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In this paper R, R1, R2 denote functions from N × N into R, r1, r2 denote
convergent sequences of real numbers, n, m, N , M denote natural numbers, and
e, r denote real numbers.

Let us consider R. We say that R is p-convergent if and only if

(Def. 1) There exists a real number p such that for every real number e such
that 0 < e there exists a natural number N such that for every natural
numbers n, m such that n ­ N and m ­ N holds |R(n,m)− p| < e.

Assume R is p-convergent. The functor P-limR yielding a real number is
defined by

(Def. 2) Let us consider a real number e. Suppose 0 < e. Then there exists a
natural number N such that for every natural numbers n, m such that
n ­ N and m ­ N holds |R(n,m)− it | < e.
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We say that R is convergent in the first coordinate if and only if

(Def. 3) Let us consider an element m of N. Then curry′(R,m) is convergent.

We say that R is convergent in the second coordinate if and only if

(Def. 4) Let us consider an element n of N. Then curry(R,n) is convergent.

The lim in the first coordinate of R yielding a function from N into R is
defined by

(Def. 5) Let us consider an element m of N. Then it(m) = lim curry′(R,m).

The lim in the second coordinate of R yielding a function from N into R is
defined by

(Def. 6) Let us consider an element n of N. Then it(n) = lim curry(R,n).

Assume the lim in the first coordinate of R is convergent. The first coordinate
major iterated lim of R yielding a real number is defined by

(Def. 7) Let us consider a real number e. Suppose 0 < e. Then there exists
a natural number M such that for every natural number m such that
m ­M holds |(the lim in the first coordinate of R)(m)− it | < e.

Assume the lim in the second coordinate of R is convergent. The second
coordinate major iterated lim of R yielding a real number is defined by

(Def. 8) Let us consider a real number e. Suppose 0 < e. Then there exists a
natural number N such that for every natural number n such that n ­ N
holds |(the lim in the second coordinate of R)(n)− it | < e.

Let R be a function from N×N into R. We say that R is uniformly convergent
in the first coordinate if and only if

(Def. 9) (i) R is convergent in the first coordinate, and

(ii) for every real number e such that e > 0 there exists a natural number
M such that for every natural number m such that m ­M for every
natural number n, |R(n,m) − (the lim in the first coordinate of
R)(n)| < e.

We say that R is uniformly convergent in the second coordinate if and only if

(Def. 10) (i) R is convergent in the second coordinate, and

(ii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n such that n ­ N for every
natural number m, |R(n,m) − (the lim in the second coordinate of
R)(m)| < e.

Let us consider R. We say that R is non-decreasing if and only if

(Def. 11) Let us consider natural numbers n1,m1, n2,m2. If n1 ­ n2 andm1 ­ m2,
then R(n1,m1) ­ R(n2,m2).

We say that R is non-increasing if and only if

(Def. 12) Let us consider natural numbers n1,m1, n2,m2. If n1 ­ n2 andm1 ­ m2,
then R(n1,m1) ¬ R(n2,m2).
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Now we state the proposition:

(1) Let us consider real numbers a, b, c. If a ¬ b ¬ c, then |b| ¬ |a| or
|b| ¬ |c|.

Note that every function from N × N into R which is non-decreasing and
p-convergent is also lower bounded and upper bounded and every function from
N × N into R which is non-increasing and p-convergent is also lower bounded
and upper bounded.

Let r be an element of R. Let us note that N × N 7−→ r is p-convergent
convergent in the first coordinate and convergent in the second coordinate as a
function from N× N into R.

Now we state the proposition:

(2) Let us consider an element r of R. Then P-lim(N×N 7−→ r) = r. Proof:
Set R = N × N 7−→ r. For every natural numbers n, m, R(n,m) = r by
[15, (70)]. �

Note that there exists a function from N× N into R which is p-convergent,
convergent in the first coordinate, and convergent in the second coordinate.

In this paper P1 denotes a p-convergent function from N× N into R.
Let P4 be a p-convergent convergent in the second coordinate function from

N× N into R. Note that the lim in the second coordinate of P4 is convergent.
Now we state the proposition:

(3) Suppose R is p-convergent and convergent in the second coordinate.
Then P-limR = the second coordinate major iterated lim of R. Proof:
Consider z being a real number such that for every e such that 0 < e there
exists a natural number N1 such that for every n and m such that n ­ N1

and m ­ N1 holds |R(n,m) − z| < e. For every e such that 0 < e there
exists N such that for every n such that n ­ N holds |(the lim in the
second coordinate of R)(n) − z| < e by [4, (63), (60)]. For every e such
that 0 < e there exists N such that for every n such that n ­ N holds
|(the lim in the second coordinate of R)(n) − P-limR| < e by [4, (60),
(63)]. �

Let P3 be a p-convergent convergent in the first coordinate function from
N×N into R. Let us note that the lim in the first coordinate of P3 is convergent.

Now we state the proposition:

(4) Suppose R is p-convergent and convergent in the first coordinate. Then
P-limR = the first coordinate major iterated lim of R. Proof: Consider
z being a real number such that for every e such that 0 < e there exists
a natural number N1 such that for every n and m such that n ­ N1 and
m ­ N1 holds |R(n,m)− z| < e. For every e such that 0 < e there exists
N such that for every n such that n ­ N holds |(the lim in the first
coordinate of R)(n)− z| < e by [4, (63), (60)]. For every e such that 0 < e
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there exists N such that for every n such that n ­ N holds |(the lim in
the first coordinate of R)(n)− P-limR| < e by [4, (60), (63)]. �

One can verify that every function from N×N into R which is non-decreasing
and upper bounded is also p-convergent convergent in the first coordinate and
convergent in the second coordinate and every function from N×N into R which
is non-increasing and lower bounded is also p-convergent convergent in the first
coordinate and convergent in the second coordinate.

Now we state the propositions:

(5) Suppose R is uniformly convergent in the first coordinate and the lim in
the first coordinate of R is convergent. Then

(i) R is p-convergent, and

(ii) P-limR = the first coordinate major iterated lim of R.

(6) Suppose R is uniformly convergent in the second coordinate and the lim
in the second coordinate of R is convergent. Then

(i) R is p-convergent, and

(ii) P-limR = the second coordinate major iterated lim of R.

Let us consider R. We say that R is Cauchy if and only if

(Def. 13) Let us consider a real number e. Suppose e > 0. Then there exists a
natural number N such that for every natural numbers n1, n2, m1, m2 such
that N ¬ n1 ¬ n2 and N ¬ m1 ¬ m2 holds |R(n2,m2)−R(n1,m1)| < e.

Now we state the propositions:

(7) R is p-convergent if and only if R is Cauchy. Proof: Define R(element
of N) = R($1, $1). Consider s1 being a function from N into R such that for
every element n of N, s1(n) = R(n) from [7, Sch. 4]. Reconsider z = lim s1

as a complex number. For every e such that 0 < e there exists N such that
for every n and m such that n ­ N and m ­ N holds |R(n,m) − z| < e

by [4, (63)]. �

(8) Let us consider a function R from N× N into R. Suppose

(i) R is non-decreasing, or

(ii) R is non-increasing.

Then R is p-convergent if and only if R is lower bounded and upper
bounded.

Let X, Y be non empty sets, H be a binary operation on Y , and f , g be
functions from X into Y . Observe that the functor Hf,g yields a function from
X ×X into Y . Now we state the propositions:

(9) (i) ·Rr1,r2 is convergent in the first coordinate and convergent in the
second coordinate, and

(ii) the lim in the first coordinate of ·Rr1,r2 is convergent, and
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(iii) the first coordinate major iterated lim of ·R r1,r2 = lim r1 · lim r2, and

(iv) the lim in the second coordinate of ·Rr1,r2 is convergent, and

(v) the second coordinate major iterated lim of ·R r1,r2 = lim r1 · lim r2,
and

(vi) ·Rr1,r2 is p-convergent, and

(vii) P-lim ·Rr1,r2 = lim r1 · lim r2.
Proof: Set R = ·Rr1,r2 . For every n and m, R(n,m) = r1(n) · r2(m)
by [5, (77)]. For every element m of N and for every real number e such
that 0 < e there exists N such that for every n such that n ­ N holds
|(curry′(R,m))(n) − lim r1 · r2(m)| < e by [4, (47), (65), (44)]. For every
element m of N, curry′(R,m) is convergent. For every element m of N and
for every real number e such that 0 < e there exists N such that for every
n such that n ­ N holds |(curry(R,m))(n) − r1(m) · lim r2| < e by [4,
(47), (65), (44)]. For every element m of N, curry(R,m) is convergent. For
every e such that 0 < e there exists N such that for every n such that
n ­ N holds |(the lim in the first coordinate of R)(n)− lim r1 · lim r2| < e

by [4, (46), (65)]. For every e such that 0 < e there exists N such that
for every n such that n ­ N holds |(the lim in the second coordinate of
R)(n) − lim r1 · lim r2| < e by [4, (46), (65)]. For every e such that 0 < e

there exists N such that for every n and m such that n ­ N and m ­ N
holds |R(n,m)− lim r1 · lim r2| < e by [12, (3)], [4, (63), (46), (65)]. �

(10) (i) +Rr1,r2 is convergent in the first coordinate and convergent in the
second coordinate, and

(ii) the lim in the first coordinate of +Rr1,r2 is convergent, and

(iii) the first coordinate major iterated lim of +R r1,r2 = lim r1 + lim r2,
and

(iv) the lim in the second coordinate of +Rr1,r2 is convergent, and

(v) the second coordinate major iterated lim of +R r1,r2 = lim r1 +lim r2,
and

(vi) +Rr1,r2 is p-convergent, and

(vii) P-lim +Rr1,r2 = lim r1 + lim r2.
Proof: Set R = +Rr1,r2 . For every n and m, R(n,m) = r1(n) + r2(m) by
[5, (77)]. For every element m of N and for every real number e such that
0 < e there exists a natural number N such that for every natural number
n such that n ­ N holds |(curry′(R,m))(n) − (lim r1 + r2(m))| < e. For
every element m of N, curry′(R,m) is convergent. For every element m of
N and for every real number e such that 0 < e there exists N such that for
every n such that n ­ N holds |(curry(R,m))(n)− (r1(m) + lim r2)| < e.
For every element m of N, curry(R,m) is convergent. For every e such
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that 0 < e there exists N such that for every n such that n ­ N holds
|(the lim in the first coordinate of R)(n)− (lim r1 + lim r2)| < e. For every
e such that 0 < e there exists N such that for every n such that n ­ N

holds |(the lim in the second coordinate of R)(n)− (lim r1 + lim r2)| < e.
For every e such that 0 < e there exists N such that for every n and m

such that n ­ N and m ­ N holds |R(n,m)− (lim r1 + lim r2)| < e by [4,
(56)]. �

(11) Suppose R1 is p-convergent and R2 is p-convergent. Then

(i) R1 +R2 is p-convergent, and

(ii) P-lim(R1 +R2) = P-limR1 + P-limR2.

(12) Suppose R1 is p-convergent and R2 is p-convergent. Then

(i) R1 −R2 is p-convergent, and

(ii) P-lim(R1 −R2) = P-limR1 − P-limR2.

(13) Let us consider a function R from N × N into R and a real number r.
Suppose R is p-convergent. Then

(i) r ·R is p-convergent, and

(ii) P-lim(r ·R) = r · P-limR.

(14) If R is p-convergent and for every natural numbers n, m, R(n,m) ­ r,
then P-limR ­ r.

(15) Suppose R1 is p-convergent and R2 is p-convergent and for every natural
numbers n, m, R1(n,m) ¬ R2(n,m). Then P-limR1 ¬ P-limR2. The
theorem is a consequence of (12) and (14).

(16) Suppose R1 is p-convergent and R2 is p-convergent and P-limR1 =
P-limR2 and for every natural numbers n, m, R1(n,m) ¬ R(n,m) ¬
R2(n,m). Then

(i) R is p-convergent, and

(ii) P-limR = P-limR1.

Proof: For every e such that 0 < e there exists N such that for every n
and m such that n ­ N and m ­ N holds |R(n,m) − P-limR1| < e by
[14, (4), (5), (1)]. �

Let X be a non empty set and s1 be a function from N × N into X. A
subsequence of s1 is a function from N× N into X and is defined by

(Def. 14) There exist increasing sequences N , M of N such that for every natural
numbers n, m, it(n,m) = s1(N(n),M(m)).

Let us consider P1. Observe that every subsequence of P1 is p-convergent.
Now we state the proposition:

(17) Let us consider a subsequence P2 of P1. Then P-limP2 = P-limP1.
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Let R be a convergent in the first coordinate function from N × N into R.
Note that every subsequence of R is convergent in the first coordinate.

Now we state the proposition:

(18) Let us consider a subsequence R1 of R. Suppose

(i) R is convergent in the first coordinate, and

(ii) the lim in the first coordinate of R is convergent.

Then

(iii) the lim in the first coordinate of R1 is convergent, and

(iv) the first coordinate major iterated lim of R1 = the first coordinate
major iterated lim of R.

Proof: Consider I1, I2 being increasing sequences of N such that for every
natural numbers n, m, R1(n,m) = R(I1(n), I2(m)). For every e such that
0 < e there exists N such that for every m such that m ­ N holds
|(the lim in the first coordinate of R1)(m) − the first coordinate major
iterated lim of R| < e. �

Let R be a convergent in the second coordinate function from N × N into
R. One can check that every subsequence of R is convergent in the second
coordinate.

Now we state the proposition:

(19) Let us consider a subsequence R1 of R. Suppose

(i) R is convergent in the second coordinate, and

(ii) the lim in the second coordinate of R is convergent.

Then

(iii) the lim in the second coordinate of R1 is convergent, and

(iv) the second coordinate major iterated lim ofR1 = the second coordinate
major iterated lim of R.

Proof: Consider I1, I2 being increasing sequences of N such that for every
n and m, R1(n,m) = R(I1(n), I2(m)). For every e such that 0 < e there
exists N such that for every m such that m ­ N holds |(the lim in the
second coordinate of R1)(m)− the second coordinate major iterated lim
of R| < e. �
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1. Preliminaries

Let us consider natural numbers k, m. Now we state the propositions:

(1) If m 6= 0 and (k+ 1) mod m 6= 0, then (k+ 1) mod m = (k mod m) + 1.

(2) If m 6= 0 and (k + 1) mod m 6= 0, then (k + 1) divm = k divm.

(3) If m 6= 0 and (k + 1) mod m = 0, then m− 1 = k mod m.

(4) If m 6= 0 and (k + 1) mod m = 0, then (k + 1) divm = (k divm) + 1.

(5) (k −m) mod m = k mod m.

(6) If m 6= 0, then (k −m) divm = (k divm)− 1.

