decorated with elements of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is said to be a tree of positive-
negative pairs of P if it satisfies the conditions (Def. 11).

(Def. 11)(i) It(∅) = P, and
(ii) for every element t of dom it and for every element w of

(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 such that w = it(t) holds
succ(it, t) = the enumeration of the next completion of w.

In the sequel T is a tree of positive-negative pairs of P and t is a node of T .
Let us consider P , T , t. Then T �t is a tree of positive-negative pairs of T (t).
Next we state two propositions:

(26) For every natural number n such that ta 〈n〉 ∈ domT holds T (ta 〈n〉) ∈
the next completion of T (t).

(27) If Q ∈ rng T, then rngQ ⊆
⋃
σ(rngP ).

Let us consider P , T . One can check that rng T is non empty and finite.
Let P be a consistent positive-negative pair and let T be a tree of positive-

negative pairs of P . One can check that every element of rng T is consistent.
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Let P be a consistent complete positive-negative pair and let T be a tree
of positive-negative pairs of P . One can verify that every element of rng T is
complete.

Let P be a consistent complete positive-negative pair, let T be a tree of
positive-negative pairs of P , and let t be a node of T . Observe that T (t) is
consistent and complete as a positive-negative pair.

Let P be a consistent positive-negative pair, let T be a tree of positive-
negative pairs of P , and let t be an element of domT. Observe that succ t is non
empty.

Let us consider P , T . The range of T except the root node yields a finite
subset of (the LTLB-WFF)∗1−1× (the LTLB-WFF)∗1−1 and is defined as follows:

(Def. 12) The range of T except the root node = {T (t); t ranges over nodes of T :
t 6= ∅}.

Let P be a consistent positive-negative pair and let T be a tree of positive-
negative pairs of P . One can verify that the range of T except the root node is
non empty.

One can prove the following proposition

(28) If R ∈ rng T and Q ∈ UN(R), then compQ ⊆ the range of T except the
root node.

One can prove the following proposition

(29) Let P be a consistent complete positive-negative pair, T be
a tree of positive-negative pairs of P , and f be a finite se-
quence of elements of the LTLB-WFF. If rng f = Ĵ , then
∅the LTLB-WFF ` ¬((conjunction negation f)len conjunction negation f ) ⇒
X ¬((conjunction negation f)len conjunction negation f ), where J = the range
of T except the root node.

5. A Path in PNP-Tree and its Properties. Existence of Temporal
Model for a Consistent PNP. Weak Completeness Theorem

Let P be a consistent positive-negative pair and let T be a tree of positive-
negative pairs of P . A sequence of domT is called a path of T if:

(Def. 13) It(0) = ∅ and for every natural number k holds it(k + 1) ∈ succ it(k).

Let P be a consistent complete positive-negative pair, let T be a tree of
positive-negative pairs of P , let t be a path of T , and let us consider i. Then
t(i) is a node of T .

Next we state three propositions:

(30) Let P be a consistent complete positive-negative pair, T be a tree of
positive-negative pairs of P , and t be a path of T . Suppose A U B ∈
rng(T (t(i))2). Let given j. If j > i, then B ∈ rng(T (t(j))2) or there exists
k such that i < k < j and A ∈ rng(T (t(k))2).
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(31) Let P be a consistent complete positive-negative pair and T be a tree
of positive-negative pairs of P . Suppose A U B ∈ rng(P1) and for every
element Q of the range of T except the root node holds B /∈ rng(Q1). Let
Q be an element of the range of T except the root node. Then B ∈ rng(Q2)
and A U B ∈ rng(Q1).

(32) Let P be a consistent complete positive-negative pair and T be a tree
of positive-negative pairs of P . Suppose A U B ∈ rng(P1). Then there
exists an element R of the range of T except the root node such that
B ∈ rng(R1).

Let P be a consistent positive-negative pair, let T be a tree of positive-
negative pairs of P , and let t be a path of T . We say that t is complete if and
only if the condition (Def. 14) is satisfied.

(Def. 14) Let given i. Suppose A U B ∈ rng(T (t(i))1). Then there exists j such
that j > i and B ∈ rng(T (t(j))1) and for every k such that i < k < j

holds A ∈ rng(T (t(k))1).

Let P be a consistent complete positive-negative pair and let T be a tree
of positive-negative pairs of P . Note that there exists a path of T which is
complete.

Let P be a consistent positive-negative pair. Observe that P̂ is satisfiable.
One can prove the following proposition

(33)3 If F |= A, then F ` A.
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Summary. In this article we prove the friendship theorem according to
the article [1], which states that if a group of people has the property that any
pair of persons have exactly one common friend, then there is a universal friend,
i.e. a person who is a friend of every other person in the group.
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The papers [3], [2], [6], [7], [11], [8], [9], [15], [14], [4], [13], [5], [17], [18], [12],
[16], and [10] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: x, y, z are sets, i, k, n are
natural numbers, R is a binary relation, P is a finite binary relation, and p, q
are finite sequences.

Let us consider P , x. Observe that P ◦x is finite.
We now state several propositions:

(1) R = R` .

(2) If R is symmetric, then R◦x = R−1(x).

(3) If (p�k) a (p�k) = (q�n) a (q�n) and k ≤ n ≤ len p, then p = (q�n−′k) a

(q�(n−′ k)).

(4) If n ∈ dom q and p = (q�n)a (q�n), then q = (p�len p−′n)a (p�(len p−′ n)).
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(5) If (p�k) a (p�k) = (q�n) a (q�n), then there exists i such that p = (q�i) a

(q�i).

The scheme Sch deals with a non empty set A, a non zero natural number
B, and a unary predicate P, and states that:

There exists a cardinal number C such that B · C =
{F ∈ AB: P[F ]}

provided the following requirements are met:
• For all finite sequences p, q of elements of A such that p a q is
B-element and P[p a q] holds P[q a p], and

• For every element p of AB such that P[p] and for every natural
number i such that i < B and p = (p�i) a (p�i) holds i = 0.

