
Contents Formaliz. Math. 22 (1)

Definition of Flat Poset and Existence Theorems for Recursive
Call

By Kazuhisa Ishida et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Tietze Extension Theorem for n-dimensional Spaces
By Karol Pąk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Brouwer Invariance of Domain Theorem
By Karol Pąk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

The Formalization of Decision-Free Petri Net
By Pratima K. Shah et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Abstract Reduction Systems and Idea of Knuth-Bendix Comple-
tion Algorithm

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Double Series and Sums
By Noboru Endou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Dual Spaces and Hahn-Banach Theorem
By Keiko Narita, Noboru Endou, and Yasunari Shidama 69

Semiring of Sets
By Roland Coghetto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Semiring of Sets: Examples
By Roland Coghetto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Topological Interpretation of Rough Sets
By Adam Grabowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89





FORMALIZED MATHEMATICS

Vol. 22, No. 1, Pages 1–10, 2014
DOI: 10.2478/forma-2014-0001 degruyter.com/view/j/forma

Definition of Flat Poset and Existence
Theorems for Recursive Call

Kazuhisa Ishida
Neyagawa-shi
Osaka, Japan

Yasunari Shidama1

Shinshu University
Nagano, Japan

Adam Grabowski
Institute of Informatics
University of Białystok

Akademicka 2, 15-267 Białystok
Poland

Summary. This text includes the definition and basic notions of product
of posets, chain-complete and flat posets, flattening operation, and the existence
theorems of recursive call using the flattening operator. First part of the article,
devoted to product and flat posets has a purely mathematical quality. Definition
3 allows to construct a flat poset from arbitrary non-empty set [12] in order to
provide formal apparatus which eanbles to work with recursive calls within the
Mizar langauge. To achieve this we extensively use technical Mizar functors like
BaseFunc or RecFunc. The remaining part builds the background for information
engineering approach for lists, namely recursive call for posets [21]. We formalized
some facts from Chapter 8 of this book as an introduction to the next two sections
where we concentrate on binary product of posets rather than on a more general
case.
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1. Preliminaries from Poset Theory

From now on a, Z1, Z2, Z3 denote sets, x, y, z denote objects, and k denotes
a natural number.

Now we state the propositions:

(1) Let us consider a lower-bounded non empty poset P and an element p
of P . If p ¬ the carrier of P , then p = ⊥P .

(2) Let us consider a chain-complete non empty poset P , a non empty chain
L of P , and an element p of P . If p ∈ L, then p ¬ supL.

(3) Let us consider a chain-complete non empty poset P , a non empty chain
L of P , and an element p1 of P . Suppose an element p of P . If p ∈ L, then
p ¬ p1. Then supL ¬ p1.

2. On the Product of Posets

Now we state the proposition:

(4) Let us consider non empty relational structures P , Q and an object x.
Then x is an element of P ×Q if and only if there exists an element p of
P and there exists an element q of Q such that x = 〈〈p, q〉〉.

Let P , Q be non empty posets and L be a non empty chain of P ×Q. The
functors: π1(L) and π2(L) yield non empty chains of P . Let P , Q1, Q2 be non
empty posets, f1 be a monotone function from P into Q1, and f2 be a monotone
function from P into Q2. One can verify that 〈f1, f2〉 is monotone as a function
from P into Q1 ×Q2.

Let P , Q be chain-complete non empty posets. Observe that P ×Q is chain-
complete.

Now we state the proposition:

(5) Let us consider chain-complete non empty posets P , Q and a non empty
chain L of P ×Q. Then supL = 〈〈 supπ1(L), supπ2(L)〉〉.

Let P , Q1, Q2 be strict chain-complete non empty posets, f1 be a continuous
function from P into Q1, and f2 be a continuous function from P into Q2. Note
that 〈f1, f2〉 is continuous as a function from P into Q1 ×Q2.
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3. Definition of Flat Poset and Poset Flattening

Let I3 be a relational structure. We say that I3 is flat if and only if

(Def. 1) There exists an element a of I3 such that for every elements x, y of I3,
x ¬ y iff x = a or x = y.

One can verify that every non empty relational structure which is discrete is
also reflexive and every discrete non empty relational structure which is trivial
is also flat and there exists a poset which is strict, non empty, and flat and every
relational structure which is flat is also reflexive transitive and antisymmetric
and every non empty poset which is flat is also lower-bounded.

In the sequel S denotes a relational structure, P , Q denote non empty flat
posets, p, p1, p2 denote elements of P , and K denotes a non empty chain of P .

Now we state the proposition:

(6) Let us consider a non empty flat poset P and a non empty chain K of P .
Then there exists an element a of P such that K = {a} or K = {⊥P , a}.

Let us consider a function f from P into Q. Now we state the propositions:

(7) There exists an element a of P such that K = {a} and f◦K = {f(a)}
or K = {⊥P , a} and f◦K = {f(⊥P ), f(a)}. The theorem is a consequence
of (6).

(8) If f(⊥P ) = ⊥Q, then f is monotone.

Now we state the proposition:

(9) If K = {⊥P , p}, then supK = p.

One can verify that there exists a poset which is strict, non empty, flat,
and chain-complete and every poset which is non empty and flat is also chain-
complete.

Now we state the proposition:

(10) Let us consider strict non empty chain-complete flat posets P , Q and a
function f from P into Q. If f(⊥P ) = ⊥Q, then f is continuous. Proof:
For every non empty chain K of P , f(supK) ¬ sup(f◦K) by [15, (1)],
(7), [5, (39)], (9). �

4. Primaries for Existence Theorems of Recursive Call Using
Flattening

In the sequel X, Y denote non empty sets.
Let X be a non empty set. The functor FlatRelatX yielding a relation

between succX and succX is defined by the term

(Def. 2) ({〈〈X, X〉〉} ∪ {X} ×X) ∪ idX .

Now we state the proposition:
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(11) Let us consider elements x, y of succX. Then 〈〈x, y〉〉 ∈ FlatRelatX if
and only if x = X or x = y.

Let X be a non empty set. The functor FlatPosetX yielding a strict non
empty chain-complete flat poset is defined by the term

(Def. 3) 〈succX,FlatRelatX〉.
Now we state the propositions:

(12) Let us consider elements x, y of FlatPosetX. Then x ¬ y if and only if
x = X or x = y.

(13) X is an element of FlatPosetX.

Let us consider X. Let us observe that ⊥FlatPosetX reduces to X.
Let x be an object, X, Y be non empty sets, and f be a function from X

into Y. The functor Flatten(f, x) yielding a set is defined by the term

(Def. 4)

{
f(x), if x ∈ X,
Y, otherwise.

The functor Flatten(f) yielding a function from FlatPosetX into FlatPosetY
is defined by

(Def. 5) (i) it(X) = Y, and

(ii) for every element x of FlatPosetX such that x 6= X holds it(x) =
f(x).

Let us observe that Flatten(f) is continuous.
Now we state the proposition:

(14) Let us consider a function f from X into Y.
If x ∈ X, then (Flatten(f))(x) ∈ Y.

Let us consider X and Y. The functor FlatConF(X,Y ) yielding a strict
chain-complete non empty poset is defined by the term

(Def. 6) ConPoset(FlatPosetX,FlatPosetY ).

Let L be a flat poset. One can verify that every chain of L is finite and there
exists a lattice which is non empty, flat, and lower-bounded.

Now we state the propositions:

(15) Let us consider a non empty lattice L, an element x of L, and an x-chain
A of x. Then A = 1. Proof: For every element z of L such that z ∈ A
holds z ∈ {x} by [19, (2)]. �

(16) Let us consider a non empty flat lower-bounded lattice L, an element x
of L, and a ⊥L-chain A of x. Then A ¬ 2. The theorem is a consequence
of (6) and (15).

(17) Let us consider a finite lower-bounded antisymmetric non empty lattice
L. Then L is flat if and only if for every element x of L, heightx ¬ 2.
Proof: There exists an element a of L such that for every elements x, y
of L, x ¬ y iff x = a or x = y by [5, (44)], [13, (2), (6)], [3, (13)]. �
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5. Existence Theorem of Recursive Call for Single-equation

From now on D denotes a subset of X, I denotes a function from X into
Y, J denotes a function from X × Y into Y, and E denotes a function from
X into X.

Let X be a non empty set, D be a subset of X, and E be a function from
X into X. We say that E is well founded with minimal set D if and only if

(Def. 7) There exists a function l from X into N such that for every element x of
X, if l(x) ¬ 0, then x ∈ D and if x /∈ D, then l(E(x)) < l(x).