Let m, n be natural numbers, X, D be non empty sets, F be a function
from X into (Dn)m, and x be an element of X. Let us observe that the functor
F (x) yields an element of (Dn)m. Let m be a natural number, X, Y , D be non
empty sets, and F be a function from X × Y into Dm. Let y be an element of
Y . Note that the functor F (x, y) yields an element of Dm. Now we state the
propositions:

(7) Let us consider natural numbers m, n, a non empty set D, and elements
F1, F2 of (Dn)m. Suppose natural numbers i, j. If i ∈ Segm and j ∈ Seg n,
then F1(i)(j) = F2(i)(j). Then F1 = F2.

(8) Let us consider a non empty set D and elements x1, x2, x3, x4 of D.
Then 〈x1, x2, x3, x4〉 is an element of D4.

(9) Let us consider a non empty set D and elements x1, x2, x3, x4, x5 of D.
Then 〈x1, x2, x3, x4, x5〉 is an element of D5.

(10) Let us consider a non empty set D and elements x1, x2, x3, x4, x5, x6,
x7, x8 of D. Then 〈x1, x2, x3, x4〉a 〈x5, x6, x7, x8〉 is an element of D8. The
theorem is a consequence of (8).

(11) Let us consider a non empty set D and elements x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10 of D. Then 〈x1, x2, x3, x4, x5〉 a 〈x6, x7, x8, x9, x10〉 is an
element of D10. The theorem is a consequence of (9).

(12) Let us consider a non empty set D and elements x1, x2, x3, x4, x5, x6,
x7, x8 of D4. Then 〈x1

ax5, x2
ax6, x3

ax7, x4
ax8〉 is an element of (D8)4.

The theorem is a consequence of (8).

(13) Let us consider a non empty set D, an element x of (D4)4, and an element
k of N. Suppose k ∈ Seg 4. Then there exist elements x1, x2, x3, x4 of D
such that

(i) x1 = x(k)(1), and

(ii) x2 = x(k)(2), and

(iii) x3 = x(k)(3), and

(iv) x4 = x(k)(4).
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(14) Let us consider non empty sets X, Y , a function f from X into Y , and
a function g from Y into X. Suppose

(i) for every element x of X, g(f(x)) = x, and

(ii) for every element y of Y , f(g(y)) = y.

Then

(iii) f is one-to-one, and

(iv) f is onto, and

(v) g is one-to-one, and

(vi) g is onto, and

(vii) g = f−1, and

(viii) f = g−1.

2. State Array

The array of AES-State yielding a function from Boolean128 into ((Boolean8)4)4

is defined by

(Def. 1) Let us consider an element i1 of Boolean128 and natural numbers i, j.
Suppose i, j ∈ Seg 4. Then it(i1)(i)(j) = mid(i1, (1 + (i −′ 1) · 8) + (j −′
1) · 32, ((1 + (i−′ 1) · 8) + (j −′ 1) · 32) + 7).

Now we state the propositions:

(15) Let us consider a natural number k. Suppose 1 ¬ k ¬ 128. Then there
exist natural numbers i, j such that

(i) i, j ∈ Seg 4, and

(ii) (1 + (i−′ 1) ·8) + (j−′ 1) ·32 ¬ k ¬ ((1 + (i−′ 1) ·8) + (j−′ 1) ·32) + 7.

(16) Let us consider natural numbers i, j, i0, j0. Suppose

(i) i, j, i0, j0 ∈ Seg 4, and

(ii) it is not true that i = i0 and j = j0.

Then {k, where k is a natural number : (1 + (i −′ 1) · 8) + (j −′ 1) · 32 ¬
k ¬ (8 + (i −′ 1) · 8) + (j −′ 1) · 32} ∩ {k, where k is a natural number :
(1 + (i0−′ 1) · 8) + (j0−′ 1) · 32 ¬ k ¬ (8 + (i0−′ 1) · 8) + (j0−′ 1) · 32} = ∅.

(17) Let us consider natural numbers k, i, j, i0, j0. Suppose

(i) 1 ¬ k ¬ 128, and

(ii) i, j, i0, j0 ∈ Seg 4, and

(iii) (1 + (i−′ 1) ·8) + (j−′ 1) ·32 ¬ k ¬ ((1 + (i−′ 1) ·8) + (j−′ 1) ·32) + 7,
and
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(iv) (1+(i0−′1)·8)+(j0−′1)·32 ¬ k ¬ ((1+(i0−′1)·8)+(j0−′1)·32)+7.

Then

(v) i = i0, and

(vi) j = j0.

The theorem is a consequence of (16).

(18) The array of AES-State is one-to-one. The theorem is a consequence of
(15). Proof: For every elements x1, x2 such that x1, x2 ∈ Boolean128

and (the array of AES-State)(x1) = (the array of AES-State)(x2) holds
x1 = x2 by [15, (3)], [2, (11)], [4, (1)]. �

(19) The array of AES-State is onto. The theorem is a consequence of (15)
and (17). Proof: For every element y such that y ∈ ((Boolean8)4)4 there
exists an element x such that x ∈ Boolean128 and y = (the array of
AES-State)(x) by [4, (1)], [7, (3)], [15, (3)]. �

Let us note that the array of AES-State is bijective.
Now we state the proposition:

(20) Let us consider an element c of ((Boolean8)4)4. Then (the array of
AES-State)((the array of AES-State)−1(c)) = c.

3. SubBytes

In this paper S denotes a permutation of Boolean8.
Let us consider S. The functor SubBytes(S) yielding a function

from ((Boolean8)4)4 into ((Boolean8)4)4 is defined by

(Def. 2) Let us consider an element i1 of ((Boolean8)4)4 and natural numbers i,
j. Suppose i, j ∈ Seg 4. Then there exists an element i2 of Boolean8 such
that

(i) i2 = i1(i)(j), and

(ii) it(i1)(i)(j) = S(i2).

The functor InvSubBytes(S) yielding a function from ((Boolean8)4)4 into
((Boolean8)4)4 is defined by

(Def. 3) Let us consider an element i1 of ((Boolean8)4)4 and natural numbers i,
j. Suppose i, j ∈ Seg 4. Then there exists an element i2 of Boolean8 such
that

(i) i2 = i1(i)(j), and

(ii) it(i1)(i)(j) = S−1(i2).

Now we state the propositions:
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(21) Let us consider an element i1 of ((Boolean8)4)4.
Then (InvSubBytes(S))((SubBytes(S))(i1)) = i1. The theorem is a con-
sequence of (7).

(22) Let us consider an element o of ((Boolean8)4)4.
Then (SubBytes(S))((InvSubBytes(S))(o)) = o. The theorem is a conse-
quence of (7).

(23) (i) SubBytes(S) is one-to-one, and

(ii) SubBytes(S) is onto, and

(iii) InvSubBytes(S) is one-to-one, and

(iv) InvSubBytes(S) is onto, and

(v) InvSubBytes(S) = (SubBytes(S))−1, and

(vi) SubBytes(S) = (InvSubBytes(S))−1.
The theorem is a consequence of (21), (22), and (14).

4. ShiftRows

The functor ShiftRows yielding a function
from ((Boolean8)4)4 into ((Boolean8)4)4 is defined by

(Def. 4) Let us consider an element i1 of ((Boolean8)4)4 and a natural number
i. Suppose i ∈ Seg 4. Then there exists an element xi of (Boolean8)4 such
that

(i) xi = i1(i), and

(ii) it(i1)(i) = Op-Shift(xi, 5− i).
The functor InvShiftRows yielding a function from ((Boolean8)4)4 into

((Boolean8)4)4 is defined by

(Def. 5) Let us consider an element i1 of ((Boolean8)4)4 and a natural number
i. Suppose i ∈ Seg 4. Then there exists an element xi of (Boolean8)4 such
that

(i) xi = i1(i), and

(ii) it(i1)(i) = Op-Shift(xi, i− 1).

Now we state the propositions:

(24) Let us consider an element i1 of ((Boolean8)4)4.
Then InvShiftRows(ShiftRows(i1)) = i1.

(25) Let us consider an element o of ((Boolean8)4)4.
Then ShiftRows(InvShiftRows(o)) = o.

(26) (i) ShiftRows is one-to-one, and

(ii) ShiftRows is onto, and
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(iii) InvShiftRows is one-to-one, and

(iv) InvShiftRows is onto, and

(v) InvShiftRows = ShiftRows−1, and

(vi) ShiftRows = InvShiftRows−1.

5. AddRoundKey

The functor AddRoundKey yielding a function
from ((Boolean8)4)4 × ((Boolean8)4)4 into ((Boolean8)4)4 is defined by

(Def. 6) Let us consider elements t1, k1 of ((Boolean8)4)4 and natural numbers i,
j. Suppose i, j ∈ Seg 4. Then there exist elements t2, k2 of Boolean8 such
that

(i) t2 = t1(i)(j), and

(ii) k2 = k1(i)(j), and

(iii) it(t1, k1)(i)(j) = Op-XOR(t2, k2).

6. Key Expansion

Let us consider S. Let x be an element of (Boolean8)4.
The functor SubWord(S, x) yielding an element of (Boolean8)4 is defined by

(Def. 7) Let us consider an element i of Seg 4. Then it(i) = S(x(i)).

The functor RotWord(x) yielding an element of (Boolean8)4 is defined by the
term

(Def. 8) Op-LeftShiftx.

Let n, m be non zero elements of N and s, t be elements of (Booleann)m.
The functor XOR-Word(s, t) yielding an element of (Booleann)m is defined by

(Def. 9) Let us consider an element i of Segm. Then it(i) = Op-XOR(s(i), t(i)).

The functor Rcon yielding an element of ((Boolean8)4)10 is defined by

(Def. 10) (i) it(1) = 〈〈0, 0, 0, 0〉a 〈0, 0, 0, 1〉, 〈0, 0, 0, 0〉a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(ii) it(2) = 〈〈0, 0, 0, 0〉 a 〈0, 0, 1, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(iii) it(3) = 〈〈0, 0, 0, 0〉 a 〈0, 1, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(iv) it(4) = 〈〈0, 0, 0, 0〉 a 〈1, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and
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(v) it(5) = 〈〈0, 0, 0, 1〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(vi) it(6) = 〈〈0, 0, 1, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(vii) it(7) = 〈〈0, 1, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(viii) it(8) = 〈〈1, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(ix) it(9) = 〈〈0, 0, 0, 1〉 a 〈1, 0, 1, 1〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉, and

(x) it(10) = 〈〈0, 0, 1, 1〉a 〈0, 1, 1, 0〉, 〈0, 0, 0, 0〉a 〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉a 〈0,
0, 0, 0〉, 〈0, 0, 0, 0〉 a 〈0, 0, 0, 0〉〉.

Let us consider S. Let m, i be natural numbers and w be an element of
(Boolean8)4. Assume m = 4 or m = 6 or m = 8 and i < 4 · (7 +m) and m ¬ i.
The functor KeyExpansionT(S,m, i, w) yielding an element of (Boolean8)4 is
defined by

(Def. 11) (i) there exists an element T3 of (Boolean8)4 such that T3 = Rcon( i
m)

and it = XOR-Word(SubWord(S, (RotWord(w))), T3), if i mod m = 0,

(ii) it = SubWord(S,w), if m = 8 and i mod 8 = 4,

(iii) it = w, otherwise.

Let m be a natural number. Assume m = 4 or m = 6 or m = 8. The functor
KeyExpansionW(S,m) yielding a function from ((Boolean8)4)m into
((Boolean8)4)4·(7+m) is defined by

(Def. 12) Let us consider an element K of ((Boolean8)4)m. Then

(i) for every element i of N such that i < m holds it(K)(i+1) = K(i+1),
and

(ii) for every element i of N such that m ¬ i < 4 · (7 + m) there exi-
sts an element P of (Boolean8)4 and there exists an element Q of
(Boolean8)4 such that P = it(K)((i−m) + 1) and Q = it(K)(i) and
it(K)(i+ 1) = XOR-Word(P, (KeyExpansionT(S,m, i,Q))).

The functor KeyExpansion(S,m) yielding a function from ((Boolean8)4)m

into (((Boolean8)4)4)7+m is defined by

(Def. 13) Let us consider an element K of ((Boolean8)4)m. Then there exists an
element w of ((Boolean8)4)4·(7+m) such that

(i) w = (KeyExpansionW(S,m))(K), and

(ii) for every natural number i such that i < 7 +m holds it(K)(i+ 1) =
〈w(4 · i+ 1), w(4 · i+ 2), w(4 · i+ 3), w(4 · i+ 4)〉.
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7. Encryption and Decryption

In the sequel M1 denotes a permutation of ((Boolean8)4)4 and M2 denotes
a permutation of ((Boolean8)4)4.

Let us consider S and M1. Let m be a natural number, t1 be an ele-
ment of ((Boolean8)4)4, and K be an element of ((Boolean8)4)m. The functor
AES-Cipher(S,M1, t1,K) yielding an element of ((Boolean8)4)4 is defined by

(Def. 14) There exists a finite sequence s1 of elements of ((Boolean8)4)4 such that

(i) len s1 = (7 +m)− 1, and

(ii) there exists an element K1 of ((Boolean8)4)4 such that
K1 = (KeyExpansion(S,m))(K)(1) and s1(1) = AddRoundKey(t1,K1),
and

(iii) for every natural number i such that 1 ¬ i < (7 +m)− 1 there exists
an element Ki of ((Boolean8)4)4 such that
Ki = (KeyExpansion(S,m))(K)(i+ 1) and
s1(i+1) = AddRoundKey(((M1·ShiftRows)·SubBytes(S))(s1(i)),Ki),
and

(iv) there exists an element Kn of ((Boolean8)4)4 such that
Kn = (KeyExpansion(S,m))(K)(7 +m) and
it = AddRoundKey((ShiftRows · SubBytes(S))(s1((7 +m)− 1)),Kn).

The functor AES-InvCipher(S,M1, t1,K) yielding an element
of ((Boolean8)4)4 is defined by

(Def. 15) There exists a finite sequence s1 of elements of ((Boolean8)4)4 such that

(i) len s1 = (7 +m)− 1, and

(ii) there exists an element K1 of ((Boolean8)4)4 such that
K1 = (Rev((KeyExpansion(S,m))(K)))(1) and s1(1) =
(InvSubBytes(S) · InvShiftRows)(AddRoundKey(t1,K1)), and

(iii) for every natural number i such that 1 ¬ i < (7 +m)− 1 there exists
an element Ki of ((Boolean8)4)4 such that
Ki = (Rev((KeyExpansion(S,m))(K)))(i+ 1) and s1(i+ 1) =
((InvSubBytes(S)·InvShiftRows)·M1

−1)(AddRoundKey(s1(i),Ki)),
and

(iv) there exists an element Kn of ((Boolean8)4)4 such that
Kn = (Rev((KeyExpansion(S,m))(K)))(7 +m) and it =
AddRoundKey(s1((7 +m)− 1),Kn).