One can prove the following propositions:

(6) Let X be a non empty set, A be a non empty finite sub-
set of X, and P be a function from X into 2X . Suppose
that for every x such that x ∈ X holds P (x) = n. Then

{F ∈ Xk+1: F (1) ∈ A ∧
∧
i (i ∈ Seg k ⇒ F (i+ 1) ∈ P (F (i)))} = A ·

nk.

(7) If len p is prime and there exists i such that 0 < i < len p and p =
(p�i) a (p�i), then rng p ⊆ {p(1)}.

2. The Friendship Graph

Let us consider R and let x be an element of fieldR. We say that x is
universal friend if and only if:

(Def. 1) For every y such that y ∈ fieldR \ {x} holds 〈〈x, y〉〉 ∈ R.
Let R be a binary relation. We say that R has universal friend if and only

if:

(Def. 2) There exists an element of fieldR which is universal friend.

Let R be a binary relation. We introduce R is without universal friend as an
antonym of R has universal friend.

Let R be a binary relation. We say that R is friendship graph like if and
only if:

(Def. 3) For all x, y such that x, y ∈ fieldR and x 6= y there exists z such that
R◦x ∩ Coim(R, y) = {z}.

Let us observe that there exists a binary relation which is finite, symmetric,
irreflexive, and friendship graph like.

A friendship graph is a finite symmetric irreflexive friendship graph like
binary relation.

In the sequel F1 is a friendship graph.
The following propositions are true:
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(8) 2 | F1
◦x.

(9) If x, y ∈ fieldF1 and 〈〈x, y〉〉 /∈ F1, then F1
◦x = F1

◦y .

(10) If F1 is without universal friend and x ∈ fieldF1, then F1
◦x > 2.

(11) If F1 is without universal friend and x, y ∈ fieldF1, then F1
◦x = F1

◦y .

(12) If F1 is without universal friend and x ∈ fieldF1, then fieldF1 = 1 +
F1
◦x · (F1

◦x − 1).

(13) For all elements x, y of fieldF1 such that x is universal friend and x 6= y

there exists z such that F1
◦y = {x, z} and F1

◦z = {x, y}.

3. The Friendship Theorem

Next we state the proposition

(14) If F1 is non empty, then F1 has universal friend.
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Summary. We interoduce a new characterization of algebras of normal
forms of term rewriting systems [35] as algerbras of term free in itself (any func-
tion from free generators into the algebra generates endomorphism of the alge-
bra). Introduced algebras are free in classes of algebras satisfying some sets of
equalities. Their universes are subsets of all terms and the denotations of opera-
tion symbols are partially identical with the operations of construction of terms.
These algebras are compiler algebras requiring some equalities of terms, e.g.,
associativity of addition.
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1. Preliminaries

In this paper Σ is a non empty non void many sorted signature and X is a
non-empty many sorted set indexed by Σ.

We now state the proposition

(1) For every set I and for all many sorted sets f1, f2 indexed by I such
that f1 ⊆ f2 holds

⋃
f1 ⊆

⋃
f2.

1This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).
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In the sequel x, y denote sets and i denotes a natural number.
Let I be a set, let X be a non-empty many sorted set indexed by I, and let

A be a component of X. We see that the element of A is an element of
⋃
X.

Let I be a set, let X be a many sorted set indexed by I, and let i be an
element of I. Then X(i) is a component of X.

Let I be a set, let X, Y be many sorted sets indexed by I, let f be a many
sorted function from X into Y , and let x be a set. Then f(x) is a function from
X(x) into Y (x).

In this article we present several logical schemes. The scheme Sch1 deals with
a set A, a non-empty many sorted set B indexed by A, and a binary functor F
yielding a set, and states that:

There exists a many sorted function f indexed by A such that for
every x if x ∈ A, then dom f(x) = B(x) and for every element y
of B(x) holds f(x)(y) = F(x, y)

for all values of the parameters.
The scheme Sch2 deals with a non empty set A, non-empty many sorted

sets B, C indexed by A, and a binary functor F yielding a set, and states that:
There exists a many sorted function f from B into C such that
for every element i of A and for every element a of B(i) holds
f(i)(a) = F(i, a)

provided the following condition is satisfied:
• For every element i of A and for every element a of B(i) holds
F(i, a) ∈ C(i).

Let X be a non empty set, let O be a set, let f be a function from O into
X, and let g be a many sorted set indexed by X. Then g · f is a many sorted
set indexed by O.

Let us consider Σ, X, let F be a many sorted set indexed by Σ -Terms(X), let
o be an operation symbol of Σ, and let p be an argument sequence of Sym(o,X).
One can check that F · p is finite sequence-like.

The following proposition is true

(2) Subtrees(the root tree of x) = {the root tree of x}.
Let f be a decorated tree yielding function. Observe that rng f is constituted

of decorated trees.
The following three propositions are true:

(3) For every non empty decorated tree yielding finite sequence p holds
Subtrees(x-tree(p)) = {x-tree(p)} ∪ Subtrees(rng p).

(4) Subtrees(x-tree(∅)) = {x-tree(∅)}.
(5) x-tree(∅) = the root tree of x.

Let us observe that there exists a finite sequence which is finite-yielding,
decorated tree yielding, and non empty and there exists a finite sequence which
is finite-yielding, tree yielding, and non empty.
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Let f be a finite-yielding function. One can check that domκ f(κ) is finite-
yielding.

Let p be a finite-yielding tree yielding finite sequence. Observe that
︷︸︸︷
p is

finite.
Let τ be a finite decorated tree. Observe that Subtrees(τ) is finite-membered.
Let p be a finite-yielding decorated tree yielding finite sequence and let us

consider x. Note that x-tree(p) is finite.
One can prove the following propositions:

(6) For all finite decorated trees τ1, τ2 such that τ1 ∈ Subtrees(τ2) holds
height dom τ1 ≤ height dom τ2.

(7) Let p be a decorated tree yielding finite sequence. Suppose p is finite-
yielding. Let τ be a decorated tree. If x ∈ Subtrees(τ) and τ ∈ rng p, then
x 6= y-tree(p).

Let us consider Σ and let X be a many sorted set indexed by Σ. Note that
every Σ -Terms(X)-valued function is finite-yielding.