Let X, Y be non empty sets. Let I be a function from X into Y, J be a func-
tion fromX×Y into Y, and x, y be objects. The functor BaseFunc01(x, y, I, J,D)
yielding a set is defined by the term

(Def. 8)


I(x), if x ∈ D,
J(〈〈x, y〉〉), if x /∈ D and x ∈ X and y ∈ Y,
Y, otherwise.

Let E be a function from X into X and h be an object. Assume h is a
continuous function from FlatPosetX into FlatPosetY.

The functor RecFunc01(h,E, I, J,D) yielding a continuous function from
FlatPosetX into FlatPosetY is defined by

(Def. 9) Let us consider an element x of FlatPosetX and a continuous func-
tion f from FlatPosetX into FlatPosetY. Suppose h = f . Then it(x) =
BaseFunc01(x, f((Flatten(E))(x)), I, J,D).

Now we state the propositions:

(18) There exists a continuous functionW from FlatConF(X,Y ) into FlatConF
(X,Y ) such that for every element f of ConFuncs(FlatPosetX,FlatPosetY ),
W (f) = RecFunc01(f,E, I, J,D). Proof: Set F1 = FlatPosetX. Set
F2 = FlatPosetY. Set F3 = FlatConF(X,Y ). Set C1 = ConFuncs(F1, F2).
Define H(object) = RecFunc01($1, E, I, J,D). For every continuous func-
tion h from F1 into F2, h ∈ C1 by [7, (8)]. For every set h such that h ∈ C1
holds h is a continuous function from F1 into F2. There exists a function
W from C1 into C1 such that for every object f such that f ∈ C1 holds
W (f) = H(f) from [7, Sch. 2]. Consider I3 being a function from C1 into
C1 such that for every object f such that f ∈ C1 holds I3(f) = H(f). I3 is
a continuous function from F3 into F3 by [7, (5)], (12), [24, (9)], [15, (1),
(11)]. �

(19) There exists a set f such that

(i) f ∈ ConFuncs(FlatPosetX,FlatPosetY ), and

(ii) f = RecFunc01(f,E, I, J,D).

The theorem is a consequence of (18).
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Let us assume that E is well founded with minimal set D. Now we state the
propositions:

(20) There exists a continuous function f from FlatPosetX into FlatPosetY
such that for every element x of X, f(x) ∈ Y and f(x) = BaseFunc01(x, f
(E(x)), I, J,D). Proof: Consider f being a set such that f ∈ ConFuncs
(FlatPosetX,FlatPosetY ) and f = RecFunc01(f,E, I, J,D). Consider l
being a function from X into N such that for every element x0 of X, if
l(x0) ¬ 0, then x0 ∈ D and if x0 /∈ D, then l(E(x0)) < l(x0). Define
P[natural number] ≡ for every element x0 of X such that l(x0) ¬ $1
holds f(x0) ∈ Y and f(x0) = BaseFunc01(x0, f(E(x0)), I, J,D). P[0] by
[7, (5)]. For every k such that P[k] holds P[k+ 1] by [7, (5)], [3, (13)]. For
every natural number k, P[k] from [3, Sch. 2]. For every element x of X,
f(x) ∈ Y and f(x) = BaseFunc01(x, f(E(x)), I, J,D). �

(21) There exists a function f from X into Y such that for every element x of
X, if x ∈ D, then f(x) = I(x) and if x /∈ D, then f(x) = J(〈〈x, f(E(x))〉〉).

Now we state the proposition:

(22) Let us consider functions f1, f2 from X into Y. Suppose

(i) E is well founded with minimal set D, and

(ii) for every element x of X, if x ∈ D, then f1(x) = I(x) and if x /∈ D,
then f1(x) = J(〈〈x, f1(E(x))〉〉), and

(iii) for every element x of X, if x ∈ D, then f2(x) = I(x) and if x /∈ D,
then f2(x) = J(〈〈x, f2(E(x))〉〉).

Then f1 = f2. Proof: Consider l being a function from X into N such
that for every element x of X, if l(x) ¬ 0, then x ∈ D and if x /∈ D, then
l(E(x)) < l(x). Define P[natural number] ≡ for every element x of X such
that l(x) ¬ $1 holds f1(x) = f2(x). P[0]. For every k such that P[k] holds
P[k + 1] by [3, (13)]. For every natural number k, P[k] from [3, Sch. 2].
For every element x of X, f1(x) = f2(x). �

6. Existence Theorem of Recursive Calls for 2-equations

From now on D denotes a subset of X, I, I1, I2 denote functions from X

into Y, J , J1, J2 denote functions from X × Y × Y into Y, and E1, E2 denote
functions from X into X.

Let X be a non empty set, D be a subset of X, and E1, E2 be functions
from X into X. We say that (E1,E2) is well founded with minimal set D if and
only if

(Def. 10) There exists a function l from X into N such that for every element x
of X, if l(x) ¬ 0, then x ∈ D and if x /∈ D, then l(E1(x)) < l(x) and
l(E2(x)) < l(x).
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Let X, Y be non empty sets. Let I be a function from X into Y, J be
a function from X × Y × Y into Y, and x, y1, y2 be objects. The functor
BaseFunc02(x, y1, y2, I, J,D) yielding a set is defined by the term

(Def. 11)


I(x), if x ∈ D,
J(〈〈x, y1, y2〉〉), if x /∈ D and x ∈ X and y1, y2 ∈ Y,
Y, otherwise.

Let E1, E2 be functions from X into X and h1, h2 be objects. Assume h1 is
a continuous function from FlatPosetX into FlatPosetY and h2 is a continuous
function from FlatPosetX into FlatPosetY. The functor RecFunc02(h1, h2, E1,
E2, I, J,D) yielding a continuous function from FlatPosetX into FlatPosetY is
defined by

(Def. 12) Let us consider an element x of FlatPosetX and continuous functions
f1, f2 from FlatPosetX into FlatPosetY. Suppose

(i) h1 = f1, and

(ii) h2 = f2.

Then it(x) =
BaseFunc02(x, f1((Flatten(E1))(x)), f2((Flatten(E2))(x)), I, J,D).

Now we state the propositions:

(23) There exists a continuous function W from FlatConF(X,Y )×FlatConF
(X,Y ) into FlatConF(X,Y ) such that for every set f such that f ∈
ConFuncs(FlatPosetX,FlatPosetY )×ConFuncs(FlatPosetX,FlatPosetY )
holds W (f) = RecFunc02(f1, f2, E1, E2, I, J,D). Proof: Set F1 =
FlatPosetX. Set F2 = FlatPosetY. Set F3 = FlatConF(X,Y ). Set C1 =
ConFuncs(F1, F2). Set F4 = F3×F3. Set C2 = C1×C1. DefineH(object) =
RecFunc02($11, $12, E1, E2, I, J,D). For every continuous function h from
F1 into F2, h ∈ C1 by [7, (8)]. For every set h such that h ∈ C1 holds h
is a continuous function from F1 into F2. For every element h of F4, there
exist continuous functions h1, h2 from F1 into F2 such that h = 〈〈h1, h2〉〉.
There exists a function W from C2 into C1 such that for every object f
such that f ∈ C2 holds W (f) = H(f) from [7, Sch. 2]. Consider I3 being
a function from C2 into C1 such that for every object f such that f ∈ C2
holds I3(f) = H(f). I3 is a continuous function from F4 into F3 by [7,
(5)], [16, (12)], (12), [24, (9)]. �

(24) There exist sets f , g such that

(i) f , g ∈ ConFuncs(FlatPosetX,FlatPosetY ), and

(ii) f = RecFunc02(f, g, E1, E2, I1, J1, D), and

(iii) g = RecFunc02(f, g, E1, E2, I2, J2, D).