Now we state the propositions:

(27) Let us consider an element i1 of ((Boolean8)4)4.
Then M1

−1(M1(i1)) = i1.

(28) Let us consider an element o of ((Boolean8)4)4. ThenM1(M1
−1(o)) = o.
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Let us consider a natural number m and an element t1 of ((Boolean8)4)4.
Now we state the propositions:

(29) (InvSubBytes(S) ·InvShiftRows)((ShiftRows · SubBytes(S))(t1)) = t1.

(30) ((InvSubBytes(S)·InvShiftRows)·M1
−1)(((M1 ·ShiftRows)·SubBytes

(S))(t1)) = t1.

Now we state the propositions:

(31) Let us consider a natural number m, an element t1 of ((Boolean8)4)4,
an element K of ((Boolean8)4)m, and elements dk, ek of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) dk = (Rev((KeyExpansion(S,m))(K)))(1), and

(iii) ek = (KeyExpansion(S,m))(K)(7 +m).

Then AddRoundKey(AddRoundKey(t1, ek), dk) = t1. The theorem is a con-
sequence of (7).

(32) Let us consider a natural number m, an element t1 of ((Boolean8)4)4,
an element k1 of ((Boolean8)4)m, and elements dk, ek of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) dk = (KeyExpansion(S,m))(k1)(1), and

(iii) ek = (Rev((KeyExpansion(S,m))(k1)))(7 +m).

Then AddRoundKey(AddRoundKey(t1, ek), dk) = t1. The theorem is a con-
sequence of (7).

(33) Let us consider a natural number m, elements t1, o1 of ((Boolean8)4)4,
an element K of ((Boolean8)4)m, and elements K1, Kn of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) K1 = (KeyExpansion(S,m))(K)(1), and

(iii) Kn = (Rev((KeyExpansion(S,m))(K)))(7 +m), and

(iv) o1 = AddRoundKey((ShiftRows · SubBytes(S))(t1),Kn).

Then (InvSubBytes(S) · InvShiftRows)(AddRoundKey(o1,K1)) = t1. The
theorem is a consequence of (32) and (29).

(34) Let us consider natural numbers m, i, an element t1 of ((Boolean8)4)4,
an element K of ((Boolean8)4)m, and elements ei, di of ((Boolean8)4)4.
Suppose

(i) m = 4 or m = 6 or m = 8, and

(ii) i ¬ (7 +m)− 1, and

(iii) ei = (KeyExpansion(S,m))(K)((7 +m)− i), and
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(iv) di = (Rev((KeyExpansion(S,m))(K)))(i+ 1).

Then AddRoundKey(AddRoundKey(t1, ei), di) = t1. The theorem is a conse-
quence of (7).

(35) Let us consider a natural number m, an element t1 of ((Boolean8)4)4,
and an element K of ((Boolean8)4)m. Suppose

(i) m = 4, or

(ii) m = 6, or

(iii) m = 8.

Then AES-InvCipher(S,M1, (AES-Cipher(S,M1, t1,K)),K) = t1. The
theorem is a consequence of (34) and (30). Proof: Reconsider N =
(7 + m) − 1 as a natural number. Consider es being a finite sequence
of elements of ((Boolean8)4)4 such that len es = N and there exists an ele-
ment K1 of ((Boolean8)4)4 such that K1 = (KeyExpansion(S,m))(K)(1)
and es(1) = AddRoundKey(t1,K1) and for every natural number i such
that 1 ¬ i < N there exists an element Ki of ((Boolean8)4)4 such that
Ki = (KeyExpansion(S,m))(K)(i+1) and es(i+1) = AddRoundKey(((M1·
ShiftRows) · SubBytes(S))(es(i)),Ki) and there exists an element Kn of
((Boolean8)4)4 such that Kn = (KeyExpansion(S,m))(K)(7 + m) and
AES-Cipher(S,M1, t1,K) = AddRoundKey((ShiftRows · SubBytes(S))(es
(N)),Kn). Consider ds being a finite sequence of elements of ((Boolean8)4)4

such that len ds = N and there exists an element K1 of ((Boolean8)4)4 such
thatK1 = (Rev((KeyExpansion(S,m))(K)))(1) and ds(1) = (InvSubBytes
(S)·InvShiftRows)(AddRoundKey(AES-Cipher(S,M1, t1,K),K1)) and for
every natural number i such that 1 ¬ i < N there exists an element Ki

of ((Boolean8)4)4 such that Ki = (Rev((KeyExpansion(S,m))(K)))(i+ 1)
and ds(i+1) = ((InvSubBytes(S)·InvShiftRows)·M1

−1)(AddRoundKey(ds
(i),Ki)) and there exists an element Kn of ((Boolean8)4)4 such that Kn =
(Rev((KeyExpansion(S,m))(K)))(7 +m) and AES-InvCipher(S,M1,

(AES-Cipher(S,M1, t1,K)),K) = AddRoundKey(ds(N),Kn). Consider e1

being an element of ((Boolean8)4)4 such that e1 = (KeyExpansion(S,m))
(K)(1) and es(1) = AddRoundKey(t1, e1). Consider en being an element
of ((Boolean8)4)4 such that en = (KeyExpansion(S,m))(K)(7 + m) and
AES-Cipher(S,M1, t1,K) = AddRoundKey((ShiftRows · SubBytes(S))(es
(N)), en). Consider d1 being an element of ((Boolean8)4)4 such that d1 =
(Rev((KeyExpansion(S,m))(K)))(1) and ds(1) = (InvSubBytes(S)·
InvShiftRows)(AddRoundKey(AES-Cipher(S,M1, t1,K), d1)). Consider dn
being an element of ((Boolean8)4)4 such that dn = (Rev((KeyExpansion(S,
m))(K)))(7+m) and AES-InvCipher(S,M1, (AES-Cipher(S,M1, t1,K)),
K) = AddRoundKey(ds(N), dn). Define R[natural number] ≡ if $1 < N ,
then ds($1 + 1) = es(N − $1). For every natural number i such that R[i]
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holds R[i+ 1] by [2, (11)], [15, (3)], [2, (14)]. For every natural number k,
R[k] from [2, Sch. 2]. �

(36) Let us consider a non empty set D, non zero elements n, m of N, and
an element r of Dn. Suppose

(i) m ¬ n, and

(ii) 8 ¬ n−m.

Then Op-Left(Op-Right(r,m), 8) is an element of D8.

Let r be an element of Boolean128. The functor AES-InitState128Key(r)
yielding an element of ((Boolean8)4)4 is defined by

(Def. 16) (i) it(1) = 〈Op-Left(r, 8),Op-Left(Op-Right(r, 8), 8),Op-Left(Op-Right
(r, 16), 8),Op-Left(Op-Right(r, 24), 8)〉, and

(ii) it(2) = 〈Op-Left(Op-Right(r, 32), 8),Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8),Op-Left(Op-Right(r, 56), 8)〉, and

(iii) it(3) = 〈Op-Left(Op-Right(r, 64), 8),Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8),Op-Left(Op-Right(r, 88), 8)〉, and

(iv) it(4) = 〈Op-Left(Op-Right(r, 96), 8),Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8),Op-Right(r, 120)〉.

Let r be an element of Boolean192. The functor AES-InitState192Key(r)
yielding an element of ((Boolean8)4)6 is defined by

(Def. 17) (i) it(1) = 〈Op-Left(r, 8),Op-Left(Op-Right(r, 8), 8),Op-Left(Op-Right
(r, 16), 8),Op-Left(Op-Right(r, 24), 8)〉, and

(ii) it(2) = 〈Op-Left(Op-Right(r, 32), 8),Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8),Op-Left(Op-Right(r, 56), 8)〉, and

(iii) it(3) = 〈Op-Left(Op-Right(r, 64), 8),Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8),Op-Left(Op-Right(r, 88), 8)〉, and

(iv) it(4) = 〈Op-Left(Op-Right(r, 96), 8),Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8),Op-Left(Op-Right(r, 120), 8)〉, and

(v) it(5) = 〈Op-Left(Op-Right(r, 128), 8),Op-Left(Op-Right(r, 136), 8),
Op-Left(Op-Right(r, 144), 8),Op-Left(Op-Right(r, 152), 8)〉, and

(vi) it(6) = 〈Op-Left(Op-Right(r, 160), 8),Op-Left(Op-Right(r, 168), 8),
Op-Left(Op-Right(r, 176), 8),Op-Right(r, 184)〉.

Let r be an element of Boolean256. The functor AES-InitState256Key(r)
yielding an element of ((Boolean8)4)8 is defined by

(Def. 18) (i) it(1) = 〈Op-Left(r, 8),Op-Left(Op-Right(r, 8), 8),Op-Left
(Op-Right(r, 16), 8),Op-Left(Op-Right(r, 24), 8)〉, and

(ii) it(2) = 〈Op-Left(Op-Right(r, 32), 8),Op-Left(Op-Right(r, 40), 8),
Op-Left(Op-Right(r, 48), 8),Op-Left(Op-Right(r, 56), 8)〉, and
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(iii) it(3) = 〈Op-Left(Op-Right(r, 64), 8),Op-Left(Op-Right(r, 72), 8),
Op-Left(Op-Right(r, 80), 8),Op-Left(Op-Right(r, 88), 8)〉, and

(iv) it(4) = 〈Op-Left(Op-Right(r, 96), 8),Op-Left(Op-Right(r, 104), 8),
Op-Left(Op-Right(r, 112), 8),Op-Left(Op-Right(r, 120), 8)〉, and

(v) it(5) = 〈Op-Left(Op-Right(r, 128), 8),Op-Left(Op-Right(r, 136), 8),
Op-Left(Op-Right(r, 144), 8),Op-Left(Op-Right(r, 152), 8)〉, and

(vi) it(6) = 〈Op-Left(Op-Right(r, 160), 8),Op-Left(Op-Right(r, 168), 8),
Op-Left(Op-Right(r, 176), 8),Op-Left(Op-Right(r, 184), 8)〉, and

(vii) it(7) = 〈Op-Left(Op-Right(r, 192), 8),Op-Left(Op-Right(r, 200), 8),
Op-Left(Op-Right(r, 208), 8),Op-Left(Op-Right(r, 216), 8)〉, and

(viii) it(8) = 〈Op-Left(Op-Right(r, 224), 8),Op-Left(Op-Right(r, 232), 8),
Op-Left(Op-Right(r, 240), 8),Op-Right(r, 248)〉.

Let us consider S and M2. Let m1 be an element of Boolean128 and K be
an element of Boolean128. The functor AES-128enc(S,M2,m1,K) yielding an
element of Boolean128 is defined by the term

(Def. 19) (The array of AES-State)−1(AES-Cipher(S,M2, ((the array of
AES-State)(m1)), (AES-InitState128Key(K)))).

Let c be an element of Boolean128. The functor AES-128dec(S,M2, c,K)
yielding an element of Boolean128 is defined by the term

(Def. 20) (The array of AES-State)−1(AES-InvCipher(S,M2, ((the array of
AES-State)(c)), (AES-InitState128Key(K)))).

Now we state the proposition:

(37) Let us consider a permutation S of Boolean8, a permutation M2 of
((Boolean8)4)4, and elements m1, K of Boolean128.
Then AES-128dec(S,M2, (AES-128enc(S,M2,m1,K)),K) = m1. The the-
orem is a consequence of (20) and (35).

Let us consider S and M2. Let m1 be an element of Boolean128 and K be
an element of Boolean192. The functor AES-192enc(S,M2,m1,K) yielding an
element of Boolean128 is defined by the term

(Def. 21) (The array of AES-State)−1(AES-Cipher(S,M2, ((the array of
AES-State)(m1)), (AES-InitState192Key(K)))).

Let c be an element of Boolean128. The functor AES-192dec(S,M2, c,K)
yielding an element of Boolean128 is defined by the term

(Def. 22) (The array of AES-State)−1(AES-InvCipher(S,M2, ((the array of
AES-State)(c)), (AES-InitState192Key(K)))).

Now we state the proposition:

(38) Let us consider a permutation S of Boolean8, a permutation M2 of
((Boolean8)4)4, an element m1 of Boolean128, and an element K
of Boolean192.
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Then AES-192dec(S,M2, (AES-192enc(S,M2,m1,K)),K) = m1. The the-
orem is a consequence of (20) and (35).

Let us consider S and M2. Let m1 be an element of Boolean128 and K be
an element of Boolean256. The functor AES-256enc(S,M2,m1,K) yielding an
element of Boolean128 is defined by the term

(Def. 23) (The array of AES-State)−1(AES-Cipher(S,M2, ((the array of
AES-State)(m1)), (AES-InitState256Key(K)))).

Let c be an element of Boolean128. The functor AES-256dec(S,M2, c,K)
yielding an element of Boolean128 is defined by the term

(Def. 24) (The array of AES-State)−1(AES-InvCipher(S,M2, ((the array of
AES-State)(c)), (AES-InitState256Key(K)))).

Now we state the proposition:

(39) Let us consider a permutation S of Boolean8, a permutation M2 of
((Boolean8)4)4, an element m1 of Boolean128, and an element K
of Boolean256.
Then AES-256dec(S,M2, (AES-256enc(S,M2,m1,K)),K) = m1. The the-
orem is a consequence of (20) and (35).
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(1) If f is bounded and A ⊆ dom f , then f�A is bounded.

(2) If f�A is bounded and B ⊆ A and B ⊆ dom(f�A), then f�B is bounded.

(3) If a ¬ c ¬ d ¬ b and f�[a, b] is bounded and [a, b] ⊆ dom f , then f�[c, d]
is bounded.

Now we state the proposition:

(4) Let us consider sets X, Y and partial functions f1, f2 from R to the
carrier of Z. Suppose

(i) f1�X is bounded, and

(ii) f2�Y is bounded.

Then

(iii) (f1 + f2)�(X ∩ Y ) is bounded, and

(iv) (f1 − f2)�(X ∩ Y ) is bounded.

Let us consider a set X and a partial function f from R to the carrier of Z.
Now we state the propositions:

(5) If f�X is bounded, then (r · f)�X is bounded.

(6) If f�X is bounded, then (−f)�X is bounded.

Now we state the propositions:

(7) Let us consider a function f from A into the carrier of Z. Then f is
bounded if and only if ‖f‖ is bounded.

(8) Let us consider a partial function f from R to the carrier of Z. Suppose
A ⊆ dom f . Then ‖f�A‖ = ‖f‖�A.