Next we state several propositions:

(8) For every non empty constituted of decorated trees set X and for every
decorated tree τ such that τ ∈ X holds Subtrees(τ) ⊆ Subtrees(X).

(9) For every non empty constituted of decorated trees set X holds X ⊆
Subtrees(X).

(10) For every term τ of Σ over X and for every x such that x ∈ Subtrees(τ)
holds x is a term of Σ over X.

(11) For every decorated tree yielding finite sequence p holds rng p ⊆
Subtrees(x-tree(p)).

(12) For all decorated trees τ1, τ2 such that τ1 ∈ Subtrees(τ2) holds
Subtrees(τ1) ⊆ Subtrees(τ2).

(13) Let X be a many sorted set indexed by Σ, o be an operation symbol
of Σ, and p be a finite sequence. If p ∈ Args(o,FreeΣ(X)), then (Den(o,
FreeΣ(X)))(p) = 〈〈o, the carrier of Σ〉〉-tree(p).

Let I be a set, let A, B be non-empty many sorted sets indexed by I, and
let f be a many sorted function from A into B. Observe that rngκ f(κ) is non-
empty.

Let us consider Σ. One can check that every element of TΣ(N) is relation-like
and function-like.

Let I be a set, let A be a many sorted set indexed by I, and let f be a finite
sequence of elements of I. Observe that A · f is dom f -defined.

Let I be a set, let A be a many sorted set indexed by I, and let f be a finite
sequence of elements of I. One can verify that A · f is total as a dom f -defined
binary relation.

The following propositions are true:
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(14) Let I be a non empty set, J be a set, and A, B be many sorted sets
indexed by I. Suppose A ⊆ B. Let f be a function from J into I. Then
A · f ⊆ B · f qua many sorted set indexed by J .

(15) Let I be a set and A, B be many sorted sets indexed by I. Suppose
A ⊆ B. Let f be a finite sequence of elements of I. Then A ·f ⊆ B ·f qua
many sorted set indexed by dom f.

(16) For every set I and for all many sorted sets A, B indexed by I such that
A ⊆ B holds

∏
A ⊆

∏
B.

(17) Let R be a weakly-normalizing binary relation with unique normal form
property. If x is a normal form w.r.t. R, then nfR(x) = x.

(18) For every weakly-normalizing binary relation R with unique normal form
property holds nfR(nfR(x)) = nfR(x).

Let us consider Σ, X, let A be a subset of Free(X), and let us consider x.
One can verify that every element of A(x) is relation-like and function-like.

Let I be a set and let A be a many sorted set indexed by I. We say that A
is countable if and only if:

(Def. 1) For every x such that x ∈ I holds A(x) is countable.

Let I be a set and let X be a countable set. Note that I 7−→ X is countable
as a many sorted set indexed by I. Note that there exists a many sorted set
indexed by I which is non-empty and countable.

Let X be a countable many sorted set indexed by I, and let x be a set. Note
that X(x) is countable.

Let A be a countable set. Observe that there exists a function from A into
N which is one-to-one.

Let I be a set and let X0 be a countable many sorted set indexed by I. One
can check that there exists a many sorted function from X0 into I 7−→ N which
is “1-1”.

We now state a number of propositions:

(19) Let Σ be a set, X be a many sorted set indexed by Σ, Y be a non-empty
many sorted set indexed by Σ, and w be a many sorted function from X

into Y . Then rngκw(κ) is a many sorted subset of Y .

(20) Let Σ be a set and X be a countable many sorted set indexed by Σ.
Then there exists a many sorted subset Y of Σ 7−→ N and there exists
a many sorted function w from X into Σ 7−→ N such that w is “1-1”
and Y = rngκw(κ) and for every x such that x ∈ Σ holds w(x) is an

enumeration of X(x) and Y (x) = X(x) .

(21) Let I be a set, A be a many sorted set indexed by I, and B be a non-
empty many sorted set indexed by I. Then A is transformable to B.

(22) Let I be a set, A, B, C be non-empty many sorted sets indexed by I,
and f be a many sorted function from A into B. Suppose B is a many
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sorted subset of C. Then f is a many sorted function from A into C.

(23) Let I be a set and A, B be many sorted sets indexed by I. Suppose A
is transformable to B. Let f be a many sorted function from A into B.
Suppose f is onto. Then there exists a many sorted function g from B into
A such that f ◦ g = idB.

(24) Let A1, A2 be algebras over Σ. Suppose the algebra of A1 = the algebra
of A2. Let B1 be a subset of A1 and B2 be a subset of A2. Suppose B1 = B2.

Let o be an operation symbol of Σ. If B1 is closed on o, then B2 is closed
on o.

(25) Let A1, A2 be algebras over Σ. Suppose the algebra of A1 = the algebra
of A2. Let B1 be a subset of A1 and B2 be a subset of A2. Suppose B1 = B2.

Let o be an operation symbol of Σ. If B1 is closed on o, then oB2 = oB1 .

(26) Let A1, A2 be algebras over Σ. Suppose the algebra of A1 = the algebra
of A2. Let B1 be a subset of A1 and B2 be a subset of A2. If B1 = B2 and
B1 is operations closed, then Opers(A2, B2) = Opers(A1, B1).

(27) Let A1, A2 be algebras over Σ. Suppose the algebra of A1 = the algebra
of A2. Let B1 be a subset of A1 and B2 be a subset of A2. If B1 = B2 and
B1 is operations closed, then B2 is operations closed.

(28) Let A1, A2, B be algebras over Σ. Suppose the algebra of A1 = the
algebra of A2. Let B1 be a subalgebra of A1. Suppose the algebra of
B = the algebra of B1. Then B is a subalgebra of A2.

(29) For all algebras A1, A2 over Σ such that A2 is empty holds every many
sorted function from A1 into A2 is a homomorphism of A1 into A2.