The theorem is a consequence of (23) and (4).
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Let us assume that (E1,E2) is well founded with minimal set D. Now we
state the propositions:

(25) There exist continuous functions f , g from FlatPosetX into FlatPosetY
such that for every element x of X, f(x) ∈ Y and f(x) = BaseFunc02(x,
f(E1(x)), g(E2(x)), I1, J1, D) and g(x) ∈ Y and g(x) = BaseFunc02(x,
f(E1(x)), g(E2(x)), I2, J2, D). Proof: Consider f , g being sets such that
f , g ∈ ConFuncs(FlatPosetX,FlatPosetY ) and f = RecFunc02(f, g, E1,
E2, I1, J1, D) and g = RecFunc02(f, g, E1, E2, I2, J2, D). Consider l being
a function from X into N such that for every element x0 of X, if l(x0) ¬ 0,
then x0 ∈ D and if x0 /∈ D, then l(E1(x0)) < l(x0) and l(E2(x0)) < l(x0).
Define P[natural number] ≡ for every elements x1, x2 of X such that
l(x1) ¬ $1 and l(x2) ¬ $1 holds f(x1) ∈ Y and f(x1) = BaseFunc02(x1,
f(E1(x1)), g(E2(x1)), I1, J1, D) and g(x2) ∈ Y and g(x2) = BaseFunc02(x2,
f(E1(x2)), g(E2(x2)), I2, J2, D). P[0] by [7, (5)]. For every k such that P[k]
holds P[k + 1] by [7, (5)], [3, (13)], [18, (69)]. For every natural number
k, P[k] from [3, Sch. 2]. For every elements x1, x2 of X, f(x1) ∈ Y and
f(x1) = BaseFunc02(x1, f(E1(x1)), g(E2(x1)), I1, J1, D) and g(x2) ∈ Y

and g(x2) = BaseFunc02(x2, f(E1(x2)), g(E2(x2)), I2, J2, D) by [3, (11)].
�

(26) There exist functions f , g from X into Y such that for every element x of
X, if x ∈ D, then f(x) = I1(x) and g(x) = I2(x) and if x /∈ D, then f(x) =
J1(〈〈x, f(E1(x)), g(E2(x))〉〉) and g(x) = J2(〈〈x, f(E1(x)), g(E2(x))〉〉).

Now we state the propositions:

(27) Let us consider functions f1, g1, f2, g2 from X into Y. Suppose

(i) (E1,E2) is well founded with minimal set D, and

(ii) for every element x of X, if x ∈ D, then f1(x) = I1(x) and g1(x) =
I2(x) and if x /∈ D, then f1(x) = J1(〈〈x, f1(E1(x)), g1(E2(x))〉〉) and
g1(x) = J2(〈〈x, f1(E1(x)), g1(E2(x))〉〉), and

(iii) for every element x of X, if x ∈ D, then f2(x) = I1(x) and g2(x) =
I2(x) and if x /∈ D, then f2(x) = J1(〈〈x, f2(E1(x)), g2(E2(x))〉〉) and
g2(x) = J2(〈〈x, f2(E1(x)), g2(E2(x))〉〉).

Then

(iv) f1 = f2, and

(v) g1 = g2.

Proof: Consider l being a function from X into N such that for every
element x of X, if l(x) ¬ 0, then x ∈ D and if x /∈ D, then l(E1(x)) < l(x)
and l(E2(x)) < l(x). Define P[natural number] ≡ for every element x of X
such that l(x) ¬ $1 holds f1(x) = f2(x) and g1(x) = g2(x). P[0]. For every
k such that P[k] holds P[k + 1] by [3, (13)]. For every natural number
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k, P[k] from [3, Sch. 2]. For every element x of X, f1(x) = f2(x) and
g1(x) = g2(x). �

(28) Suppose (E1,E2) is well founded with minimal set D. Then there exists
a function f from X into Y such that for every element x of X, if x ∈ D,
then f(x) = I(x) and if x /∈ D, then f(x) = J(〈〈x, f(E1(x)), f(E2(x))〉〉).
The theorem is a consequence of (26).

(29) Let us consider functions f1, f2 from X into Y. Suppose

(i) (E1,E2) is well founded with minimal set D, and

(ii) for every element x of X, if x ∈ D, then f1(x) = I(x) and if x /∈ D,
then f1(x) = J(〈〈x, f1(E1(x)), f1(E2(x))〉〉), and

(iii) for every element x of X, if x ∈ D, then f2(x) = I(x) and if x /∈ D,
then f2(x) = J(〈〈x, f2(E1(x)), f2(E2(x))〉〉).

Then f1 = f2. Proof: Consider l being a function from X into N such
that for every element x of X, if l(x) ¬ 0, then x ∈ D and if x /∈ D,
then l(E1(x)) < l(x) and l(E2(x)) < l(x). Define P[natural number] ≡
for every element x of X such that l(x) ¬ $1 holds f1(x) = f2(x). P[0].
For every k such that P[k] holds P[k + 1] by [3, (13)]. For every natural
number k, P[k] from [3, Sch. 2]. For every element x of X, f1(x) = f2(x).
�
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Let n be a non zero natural number, X be a set, and F be an element of
((the carrier of R1)X)n. Let us note that the functor

∏∗ F yields a function from
X into EnT. Now we state the proposition:

(1) Let us consider sets X, Y, a function yielding function F , and objects x,
y. Suppose

(i) F is (Y X)-valued, or

(ii) y ∈ dom
∏∗ F .

Then F (x)(y) = (
∏∗ F )(y)(x).

Let us consider n, p, and r. The functor OpenHypercube(p, r) yielding an
open subset of EnT is defined by

(Def. 1) There exists a point e of En such that

(i) p = e, and

(ii) it = OpenHypercube(e, r).

Now we state the propositions:

(2) If q ∈ OpenHypercube(p, r) and s ∈ ]p(i) − r, p(i) + r[, then q +·
(i, s) ∈ OpenHypercube(p, r). Proof: Consider e being a point of En
such that p = e and OpenHypercube(p, r) = OpenHypercube(e, r). Set
I = Intervals(e, r). Set q3 = q +· (i, s). For every object x such that
x ∈ dom I holds q3(x) ∈ I(x) by [2, (9)], [7, (31), (32)]. �

(3) If i ∈ Seg n, then (PROJ(n, i))◦(OpenHypercube(p, r)) = ]p(i)−r, p(i)+
r[. The theorem is a consequence of (2).

(4) q ∈ OpenHypercube(p, r) if and only if for every i such that i ∈ Seg n
holds q(i) ∈ ]p(i)− r, p(i) + r[. The theorem is a consequence of (3).

Let us consider n, p, and R. The functor ClosedHypercube(p,R) yielding a
subset of EnT is defined by

(Def. 2) q ∈ it if and only if for every i such that i ∈ Seg n holds q(i) ∈ [p(i) −
R(i), p(i) +R(i)].

Now we state the propositions:

(5) If there exists i such that i ∈ Seg n ∩ domR and R(i) < 0, then
ClosedHypercube(p,R) is empty.

(6) If for every i such that i ∈ Seg n ∩ domR holds R(i)  0, then p ∈
ClosedHypercube(p,R).

Let us consider n and p. Let R be a non-negative yielding real-valued finite
sequence. One can check that ClosedHypercube(p,R) is non empty.

Let us consider R. Let us observe that ClosedHypercube(p,R) is convex and
compact.

Now we state the propositions:
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(7) If i ∈ Seg n and q ∈ ClosedHypercube(p,R) and r ∈ [p(i)− R(i), p(i) +
R(i)], then q+·(i, r) ∈ ClosedHypercube(p,R). Proof: Set p4 = q+·(i, r).
For every natural number j such that j ∈ Seg n holds p4(j) ∈ [p(j) −
R(j), p(j) +R(j)] by [7, (32), (31)]. �

(8) Suppose i ∈ Seg n and ClosedHypercube(p,R) is not empty.
Then (PROJ(n, i))◦(ClosedHypercube(p,R)) = [p(i) − R(i), p(i) + R(i)].
The theorem is a consequence of (5), (7), and (6).

(9) If n ¬ lenR and r ¬ inf rngR,
then OpenHypercube(p, r) ⊆ ClosedHypercube(p,R).

(10) q ∈ Fr ClosedHypercube(p,R) if and only if q ∈ ClosedHypercube(p,R)
and there exists i such that i ∈ Seg n and q(i) = p(i) − R(i) or q(i) =
p(i) + R(i). Proof: Set T4 = EnT. If q ∈ Fr ClosedHypercube(p,R), then
q ∈ ClosedHypercube(p,R) and there exists i such that i ∈ Seg n and
q(i) = p(i)−R(i) or q(i) = p(i) +R(i) by [16, (22)], [32, (105)], [14, (33)],
[6, (3)]. For every subset S of T4 such that S is open and q ∈ S holds
ClosedHypercube(p,R) meets S and (ClosedHypercube(p,R))c meets S
by [16, (67)], [43, (23)], [38, (5)], [31, (13)]. �

(11) If r  0, then p ∈ ClosedHypercube(p, n 7→ r).