(9) Let us consider a partial function g from R to the carrier of Z. Suppose

(i) A ⊆ dom g, and

(ii) g�A is bounded.

Then ‖g‖�A is bounded. The theorem is a consequence of (8) and (7).

2. Some Properties of Integral of Continuous Functions

In the sequel X, Y denote real Banach spaces and E denotes a point of Y .
Let us consider a real normed space Y and a continuous partial function f

from R to the carrier of Y . Now we state the propositions:

(10) If a ¬ b and [a, b] ⊆ dom f , then ‖f‖�[a, b] is bounded.

(11) If a ¬ b and [a, b] ⊆ dom f , then f�[a, b] is bounded.

(12) If a ¬ b and [a, b] ⊆ dom f , then ‖f‖ is integrable on [a, b].

Now we state the propositions:

(13) Let us consider a continuous partial function f from R to the carrier of
Y . Suppose
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(i) a ¬ c ¬ d ¬ b, and

(ii) [a, b] ⊆ dom f .

Then f is integrable on [c, d].

(14) Let us consider a partial function f from R to the carrier of Y . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom f .

Then
a∫
b

f(x)dx = −
b∫
a

f(x)dx.

(15) Let us consider a continuous partial function f from R to the carrier of
Y . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom f , and

(iii) c ∈ [a, b].

Then

(iv) f is integrable on [a, c], and

(v) f is integrable on [c, b], and

(vi)
b∫
a

f(x)dx =
c∫
a

f(x)dx+
b∫
c

f(x)dx.

The theorem is a consequence of (13).

(16) Let us consider continuous partial functions f , g from R to the carrier
of Y . Suppose

(i) a ¬ c ¬ d ¬ b, and

(ii) [a, b] ⊆ dom f , and

(iii) [a, b] ⊆ dom g.

Then

(iv) f + g is integrable on [c, d], and

(v) (f + g)�[c, d] is bounded.

The theorem is a consequence of (13), (11), (3), and (4).

Let us consider a continuous partial function f from R to the carrier of Y .
Now we state the propositions:

(17) If a ¬ c ¬ d ¬ b and [a, b] ⊆ dom f , then r · f is integrable on [c, d] and
(r · f)�[c, d] is bounded.

(18) Suppose a ¬ c ¬ d ¬ b and f is integrable on [a, b] and f�[a, b] is bounded
and [a, b] ⊆ dom f . Then
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(i) −f is integrable on [c, d], and

(ii) (−f)�[c, d] is bounded.

Now we state the proposition:

(19) Let us consider continuous partial functions f , g from R to the carrier
of Y . Suppose

(i) a ¬ c ¬ d ¬ b, and

(ii) [a, b] ⊆ dom f , and

(iii) [a, b] ⊆ dom g.

Then

(iv) f − g is integrable on [c, d], and

(v) (f − g)�[c, d] is bounded.

The theorem is a consequence of (11), (13), (3), and (4).

Let us consider a partial function f from R to the carrier of Y . Now we state
the propositions:

(20) Suppose A ⊆ dom f and f�A is bounded and f is integrable on A and

‖f‖ is integrable on A. Then ‖
∫
A

f(x)dx‖ ¬
∫
A

‖f‖(x)dx.

(21) Suppose a ¬ b and [a, b] ⊆ dom f and f is integrable on [a, b] and

‖f‖ is integrable on [a, b] and f�[a, b] is bounded. Then ‖
b∫
a

f(x)dx‖ ¬

b∫
a

‖f‖(x)dx.

Let us consider a continuous partial function f from R to the carrier of Y .
Now we state the propositions:

(22) Suppose a ¬ b and [a, b] ⊆ dom f and c, d ∈ [a, b]. Then

(i) ‖f‖ is integrable on [min(c, d),max(c, d)], and

(ii) ‖f‖�[min(c, d),max(c, d)] is bounded, and

(iii) ‖
d∫
c

f(x)dx‖ ¬
max(c,d)∫

min(c,d)

‖f‖(x)dx.

(23) If a ¬ b and [a, b] ⊆ dom f and c, d ∈ [a, b], then
d∫
c

(r · f)(x)dx =

r ·
d∫
c

f(x)dx.
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(24) Suppose a ¬ b and [a, b] ⊆ dom f and c, d ∈ [a, b]. Then
d∫
c

−f(x)dx =

−
d∫
c

f(x)dx.

(25) Suppose a ¬ b and [a, b] ⊆ dom f and c, d ∈ [a, b] and for every re-
al number x such that x ∈ [min(c, d),max(c, d)] holds ‖fx‖ ¬ e. Then

‖
d∫
c

f(x)dx‖ ¬ e · |d− c|.

Now we state the propositions:

(26) Let us consider a real normed space Y , a non empty closed interval
subset A of R, a function f from A into the carrier of Y , and a point E
of Y . Suppose rng f = {E}. Then

(i) f is integrable, and

(ii) integral f = vol(A) · E.

Proof: Reconsider I = vol(A) · E as a point of Y . For every division
sequence T of A and for every middle volume sequence S of f and T such
that δT is convergent and lim δT = 0 holds middle sum(f, S) is convergent
and lim middle sum(f, S) = I by [11, (6)], [20, (70)], [11, (7)]. �

(27) Let us consider a partial function f from R to the carrier of Y and a
point E of Y . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom f , and

(iii) for every real number x such that x ∈ [a, b] holds fx = E.

Then

(iv) f is integrable on [a, b], and

(v)
b∫
a

f(x)dx = (b− a) · E.

The theorem is a consequence of (26). Proof: Reconsider A = [a, b] as a
non empty closed interval subset of R. Reconsider g = f�A as a function
from A into the carrier of Y . {E} ⊆ rng g by [19, (4)], [3, (49), (3)].
rng g ⊆ {E} by [5, (3)], [3, (49)]. �

(28) Let us consider a partial function f from R to the carrier of Y . Suppose

(i) a ¬ b, and

(ii) c, d ∈ [a, b], and

(iii) [a, b] ⊆ dom f , and
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(iv) for every real number x such that x ∈ [a, b] holds fx = E.

Then
d∫
c

f(x)dx = (d − c) · E. The theorem is a consequence of (27) and

(14).

(29) Let us consider a continuous partial function f from R to the carrier of
Y . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom f , and

(iii) c, d ∈ [a, b].

Then
d∫
a

f(x)dx =
c∫
a

f(x)dx+
d∫
c

f(x)dx. The theorem is a consequence of

(14).

(30) Let us consider continuous partial functions f , g from R to the carrier
of Y . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom f , and

(iii) [a, b] ⊆ dom g, and

(iv) c, d ∈ [a, b].

Then
d∫
c

(f − g)(x)dx =
d∫
c

f(x)dx−
d∫
c

g(x)dx. The theorem is a consequ-

ence of (14).
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1. Yet Another Definition of Category

We consider category structures which extend 1-sorted structures and are
systems

〈〈a carrier, a composition〉〉

where the carrier is a set, the composition is a partial function from (the carrier)×
the carrier to the carrier.
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In this paper C denotes a category structure.
Let us consider C . The functor Mor C yielding a set is defined by the term

(Def. 1) The carrier of C .

A morphism of C is an element of Mor C . In the sequel f , f1, f2, f3 denote
morphisms of C .

Let us consider C , f1, and f2. We say that f1 and f2 are composable if and
only if

(Def. 2) 〈〈f1, f2〉〉 ∈ dom the composition of C .

We introduce f1 . f2 as a synonym of f1 and f2 are composable.
Assume f1 . f2. The functor f1 ◦ f2 yielding a morphism of C is defined by

the term

(Def. 3) (The composition of C )(f1, f2).

Let us consider f . We say that f is left identity if and only if

(Def. 4) Let us consider a morphism f1 of C . If f . f1, then f ◦ f1 = f1.

We say that f is right identity if and only if

(Def. 5) Let us consider a morphism f1 of C . If f1 . f , then f1 ◦ f = f1.

We say that C has left identities if and only if

(Def. 6) Let us consider a morphism f1 of C . Suppose f1 ∈ the carrier of C . Then
there exists a morphism f of C such that

(i) f . f1, and

(ii) f is left identity.

We say that C has right identities if and only if

(Def. 7) Let us consider a morphism f1 of C . Suppose f1 ∈ the carrier of C . Then
there exists a morphism f of C such that

(i) f1 . f , and

(ii) f is right identity.

We say that C is left composable if and only if

(Def. 8) Let us consider morphisms f , f1, f2 of C . Suppose f1.f2. Then f1◦f2.f

if and only if f2 . f .

We say that C is right composable if and only if

(Def. 9) Let us consider morphisms f , f1, f2 of C . Suppose f1.f2. Then f .f1◦f2

if and only if f . f1.

We say that C is associative if and only if

(Def. 10) Let us consider morphisms f1, f2, f3 of C . Suppose

(i) f1 . f2, and

(ii) f2 . f3, and

(iii) f1 ◦ f2 . f3, and
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(iv) f1 . f2 ◦ f3.

Then f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3.

We say that C is composable if and only if

(Def. 11) C is left and right composable.

We say that C has identities if and only if

(Def. 12) C has left and right identities.

Let X be a set and f be a partial function from X ×X to X. Note that the
functor xf yields a partial function from X ×X to X. Let us consider C . The
functor C op yielding a strict category structure is defined by the term

(Def. 13) 〈〈the carrier of C ,xthe composition of C 〉〉.
Now we state the proposition:

(1) If C is empty, then f1 7 f2.

In this paper g1, g2 denote morphisms of C op.
Now we state the propositions:

(2) If f1 = g1 and f2 = g2, then f1 . f2 iff g2 . g1.

(3) If f1 = g1 and f2 = g2 and f1 . f2, then f1 ◦ f2 = g2 ◦ g1.

(4) C is left composable if and only if C op is right composable. The theorem
is a consequence of (3). Proof: For every morphisms f , f1, f2 of C such
that f1 . f2 holds f1 ◦ f2 . f iff f2 . f by [11, (42)]. �

(5) C is right composable if and only if C op is left composable. The theorem
is a consequence of (3). Proof: For every morphisms f , f1, f2 of C such
that f1 . f2 holds f . f1 ◦ f2 iff f . f1 by [11, (42)]. �

(6) C has left identities if and only if C op has right identities. The theorem
is a consequence of (3). Proof: For every morphism f1 of C such that
f1 ∈ the carrier of C there exists a morphism f of C such that f . f1 and
f is left identity by [11, (42)]. �

(7) C has right identities if and only if C op has left identities. The theorem
is a consequence of (3). Proof: For every morphism f1 of C such that
f1 ∈ the carrier of C there exists a morphism f of C such that f1 . f and
f is right identity by [11, (42)]. �

(8) C is associative if and only if C op is associative. The theorem is a conse-
quence of (3). Proof: For every morphisms f1, f2, f3 of C such that f1.f2

and f2 .f3 and f1 ◦f2 .f3 and f1 .f2 ◦f3 holds f1 ◦ (f2 ◦f3) = (f1 ◦f2)◦f3

by [11, (42)]. �

Note that there exists a category structure which is composable and asso-
ciative and has left identities and has not right identities and there exists a
category structure which is composable and associative and has right identities
and has not left identities and there exists a category structure which is non
left composable, right composable, and associative and has identities and there
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exists a category structure which is left composable, non right composable, and
associative and has identities and there exists a category structure which is non
associative and composable and has identities and there exists a category struc-
ture which is empty and every category structure which is empty is also left
and right composable and associative and has also left and right identities and
there exists a category structure which is strict, left and right composable, and
associative and has left and right identities and there exists a category structure
which is strict, composable, and associative and has identities.

A category is a composable associative category structure with identities.
Let us consider C and f . We say that f is identity if and only if

(Def. 14) f is left and right identity.

Now we state the propositions:

(9) If C has identities, then f is left identity iff f is right identity. Proof:
For every morphism f1 of C such that f . f1 holds f ◦ f1 = f1. �

(10) If C is empty, then f is identity.

(11) Let us consider morphisms g1, g2 of the category structure of C . Suppose

(i) f1 = g1, and

(ii) f2 = g2, and

(iii) f1 . f2.

Then f1 ◦ f2 = g1 ◦ g2.

(12) C is left composable if and only if the category structure of C is left
composable. The theorem is a consequence of (11). Proof: For every
morphisms f , f1, f2 of C such that f1 . f2 holds f1 ◦ f2 . f iff f2 . f . �

(13) C is right composable if and only if the category structure of C is right
composable. The theorem is a consequence of (11). Proof: For every
morphisms f , f1, f2 of C such that f1 . f2 holds f . f1 ◦ f2 iff f . f1. �

(14) C is composable if and only if the category structure of C is composable.

(15) C is associative if and only if the category structure of C is associative.
The theorem is a consequence of (11). Proof: For every morphisms f1,
f2, f3 of C such that f1 . f2 and f2 . f3 and f1 ◦ f2 . f3 and f1 . f2 ◦ f3

holds f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3. �

(16) Let us consider a morphism g of the category structure of C . If f = g,
then f is left identity iff g is left identity. The theorem is a consequence of
(11). Proof: For every morphism f2 of C such that f .f2 holds f ◦f2 = f2.
�

(17) C has left identities if and only if the category structure of C has left
identities. The theorem is a consequence of (16). Proof: For every mor-
phism f1 of C such that f1 ∈ the carrier of C there exists a morphism f

of C such that f . f1 and f is left identity. �
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(18) Let us consider a morphism g of the category structure of C . If f = g,
then f is right identity iff g is right identity. The theorem is a consequence
of (11). Proof: For every morphism f1 of C such that f1.f holds f1◦f =
f1. �

(19) C has right identities if and only if the category structure of C has
right identities. The theorem is a consequence of (18). Proof: For every
morphism f1 of C such that f1 ∈ the carrier of C there exists a morphism
f of C such that f1 . f and f is right identity. �

(20) C has identities if and only if the category structure of C has identities.

Let us consider C . We say that C is discrete if and only if

(Def. 15) Every morphism of C is identity.

One can verify that there exists a category structure which is strict, empty,
discrete, composable, and associative and has identities.

Now we state the proposition:

(21) Let us consider a discrete category structure C and morphisms f1, f2 of
C . If f1 . f2, then f1 = f2 and f1 ◦ f2 = f2.

Observe that every category structure which is discrete is also composable
and associative.

Let X be a set. The discrete category of X yielding a strict discrete category
is defined by

(Def. 16) The carrier of it = X.

Note that there exists a category which is strict and there exists a category
which is strict and empty and there exists a category which is strict and non
empty.

Let us consider C . The functor Ob C yielding a subset of Mor C is defined
by the term

(Def. 17) {f , where f is a morphism of C : f is identity and f ∈ Mor C }.

An object of C is an element of Ob C . Let C be a non empty category
structure with identities. Let us observe that Ob C is non empty.