(30) Let A1, A2, B1 be algebras over Σ and B2 be a non-empty algebra over
Σ. Suppose the algebra of A1 = the algebra of A2 and the algebra of
B1 = the algebra of B2. Let h1 be a many sorted function from A1 into
B1 and h2 be a many sorted function from A2 into B2. Suppose h1 = h2

and h1 is a homomorphism of A1 into B1. Then h2 is a homomorphism of
A2 into B2.

2. Trivial Algebras

Let I be a set and let X be a many sorted set indexed by I. Let us observe
that X is trivial-yielding if and only if:

(Def. 2) For every x such that x ∈ I holds X(x) is trivial.

Let I be a set. Note that there exists a many sorted set indexed by I which
is non-empty and trivial-yielding.

Let I be a set, let Σ be a trivial-yielding many sorted set indexed by I, and
let us consider x. One can check that Σ(x) is trivial.
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Let us consider Σ and let A be an algebra over Σ. We say that A is trivial
if and only if:

(Def. 3) The sorts of A are trivial-yielding.

Let us consider Σ. One can verify that there exists a strict algebra over Σ
which is trivial, disjoint valued, and non-empty.

Let us consider Σ and let A be a trivial algebra over Σ. One can verify that
the sorts of A is trivial-yielding.

Next we state four propositions:

(31) Let A be a trivial non-empty algebra over Σ, s be a sort symbol of Σ,
and e be an element of (the equations of Σ)(s). Then A |= e.

(32) For every trivial non-empty algebra A over Σ and for every set T of
equations of Σ holds A |= T.

(33) Let A be a non-empty algebra over Σ and T be a non-empty trivial
algebra over Σ. Then every many sorted function from A into T is a
homomorphism of A into T .

(34) Let T be a non-empty trivial algebra over Σ and A be a non-empty
subalgebra of T. Then the algebra of A = the algebra of T.

3. Image

Let us consider Σ, let A be a non-empty algebra over Σ, and let C be an
algebra over Σ. We say that C is A-image if and only if the condition (Def. 4) is
satisfied.

(Def. 4) There exists a non-empty algebra B over Σ and there exists a many
sorted function h from A into B such that h is a homomorphism of A into
B and the algebra of C = Imh.

Let us consider Σ and let A be a non-empty algebra over Σ. Observe that
every algebra over Σ which is A-image is also non-empty and there exists a
non-empty strict algebra over Σ which is A-image.

Let us consider Σ, let A be a non-empty algebra over Σ, and let C be a
non-empty algebra over Σ. Let us observe that C is A-image if and only if:

(Def. 5) There exists a many sorted function from A into C which is an epimor-
phism of A onto C.

Let us consider Σ and let A be a non-empty algebra over Σ. An image of A

is an A-image non-empty algebra over Σ.
Let us consider Σ and let A be a non-empty algebra over Σ. Observe that

there exists an image of A which is disjoint valued and trivial.
One can prove the following propositions:
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(35) Let A be a non-empty algebra over Σ, B be an A-image algebra over Σ,
s be a sort symbol of Σ, and e be an element of (the equations of Σ)(s).
If A |= e, then B |= e.

(36) Let A be a non-empty algebra over Σ, B be an A-image algebra over Σ,
and T be a set of equations of Σ. If A |= T, then B |= T.

4. Term Algebras

Let us consider Σ, X and let A be an algebra over Σ. We say that A is
including Σ-terms over X if and only if:

(Def. 6) The sorts of A are a many sorted subset of the sorts of FreeΣ(X).

Let us consider Σ, X. Note that FreeΣ(X) is including Σ-terms over X.
Let us consider Σ,X. One can check that FreeΣ(X) is non-empty and disjoint

valued.
Let us consider Σ, X. One can check that there exists a strict algebra over Σ

which is including Σ-terms over X and non-empty and there exists an algebra
over Σ which is including Σ-terms over X and non-empty.

Let us consider Σ, X and let A be an including Σ-terms over X algebra over
Σ. We say that A has all variables if and only if:

(Def. 7) FreeGenerator(X) is a many sorted subset of the sorts of A.

We say that A inherits operations if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let o be an operation symbol of Σ and p be a finite sequence. Sup-
pose p ∈ Args(o,FreeΣ(X)) and (Den(o,FreeΣ(X)))(p) ∈ (the sorts of
A)(the result sort of o). Then p ∈ Args(o,A) and (Den(o,A))(p) = (Den(o,
FreeΣ(X)))(p).

We say that A is free in itself if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let f be a many sorted function from FreeGenerator(X) into the sorts
of A and G be a many sorted subset of the sorts of A. Suppose G =
FreeGenerator(X). Then there exists a many sorted function h from A

into A such that h is a homomorphism of A into A and f = h � G.

We now state two propositions:

(37) Let A, B be non-empty algebras over Σ. Suppose the algebra of A = the
algebra of B. Suppose A is including Σ-terms over X. Then B is including
Σ-terms over X.

(38) Let A, B be including Σ-terms over X non-empty algebras over Σ such
that the algebra of A = the algebra of B. Then

(i) if A has all variables, then B has all variables,
(ii) if A inherits operations, then B inherits operations, and
(iii) if A is free in itself, then B is free in itself.
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Let J be a non empty non void many sorted signature and let T be a non-
empty algebra over J . Observe that there exists a generator set of T which is
non-empty.

Let us consider Σ, X. Observe that FreeΣ(X) is free in itself, has all variables,
and inherits operations.

Let us consider Σ, X. Note that every including Σ-terms over X algebra
over Σ which has all variables is also non-empty and there exists an including
Σ-terms over X strict algebra over Σ which is free in itself, has all variables,
and inherits operations.

In the sequel A0 denotes an including Σ-terms over X non-empty algebra
over Σ, A1 denotes an including Σ-terms overX algebra over Σ with all variables,
A2 denotes an including Σ-terms over X algebra over Σ with all variables and
inheriting operations, and A denotes a free in itself including Σ-terms over X
algebra over Σ with all variables and inheriting operations.

Next we state three propositions:

(39) Every element of A0 is an element of FreeΣ(X) and for every sort symbol
s of Σ holds every element of A0 from s is an element of FreeΣ(X) from s.