(12) If r > 0, then Int ClosedHypercube(p, n 7→ r) = OpenHypercube(p, r).
Proof: Set O = OpenHypercube(p, r). Set C = ClosedHypercube(p, n 7→
r). Set T4 = EnT. Set R = n 7→ r. Consider e being a point of En such
that p = e and OpenHypercube(p, r) = OpenHypercube(e, r). IntC ⊆ O

by [43, (39)], [9, (57)], (10), [39, (29)]. Reconsider q = x as a point of T4.
For every i such that i ∈ Seg n holds q(i) ∈ [p(i) − R(i), p(i) + R(i)] by
[9, (57)], (3). Consider i such that i ∈ Seg n and q(i) = p(i) − R(i) or
q(i) = p(i) +R(i). (PROJ(n, i))◦O = ]e(i)− r, e(i) + r[. �

(13) OpenHypercube(p, r) ⊆ ClosedHypercube(p, n 7→ r).

(14) If r < s, then ClosedHypercube(p, n 7→ r) ⊆ OpenHypercube(p, s). The
theorem is a consequence of (4).

Let us consider n and p. Let r be a positive real number. Let us note that
ClosedHypercube(p, n 7→ r) is non boundary.

2. Properties of the Product of Closed Hypercube

From now on T1, T2, S1, S2 denote non empty topological spaces, t1 denotes
a point of T1, t2 denotes a point of T2, p2, q2 denote points of EnT, and p1, q1
denote points of EmT .

Now we state the propositions:

(15) Let us consider a function f from T1 into T2 and a function g from S1
into S2. Suppose
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(i) f is a homeomorphism, and

(ii) g is a homeomorphism.

Then f × g is a homeomorphism.

(16) Suppose r > 0 and s > 0. Then there exists a function h from
(EnT�ClosedHypercube(p2, n 7→ r)) × (EmT �ClosedHypercube(p1,m 7→ s))
into En+mT �ClosedHypercube(0En+mT

, (n+m) 7→ 1) such that

(i) h is a homeomorphism, and

(ii) h◦(OpenHypercube(p2, r)×OpenHypercube(p1, s)) =

OpenHypercube(0En+mT
, 1).

Proof: Set T6 = EnT. Set T5 = EmT . Set n1 = n+m. Set T7 = En1T . Set R2 =
ClosedHypercube(0T6 , n 7→ 1). Set R4 = ClosedHypercube(p2, n 7→ r). Set
R5 = ClosedHypercube(p1,m 7→ s). Set R1 = ClosedHypercube(0T5 ,m 7→
1). Set R3 = ClosedHypercube(0T7 , n1 7→ 1). Reconsider R10 = R5, R6 =
R1 as a non empty subset of T5. Consider h3 being a function from T5�R10
into T5�R6 such that h3 is a homeomorphism and h3

◦(FrR10) = FrR6.
Reconsider R9 = R4, R7 = R2 as a non empty subset of T6. Consider
h4 being a function from T6�R9 into T6�R7 such that h4 is a homeomor-
phism and h4◦(FrR9) = FrR7. Set O8 = OpenHypercube(p2, r). Set O9 =
OpenHypercube(p1, s). Set O6 = OpenHypercube(0T7 , 1). IntR10 = O9.
Set O5 = OpenHypercube(0T6 , 1). Set O7 = OpenHypercube(0T5 , 1). Re-
consider R8 = R3 as a non empty subset of T7. Consider f being a function
from T6 × T5 into T7 such that f is a homeomorphism and for every ele-
ment f5 of T6 and for every element f6 of T5, f(f5, f6) = f5

a f6. f◦(R7 ×
R6) ⊆ R8 by [14, (87)], [9, (57)], [6, (25)]. R8 ⊆ f◦(R7 ×R6) by [9, (23)],
[27, (17)], [4, (11)], [6, (5)]. Set h5 = h4 × h3. h5 is a homeomorphism.
IntR7 = O5. Reconsider f1 = f�(R7 × R6) as a function from (T6�R7) ×
(T5�R6) into T7�R8. Reconsider h = f1 · h5 as a function from (T6�R4) ×
(T5�R5) into T7�R3. IntR6 = O7. IntR9 = O8. h◦(O8 × O9) ⊆ O6 by [14,
(87)], [10, (12)], [43, (40)], [10, (49)]. Reconsider p3 = y as a point of T7.
Consider p, q being finite sequences of elements of R such that len p = n

and len q = m and p3 = pa q. q ∈ O7. q ∈ R6. Consider x2 being an object
such that x2 ∈ domh3 and h3(x2) = q. p ∈ O5. p ∈ R7. Consider x1 being
an object such that x1 ∈ domh4 and h4(x1) = p. �

(17) Suppose r > 0 and s > 0. Let us consider a function f from T1 into
EnT�ClosedHypercube(p2, n 7→ r) and a function g from T2 into
EmT �ClosedHypercube(p1,m 7→ s). Suppose

(i) f is a homeomorphism, and

(ii) g is a homeomorphism.

Then there exists a function h from T1 × T2 into
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En+mT �ClosedHypercube(0En+mT
, (n+m) 7→ 1) such that

(iii) h is a homeomorphism, and

(iv) for every t1 and t2, f(t1) ∈ OpenHypercube(p2, r) and g(t2) ∈
OpenHypercube(p1, s) iff h(t1, t2) ∈ OpenHypercube(0En+mT

, 1).

Proof: Set n1 = n + m. Set T6 = EnT. Set T5 = EmT . Set T7 = En1T .
Set R7 = n 7→ r. Set R6 = m 7→ s. Set R8 = n1 7→ 1. Set R4 =
ClosedHypercube(p2, R7). Set R5 = ClosedHypercube(p1, R6). Set C2 =
ClosedHypercube(0T7 , R8). Reconsider R10 = R5 as a non empty sub-
set of T5. Reconsider R9 = R4 as a non empty subset of T6. Set O8 =
OpenHypercube(p2, r). Set O9 = OpenHypercube(p1, s). Set O =
OpenHypercube(0T7 , 1). Consider h being a function from (T6�R9)×(T5�R10)
into T7�C2 such that h is a homeomorphism and h◦(O8 × O9) = O. Re-
consider G = g as a function from T2 into T5�R10. Reconsider F = f as
a function from T1 into T6�R9. Reconsider f4 = h · (F ×G) as a function
from T1×T2 into T7�C2. F ×G is a homeomorphism. O9 ⊆ R10. O8 ⊆ R9.
If f(t1) ∈ O8 and g(t2) ∈ O9, then f4(t1, t2) ∈ O by [14, (87)], [10, (12)].
Consider x3 being an object such that x3 ∈ domh and x3 ∈ O8 ×O9 and
h(x3) = h(〈〈f(t1), g(t2)〉〉). �

Let us consider n. One can check that there exists a subset of EnT which is
non boundary, convex, and compact.

Now we state the propositions:

(18) Let us consider a non boundary convex compact subset A of EnT, a non
boundary convex compact subset B of EmT , a non boundary convex com-
pact subset C of En+mT , a function f from T1 into EnT�A, and a function g
from T2 into EmT �B. Suppose

(i) f is a homeomorphism, and

(ii) g is a homeomorphism.

Then there exists a function h from T1 × T2 into En+mT �C such that

(iii) h is a homeomorphism, and

(iv) for every t1 and t2, f(t1) ∈ IntA and g(t2) ∈ IntB iff h(t1, t2) ∈ IntC.

Proof: Set T6 = EnT. Set T5 = EmT . Set n1 = n+m. Set T7 = En1T . Set R7 =
ClosedHypercube(0T6 , n 7→ 1). Set R6 = ClosedHypercube(0T5 ,m 7→ 1).
Set R8 = ClosedHypercube(0T7 , n1 7→ 1). Consider g1 being a function
from T5�B into T5�R6 such that g1 is a homeomorphism and g1

◦(FrB) =
FrR6. Reconsider g2 = g1 · g as a function from T2 into T5�R6. Consi-
der f7 being a function from T6�A into T6�R7 such that f7 is a home-
omorphism and f7

◦(FrA) = FrR7. Reconsider f8 = f7 · f as a func-
tion from T1 into T6�R7. Set O3 = OpenHypercube(0T6 , 1). Set O2 =
OpenHypercube(0T5 , 1). Set O4 = OpenHypercube(0T7 , 1). Consider H
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being a function from T7�R8 into T7�C such that H is a homeomorphism
and H◦(FrR8) = FrC. IntR6 = O2. Consider P being a function from
T1× T2 into T7�R8 such that P is a homeomorphism and for every t1 and
t2, f8(t1) ∈ O3 and g2(t2) ∈ O2 iff P (t1, t2) ∈ O4. Reconsider H1 = H · P
as a function from T1 × T2 into T7�C. IntR8 = O4. If f(t1) ∈ IntA and
g(t2) ∈ IntB, then H1(t1, t2) ∈ IntC by [10, (11), (12)], (12). P (〈〈t1,
t2〉〉) ∈ IntR8. P (t1, t2) ∈ O4. IntR7 = O3. f(t1) ∈ IntA by [43, (40)]. �

(19) Let us consider a point p2 of EnT, a point p1 of EmT , r, and s. Suppose

(i) r > 0, and

(ii) s > 0.