Now we state the propositions:

(22) Let us consider a non empty category structure C with identities and a
morphism f of C . Then f is identity if and only if f is an object of C .

(23) Let us consider a non empty category structure C with identities, mor-
phisms f , f1 of C , and an object o of C . Suppose f = o. Then

(i) if f . f1, then f ◦ f1 = f1, and

(ii) if f1 . f , then f1 ◦ f = f1, and

(iii) f . f .

The theorem is a consequence of (22).
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(24) Let us consider a non empty category structure C with identities and a
morphism f of C . If f is identity, then f .f . The theorem is a consequence
of (22) and (23).

(25) Let us consider category structures C1, C2 with identities.
Suppose the category structure of C1 = the category structure of C2. Let
us consider a morphism f1 of C1 and a morphism f2 of C2. If f1 = f2, then
f1 is identity iff f2 is identity. Proof: For every morphism f of C1 such
that f1 . f holds f1 ◦ f = f . For every morphism f of C1 such that f . f1

holds f ◦ f1 = f . �

Let C be a composable category structure with identities and f be a mor-
phism of C . The functor dom f yielding an object of C is defined by

(Def. 18) (i) there exists a morphism f1 of C such that it = f1 and f . f1 and
f1 is identity, if C is not empty,

(ii) it = the object of C , otherwise.

The functor cod f yielding an object of C is defined by

(Def. 19) (i) there exists a morphism f1 of C such that it = f1 and f1 . f and
f1 is identity, if C is not empty,

(ii) it = the object of C , otherwise.

Let us consider a composable category structure C with identities and mor-
phisms f , f1 of C . Now we state the propositions:

(26) If f . f1 and f1 is identity, then dom f = f1.

(27) If f1 . f and f1 is identity, then cod f = f1.

Let C be category structure with identities and o be an object of C . The
functor id-o yielding a morphism of C is defined by the term

(Def. 20) o.

Let C , D be category structures. A functor from C to D is a function from
C into D . In the sequel C , D , E denote category structures with identities, F
denotes a functor from C to D , G denotes a functor from D to E , and f denotes
a morphism of C .

Let us consider C , D , F , and f . The functor F(f) yielding a morphism of
D is defined by the term

(Def. 21)

{
F(f), if C is not empty ,
The object of D , otherwise.

We say that F preserves identity if and only if

(Def. 22) Let us consider a morphism f of C . If f is identity, then F(f) is identity.

We say that F is multiplicative if and only if

(Def. 23) Let us consider morphisms f1, f2 of C . Suppose f1 . f2. Then

(i) F(f1) . F(f2), and

(ii) F(f1 ◦ f2) = F(f1) ◦ F(f2).
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We say that F is anti-multiplicative if and only if

(Def. 24) Let us consider morphisms f1, f2 of C . Suppose f1 . f2. Then

(i) F(f2) . F(f1), and

(ii) F(f1 ◦ f2) = F(f2) ◦ F(f1).

Note that there exists a functor from C to D which preserves identity.
Let C be an empty category structure with identities and D be category

structure with identities. Note that there exists a functor from C to D which is
multiplicative and anti-multiplicative preserves identity.

Let C be category structure with identities and D be a non empty category
structure with identities. Let us observe that there exists a functor from C to
D which is multiplicative and anti-multiplicative preserves identity.

Now we state the propositions:

(28) There exist categories C , D and there exists a functor F from C to D
such that F is multiplicative and F does not preserve identity. The the-
orem is a consequence of (22). Proof: Set C = the non empty category.
Reconsider X = {0, 1} as a set. Set c4 = {〈〈〈〈0, 0〉〉, 0〉〉, 〈〈〈〈1, 1〉〉, 1〉〉} ∪ {〈〈〈〈0,
1〉〉, 1〉〉, 〈〈〈〈1, 0〉〉, 1〉〉}. For every element x, x ∈ c4 iff x = 〈〈〈〈0, 0〉〉, 0〉〉 or
x = 〈〈〈〈1, 1〉〉, 1〉〉 or x = 〈〈〈〈0, 1〉〉, 1〉〉 or x = 〈〈〈〈1, 0〉〉, 1〉〉. For every elements
x, y1, y2 such that 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ c4 holds y1 = y2. For every element
x such that x ∈ c4 holds x ∈ (X × X) × X. Set D = 〈〈X, c4〉〉. For every
morphisms f1, f2 of D such that f1 . f2 holds f1 = 0 and f2 = 0 and
f1 ◦ f2 = 0 or f1 = 1 and f2 = 1 and f1 ◦ f2 = 1 or f1 = 0 and f2 = 1
and f1 ◦ f2 = 1 or f1 = 1 and f2 = 0 and f1 ◦ f2 = 1 by [9, (1)]. For
every morphisms f1, f2 of D , f1 . f2 by [9, (1)]. For every morphism f1

of D such that f1 ∈ the carrier of D there exists a morphism f of D such
that f . f1 and f is left identity. For every morphism f1 of D such that
f1 ∈ the carrier of D there exists a morphism f of D such that f1 . f and
f is right identity. For every morphisms f1, f2, f3 of D such that f1 . f2

and f2 .f3 and f1 ◦f2 .f3 and f1 .f2 ◦f3 holds f1 ◦ (f2 ◦f3) = (f1 ◦f2)◦f3.
Reconsider d1 = 1 as a morphism of D . Define H(element) = d1. Consider
F being a function from the carrier of C into the carrier of D such that
for every element x such that x ∈ the carrier of C holds F(x) = H(x)
from [10, Sch. 2]. For every morphisms f1, f2 of C such that f1 . f2 holds
F(f1) .F(f2) and F(f1 ◦ f2) = F(f1) ◦ F(f2). There exists a morphism f

of C such that f is identity and F(f) is not identity. �

(29) Suppose C is not empty and D is empty. Then there exists no a functor
F from C to D such that F is multiplicative or F is anti-multiplicative.
The theorem is a consequence of (23).

(30) There exist categories C , D and there exists a functor F from C to D
such that F is not multiplicative and F preserves identity. The theorem
is a consequence of (29).
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Let us consider C , D , and F . We say that F is covariant if and only if

(Def. 25) (i) F preserves identity, and

(ii) F is multiplicative.

We say that F is contravariant if and only if

(Def. 26) (i) F preserves identity, and

(ii) F is anti-multiplicative.

Let C be an empty category structure with identities and D be category
structure with identities. One can check that there exists a functor from C to
D which is covariant and contravariant.

Let C be category structure with identities and D be a non empty category
structure with identities. Observe that there exists a functor from C to D which
is covariant and contravariant.

Now we state the proposition:

(31) Suppose C is not empty and D is empty. Then there exists no a functor
F from C to D such that F is covariant or F is contravariant.

Let C , D be non empty category structures with identities, F be a covariant
functor from C to D , and f be an object of C . Observe that the functor F(f)
yields an object of D . Now we state the propositions:

(32) Let us consider non empty composable category structures C , D with
identities, a covariant functor F from C to D , and a morphism f of C .
Then

(i) F(dom f) = dom(F(f)), and

(ii) F(cod f) = cod(F(f)).

The theorem is a consequence of (22).

(33) Let us consider non empty composable category structures C , D with
identities, a covariant functor F from C to D , and an object o of C . Then
F(id-o) = id-(F(o)).

Let us consider C , D , E , F , and G. Assume F is covariant or F is contra-
variant and G is covariant or G is contravariant. The functor G ◦ F yielding a
functor from C to E is defined by the term

(Def. 27) F · G.

Now we state the propositions:

(34) Suppose F is covariant and G is covariant and C is not empty. Then
(G ◦ F)(f) = G(F(f)). The theorem is a consequence of (29).

(35) If F is covariant and G is covariant, then G ◦F is covariant. The theorem
is a consequence of (34), (22), and (10). Proof: Set G1 = G ◦ F . For
every morphism f of C such that f is identity holds G1(f) is identity. For
every morphisms f1, f2 of C such that f1 . f2 holds G1(f1) . G1(f2) and
G1(f1 ◦ f2) = G1(f1) ◦ G1(f2). �
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Let us consider C . Note that the functor idC yields a functor from C to C .
Let us observe that idC is covariant.

Let us consider D . We say that C and D are isomorphic if and only if

(Def. 28) There exists a functor F from C to D and there exists a functor G from
D to C such that F is covariant and G is covariant and G ◦ F = idC and
F ◦ G = idD .

Note that the predicate is reflexive and symmetric.
We introduce C ∼= D as a synonym of C and D are isomorphic.

2. Transform a Category in the Other

Let C be a category structure. The functor CompMap C yielding a partial
function from Mor C ×Mor C to Mor C is defined by the term

(Def. 29) The composition of C .

Let C be a composable category structure with identities. The functors:
SourceMap C and TargetMap C yielding functions from Mor C into Ob C are
defined by conditions, respectively.

(Def. 30) (i) for every element f of Mor C , (SourceMap C )(f) = dom f , if C is
not empty,

(ii) SourceMap C = ∅, otherwise.

(Def. 31) (i) for every element f of Mor C , (TargetMap C )(f) = cod f , if C is
not empty,

(ii) TargetMap C = ∅, otherwise.

Let C be category structure with identities. The functor IdMap C yielding
a function from Ob C into Mor C is defined by

(Def. 32) (i) for every element o of Ob C , it(o) = id-o, if C is not empty,

(ii) it = ∅, otherwise.

Now we state the propositions:

(36) Let us consider a non empty composable category structure C with iden-
tities and elements f , g of Mor C . Then 〈〈g, f〉〉 ∈ dom CompMap C if and
only if (SourceMap C )(g) = (TargetMap C )(f).

(37) Let us consider a composable category structure C with identities and
elements f , g of Mor C . Suppose (SourceMap C )(g) = (TargetMap C )(f).
Then

(i) (SourceMap C )((CompMap C )(g, f)) = (SourceMap C )(f), and

(ii) (TargetMap C )((CompMap C )(g, f)) = (TargetMap C )(g).

The theorem is a consequence of (36).
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(38) Let us consider a composable associative category structure C with iden-
tities and elements f , g, h of Mor C . Suppose

(i) (SourceMap C )(h) = (TargetMap C )(g), and

(ii) (SourceMap C )(g) = (TargetMap C )(f).

Then (CompMap C )(h, (CompMap C )(g, f)) = (CompMap C )((CompMap
C )(h, g), f). The theorem is a consequence of (36).

(39) Let us consider a composable category structure C with identities and
an element b of Ob C . Then

(i) (SourceMap C )(IdMap C (b)) = b, and

(ii) (TargetMap C )(IdMap C (b)) = b, and

(iii) for every element f of Mor C such that (TargetMap C )(f) = b holds
(CompMap C )(IdMap C (b), f) = f , and

(iv) for every element g of Mor C such that (SourceMap C )(g) = b holds
(CompMap C )(g, IdMap C (b)) = g.

The theorem is a consequence of (22) and (36).

A category defined in [7], to avoid confusion, is called an object-category.
Let C be a non empty category. The functor Alter(C ) yielding a strict

object-category is defined by the term

(Def. 33) 〈〈Ob C ,Mor C , SourceMap C ,TargetMap C ,CompMap C 〉〉.
Let A be an object-category. The functor alter A yielding a strict category

is defined by the term

(Def. 34) 〈〈the carrier’ of A , (the composition of A )〉〉.
Observe that alter A is non empty.
Now we state the propositions:

(40) Let us consider an object-category A , morphisms a1, a2 of A , and mor-
phisms f1, f2 of alter A . Suppose

(i) a1 = f1, and

(ii) a2 = f2, and

(iii) 〈〈a1, a2〉〉 ∈ dom the composition of A .

Then a1 ◦ a2 = f1 ◦ f2.

(41) Let us consider an object-category A and a morphism f of alter A .
Then f is identity if and only if there exists an object o of A such that
f = ido. The theorem is a consequence of (22), (23), and (40). Proof: For
every morphism f1 of alter A such that f .f1 holds f ◦f1 = f1 by [7, (15),
(21)]. For every morphism f1 of alter A such that f1 . f holds f1 ◦ f = f1

by [7, (15), (22)]. �
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(42) Let us consider object-categories A , B. Then every functor from A
to B is a covariant functor from alter A to alter B. The theorem is a
consequence of (40) and (41). Proof: Reconsider H = F as a function
from alter A into alter B. For every morphisms f1, f2 of alter A such that
f1 . f2 holds H(f1) . H(f2) and H(f1 ◦ f2) = H(f1) ◦ H(f2) by [7, (15),
(72), (64)]. For every morphism f of alter A such that f is identity holds
H(f) is identity by [7, (62)]. �

(43) Let us consider a non empty category C , morphisms a1, a2 of Alter(C ),
and morphisms f1, f2 of C . Suppose

(i) a1 = f1, and

(ii) a2 = f2, and

(iii) f1 . f2.

Then a1 ◦ a2 = f1 ◦ f2.

(44) Let us consider a non empty category C , a morphism f1 of C , and a
morphism a1 of Alter(C ). Suppose a1 = f1. Then

(i) dom f1 = dom a1, and

(ii) cod f1 = cod a1.

(45) Let us consider a non empty category C , an object o1 of C , and an object
o2 of Alter(C ). If o1 = o2, then id-o1 = ido2 . The theorem is a consequence
of (22), (24), (44), and (43). Proof: Reconsider a2 = o2 as a morphism
of Alter(C ). Reconsider a3 = a2 as a morphism from o2 to o2. For every
object b of Alter(C ), if hom(o2, b) 6= ∅, then for every morphism a from
o2 to b, a ◦ a3 = a and if hom(b, o2) 6= ∅, then for every morphism a from
b to o2, a3 ◦ a = a by [7, (5), (15)]. �

(46) Let us consider a non empty category C and a morphism f of C . Then
f is identity if and only if there exists an object o of Alter(C ) such that
f = ido. The theorem is a consequence of (25) and (41).

(47) Let us consider non empty categories C , D . Then every covariant functor
from C to D is a functor from Alter(C ) to Alter(D). The theorem is a
consequence of (46), (44), (32), and (45). Proof: Reconsider H = F as
a function from the carrier’ of Alter(C ) into the carrier’ of Alter(D). For
every object a of Alter(C ), there exists an object b of Alter(D) such that
H(ida) = idb. For every morphism f of Alter(C ), H(iddom f ) = iddom(H(f))
and H(idcod f ) = idcod(H(f)). For every morphisms f , g of Alter(C ) such
that dom g = cod f holds H(g ◦ f) = H(g) ◦ H(f) by [7, (15), (16)]. �

(48) Let us consider object-categories C , D . Then every covariant functor
from alter C to alter D is a functor from C to D . The theorem is a con-
sequence of (41), (26), and (27). Proof: Reconsider H = F as a function
from the carrier’ of C into the carrier’ of D . For every object a of C , there
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exists an object b of D such that H(ida) = idb. For every morphism f of C ,
H(iddom f ) = iddom(H(f)) andH(idcod f ) = idcod(H(f)) by [7, (15)]. For every
morphisms f , g of C such that dom g = cod f holds H(g◦f) = H(g)◦H(f)
by [7, (15), (16)]. �

Let us consider object-categories C1, C2. Now we state the propositions:

(49) If alter C1 ∼= alter C2, then C1 ∼= C2.