(40) Let s be a sort symbol of Σ and x be an element of X(s). Then the root
tree of 〈〈x, s〉〉 is an element of A1 from s.

(41) For every operation symbol o of Σ holds Args(o,A1) ⊆ Args(o,FreeΣ(X)).

Let Σ be a set. Observe that there exists a many sorted set indexed by Σ
which is disjoint valued and non-empty.

Let Σ be a set and let T be a disjoint valued non-empty many sorted set
indexed by Σ. One can check that every many sorted subset of T is disjoint
valued.

Let us consider Σ, X. Observe that there exists an algebra over Σ which is
including Σ-terms over X and strict.

Let us consider Σ, X, A1. The canonical homomorphism of A1 yields a many
sorted function from FreeΣ(X) into A1 and is defined by the conditions (Def. 10).

(Def. 10)(i) The canonical homomorphism of A1 is a homomorphism of FreeΣ(X)
into A1, and

(ii) for every generator set G of FreeΣ(X) such that G = FreeGenerator(X)
holds idG = (the canonical homomorphism of A1) � G.

Let us consider Σ, X, A0. One can check that every element of A0 is function-
like and relation-like. Let s be a sort symbol of Σ. One can verify that every
element of A0 from s is function-like and relation-like.

Let us consider Σ, X, A0. One can verify that every element of A0 is deco-
rated tree-like. Let s be a sort symbol of Σ. Note that every element of A0 from
s is decorated tree-like.

Let us consider Σ, X. Note that every algebra over Σ which is including
Σ-terms over X is also disjoint valued.
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The following propositions are true:

(42) Every element of A0 is a term of Σ over X.

(43) Let τ be an element of A0 and s be a sort symbol of Σ. If τ ∈ (the sorts
of FreeΣ(X))(s), then τ ∈ (the sorts of A0)(s).

(44) For every element τ of A2 and for every element p of dom τ holds τ�p is
an element of A2.

(45) FreeGenerator(X) is a generator set of A2.

(46) Let T be a free in itself non-empty including Σ-terms over X algebra
over Σ, A be an image of T , and G be a generator set of T . Suppose
G = FreeGenerator(X). Let f be a many sorted function from G into the
sorts of A. Then there exists a many sorted function h from T into A such
that h is a homomorphism of T into A and f = h � G.

(47)(i) The canonical homomorphism of A2 is an epimorphism of FreeΣ(X)
onto A2, and

(ii) for every sort symbol s of Σ and for every element τ of A2 from s holds
(the canonical homomorphism of A2)(s)(τ) = τ.

(48) (The canonical homomorphism of A2) ◦ (the canonical homomorphism
of A2) = the canonical homomorphism of A2.

(49) A is FreeΣ(X)-image.

5. Satisfiability

The following four propositions are true:

(50) Let A be a non-empty algebra over Σ, s be a sort symbol of Σ, and τ be
an element of TΣ(N) from s. Then A |= τ=τ.

(51) Let A be a non-empty algebra over Σ, s be a sort symbol of Σ, and τ1,
τ2 be elements of TΣ(N) from s. If A |= τ1=τ2, then A |= τ2=τ1.

(52) Let A be a non-empty algebra over Σ, s be a sort symbol of Σ, and τ1,
τ2, τ3 be elements of TΣ(N) from s. If A |= τ1= τ2 and A |= τ2=τ3, then
A |= τ1=τ3.

(53) Let A be a non-empty algebra over Σ, o be an operation symbol of Σ,
and a1, a2 be finite sequences. Suppose that

(i) a1 ∈ Args(o,TΣ(N)),
(ii) a2 ∈ Args(o,TΣ(N)), and
(iii) for every natural number i such that i ∈ dom Arity(o) and for every

sort symbol s of Σ such that s = Arity(o)(i) and for all elements τ1, τ2 of
TΣ(N) from s such that τ1 = a1(i) and τ2 = a2(i) holds A |= τ1=τ2.

Let τ1, τ2 be elements of TΣ(N) from the result sort of o. Suppose τ1 = 〈〈o,
the carrier of Σ〉〉-tree(a1) and τ2 = 〈〈o, the carrier of Σ〉〉-tree(a2). Then
A |= τ1=τ2.
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Let us consider Σ, let T be a set of equations of Σ, and let A be an algebra
over Σ. We say that A satisfies T if and only if:

(Def. 11) A |= T.

Let us consider Σ and let T be a set of equations of Σ. Observe that there
exists an algebra over Σ which is non-empty and trivial and satisfies T .

Let us consider Σ, let T be a set of equations of Σ, and let A be a non-empty
algebra over Σ satisfying T . One can verify that every non-empty algebra over
Σ which is A-image also satisfies T .

Let us consider Σ, let A be an algebra over Σ, let T be a set of equations of
Σ, and let G be a generator set of A. We say that G is T -free if and only if the
condition (Def. 12) is satisfied.

(Def. 12) Let B be a non-empty algebra over Σ satisfying T and f be a many
sorted function from G into the sorts of B. Then there exists a many
sorted function h from A into B such that h is a homomorphism of A into
B and h � G = f.

Let us consider Σ, let T be a set of equations of Σ, and let A be an algebra
over Σ. We say that A is T -free if and only if:

(Def. 13) There exists a generator set of A which is T -free.

Let us consider Σ and let A be an algebra over Σ. The functor
Equations(Σ,A) yields a set of equations of Σ and is defined as follows:

(Def. 14) For every sort symbol s of Σ holds (Equations(Σ,A))(s) = {e; e ranges
over elements of (the equations of Σ)(s): A |= e}.

We now state the proposition

(54) For every algebra A over Σ holds A |= Equations(Σ,A).

Let us consider Σ and let A be a non-empty algebra over Σ. One can verify
that every A-image algebra over Σ satisfies Equations(Σ,A) .