Then there exists a function h from Tdisk(p2, r)× Tdisk(p1, s) into
Tdisk(0En+mT

, 1) such that

(iii) h is a homeomorphism, and

(iv) h◦(Ball(p2, r)× Ball(p1, s)) = Ball(0En+mT
, 1).

Proof: Set T6 = EnT. Set T5 = EmT . Set n1 = n + m. Set T7 = En1T .
Reconsider C4 = Ball(p2, r) as a non empty subset of T6. Reconsider
C3 = Ball(p1, s) as a non empty subset of T5. Reconsider C5 = Ball(0T7 , 1)
as a non empty subset of T7. Set R7 = ClosedHypercube(0T6 , n 7→ 1). Set
R6 = ClosedHypercube(0T5 ,m 7→ 1). Consider f7 being a function from
T6�C4 into T6�R7 such that f7 is a homeomorphism and f7

◦(FrC4) =
FrR7. Consider g1 being a function from T5�C3 into T5�R6 such that g1 is
a homeomorphism and g1

◦(FrC3) = FrR6. Consider P being a function
from Tdisk(p2, r)×Tdisk(p1, s) into Tdisk(0T7 , 1) such that P is a home-
omorphism and for every point t1 of T6�C4 and for every point t2 of T5�C3,
f7(t1) ∈ IntR7 and g1(t2) ∈ IntR6 iff P (t1, t2) ∈ IntC5. P ◦(Ball(p2, r) ×
Ball(p1, s)) ⊆ Ball(0T7 , 1) by [30, (3)], [43, (40)]. Consider x being an ob-
ject such that x ∈ domP and P (x) = y. Consider y1, y2 being objects
such that y1 ∈ C4 and y2 ∈ C3 and x = 〈〈y1, y2〉〉. �

(20) Suppose r > 0 and s > 0 and T1 and EnT�Ball(p2, r) are homeomor-
phic and T2 and EmT �Ball(p1, s) are homeomorphic. Then T1 × T2 and
En+mT �Ball(0En+mT

, 1) are homeomorphic.

3. Tietze Extension Theorem

In the sequel T , S denote topological spaces, A denotes a closed subset of
T , and B denotes a subset of S.

Now we state the propositions:

(21) Let us consider a non zero natural number n and an element F of
((the carrier of R1)α)n. Suppose If i ∈ domF , then for every function
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h from T into R1 such that h = F (i) holds h is continuous. Then
∏∗ F

is continuous, where α is the carrier of T . Proof: Set T4 = EnT. Set
F1 =

∏∗ F . For every subset Y of T4 such that Y is open holds F1−1(Y )
is open by [16, (67)], [11, (2)], (1), [19, (17)]. �

(22) Suppose T is normal. Let us consider a function f from T �A into
EnT�ClosedHypercube(0EnT , n 7→ 1). Suppose f is continuous. Then there
exists a function g from T into EnT�ClosedHypercube(0EnT , n 7→ 1) such
that

(i) g is continuous, and

(ii) g�A = f .

The theorem is a consequence of (8), (1), and (21).

(23) Suppose T is normal. Let us consider a subset X of EnT. Suppose X is
compact, non boundary, and convex. Let us consider a function f from
T �A into EnT�X. Suppose f is continuous. Then there exists a function g

from T into EnT�X such that

(i) g is continuous, and

(ii) g�A = f .

The theorem is a consequence of (22).

Now we state the proposition:

(24) The First Implication of Tietze Extension Theorem for n-
dimensional Spaces:
Suppose T is normal. Let us consider a subset X of EnT. Suppose

(i) X is compact, non boundary, and convex, and

(ii) B and X are homeomorphic.

Let us consider a function f from T �A into S�B. Suppose f is continuous.
Then there exists a function g from T into S�B such that

(iii) g is continuous, and

(iv) g�A = f .

The theorem is a consequence of (23).

Now we state the proposition:

(25) The Second Implication of Tietze Extension Theorem for n-
dimensional Spaces:
Let us consider a non empty topological space T and n. Suppose

(i) n  1, and

(ii) for every topological space S and for every non empty closed subset
A of T and for every subset B of S such that there exists a subset X
of EnT such that X is compact, non boundary, and convex and B and
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X are homeomorphic for every function f from T �A into S�B such
that f is continuous there exists a function g from T into S�B such
that g is continuous and g�A = f .

Then T is normal. Proof: Set C1 = [−1, 1]T. For every non empty closed
subset A of T and for every continuous function f from T �A into C1, there
exists a continuous function g from T into [−1, 1]T such that g�A = f by
[19, (18), (17)], [11, (2)], [33, (26)]. �
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Summary. In this article we focus on a special case of the Brouwer inva-
riance of domain theorem. Let us A, B be a subsets of En, and f : A → B be a
homeomorphic. We prove that, if A is closed then f transform the boundary of
A to the boundary of B; and if B is closed then f transform the interior of A
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1. Preliminaries
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Let us consider m. Let f be a function from X into EnT and g be a function
from X into EmT . Let us observe that the functor f _ g yields a function from X

into En+mT . Let T be a topological space. Let f be a continuous function from
T into EnT and g be a continuous function from T into EmT . Note that f _ g is
continuous as a function from T into En+mT .

Let f be a real-valued function. The functor |[f ]| yielding a function is defined
by

(Def. 1) (i) dom it = dom f , and

(ii) for every object x such that x ∈ dom it holds it(x) = |[f(x)]|.
One can verify that |[f ]| is (the carrier of E1T)-valued.
Let us consider X. Let Y be a non empty real-membered set and f be a

function from X into Y. One can verify that the functor |[f ]| yields a function
from X into E1T. Let T be a non empty topological space and f be a continuous
function from T into R1. Note that |[f ]| is continuous as a function from T

into E1T.
Let f be a continuous real map of T . Observe that |[f ]| is continuous as a

function from T into E1T.

2. A Distribution of Sphere

In the sequel N denotes a non zero natural number and u, t denote points
of EN+1T .

Now we state the propositions:

(1) Let us consider an element F of ((the carrier of R1)α)N . Suppose If
i ∈ domF , then F (i) = PROJ(N + 1, i). Then

(i) for every t, (
∏∗ F )(t) = t�N , and

(ii) for every subsets S3, S2 of EN+1T such that S3 = {u : u(N + 1) 
0 and |u| = 1} and S2 = {t : t(N + 1) ¬ 0 and |t| = 1} holds
(
∏∗ F )◦S3 = Ball(0ENT , 1) and (

∏∗ F )◦S2 = Ball(0ENT , 1) and

(
∏∗ F )◦(S3 ∩ S2) = Sphere(0ENT , 1) and for every function H from

EN+1T �S3 into Tdisk(0ENT , 1) such that H =
∏∗ F �S3 holds H is a

homeomorphism and for every function H from EN+1T �S2 into

Tdisk(0ENT , 1) such that H =
∏∗ F �S2 holds H is a homeomorphism,

where α is the carrier of EN+1T . Proof: Set N2 = N + 1. Set T10 = EN2T .
Set T4 = ENT . Set N3 = N NormF. Set N4 = N3 · N3. Reconsider O = 1
as an element of N. Set T3 = Tdisk(0ENT , 1). Reconsider m2 = −N4 as a

function from T4 into R1. Reconsider m1 = 1 + m2 as a function from
T4 into R1. Set F1 =

∏∗ F . For every t, (
∏∗ F )(t) = t�N by [2, (13)],

[41, (25)], [4, (1)]. Ball(0T4 , 1) ⊆ F1
◦S3 by [14, (22)], [28, (11)], [6, (16)],
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[11, (145)]. Ball(0T4 , 1) ⊆ F1
◦S2 by [14, (22)], [28, (11)], [6, (16)], [11,