(50) Suppose the carrier’ of C1 = the carrier’ of C2 and the composition of
C1 = the composition of C2. Then C1 ∼= C2.

Now we state the propositions:

(51) Let us consider an object-category C . Then C ∼= Alter(alter C ).

(52) Let us consider a non empty category C . Then C ∼= alter Alter(C ). The
theorem is a consequence of (16) and (18). Proof: Set D = alter Alter(C ).
Reconsider F = idC as a functor from C to D . Reconsider G = idC as a
functor from D to C . For every morphism f of C such that f is identity
holds F(f) is identity. For every morphisms f1, f2 of C such that f1 . f2

holds F(f1).F(f2) and F(f1 ◦f2) = F(f1)◦F(f2). For every morphism f

of D such that f is identity holds G(f) is identity. For every morphisms f1,
f2 of D such that f1 .f2 holds G(f1).G(f2) and G(f1 ◦f2) = G(f1)◦G(f2).
�

References

[1] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories:
The Joy of Cats. Dover Publication, New York, 2009.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50

of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 1994.

[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[7] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1

(2):409–420, 1990.
[8] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1

(4):725–732, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):

55–65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.

http://fm.mizar.org/1990-1/pdf1-2/card_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/binop_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/cat_1.pdf
http://fm.mizar.org/1990-1/pdf1-4/cat_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf
http://fm.mizar.org/1990-1/pdf1-3/funct_4.pdf
http://fm.mizar.org/1990-1/pdf1-3/funct_4.pdf
http://fm.mizar.org/1990-1/pdf1-2/partfun1.pdf
http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finset_1.pdf
http://fm.mizar.org/1991-2/pdf2-3/graph_1.pdf


Object-free definition of categories 205

[16] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.

[17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[18] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathe-
matics, 5(2):259–267, 1996.

[19] Andrzej Trybulec. Isomorphisms of categories. Formalized Mathematics, 2(5):629–634,
1991.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received October 7, 2013

http://fm.mizar.org/1990-1/pdf1-1/setfam_1.pdf
http://fm.mizar.org/1996-5/pdf5-2/altcat_1.pdf
http://fm.mizar.org/1991-2/pdf2-5/isocat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relset_1.pdf




FORMALIZED MATHEMATICS

Vol. 21, No. 3, Pages 207–211, 2013
DOI: 10.2478/forma-2013-0022 degruyter.com/view/j/forma

Isomorphisms of Direct Products of Cyclic
Groups of Prime Power Order

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Kazuhisa Nakasho
Shinshu University
Nagano, Japan

Yasunari Shidama1

Shinshu University
Nagano, Japan

Summary. In this paper we formalized some theorems concerning the
cyclic groups of prime power order. We formalize that every commutative cyclic
group of prime power order is isomorphic to a direct product of family of cyclic
groups [1], [18].

MSC: 13D99 06A75 03B35

Keywords: formalization of the commutative cyclic group; prime power set

MML identifier: GROUP 18, version: 8.1.02 5.19.1189

The notation and terminology used in this paper have been introduced in the
following articles: [2], [20], [6], [11], [7], [8], [24], [18], [25], [26], [27], [28], [13],
[23], [16], [21], [3], [4], [15], [5], [9], [22], [17], [12], [30], [31], [14], [29], and [10].

1. Basic Properties of Cyclic Groups of Prime Power Order

Let G be a finite group. The functor Ordset(G) yielding a subset of N is
defined by the term

(Def. 1) the set of all ord(a) where a is an element of G.

One can check that Ordset(G) is finite and non empty.
Now we state the propositions:

(1) Let us consider a finite group G. Then there exists an element g of G
such that ord(g) = sup Ordset(G).
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(2) Let us consider a strict group G and a strict normal subgroup N of G.
If G is commutative, then G/N is commutative.

(3) Let us consider a finite group G and elements a, b of G. Then b ∈ gr({a})
if and only if there exists an element p of N such that b = ap.

(4) Let us consider a finite group G, an element a of G, and elements n, p,
s of N. Suppose

(i) gr({a}) = n, and

(ii) n = p · s.
Then ord(ap) = s.

Let us consider an element k of N, a finite group G, and an element a of G.
Now we state the propositions:

(5) gr({a}) = gr({ak}) if and only if gcd(k, ord(a)) = 1.

(6) If gcd(k, ord(a)) = 1, then ord(a) = ord(ak).

(7) ord(a) | k · ord(ak).

Now we state the proposition:

(8) Let us consider a group G and elements a, b of G. Suppose b ∈ gr({a}).
Then gr({b}) is a strict subgroup of gr({a}).

Let G be a strict commutative group and x be an element of SubGrG. The
functor NormSpR(x) yielding a normal strict subgroup of G is defined by the
term

(Def. 2) x.

Now we state the propositions:

(9) Let us consider groups G, H, a subgroup K of H, and a homomor-
phism f from G to H. Then there exists a strict subgroup J of G such
that the carrier of J = f−1(the carrier of K). Proof: Reconsider I3 =
f−1(the carrier of K) as a non empty subset of the carrier of G. For every
elements g1, g2 of G such that g1, g2 ∈ I3 holds g1 · g2 ∈ I3 by [8, (38)],
[25, (50)]. For every element g of G such that g ∈ I3 holds g−1 ∈ I3 by [8,
(38)], [25, (51)], [28, (32)]. Consider J being a strict subgroup of G such
that the carrier of J = f−1(the carrier of K). �

(10) Let us consider a natural number p, a finite group G, and elements x, d
of G. Suppose

(i) ord(d) = p, and

(ii) p is prime, and

(iii) x ∈ gr({d}).
Then

(iv) x = 1G, or

(v) gr({x}) = gr({d}).
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The theorem is a consequence of (8). Proof: If gr({x}) = {1}gr({d}), then
x = 1G by [19, (2)], [25, (44)]. �

(11) Let us consider a group G and normal subgroups H, K of G. Suppo-
se (the carrier of H) ∩ (the carrier of K) = {1G}. Then (the canonical
homomorphism onto cosets of H)�(the carrier of K) is one-to-one. Pro-
of: Set f = the canonical homomorphism onto cosets of H. Set g =
f�the carrier of K. For every elements x1, x2 such that x1, x2 ∈ dom g

and g(x1) = g(x2) holds x1 = x2 by [30, (57)], [7, (49)], [25, (46), (103),
(51)]. �

Let us consider finite commutative groups G, F , an element a of G, and a
homomorphism f from G to F . Now we state the propositions:

(12) The carrier of gr({f(a)}) = f◦the carrier of gr({a}).
(13) ord(f(a)) ¬ ord(a).

(14) If f is one-to-one, then ord(f(a)) = ord(a).

Now we state the propositions:

(15) Let us consider groups G, F , a subgroup H of G, and a homomorphism
f from G to F . Then f�the carrier of H is a homomorphism from H to F .
Proof: Reconsider g = f�the carrier of H as a function from the carrier
of H into the carrier of F . For every elements a, b of H, g(a ·b) = g(a) ·g(b)
by [25, (40)], [7, (49)], [25, (43)]. �

(16) Let us consider finite commutative groups G, F , an element a of G, and
a homomorphism f from G to F . Suppose f�the carrier of gr({a}) is one-
to-one. Then ord(f(a)) = ord(a). The theorem is a consequence of (15)
and (14).

(17) Let us consider a finite commutative group G, a prime number p, a
natural number m, and an element a of G. Suppose

(i) G = pm, and

(ii) a 6= 1G.

Then there exists a natural number n such that ord(a) = pn+1.

(18) Let us consider a prime number p and natural numbers j, m, k. If m = pk

and p - j, then gcd(j,m) = 1.

2. Isomorphism of Cyclic Groups of Prime Power Order

Let us consider a strict finite commutative group G, a prime number p, and
a natural number m. Now we state the propositions:

(19) Suppose G = pm. Then there exists a normal strict subgroup K of G
and there exist natural numbers n, k and there exists an element g of G
such that ord(g) = sup Ordset(G) and K is finite and commutative and
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(the carrier of K)∩ (the carrier of gr({g})) = {1G} and for every element
x of G, there exist elements b1, a1 of G such that b1 ∈ K and a1 ∈ gr({g})
and x = b1 ·a1 and ord(g) = pn and k = m−n and n ¬ m and K = pk and
there exists a homomorphism F from

∏
〈K, gr({g})〉 to G such that F is

bijective and for every elements a, b of G such that a ∈ K and b ∈ gr({g})
holds F (〈a, b〉) = a · b.

(20) Suppose G = pm. Then there exists a non zero natural number k and
there exists a k-element finite sequence a of elements ofG and there exists a
k-element finite sequence I2 of elements of N and there exists an associative
group-like commutative multiplicative magma family F of Seg k and there
exists a homomorphism H1 from

∏
F to G such that for every natural

number i such that i ∈ Seg k there exists an element a2 of G such that a2 =
a(i) and F (i) = gr({a2}) and ord(a2) = pI2(i) and for every natural number
i such that 1 ¬ i ¬ k − 1 holds I2(i) ¬ I2(i + 1) and for every elements
p, q of Seg k such that p 6= q holds (the carrier of F (p)) ∩ (the carrier
of F (q)) = {1G} and H1 is bijective and for every (the carrier of G)-
valued total Seg k-defined function x such that for every element p of
Seg k, x(p) ∈ F (p) holds x ∈

∏
F and H1(x) =

∏
x.

(21) Suppose G = pm. Then there exists a non zero natural number k and
there exists a k-element finite sequence a of elements ofG and there exists a
k-element finite sequence I2 of elements of N and there exists an associative
group-like commutative multiplicative magma family F of Seg k such that
for every natural number i such that i ∈ Seg k there exists an element a2

of G such that a2 = a(i) and F (i) = gr({a2}) and ord(a2) = pI2(i) and for
every natural number i such that 1 ¬ i ¬ k − 1 holds I2(i) ¬ I2(i + 1)
and for every elements p, q of Seg k such that p 6= q holds (the carrier
of F (p)) ∩ (the carrier of F (q)) = {1G} and for every element y of G,
there exists a (the carrier of G)-valued total Seg k-defined function x such
that for every element p of Seg k, x(p) ∈ F (p) and y =

∏
x and for every

(the carrier of G)-valued total Seg k-defined functions x1, x2 such that for
every element p of Seg k, x1(p) ∈ F (p) and for every element p of Seg k,
x2(p) ∈ F (p) and

∏
x1 =

∏
x2 holds x1 = x2.
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Summary. The article continues the formalization of the lattice theory (as
structures with two binary operations, not in terms of ordering relations). In the
Mizar Mathematical Library, there are some attempts to formalize prime ideals
and filters; one series of articles written as decoding [9] proven some results; we
tried however to follow [21], [12], and [13]. All three were devoted to the Stone
representation theorem [18] for Boolean or Heyting lattices. The main aim of the
present article was to bridge this gap between general distributive lattices and
Boolean algebras, having in mind that the more general approach will eventually
replace the common proof of aforementioned articles.1

Because in Boolean algebras the notions of ultrafilters, prime filters and
maximal filters coincide, we decided to construct some concrete examples of ul-
trafilters in nontrivial Boolean lattice. We proved also the Prime Ideal Theorem
not as BPI (Boolean Prime Ideal), but in the more general setting.

In the final section we present Nachbin theorems [15],[1] expressed both in
terms of maximal and prime filters and as the unordered spectra of a lattice [11],
[10]. This shows that if the notion of maximal and prime filters coincide in the
lattice, it is Boolean.
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1. Preliminaries

Let X be a set. We say that X is unordered if and only if

(Def. 1) Let us consider sets p1, p2. Suppose

(i) p1, p2 ∈ X, and

(ii) p1 6= p2.

Then p1 and p2 are ⊆-incomparable.

Let us note that there exists a Boolean lattice which is non trivial.
Now we state the propositions:

(1) Let us consider a non trivial bounded lattice L. Then >L 6= ⊥L.

(2) Let us consider a lattice L and an ideal I of L. Then I is prime if and
only if Ic is a filter of L or Ic = ∅. Proof: If I is prime, then Ic is a filter
of L or Ic = ∅ by [20, (29)]. For every elements x, y of L, x u y ∈ I iff
x ∈ I or y ∈ I by [2, (9), (8)]. �

(3) Let us consider a lattice L and a filter F of L. Then F is prime if and
only if F c is an ideal of L or F c = ∅. Proof: Set F = Ic. If I is prime,
then F is an ideal of L or F = ∅ by [20, (29)]. For every elements x, y of
L, x t y ∈ I iff x ∈ I or y ∈ I by [3, (21), (86)]. �

Let L be a lattice. The functor PFiltersL yielding a family of subsets of L
is defined by the term

(Def. 2) {F , where F is a filter of L : F is prime}.

Observe that (L] is prime.
Now we state the proposition:

(4) Let us consider a distributive lattice L.
Then PrimeFilters(L) ⊂ PFiltersL.Proof: PrimeFilters(L) ⊆ PFiltersL.
[L) /∈ PrimeFilters(L). �

2. Examples of Filters in Nontrivial Boolean Lattices

Now we state the propositions:

(5) The carrier of the lattice of subsets of {∅} = {∅, {∅}}.
(6) Let us consider a lattice L and a subset A of L. Suppose L = the lattice

of subsets of {∅}. Then

(i) A = ∅, or

(ii) A = {∅}, or

(iii) A = {∅, {∅}}, or

(iv) A = {{∅}}.
Let us consider a lattice L and a filter A of L. Now we state the propositions:
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(7) Suppose L = the lattice of subsets of {∅}. Then

(i) A = ∅, or

(ii) A = {∅, {∅}}, or

(iii) A = {{∅}}.
(8) If L = the lattice of subsets of {∅}, then A = {>L} or A = [L).

Now we state the propositions:

(9) Let us consider a non trivial Boolean lattice L and a filterA of L. Suppose

(i) L = the lattice of subsets of {∅}, and

(ii) A = {>L}.
Then A is prime. The theorem is a consequence of (5) and (7). Proof:
For every filter H of L such that A ⊆ H and H 6= the carrier of L holds
A = H by [4, (4)]. �

(10) Let us consider a lattice L and a filter A of L. Suppose

(i) L = the lattice of subsets of {∅}, and

(ii) A is an ultrafilter.