6. Term Correspondence

Now we present two schemes. The scheme TermDefEx deals with a non emp-
ty non void many sorted signature A, a non-empty many sorted set B indexed
by A, a binary functor F yielding a set, and a binary functor G yielding a set,
and states that:

There exists a many sorted set F indexed by A -Terms(B) such
that
(i) for every sort symbol s of A and for every element x of
B(s) holds F (the root tree of 〈〈x, s〉〉) = F(x, s), and
(ii) for every operation symbol o of A and for every argument
sequence p of Sym(o,B) holds F (Sym(o,B)-tree(p)) = G(o, F · p)

for all values of the parameters.
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The scheme TermDefUniq deals with a non empty non void many sorted
signature A, a non-empty many sorted set B indexed by A, a binary functor
F yielding a set, a binary functor G yielding a set, and many sorted sets C, D
indexed by A -Terms(B), and states that:

C = D
provided the following conditions are satisfied:
• For every sort symbol s of A and for every element x of B(s) holds
C(the root tree of 〈〈x, s〉〉) = F(x, s),

• For every operation symbol o of A and for every argument sequ-
ence p of Sym(o,B) holds C(Sym(o,B)-tree(p)) = G(o, C · p),

• For every sort symbol s of A and for every element x of B(s) holds
D(the root tree of 〈〈x, s〉〉) = F(x, s), and

• For every operation symbol o of A and for every argument sequ-
ence p of Sym(o,B) holds D(Sym(o,B)-tree(p)) = G(o,D · p).

Let us consider Σ, X, let w be a many sorted function from X into (the
carrier of Σ) 7−→ N, and let τ be a function. Let us assume that τ is an element
of FreeΣ(X). The functor #τ

w yields an element of TΣ(N) and is defined by the
condition (Def. 15).

(Def. 15) There exists a many sorted set F indexed by Σ -Terms(X) such that
(i) #τ

w = F (τ),
(ii) for every sort symbol s of Σ and for every element x of X(s) holds

F (the root tree of 〈〈x, s〉〉) = the root tree of 〈〈w(s)(x), s〉〉, and
(iii) for every operation symbol o of Σ and for every argument sequence p

of Sym(o,X) holds F (Sym(o,X)-tree(p)) = Sym(o, (the carrier of Σ) 7−→
N)-tree(F · p).

We now state the proposition

(55) Let w be a many sorted function from X into (the carrier of Σ) 7−→ N
and F be a many sorted set indexed by Σ -Terms(X). Suppose that

(i) for every sort symbol s of Σ and for every element x of X(s) holds
F (the root tree of 〈〈x, s〉〉) = the root tree of 〈〈w(s)(x), s〉〉, and

(ii) for every operation symbol o of Σ and for every argument sequence p
of Sym(o,X) holds F (Sym(o,X)-tree(p)) = Sym(o, (the carrier of Σ) 7−→
N)-tree(F · p).
Let τ be an element of FreeΣ(X). Then F (τ) = #τ

w.

Let us consider Σ, X, let G be a non-empty subset of FreeΣ(X), and let s
be a sort symbol of Σ. Observe that every element of G(s) is relation-like and
function-like.

Next we state several propositions:

(56) Let w be a many sorted function from X into (the carrier of Σ) 7−→ N.
Then there exists a many sorted function h from FreeΣ(X) into TΣ(N)
such that
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(i) h is a homomorphism of FreeΣ(X) into TΣ(N), and
(ii) for every sort symbol s of Σ and for every element τ of FreeΣ(X) from

s holds #τ
w = h(s)(τ).

(57) Let w be a many sorted function from X into (the carrier of Σ) 7−→
N, s be a sort symbol of Σ, and x be an element of X(s). Then

#
the root tree of 〈〈x, s〉〉
w = the root tree of 〈〈w(s)(x), s〉〉.

(58) Let w be a many sorted function from X into (the carrier of Σ) 7−→ N,
o be an operation symbol of Σ, p be an argument sequence of Sym(o,X),
and q be a finite sequence. Suppose dom q = dom p and for every natural
number i and for every element τ of FreeΣ(X) such that i ∈ dom p and
τ = p(i) holds q(i) = #τ

w. Then #Sym(o,X)-tree(p)
w = Sym(o, (the carrier of

Σ) 7−→ N)-tree(q).

(59) For every many sorted subset Y of X holds FreeΣ(Y ) is a subalgebra of
FreeΣ(X).

(60) Let w be a many sorted function from X into (the carrier of Σ) 7−→ N
and τ be a term of Σ over X. Then #τ

w is an element of FreeΣ(rngκw(κ))
from the sort of τ and #τ

w is an element of TΣ(N) from the sort of τ .

(61) Let w be a many sorted function from X into (the carrier of Σ) 7−→ N
and F be a many sorted set indexed by Σ -Terms(X). Suppose that

(i) for every sort symbol s of Σ and for every element x of X(s) holds
F (the root tree of 〈〈x, s〉〉) = the root tree of 〈〈w(s)(x), s〉〉, and

(ii) for every operation symbol o of Σ and for every argument sequence p
of Sym(o,X) holds F (Sym(o,X)-tree(p)) = Sym(o, (the carrier of Σ) 7−→
N)-tree(F · p).
Let o be an operation symbol of Σ and p be an argument sequen-
ce of Sym(o,X). Then F · p ∈ Args(o,FreeΣ(rngκw(κ))) and F · p ∈
Args(o,FreeΣ((the carrier of Σ) 7−→ N)).

(62) Let w be a many sorted function from (the carrier of Σ) 7−→ N into X.
Then there exists a many sorted function h from TΣ(N) into A such that

(i) h is a homomorphism of TΣ(N) into A, and
(ii) for every sort symbol s of Σ and for every natural number i holds

h(s)(the root tree of 〈〈i, s〉〉) = the root tree of 〈〈w(s)(i), s〉〉.
(63) Let w be a many sorted function from X into (the carrier of Σ) 7−→ N.

Then there exists a many sorted function h from FreeGenerator(X) into
the sorts of TΣ(N) such that for every sort symbol s of Σ and for every
element i of X(s) holds h(s)(the root tree of 〈〈i, s〉〉) = the root tree of
〈〈w(s)(i), s〉〉.
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7. Free Algebras

In the sequel X0 is a non-empty countable many sorted set indexed by Σ and
A0 is a free in itself including Σ-terms over X0 algebra over Σ with all variables
and inheriting operations.