(145)]. Sphere(0T4 , 1) ⊆ F1
◦(S2 ∩ S3) by [14, (22)], [28, (12)], [6, (16),

(92)]. F1◦S3 ⊆ Ball(0T4 , 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)].
F1
◦S2 ⊆ Ball(0T4 , 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. F1◦(S2 ∩

S3) ⊆ Sphere(0T4 , 1) by [14, (22)], [4, (59)], [24, (17)], [19, (10)]. For every
function H from EN+1T �S3 into Tdisk(0ENT , 1) such that H =

∏∗ F �S3 holds
H is a homeomorphism by [24, (17)], [17, (17)], [2, (11)], [25, (13)]. For
every objects x1, x2 such that x1, x2 ∈ domH and H(x1) = H(x2) holds
x1 = x2 by [14, (22)], [19, (10)], [7, (47)], [39, (40)]. Set T3 = Tdisk(0T4 , 1).
Set M = m1�T3. Reconsider M1 = M as a continuous function from T3
into R. Reconsider M2 = −

√
M1 as a function from T3 into R. For every

point p of T4 such that p ∈ the carrier of T3 holds M1(p) = 1− |p| · |p| by
[7, (49)]. Reconsider S1 = |[M2]| as a continuous function from T3 into E1T.
Reconsider I3 = idT3 as a continuous function from T3 into T4. Reconsider
I4 = I3

_S1 as a continuous function from T3 into EN+OT . For every objects
y, x, y ∈ rngH and x = I4(y) iff x ∈ domH and y = H(x) by [7, (17)],
[11, (145), (144), (55)]. For every subset P of T10�S2, P is open iff H◦P is
open by [4, (1)], [2, (13)], [25, (57)]. �

(2) Let us consider subsets S3, S2 of EnT. Suppose

(i) S3 = {s, where s is a point of EnT : s(n)  0 and |s| = 1}, and

(ii) S2 = {t, where t is a point of EnT : t(n) ¬ 0 and |t| = 1}.
Then

(iii) S3 is closed, and

(iv) S2 is closed.

(3) Let us consider a metrizable topological space T2. Suppose T2 is finite-
ind and second-countable. Let us consider a closed subset F of T2. Sup-
pose indF c ¬ n. Let us consider a continuous function f from T2�F
into TopUnitCircle(n + 1). Then there exists a continuous function g

from T2 into TopUnitCircle(n + 1) such that g�F = f . Proof: Defi-
ne P[natural number] ≡ for every metrizable topological space T2 such
that T2 is finite-ind and second-countable for every closed subset F of
T2 such that indF c ¬ $1 for every continuous function f from T2�F into
TopUnitCircle($1+1), there exists a function g from T2 into TopUnitCircle
($1+1) such that g is continuous and g�F = f . For every n such that P[n]
holds P[n + 1] by (2), [29, (9)], [42, (13)], [44, (121)]. P[(0 qua natural
number)] by [44, (143), (135)], [29, (9)], [14, (70)]. For every n, P[n] from
[2, Sch. 2]. �

(4) Suppose p /∈ A and r > 0. Then there exists a function h from EnT�A into
EnT�Sphere(p, r) such that

(i) h is continuous, and
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(ii) h�Sphere(p, r) = idA∩Sphere(p,r).

(5) If r + |p− q| ¬ s, then Ball(p, r) ⊆ Ball(q, s).

(6) If A is not boundary, then indA = n.

Now we state the proposition:

(7) The Small Inductive Dimension of the Sphere:
If r > 0, then ind Sphere(p, r) = n− 1. Proof: If indA ¬ i and indB ¬ i
and A is closed, then ind(A ∪ B) ¬ i by [33, (31)], [23, (93)], [35, (22)],
[36, (5)]. �

3. A Characterization of Open Sets in Euclidean Space in Terms
of Continuous Transformations

Now we state the propositions:

(8) Suppose n > 0 and p ∈ A and for every r such that r > 0 there exists an
open subset U of EnT�A such that p ∈ U and U ⊆ Ball(p, r) and for every
function f from EnT�(A\U) into TopUnitCirclen such that f is continuous
there exists a function h from EnT�A into TopUnitCirclen such that h is
continuous and h�(A \ U) = f . Then p ∈ FrA. Proof: Set T7 = EnT. Set
c1 = the carrier of T7. Set S = Sphere(0T7 , 1). Set T9 = TopUnitCirclen.
Reconsider c = c1 \ {0T7} as a non empty open subset of T7. Set n3 =
nNormF. Set T8 = T7�c. Set G = transl(p, T7). Reconsider I = T8

↪→ as a
continuous function from T8 into T7. 0 /∈ rng(n3�T8) by [44, (57)], [14,
(22)], [7, (47)], [14, (8), (70)]. Reconsider n2 = n3�T8 as a non-empty
continuous function from T8 into R1. Reconsider b = I/n2 as a function
from T8 into T7. Set E1 = En. Set T2 = E1top. Reconsider e = p as a point
of E1. Reconsider I1 = IntA as a subset of T2. Consider r being a real
number such that r > 0 and Ball(e, r) ⊆ I1. Set r2 = r

2 . Consider U being
an open subset of T7�A such that p ∈ U and U ⊆ Ball(p, r2) and for every
function f from T7�(A\U) into T9 such that f is continuous there exists a
function h from T7�A into T9 such that h is continuous and h�(A\U) = f .
Reconsider S4 = Sphere(p, r2) as a non empty subset of T7. Consider a
being an object such that a ∈ S4. Reconsider C2 = Ball(p, r2) as a non
empty subset of T7. Reconsider s2 = S4 as a non empty subset of T7�C2.
Reconsider A1 = A \ U as a non empty subset of T7. Set T1 = T7�A1.
Set t = transl(−p, T7). Set T = t�T1. rng T ⊆ c by [7, (47)], [42, (21)].
Reconsider T11 = T as a continuous function from T1 into T8. For every
point p of T7 such that p ∈ c holds b(p) = 1

|p| ·p and | 1|p| ·p| = 1 by [22, (84)],
[7, (49)], [26, (72)], [12, (56)]. rng b ⊆ S by [42, (13)]. Reconsider B = b as
a function from T8 into T9. Set m = r2 • T7. Set M = m�T9. Reconsider
M = m�T9 as a continuous function from T9 into T7. Reconsider c2 = C2
as a subset of T7�A. Consider h being a function from T7�A into T9 such
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that h is continuous and h�(A \U) = B ·T11. Reconsider G2 = G · (M · h)
as a continuous function from T7�A into T7. rngG2 ⊆ S4 by [7, (12),
(11), (47)], [42, (28), (15)]. Reconsider g2 = G2 as a function from T7�A
into T7�S4. Reconsider g1 = g2�((T7�A)�c2) as a continuous function from
T7�C2 into (T7�C2)�s2. For every point w of T7�C2 such that w ∈ S4 holds
g1(w) = w by [7, (11), (12)], [44, (61)], [7, (47)]. �

(9) Suppose p ∈ FrA and A is closed. Suppose r > 0. Then there exists an
open subset U of EnT�A such that

(i) p ∈ U , and

(ii) U ⊆ Ball(p, r), and

(iii) for every function f from EnT�(A\U) into TopUnitCirclen such that f
is continuous there exists a function h from EnT�A into TopUnitCirclen
such that h is continuous and h�(A \ U) = f .

Proof: n > 0 by [14, (77), (22)], [12, (33)]. Set r3 = r
3 . Set r2 = 2 · r3. Set

B = Ball(p, r3). Consider x being an object such that x ∈ Ac and x ∈ B.
Set u = Ball(x, r2). u ⊆ Ball(p, r). �

4. Brouwer Invariance of Domain Theorem – Special Case

Let us consider a function h from EnT�A into EnT�B. Now we state the propo-
sitions:

(10) If A is closed and p ∈ FrA, then if h is a homeomorphism, then h(p) ∈
FrB. The theorem is a consequence of (9) and (8).

(11) If B is closed and p ∈ IntA, then if h is a homeomorphism, then h(p) ∈
IntB. The theorem is a consequence of (8) and (9).