Then A = {>L}. The theorem is a consequence of (7). Proof: ∅ /∈ A by
[4, (3)], [21, (29)]. �

3. On Prime and Maximal Filters and Ideals

Now we state the proposition:

(11) Let us consider a lattice L and an element a of L. Then {F, where F is
a filter of L : F is prime and a ∈ F} ⊆ PFiltersL.

Let L be a lattice and F be a filter of L. We say that F is maximal if and
only if

(Def. 3) (i) F is proper, and

(ii) for every filter G of L such that G is proper and F ⊆ G holds F = G.

One can check that every filter of L which is maximal is also proper.
Observe that every filter of L which is maximal is also an ultrafilter and

every filter of L which is an ultrafilter is also maximal.
Let I be an ideal of L. We say that I is maximal if and only if

(Def. 4) (i) I is proper, and

(ii) for every ideal J of L such that J is proper and I ⊆ J holds I = J .

Now we state the proposition:

(12) Let us consider a lattice L and an ideal I of L. Then I is max-ideal if
and only if I is maximal. Proof: For every ideal J of L such that I ⊆ J

and J 6= the carrier of L holds I = J . �
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Let L be a lattice. Observe that every ideal of L which is maximal is also
max-ideal and every ideal of L which is max-ideal is also maximal.

Let us observe that every ideal of L which is maximal is also proper.
Now we state the propositions:

(13) Let us consider a lattice L and a filter F of L. Suppose F is not prime.
Then there exist elements a, b of L such that

(i) a t b ∈ F , and

(ii) a /∈ F , and

(iii) b /∈ F .

(14) Let us consider a lattice L and an ideal F of L. Suppose F is not prime.
Then there exist elements a, b of L such that

(i) a u b ∈ F , and

(ii) a /∈ F , and

(iii) b /∈ F .

(15) Let us consider a lattice L, a filter F of L, an element a of L, and a set
G. Suppose

(i) G = {x, where x is an element of L : there exists an element u of
L such that u ∈ F and a u u v x}, and

(ii) a ∈ G.

Then G is a filter of L. Proof: G ⊆ the carrier of L. Reconsider G1 = G

as a subset of L. G1 is meet-closed by [2, (5), (8)]. G1 is final by [24, (7)].
�

(16) Let us consider a lattice L, an ideal F of L, an element a of L, and a set
G. Suppose

(i) G = {x, where x is an element of L : there exists an element u of
L such that u ∈ F and x v a t u}, and

(ii) a ∈ G.

Then G is an ideal of L. Proof: G ⊆ the carrier of L. G is join-closed by
[2, (4)], [3, (86)]. G is initial by [24, (7)]. �

(17) Let us consider a distributive lattice L and a filter F of L. If F is
maximal, then F is prime. The theorem is a consequence of (13) and
(15). Proof: Consider a, b being elements of L such that a t b ∈ F and
a /∈ F and b /∈ F . Set G = {x, where x is an element of L : there exists
an element u of L such that u ∈ F and auu v x}. b /∈ G by [2, (10), (8)],
[24, (11)]. F ⊆ G by [24, (6)]. �

Let L be a distributive lattice. One can verify that every filter of L which is
maximal is also prime.

Now we state the proposition:
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(18) Let us consider a distributive lattice L and an ideal F of L. If F is
maximal, then F is prime. The theorem is a consequence of (14) and
(16). Proof: Consider a, b being elements of L such that a u b ∈ F and
a /∈ F and b /∈ F . Set G = {x, where x is an element of L : there exists
an element u of L such that u ∈ F and x v a t u}. G ⊆ the carrier of L.
b /∈ G by [3, (22), (21)], [24, (4)]. F ⊆ G by [24, (5)]. �

Let L be a distributive lattice. Observe that every ideal of L which is maximal
is also prime.

4. Prime Ideal Theorem for Distributive Lattices

Now we state the propositions:

(19) Prime ideal theorem for distributive lattices:
Let us consider a distributive lattice L, an ideal I of L, and a filter F of
L. Suppose I misses F . Then there exists an ideal P of L such that

(i) P is prime, and

(ii) I ⊆ P , and

(iii) P misses F .

The theorem is a consequence of (14). Proof: Set X = {i, where i is
an ideal of L : I ⊆ i and i misses F}. For every set Z such that Z 6= ∅ and
Z ⊆ X and Z is ⊆-linear holds

⋃
Z ∈ X by [19, (1)], [8, (74)], [3, (21)].

Consider Y being a set such that Y ∈ X and for every set Z such that
Z ∈ X and Z 6= Y holds Y 6⊆ Z. Consider i being an ideal of L such that
Y = i and I ⊆ i and i misses F . i is prime by [3, (50), (28)], [2, (1), (9),
(8)]. �

(20) Let us consider a distributive lattice L, an ideal I of L, and an element
a of L. Suppose a /∈ I. Then there exists an ideal P of L such that

(i) P is prime, and

(ii) I ⊆ P , and

(iii) a /∈ P .

The theorem is a consequence of (19). Proof: Set F = [a). I misses F by
[2, (15)], [3, (21)]. Consider P being an ideal of L such that P is prime
and I ⊆ P and P misses F . �

Let us consider a distributive lattice L and elements a, b of L. Now we state
the propositions:

(21) If a 6= b, then there exists an ideal P of L such that P is prime and
a ∈ P and b /∈ P or a /∈ P and b ∈ P .

(22) If a 6v b, then there exists an ideal P of L such that P is prime and
a /∈ P and b ∈ P .
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Now we state the proposition:

(23) Let us consider a distributive lattice L and an ideal I of L. Then I =⋂
{P, where P is an ideal of L : P is prime and I ⊆ P}. The theorem is

a consequence of (20). Proof: ΩL is prime. �

5. The Stone Representation

Let L be a lattice. The prime filters of L yielding a function is defined by

(Def. 5) (i) dom it = the carrier of L, and

(ii) for every element a of L, it(a) = {F, where F is a filter of L :
F is prime and a ∈ F}.

Now we state the propositions:

(24) Let us consider a lattice L, an element a of L, and a set x. Then x ∈
(the prime filters of L)(a) if and only if there exists a filter F of L such
that F = x and F is prime and a ∈ F . Proof: If x ∈ (the prime filters
of L)(a), then there exists a filter F of L such that F = x and F is prime
and a ∈ F . �

(25) Let us consider a lattice L, an element a of L, and a filter F of L. Then
F ∈ (the prime filters of L)(a) if and only if F is prime and a ∈ F . The
theorem is a consequence of (24).

Let us consider a distributive lattice L and elements a, b of L. Now we state
the propositions:

(26) (The prime filters of L)(au b) = (the prime filters of L)(a)∩ (the prime
filters of L)(b).

(27) (The prime filters of L)(at b) = (the prime filters of L)(a)∪ (the prime
filters of L)(b).

Let L be a distributive lattice. Let us note that the prime filters of L yields
a function from the carrier of L into 2PFiltersL. The functor StoneR(L) yielding
a set is defined by the term

(Def. 6) rng the prime filters of L.

Note that StoneR(L) is non empty.
Now we state the proposition:

(28) Let us consider a distributive lattice L and a set x. Then x ∈ StoneR(L)
if and only if there exists an element a of L such that (the prime filters
of L)(a) = x. Proof: If x ∈ StoneR(L), then there exists an element a of
L such that (the prime filters of L)(a) = x. �

Let L be an upper-bounded distributive lattice. The functor StoneSpace(L)
yielding a strict topological space is defined by

(Def. 7) (i) the carrier of it = PFiltersL, and
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(ii) the topology of it =
{
⋃
A, where A is a family of subsets of PFiltersL : A ⊆ StoneR(L)}.

Let L be a non trivial upper-bounded distributive lattice. One can check
that StoneSpace(L) is non empty.

6. Pseudo Complements in Lattices

Let L be a lattice and a be an element of L. The functors: the set of pseudo-
complements of a and the set of dual pseudo-complements of a yielding subsets
of L are defined by terms, respectively.

(Def. 8) {x, where x is an element of L : a u x = ⊥L}.

(Def. 9) {x, where x is an element of L : a t x = >L}.

Let L be a distributive bounded lattice.
Note that the set of pseudo-complements of a is initial non empty and join-closed
and the set of dual pseudo-complements of a is final non empty and meet-closed.

Let us consider a lattice L and elements a, b of L. Now we state the propo-
sitions:

(29) b ∈ the set of pseudo-complements of a if and only if b u a = ⊥L.

(30) b ∈ the set of dual pseudo-complements of a if and only if b t a = >L.

Let us consider a bounded lattice L and an element a of L. Now we state
the propositions:

(31) ⊥L ∈ the set of pseudo-complements of a.

(32) >L ∈ the set of dual pseudo-complements of a.

7. Nachbin’s Theorem for Bounded Distributive Lattices

Let L be a lattice. The spectrum of L yielding a family of subsets of L is
defined by the term

(Def. 10) {I, where I is an ideal of L : I is prime and proper}.

Now we state the proposition:

(33) Nachbin’s theorem for bounded distributive lattices:
Let us consider a distributive bounded lattice L. Then L is Boolean if and
only if for every ideal I of L such that I is proper and prime holds I is
maximal. The theorem is a consequence of (19). Proof: If L is Boolean,
then for every ideal I of L such that I is proper and prime holds I is
maximal by [3, (57)]. Consider a being an element of L such that there
exists no an element b of L such that b is a complement of a. Set I0 =
the set of pseudo-complements of a. Set I1 = {x, where x is an element
of L : there exists an element y of L such that y ∈ I0 and x v a t y}.
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I1 ⊆ the carrier of L. For every elements p, q of L such that p v q and
q ∈ I1 holds p ∈ I1 by [24, (7)]. For every elements p, q of L such that
p, q ∈ I1 holds p t q ∈ I1 by [2, (4)]. I0 ⊆ I1 by [24, (5)]. >L /∈ I1. Set
F2 = [>L). Consider J0 being an ideal of L such that J0 is prime and
I1 ⊆ J0 and J0 misses F2. Set T = the carrier of L. Reconsider D = T \J0

as a non empty subset of L. For every elements p, q of L such that p v q

and p ∈ D holds q ∈ D by [3, (21)]. For every elements p, q of L such that
p, q ∈ D holds p u q ∈ D. Reconsider F = [[a) ∪ D) as a filter of L. F
misses I0 by [13, (3)], [24, (6)], [14, (9)]. Consider J1 being an ideal of L
such that J1 is prime and I0 ⊆ J1 and J1 misses F . J1 ⊆ J0. �

Let L be a non trivial distributive bounded lattice. Let us note that the
spectrum of L is non empty.

Now we state the proposition:

(34) Nachbin theorem for spectra of distributive lattices:
Let us consider a distributive bounded lattice L. Then L is Boolean if and
only if the spectrum of L is unordered. The theorem is a consequence of
(19) and (20). Proof: If L is Boolean, then the spectrum of L is unordered
by [3, (57), (58)], [24, (20)]. Consider a being an element of L such that
there exists no an element b of L such that b is a complement of a. Set
D = the set of dual pseudo-complements of a. Set D1 = [D ∪ [a)). D1 ⊆
{x, where x is an element of L : there exists an element d of L such that
d ∈ D and aud v x} by [2, (15), (5)], [24, (7)]. {x, where x is an element
of L : there exists an element d of L such that d ∈ D and a u d v x} ⊆
D1. ⊥L /∈ D1 by [24, (8)]. Reconsider I0 = {⊥L} as an ideal of L. Consider
P being an ideal of L such that P is prime and I0 ⊆ P and P misses D1.
Set P1 = (P ∪ (a]]. >L /∈ P1 by [3, (49)], [2, (1)], [3, (28)]. Consider Q
being an ideal of L such that Q is prime and P1 ⊆ Q and >L /∈ Q. �

Let L be a Boolean lattice. Note that the spectrum of L is unordered.
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1. Preliminaries

Let X, Y , Z be sets. We say that X, Y , and Z are mutually disjoint if and
only if

(Def. 1) (i) X misses Y , and

(ii) Y misses Z, and

(iii) X misses Z.

Now we state the proposition:

(1) Let us consider a set A. Then ∅, A, and ∅ are mutually disjoint.

Let us observe that every set which is 2-element is also non empty.
Now we state the propositions:

(2) Let us consider sets a, b. Suppose a 6= b. Then {〈〈a, a〉〉, 〈〈b, b〉〉} 6= {〈〈a,
a〉〉, 〈〈a, b〉〉, 〈〈b, a〉〉, 〈〈b, b〉〉}.

(3) Let us consider a 2-element set A and elements a, b of A. If a 6= b, then
A = {a, b}.

(4) Let us consider a 2-element set A. Then there exist elements a, b of A
such that

(i) a 6= b, and

(ii) A = {a, b}.
(5) Let us consider a non trivial set A. Then there exist elements a, b of A

such that a 6= b.

(6) Let us consider sets x1, x2, x3, x4. Then ({x1} ∪ {x2}) ∪ {x3, x4} =
{x3, x1, x2, x4}.

(7) Let us consider sets a, b. Suppose a 6= b. Then {〈〈a, a〉〉, 〈〈b, b〉〉} misses {〈〈a,
b〉〉, 〈〈b, a〉〉}.

(8) Let us consider a 2-element set A and elements a, b of A. Suppose a 6= b.
Then idA = {〈〈a, a〉〉, 〈〈b, b〉〉}. The theorem is a consequence of (3).

(9) Let us consider elements a, b and a binary relation R. Suppose R = {〈〈a,
b〉〉}. Then R` = {〈〈b, a〉〉}.

(10) Let us consider sets a, b. Then a 6= b if and only if {〈〈a, b〉〉} misses {〈〈a,
a〉〉, 〈〈b, b〉〉}. Proof: If a 6= b, then {〈〈a, b〉〉} misses {〈〈a, a〉〉, 〈〈b, b〉〉}. �

(11) Let us consider a non empty set X, a binary relation R on X, and
elements x, y of X. Suppose 〈〈x, y〉〉 /∈ Rc. Then 〈〈x, y〉〉 ∈ R.

(12) Let us consider a non empty set X and a binary relation R on X. Then
R ∩ (R`)c, R ∩R`, and Rc ∩ (R`)c are mutually disjoint.

(13) Let us consider binary relations P , R. If P misses R, then P` misses
R`.

Let us consider a non empty set X and a binary relation R on X. Now we
state the propositions:
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(14) R = (((R`)c)`)c.

(15) R` = ((Rc)`)c.

(16) ((R`)c)` = Rc.

2. Properties of Binary Relations

Let X be a set. Observe that there exists an order in X which is connected
and linear order.