The following propositions are true:

(64) Let h be a many sorted function from TΣ(N) into A0. Suppose h is a
homomorphism of TΣ(N) into A0. Let w be a many sorted function from
X0 into (the carrier of Σ) 7−→ N. Suppose w is “1-1”. Then there exists
a non-empty many sorted subset Y of (the carrier of Σ) 7−→ N and there
exists a subset B of TΣ(N) and there exists a many sorted function w1

from FreeΣ(Y ) into A0 and there exists a many sorted function g from A0

into A0 such that Y = rngκw(κ) and B = the sorts of FreeΣ(Y ) and
FreeGenerator(rngκw(κ)) ⊆ B and w1 is a homomorphism of FreeΣ(Y )
into A0 and g is a homomorphism of A0 into A0 and h � B = g ◦ w1 and
for every sort symbol s of Σ and for every natural number i such that
i ∈ Y (s) there exists an element x of X0(s) such that w(s)(x) = i and
w1(s)(the root tree of 〈〈i, s〉〉) = the root tree of 〈〈x, s〉〉.

(65) Let h be a many sorted function from FreeΣ(X0) into A0. Suppose h is
a homomorphism of FreeΣ(X0) into A0. Then there exists a many sorted
function g from A0 into A0 such that g is a homomorphism of A0 into A0

and h = g ◦ the canonical homomorphism of A0.

(66) Let o be an operation symbol of Σ, x be an element of Args(o,A0), and
x0 be an element of Args(o,FreeΣ(X0)). If x0 = x, then (the canonical
homomorphism of A0)#x0 = x.

(67) Let o be an operation symbol of Σ and x be an element of Args(o,A0).
Then (Den(o,A0))(x) = (the canonical homomorphism of A0)(the result
sort of o)((Den(o,FreeΣ(X0)))(x)).

(68) Let h be a many sorted function from FreeΣ(X0) into A0. Suppose h is a
homomorphism of FreeΣ(X0) into A0. Let o be an operation symbol of Σ
and x be an element of Args(o,A0). Then h(the result sort of o)((Den(o,
A0))(x)) = h(the result sort of o)((Den(o,FreeΣ(X0)))(x)).

(69) Let h be a many sorted function from FreeΣ(X0) into A0. Suppose h
is a homomorphism of FreeΣ(X0) into A0. Let o be an operation sym-
bol of Σ and x be an element of Args(o,FreeΣ(X0)). Then h(the re-
sult sort of o)((Den(o,FreeΣ(X0)))(x)) = h(the result sort of o)((Den(o,
FreeΣ(X0)))((the canonical homomorphism of A0)#x)).

(70) Let X0, Y0 be non-empty countable many sorted sets indexed by Σ, A

be an including Σ-terms over X0 algebra over Σ with all variables and
inheriting operations, and h be a many sorted function from FreeΣ(Y0)
into A. Suppose h is a homomorphism of FreeΣ(Y0) into A. Then there
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exists a many sorted function g from FreeΣ(Y0) into FreeΣ(X0) such that
(i) g is a homomorphism of FreeΣ(Y0) into FreeΣ(X0),

(ii) h = (the canonical homomorphism of A) ◦ g, and
(iii) for every generator set G of FreeΣ(Y0) such that G = FreeGenerator(Y0)

holds g � G = h � G.

(71) Let w be a many sorted function from X0 into (the carrier of Σ) 7−→ N,
s be a sort symbol of Σ, τ be an element of FreeΣ(X0) from s, and
τ1, τ2 be elements of TΣ(N) from s. Suppose τ1 = #τ

w and τ2 =
#(the canonical homomorphism of A0)(s)(τ)
w . Then A0 |= τ1=τ2.

(72) Let w be a many sorted function from X0 into (the carrier of Σ) 7−→ N, o
be an operation symbol of Σ, p be an element of Args(o,FreeΣ(X0)), and
q be an element of Args(o,A0). Suppose (the canonical homomorphism
of A0)#p = q. Let τ1, τ2 be terms of Σ over X0. Suppose τ1 = (Den(o,
FreeΣ(X0)))(p) and τ2 = (Den(o,A0))(q). Let τ3, τ4 be elements of TΣ(N)
from the result sort of o. If τ3 = #τ1

w and τ4 = #τ2
w , then A0 |= τ3=τ4.

(73) Let w be a many sorted function from X0 into (the carrier of Σ) 7−→ N.
Suppose w is “1-1”. Then there exists a many sorted function g from
TΣ(N) into FreeΣ(X0) such that

(i) g is a homomorphism of TΣ(N) into FreeΣ(X0), and
(ii) for every sort symbol s of Σ and for every element τ of FreeΣ(X0) from

s holds g(s)(#τ
w) = τ.

(74) Let B be a non-empty algebra over Σ and h be a many sorted function
from FreeΣ(X0) into B. Suppose h is a homomorphism of FreeΣ(X0) into
B. Let w be a many sorted function from X0 into (the carrier of Σ) 7−→ N.
Suppose w is “1-1”. Let s be a sort symbol of Σ, τ1, τ2 be elements of
FreeΣ(X0) from s, and τ3, τ4 be elements of TΣ(N) from s. If τ3 = #τ1

w

and τ4 = #τ2
w , then if B |= τ3=τ4, then h(s)(τ1) = h(s)(τ2).

(75) For every generator set G of A0 such that G = FreeGenerator(X0) holds
G is Equations(Σ,A0)-free.

(76) A0 is Equations(Σ,A0)-free.

8. Algebras of Normal Forms

Let I be a set, let X, Y be many sorted sets indexed by I, let R be a many
sorted relation between X and Y , and let x be a set. Then R(x) is a relation
between X(x) and Y (x).

Let I be a set, let X be a many sorted set indexed by I, and let R be a many
sorted relation indexed by X. We say that R is terminating if and only if:

(Def. 16) For every set x such that x ∈ I holds R(x) is strongly-normalizing.

We say that R has unique normal form property if and only if:
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(Def. 17) For every set x such that x ∈ I holds R(x) has unique normal form
property.