(12) Suppose A is closed and B is closed. Then if h is a homeomorphism,
then h◦(IntA) = IntB and h◦(FrA) = FrB. Proof: h◦(IntA) = IntB
by (11), (10), [46, (39)]. �

5. Topological Invariance of Dimension – An Introduction to
Manifolds

Now we state the proposition:

(13) Suppose r > 0. Let us consider a subset U of Tdisk(p, r). Suppose U is
open and non empty. Let us consider a subset A of EnT. If A = U , then
IntA is not empty.

Let us consider a non empty topological space T , subsets A, B of T , r, s, a
point p1 of EnT, and a point p2 of EmT .

Let us assume that r > 0 and s > 0. Now we state the propositions:
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(14) Suppose T �A and Tdisk(p1, r) are homeomorphic and
T �B and Tdisk(p2, s) are homeomorphic and IntA meets IntB. Then n =
m. The theorem is a consequence of (13) and (6).

(15) Suppose T �A and EnT�Ball(p1, r) are homeomorphic and
T �B and Tdisk(p2, s) are homeomorphic and IntA meets IntB. Then n =
m. The theorem is a consequence of (13) and (6).

Now we state the propositions:

(16) (i) (transl(p, EnT))◦(Ball(q, r)) = Ball(q + p, r), and

(ii) (transl(p, EnT))◦(Ball(q, r)) = Ball(q + p, r), and

(iii) (transl(p, EnT))◦(Sphere(q, r)) = Sphere((q + p), r).
Proof: Set T5 = EnT. Set T = transl(p, T5). T ◦(Ball(q, r)) = Ball(q + p, r)
by [28, (7)], [42, (27)]. T ◦(Ball(q, r)) = Ball(q+p, r) by [28, (8)], [42, (27)].
T ◦(Sphere(q, r)) ⊆ Sphere((q + p), r) by [28, (9)]. �

(17) Suppose s > 0. Then

(i) (s • EnT)◦(Ball(p, r)) = Ball(s · p, r · s), and

(ii) (s • EnT)◦(Ball(p, r)) = Ball(s · p, r · s), and

(iii) (s • EnT)◦(Sphere(p, r)) = Sphere((s · p), (r · s)).

Proof: Set T5 = EnT. Set M = s • T5. M◦(Ball(p, r)) = Ball(s · p, r · s)
by [42, (34)], [14, (11)], [28, (7)]. M◦(Ball(p, r)) = Ball(s · p, r · s) by [42,
(34)], [14, (11)], [28, (8)]. M◦(Sphere(p, r)) ⊆ Sphere((s · p), (r · s)) by [42,
(34)], [14, (11)], [28, (9)]. �

(18) Let us consider a rotation homogeneous additive function f from EnT into
EnT. Suppose f is onto. Then

(i) f◦(Ball(p, r)) = Ball(f(p), r), and

(ii) f◦(Ball(p, r)) = Ball(f(p), r), and

(iii) f◦(Sphere(p, r)) = Sphere((f(p)), r).

Proof: f◦(Ball(p, r)) = Ball(f(p), r) by [28, (7)]. f◦(Ball(p, r)) =
Ball(f(p), r) by [28, (8)]. f◦(Sphere(p, r)) ⊆ Sphere((f(p)), r) by [28, (9)].
Consider x being an object such that x ∈ dom f and f(x) = y. �

(19) Let us consider points p, q of En+1T , r, and s. Suppose

(i) s ¬ r ¬ |p− q|, and

(ii) s < |p− q| < s+ r.

Then there exists a function h from En+1T �(Sphere(p, r) ∩ Ball(q, s)) into
Tdisk(0EnT , 1) such that

(iii) h is a homeomorphism, and

(iv) h◦(Sphere(p, r) ∩ Sphere(q, s)) = Sphere(0EnT , 1).
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Proof: Set n1 = n + 1. Set T6 = En1T . Set y = 1
r · (q − p). Set Y =

〈0, . . . , 0︸ ︷︷ ︸
n1

〉+· (n1, |y|). There exists a homogeneous additive rotation func-

tion R from T6 into T6 such that R is a homeomorphism and R(y) = Y by
[34, (40), (41)]. Consider R being a homogeneous additive rotation func-
tion from T6 into T6 such that R is a homeomorphism and R(y) = Y.

s > 0. �
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Now we state the propositions:

(1) Let us consider natural numbers x, y and a finite sequence f . Suppose

(i) f�1 is one-to-one, and

(ii) 1 < x ¬ len f , and

(iii) 1 < y ¬ len f , and

(iv) f(x) = f(y).

Then x = y.

(2) Let us consider a non empty set D and a non empty finite sequence f
of elements of D. If f is circular, then f(1) = f(len f).

Let D be a non empty set and a, b be elements of D. Let us observe that
〈a, b, a〉 is circular as a finite sequence of elements of D.

Now we state the proposition:

(3) Let us consider objects a, b. If a 6= b, then 〈a, b, a〉 is almost one-to-one.

Let X be a set, Y be a non empty set, P1 be a finite subset of X, and M1
be a function from X into Y.

An enumeration of M1 and P1 is a finite sequence of elements of Y and is
defined by

(Def. 1) (i) len it = len the enumeration of P1 and for every i such that i ∈
dom it holds it(i) = M1(the enumeration of P1(i)), if P1 is not empty,

(ii) it = εY , otherwise.

The functor PN0 yielding a Petri net is defined by the term

(Def. 2) 〈{0}, {1},Ω{1}({0}),Ω{0}({1})〉.
Let us consider N . We introduce the places and transitions of N as a syno-

nym of Elements(N).
Let us consider P . Let us note that the places and transitions of P is non

empty.
In the sequel f1 denotes a finite sequence of elements of the places and

transitions of P .
Let us consider P and f1. The functors: the places of f1 and the transitions

of f1 yielding finite subsets of P are defined by terms,

(Def. 3) {p, where p is a place of P : p ∈ rng f1},

(Def. 4) {t, where t is a transition of P : t ∈ rng f1},

respectively.



The formalization of decision-free Petri net 31

2. The Number of Tokens in a Circuit

Let us consider N . The markings of N yielding a non empty set of functions
from the carrier of N to N is defined by the term

(Def. 5) Nα, where α is the carrier of N .

A marking of N is an element of the markings of N . Let P1 be a finite subset
of N and M1 be a marking of N . The number of tokens of P1 and M1 yielding
an element of N is defined by the term

(Def. 6)
∑

the enumeration of M1 and P1.

3. Decision-Free Petri Net Concept and Properties of Circuits in
Petri Nets

Let I be a Petri net. We say that I is decision-free-like if and only if

(Def. 7) Let us consider a place s of I. Then

(i) there exists a transition t of I such that 〈〈t, s〉〉 ∈ the T-S arcs of I,
and

(ii) for every transitions t1, t2 of I such that 〈〈t1, s〉〉, 〈〈t2, s〉〉 ∈ the T-S
arcs of I holds t1 = t2, and

(iii) there exists a transition t of I such that 〈〈s, t〉〉 ∈ the S-T arcs of I,
and

(iv) for every transitions t1, t2 of I such that 〈〈s, t1〉〉, 〈〈s, t2〉〉 ∈ the S-T
arcs of I holds t1 = t2.

Let us consider P . Let I be a finite sequence of elements of the places and
transitions of P . We say that I is directed path if and only if

(Def. 8) (i) len I  3, and

(ii) len I mod 2 = 1, and

(iii) for every i such that i mod 2 = 1 and i + 1 < len I holds 〈〈I(i),
I(i+ 1)〉〉 ∈ the S-T arcs of P and 〈〈I(i+ 1), I(i+ 2)〉〉 ∈ the T-S arcs
of P , and

(iv) I(len I) ∈ the carrier of P .

Now we state the proposition:

(4) Let us consider a finite sequence f1 of elements of the places and transi-
tions of PN0. Suppose f1 = 〈0, 1, 0〉. Then f1 is directed path. Proof: f1
is directed path by [2, (13)], [4, (45)]. �

Let us consider P . Observe that every finite sequence of elements of the
places and transitions of P which is directed path is also non empty.

Let I be a Petri net. We say that I has directed path if and only if
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(Def. 9) There exists a finite sequence f1 of elements of the places and transitions
of I such that f1 is directed path.

Let us consider P . We say that P has directed circuit if and only if

(Def. 10) There exists f1 such that f1 is directed path, circular, and almost one-
to-one.

One can verify that PN0 is decision-free-like and Petri-like and has directed
circuit and there exists a Petri net which is Petri-like and decision-free-like
and has directed circuit and every Petri net which has directed circuit has also
directed path and there exists a Petri net which has directed path.