Now we state the propositions:

(17) Let us consider a non empty set X and a total reflexive binary relation
R on X. Then R` is total.

(18) Let us consider a non empty set X and a total binary relation R on X.
Then fieldR = X.

Let us consider a binary relation R. Now we state the propositions:

(19) R is irreflexive if and only if for every element x such that x ∈ fieldR
holds 〈〈x, x〉〉 /∈ R.

(20) R is symmetric if and only if for every elements x, y such that 〈〈x, y〉〉 ∈ R
holds 〈〈y, x〉〉 ∈ R.

Now we state the propositions:

(21) Let us consider a set X and a binary relation R on X. Then R ∩ R` is
symmetric.

(22) Let us consider a binary relation R. Then R is asymmetric if and only if
for every elements x, y such that 〈〈x, y〉〉 ∈ R holds 〈〈y, x〉〉 /∈ R. Proof: If
R is asymmetric, then for every elements x, y such that 〈〈x, y〉〉 ∈ R holds
〈〈y, x〉〉 /∈ R by [19, (15)]. If for every elements x, y such that 〈〈x, y〉〉 ∈ R
holds 〈〈y, x〉〉 /∈ R, then R is asymmetric. �

(23) Let us consider elements a, b. If a 6= b, then {〈〈a, b〉〉} is asymmetric. The
theorem is a consequence of (22). Proof: Set R = {〈〈a, b〉〉}. For every
elements x, y such that 〈〈x, y〉〉 ∈ R holds 〈〈y, x〉〉 /∈ R. �

(24) Let us consider a non empty set X and a binary relation R on X. Then
R ∩ (R`)c is asymmetric. The theorem is a consequence of (22).

Let us consider a non empty set X and a total reflexive binary relation R

on X. Now we state the propositions:

(25) R ∩R` is reflexive.

(26) R ∩R` is total.

Now we state the propositions:

(27) Let us consider elements a, b. Suppose a 6= b. Then {〈〈a, b〉〉, 〈〈b, a〉〉} is
irreflexive and symmetric. The theorem is a consequence of (20). Proof:
Reconsider R = {〈〈a, b〉〉, 〈〈b, a〉〉} as a binary relation. For every elements x,
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y such that 〈〈x, y〉〉 ∈ R holds 〈〈y, x〉〉 ∈ R. For every element x such that
x ∈ fieldR holds 〈〈x, x〉〉 /∈ R. �

(28) Let us consider a non empty set X, a total binary relation R on X, and
a binary relation S on X. Then R ∪ S is total.

(29) Let us consider a non empty set X and a total reflexive binary relation
R on X. Then Rc ∩ (R`)c is irreflexive and symmetric. The theorem is a
consequence of (11) and (20). Proof: For every elements x, y such that
〈〈x, y〉〉 ∈ Rc ∩ (R`)c holds 〈〈y, x〉〉 ∈ Rc ∩ (R`)c by [6, (87)]. �

(30) Let us consider a set X and a binary relation R on X. If R is symmetric,
then Rc is symmetric. The theorem is a consequence of (11) and (20).
Proof: For every elements x, y such that 〈〈x, y〉〉 ∈ Rc holds 〈〈y, x〉〉 ∈ Rc

by [19, (15)], [16, (23)]. �

(31) Let us consider an element X and a binary relation R. Then R is anti-
symmetric if and only if for every elements x, y such that 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R
holds x = y. Proof: If R is antisymmetric, then for every elements x, y
such that 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R holds x = y by [19, (15)]. �

(32) Let us consider a set A and an asymmetric binary relation R on A. Then
R ∪ idA is antisymmetric. The theorem is a consequence of (22) and (31).
Proof: For every elements x, y such that 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R ∪ idA holds
x = y. �

(33) Let us consider an element X and a binary relation R. Then R is connec-
ted if and only if for every elements x, y such that x 6= y and x, y ∈ fieldR
holds 〈〈x, y〉〉 ∈ R or 〈〈y, x〉〉 ∈ R.

(34) Let us consider a binary relation R. Then R is connected if and only if
fieldR× fieldR = (R ∪R`) ∪ idfieldR.

(35) Let us consider a set A and an asymmetric binary relation R on A.
Then R misses R`. The theorem is a consequence of (22). Proof: For
every elements x, y, 〈〈x, y〉〉 /∈ R ∩R`. �

(36) Let us consider binary relations R, P . If R misses P and P is symmetric,
then R` misses P . The theorem is a consequence of (13).

Let us consider a set X and an asymmetric binary relation R on X. Now we
state the propositions:

(37) R misses idX .

(38) R ·R misses idX .

Let X be a set and R be a binary relation on X. The functor SymClR
yielding a binary relation on X is defined by the term

(Def. 2) R ∪R`.

Let R be a total binary relation on X. Note that SymClR is total.
Let R be a binary relation on X. One can verify that SymClR is symmetric.
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3. Preference Structures

We consider pure preference structures which extend 1-sorted structures and
are systems

〈〈a carrier, a preference relation〉〉

where the carrier is a set, the preference relation is a binary relation on the
carrier.

We consider preference-indifference structures which extend pure preference
structures and alternative relational structures and are systems

〈〈a carrier, a preference relation, an alternative relation〉〉

where the carrier is a set, the preference relation and the alternative relation
are binary relations on the carrier.

We consider preference structures which extend preference-indifference struc-
tures, relational structures, and pure preference structures and are systems

〈〈a carrier, a preference relation, an alternative relation, an internal relation〉〉

where the carrier is a set, the preference relation and the alternative relation
and the internal relation are binary relations on the carrier.

Let us note that there exists a preference-indifference structure which is
non empty and strict and there exists a preference-indifference structure which
is empty and strict and there exists a pure preference structure which is non
empty and strict and there exists a pure preference structure which is empty
and strict and there exists a preference-indifference structure which is non empty
and strict and there exists a preference structure which is non empty and strict.

Let X be a preference structure. We say that X is preference-like if and on-
ly if

(Def. 3) (i) the preference relation of X is asymmetric, and

(ii) the alternative relation of X is a tolerance of the carrier of X, and

(iii) the internal relation of X is irreflexive and symmetric, and

(iv) the preference relation of X, the alternative relation of X, and the
internal relation of X are mutually disjoint, and

(v) (((the preference relation of X) ∪ (the preference relation of X)`) ∪
the alternative relation of X) ∪ the internal relation of X = ∇α,

where α is the carrier of X.

LetX be a set. The functor PrefSpaceX yielding a strict preference structure
is defined by the term

(Def. 4) 〈〈X, ∅X,X ,∇X , ∅X,X〉〉.
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Let A be a non empty set. Observe that PrefSpaceA is non empty and
preference-like and there exists a preference structure which is non empty, strict,
and preference-like.

A preference space is a preference-like preference structure. Note that every
preference structure which is empty is also preference-like and PrefSpace ∅ is
empty and preference-like and there exists a preference space which is empty.

Let A be a trivial non empty set. Let us observe that PrefSpaceA is trivial.
Let us observe that PrefSpaceA is non empty and preference-like.

4. Constructing Examples

Let A be a set. The functor IdPrefSpaceA yielding a strict preference struc-
ture is defined by

(Def. 5) (i) the carrier of it = A, and

(ii) the preference relation of it = ∅, and

(iii) the alternative relation of it = idA, and

(iv) the internal relation of it = ∅.
LetA be a non trivial set. Let us observe that IdPrefSpaceA is non preference-

like.
Let A be a 2-element set and a, b be elements of A.

The functor PrefSpace(A, a, b) yielding a strict preference structure is defined
by

(Def. 6) (i) the carrier of it = A, and

(ii) the preference relation of it = {〈〈a, b〉〉}, and

(iii) the alternative relation of it = {〈〈a, a〉〉, 〈〈b, b〉〉}, and

(iv) the internal relation of it = ∅.
Now we state the proposition:

(39) Let us consider a 2-element set A and elements a, b of A. If a 6= b, then
PrefSpace(A, a, b) is preference-like. The theorem is a consequence of (8),
(10), (9), (3), (6), and (23).

Let A be a non empty set and a, b be elements of A.
The functor IntPrefSpace(A, a, b) yielding a strict preference structure is defined
by

(Def. 7) (i) the carrier of it = A, and

(ii) the preference relation of it = ∅, and

(iii) the alternative relation of it = {〈〈a, a〉〉, 〈〈b, b〉〉}, and

(iv) the internal relation of it = {〈〈a, b〉〉, 〈〈b, a〉〉}.
Now we state the proposition:
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(40) Let us consider a 2-element set A and elements a, b of A. Suppose a 6= b.
Then IntPrefSpace(A, a, b) is non empty and preference-like. The theorem
is a consequence of (8), (7), (3), and (27).

5. Characteristic Relation of a Preference Space

Let P be a preference-indifference structure. The functor CharRelP yielding
a binary relation on the carrier of P is defined by the term

(Def. 8) (The preference relation of P ) ∪ (the alternative relation of P ).

We say that P is PI-preference-like if and only if

(Def. 9) (i) the preference relation of P is asymmetric, and

(ii) the alternative relation of P is a tolerance of the carrier of P , and

(iii) (the preference relation of P ) ∩ (the alternative relation of P ) = ∅,
and

(iv) ((the preference relation of P ) ∪ (the preference relation of P )`) ∪
the alternative relation of P = ∇α,

where α is the carrier of P .

Observe that there exists a non empty strict preference-indifference struc-
ture which is PI-preference-like and there exists an empty strict preference-
indifference structure which is PI-preference-like.

Let us consider a non empty preference-indifference structure P . Now we
state the propositions:

(41) Suppose P is PI-preference-like. Then the preference relation of P =
CharRelP ∩ ((CharRelP )`)c.

(42) Suppose P is PI-preference-like. Then the alternative relation of P =
CharRelP ∩ (CharRelP )`.

Let us consider a non empty preference structure P . Now we state the pro-
positions:

(43) Suppose P is preference-like.
Then the preference relation of P = CharRelP ∩ ((CharRelP )`)c.

(44) Suppose P is preference-like.
Then the alternative relation of P = CharRelP ∩ (CharRelP )`.

(45) Suppose P is preference-like.
Then the internal relation of P = (CharRelP )c ∩ ((CharRelP )`)c.
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6. Generating Preference Space from Arbitrary (Characteristic)
Relation

Let X be a set and R be a binary relation on X. The functor Aux(R) yielding
a binary relation on X is defined by the term

(Def. 10) SymCl((R ∩ (R`)c ∪ (R ∩ (R`)c)`) ∪R ∩R`)c.

Now we state the proposition:

(46) Let us consider a non empty set X and a binary relation R on X. Then
((R ∩ (R`)c ∪ (R ∩ (R`)c)`) ∪R ∩R`) ∪Aux(R) = ∇X .

Let us consider a non empty set X and a total reflexive binary relation R

on X. Now we state the propositions:

(47) Aux(R) = (R`)c ∩Rc ∪ (Rc)` ∩ (Rc ∪R`).

(48) R ∩ (R`)c misses Aux(R).

(49) Aux(R) is irreflexive and symmetric.

Let X be a non empty set and R be a total reflexive binary relation on X.
One can check that Aux(R) is irreflexive and symmetric.

Let us consider a non empty set X and a total reflexive binary relation R

on X. Now we state the propositions:

(50) R ∩R` misses Aux(R).

(51) R ∩ (R`)c, R ∩R`, and Aux(R) are mutually disjoint.

LetX be a set and P be a binary relation onX. The functor CharPrefSpaceP
yielding a strict preference structure is defined by

(Def. 11) (i) the carrier of it = X, and

(ii) the preference relation of it = P ∩ (P`)c, and

(iii) the alternative relation of it = P ∩ P`, and

(iv) the internal relation of it = Aux(P ).

Now we state the proposition:

(52) Let us consider a non empty set A and a total reflexive binary rela-
tion R on A. Then CharPrefSpaceR is preference-like. The theorem is a
consequence of (24), (46), (51), (26), and (21).

Let X be a non empty set and P be a binary relation on X. Let us observe
that CharPrefSpaceP is non empty.

Let P be a total reflexive binary relation on X.
Let us note that CharPrefSpaceP is preference-like.
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7. Flat Preference Spaces

Let P be a preference structure. We say that P is flat if and only if

(Def. 12) (i) the alternative relation of P = idα, and

(ii) there exists an element a of P such that the preference relation of
P = {a} × ((the carrier of P ) \ {a}) and the internal relation of
P = ((the carrier of P ) \ {a})× ((the carrier of P ) \ {a}),

where α is the carrier of P .

Now we state the proposition:

(53) Let us consider a trivial set A. Then IdPrefSpaceA = PrefSpaceA.

Let A be a trivial non empty set. One can check that IdPrefSpaceA is non
empty and preference-like.

One can check that IdPrefSpaceA is flat.

8. Tournament Preference Spaces

Let P be a preference structure. We say that P is tournament-like if and
only if

(Def. 13) (i) the alternative relation of P = idα, and

(ii) the internal relation of P = ∅,
where α is the carrier of P .

One can check that every preference structure which is empty is also tour-
nament-like and every preference structure which is tournament-like is also void
and there exists an empty preference space which is tournament-like and there
exists a non empty preference space which is tournament-like.

Now we state the proposition:

(54) Let us consider a non empty preference space P . Then P is tournament-
like if and only if CharRelP is connected, antisymmetric, and total. The
theorem is a consequence of (33), (32), (35), (34), and (45). Proof: If P
is tournament-like, then CharRelP is connected, antisymmetric, and total
by [6, (87)]. If CharRelP is connected, total, and antisymmetric, then P

is tournament-like by [21, (22)], [19, (23)], [21, (13)]. �

9. Total Preference Spaces

Let P be a preference structure. We say that P is total if and only if

(Def. 14) (i) the preference relation of P is transitive, and

(ii) the alternative relation of P = idα, and
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(iii) the internal relation of P = ∅,
where α is the carrier of P .

Let us observe that every preference structure which is total is also void and
every preference structure which is total is also tournament-like and PrefSpace ∅
is total.

Let A be a set. One can verify that IdPrefSpaceA is total.
Let A be a trivial non empty set. Let us note that PrefSpaceA is total and

there exists an empty preference space which is total and there exists a non
empty preference space which is total.

Now we state the proposition:

(55) Let us consider a non empty preference space P . Then P is total if and
only if CharRelP is a connected order in the carrier of P . The theorem
is a consequence of (35), (37), (38), and (36). Proof: If P is total, then
CharRelP is a connected order in the carrier of P by [15, (12)], [21, (13)],
[19, (18), (23)]. If CharRelP is a connected order in the carrier of P , then
P is total by [15, (12)], [21, (13), (1), (22)]. �
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