Let us mention that every empty set is strongly-normalizing and has unique
normal form property.

One can prove the following proposition

(77) Let I be a set and A be a many sorted set indexed by I. Then there
exists a many sorted relation R indexed by A such that R = I 7−→ ∅ and
R is terminating.

Let I be a set and let X be a many sorted set indexed by I. One can
verify that every many sorted relation indexed by X which is empty yielding is
also terminating and has unique normal form property and there exists a many
sorted relation indexed by X which is empty yielding.

Let I be a set, letX be a many sorted set indexed by I, let R be a terminating
many sorted relation indexed by X, and let i be a set. Note that R(i) is strongly-
normalizing as a binary relation.

Let R be a many sorted relation indexed by X with unique normal form
property, and let i be a set. Note that R(i) has unique normal form property as
a binary relation.

Let us consider Σ, X and let R be a many sorted relation indexed by
FreeΣ(X). We say that R has NF-variables if and only if:

(Def. 18) For every sort symbol s of Σ holds every element of FreeGenerator(X)(s)
is a normal form w.r.t. R(s).

We now state the proposition

(78) x is a normal form w.r.t. ∅.
Let us consider Σ, X. Note that every many sorted relation indexed by

FreeΣ(X) which is empty yielding is also invariant and stable and has NF-
variables.

Let us consider Σ, X. Observe that there exists an invariant stable many
sorted relation indexed by FreeΣ(X) which is terminating and has NF-variables
and unique normal form property.

Now we present two schemes. The scheme A deals with sets A, B, a binary
relation C, and a unary predicate P, and states that:

P[B]
provided the parameters satisfy the following conditions:
• P[A],
• C reduces A to B, and
• For all sets y, z such that C reduces A to y and 〈〈y, z〉〉 ∈ C and
P[y] holds P[z].

The scheme B deals with setsA, B, a binary relation C, and a unary predicate
P, and states that:

P[A]
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provided the parameters meet the following requirements:
• P[B],
• C reduces A to B, and
• For all sets y, z such that 〈〈y, z〉〉 ∈ C and P[z] holds P[y].

Let X be a non empty set, let R be a strongly-normalizing binary relation
on X with unique normal form property, and let x be an element of X. Then
nfR(x) is an element of X.

Let I be a non empty set, let X be a non-empty many sorted set indexed by
I, and let R be a terminating many sorted relation indexed by X with unique
normal form property. The functor NForms(R) yields a non-empty many sorted
subset of X and is defined as follows:

(Def. 19) For every element i of I holds (NForms(R))(i) = {nfR(i)(x) : x ranges
over elements of X(i)}.

The scheme MSFLambda deals with a non empty set A, a unary functor F
yielding a non empty set, and a binary functor G yielding a set, and states that:

There exists a many sorted function f indexed by A such that for
every element o of A holds

dom f(o) = F(o) and for every element x of F(o) holds
f(o)(x) = G(o, x)

for all values of the parameters.
Let us consider Σ, X and let R be a terminating invariant stable many sorted

relation indexed by FreeΣ(X) with unique normal form property. The algebra
of normal forms of R yields a non-empty strict algebra over Σ and is defined by
the conditions (Def. 20).

(Def. 20)(i) The sorts of the algebra of normal forms of R = NForms(R), and
(ii) for every operation symbol o of Σ and for every element a of Args(o, the

algebra of normal forms of R) holds (Den(o, the algebra of normal forms
of R))(a) = nfR(the result sort of o)((Den(o,FreeΣ(X)))(a)).

We now state several propositions:

(79) Let R be a terminating invariant stable many sorted relation indexed by
FreeΣ(X) with unique normal form property and a be a sort symbol of Σ.
If x ∈ (NForms(R))(a), then nfR(a)(x) = x.

(80) Let R be a terminating invariant stable many sorted relation indexed
by FreeΣ(X) with unique normal form property and g be a many sorted
function from FreeΣ(X) into FreeΣ(X). Suppose g is a homomorphism of
FreeΣ(X) into FreeΣ(X). Let s be a sort symbol of Σ and a be an element
of FreeΣ(X) from s. Then nfR(s)(g(s)(nfR(s)(a))) = nfR(s)(g(s)(a)).

(81) For every finite sequence p holds p�0 = p and for every natural number
i such that i ≥ len p holds p�i = ∅.

(82) For all finite sequences p, q holds pa 〈x〉a q+· (len p+ 1, y) = pa 〈y〉a q.
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(83) For every finite sequence p and for every natural number i such that
i+ 1 ≤ len p holds p�(i+ 1) = (p�i) a 〈p(i+ 1)〉.

(84) For every finite sequence p and for every natural number i such that
i+ 1 ≤ len p holds p�i = 〈p(i+ 1)〉 a (p�i+1).

(85) Let R be a terminating invariant stable many sorted relation indexed
by FreeΣ(X) with unique normal form property and g be a many sorted
function from FreeΣ(X) into FreeΣ(X). Suppose g is a homomorphism of
FreeΣ(X) into FreeΣ(X). Let h be a many sorted function from the algebra
of normal forms of R into the algebra of normal forms of R. Suppose that
for every sort symbol s of Σ and for every element x of the algebra of
normal forms of R from s holds h(s)(x) = nfR(s)(g(s)(x)). Let s be a sort
symbol of Σ and o be an operation symbol of Σ. Suppose s = the result
sort of o. Let x be an element of Args(o, the algebra of normal forms
of R) and y be an element of Args(o,FreeΣ(X)). Suppose x = y. Then
nfR(s)((Den(o, the algebra of normal forms of R))(h#x)) = nfR(s)((Den(o,
FreeΣ(X)))(g#y)).

Let us consider Σ, X and let R be a terminating invariant stable many sorted
relation indexed by FreeΣ(X) with unique normal form property. One can verify
that the algebra of normal forms of R is including Σ-terms over X.

Let us consider Σ, X and let R be a terminating invariant stable many
sorted relation indexed by FreeΣ(X) with NF-variables and unique normal form
property. Note that the algebra of normal forms of R is free in itself, has all
variables, and inherits operations.
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