Let D1 be a Petri net with directed path. Let us note that there exists a
finite sequence of elements of the places and transitions of D1 which is directed
path.

From now on D1 denotes a Petri net with directed path and d denotes a
directed path finite sequence of elements of the places and transitions of D1.

Now we state the propositions:

(5) 〈〈d(1), d(2)〉〉 ∈ the S-T arcs of D1.

(6) 〈〈d(len d− 1), d(len d)〉〉 ∈ the T-S arcs of D1.

From now on D1 denotes a Petri-like Petri net with directed path and d

denotes a directed path finite sequence of elements of the places and transitions
of D1.

Now we state the proposition:

(7) If d(i) ∈ the places of d and i ∈ dom d, then i mod 2 = 1. Proof:
Consider p being a place of D1 such that p = d(i) and p ∈ rng d. i mod 2 =
1 by [2, (21)], [16, (25)], [7, (87)]. �

Let us assume that d(i) ∈ the transitions of d and i ∈ dom d. Now we state
the propositions:

(8) i mod 2 = 0. Proof: 〈〈d(len d − 1), d(len d)〉〉 ∈ the T-S arcs of D1.
Consider t being a transition of D1 such that t = d(i) and t ∈ rng d.
i 6= len d by [7, (87)]. i+ 1 6= len d by [7, (87)], [2, (11)], [16, (25)], [5, (3)].
�

(9) (i) 〈〈d(i− 1), d(i)〉〉 ∈ the S-T arcs of D1, and

(ii) 〈〈d(i), d(i+ 1)〉〉 ∈ the T-S arcs of D1.
Proof: 〈〈d(len d − 1), d(len d)〉〉 ∈ the T-S arcs of D1. Consider t being a
transition of D1 such that t = d(i) and t ∈ rng d. i 6= len d by [7, (87)]. �

Now we state the proposition:

(10) Suppose d(i) ∈ the places of d and 1 < i < len d. Then

(i) 〈〈d(i− 2), d(i− 1)〉〉 ∈ the S-T arcs of D1, and

(ii) 〈〈d(i− 1), d(i)〉〉 ∈ the T-S arcs of D1, and

(iii) 〈〈d(i), d(i+ 1)〉〉 ∈ the S-T arcs of D1, and
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(iv) 〈〈d(i+ 1), d(i+ 2)〉〉 ∈ the T-S arcs of D1, and

(v) 3 ¬ i.
Proof: i mod 2 = 1. 〈〈d(len d− 1), d(len d)〉〉 ∈ the T-S arcs of D1. 〈〈d(1),
d(2)〉〉 ∈ the S-T arcs of D1. Consider p being a place of D1 such that
p = d(i) and p ∈ rng d. i+ 1 6= len d by [7, (87)]. 2 6= i by [7, (87)]. �

4. Firable and Firing Conditions for Transitions and Transition
Sequences with Natural Marking

From now on M1 denotes a marking of P , t denotes a transition of P , and
Q, Q1 denote finite sequences of elements of the carrier’ of P .

Let us consider P , M1, and t. We say that t is firable at M1 if and only if

(Def. 11) Let us consider a natural number m. If m ∈M1◦(∗{t}), then m > 0.

The functor Firing(t,M1) yielding a marking of P is defined by

(Def. 12) (i) for every place s of P , if s ∈ ∗{t} and s /∈ {t} , then it(s) = M1(s)−1
and if s ∈ {t} and s /∈ ∗{t}, then it(s) = M1(s) + 1 and if s ∈ ∗{t}
and s ∈ {t} or s /∈ ∗{t} and s /∈ {t} , then it(s) = M1(s), if t is
firable at M1,

(ii) it = M1, otherwise.

Let us consider Q. We say that Q is firable at M1 if and only if

(Def. 13) (i) Q = ∅, or

(ii) there exists a finite sequence M of elements of the markings of P such
that lenQ = lenM and Q1 is firable at M1 and M1 = Firing(Q1,M1)
and for every i such that i < lenQ and i > 0 holds Qi+1 is firable at
Mi and Mi+1 = Firing(Qi+1,Mi).

The functor Firing(Q,M1) yielding a marking of P is defined by

(Def. 14) (i) it = M1, if Q = ∅,
(ii) there exists a finite sequence M of elements of the markings of P such

that lenQ = lenM and it = MlenM andM1 = Firing(Q1,M1) and for
every i such that i < lenQ and i > 0 holds Mi+1 = Firing(Qi+1,Mi),
otherwise.

Now we state the propositions:

(11) Firing(t,M1) = Firing(〈t〉,M1).
(12) t is firable at M1 if and only if 〈t〉 is firable at M1.

(13) Firing(Q a Q1,M1) = Firing(Q1,Firing(Q,M1)).

(14) If Q a Q1 is firable at M1, then Q1 is firable at Firing(Q,M1) and Q is
firable at M1.
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5. The Theorem Stating that the Number of Tokens in a Circuit
Remains the Same After any Firing Sequences

Now we state the proposition:

(15) Let us consider a Petri-like decision-free-like Petri net D1 with direc-
ted path, a directed path finite sequence d of elements of the places and
transitions of D1, and a transition t of D1. Suppose

(i) d is circular, and

(ii) there exists a place p1 of D1 such that p1 ∈ the places of d and 〈〈p1,
t〉〉 ∈ the S-T arcs of D1 or 〈〈t, p1〉〉 ∈ the T-S arcs of D1.

Then t ∈ the transitions of d. The theorem is a consequence of (7), (5),
(6), and (2).

A decision-free Petri net is a Petri-like decision-free-like Petri net with di-
rected circuit. Let D1 be a Petri net with directed circuit. Observe that there
exists a finite sequence of elements of the places and transitions of D1 which is
directed path, circular, and almost one-to-one.

A circuit of places and transitions of D1 is a directed path circular almost
one-to-one finite sequence of elements of the places and transitions of D1. Now
we state the propositions:

(16) Let us consider a decision-free Petri net D1, a circuit d of places and
transitions of D1, a marking M1 of D1, and a transition t of D1. Then
the number of tokens of the places of d and M1 = the number of tokens
of the places of d and Firing(t,M1). The theorem is a consequence of (6),
(5), (8), (2), (9), (1), (10), and (15).

(17) Let us consider a decision-free Petri net D1, a circuit d of places and
transitions of D1, a marking M1 of D1, and a finite sequence Q of elements
of the carrier’ of D1. Then the number of tokens of the places of d and
M1 = the number of tokens of the places of d and Firing(Q,M1). The
theorem is a consequence of (16).
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(Def. 2) (i) x = y, or

(ii) x→ y.

One can verify that the predicate is reflexive. We say that x→∗ y if and only if

(Def. 3) The reduction of X reduces x to y.

Let us observe that the predicate is reflexive.
From now on X denotes an ARS and a, b, c, u, v, w, x, y, z denote elements

of X.
Now we state the propositions:

(1) If a→ b, then X is not empty.

(2) If x→ y, then x→∗ y.

(3) If x→∗ y →∗ z, then x→∗ z.
The scheme Star deals with an ARS X and a unary predicate P and states

that

(Sch. 1) For every elements x, y of X such that x→∗ y and P[x] holds P[y]

provided

• for every elements x, y of X such that x→ y and P[x] holds P[y].

The scheme Star1 deals with an ARS X and a unary predicate P and ele-
ments a, b of X and states that

(Sch. 2) P[b]

provided

• a→∗ b and

• P[a] and

• for every elements x, y of X such that x→ y and P[x] holds P[y].

The scheme StarBack deals with an ARS X and a unary predicate P and
states that

(Sch. 3) For every elements x, y of X such that x→∗ y and P[y] holds P[x]

provided

• for every elements x, y of X such that x→ y and P[y] holds P[x].

The scheme StarBack1 deals with an ARS X and a unary predicate P and
elements a, b of X and states that

(Sch. 4) P[a]

provided

• a→∗ b and

• P[b] and



Abstract reduction systems and idea of Knuth-Bendix ... 39

• for every elements x, y of X such that x→ y and P[y] holds P[x].

Let X be an ARS and x, y be elements of X. We say that x →+ y if and
only if

(Def. 4) There exists an element z of X such that x→ z →∗ y.

Now we state the proposition:

(4) x →+ y if and only if there exists z such that x →∗ z → y. Proof: If
x →+ y, then there exists z such that x →∗ z → y. Define P[element of
X] ≡ there exists u such that $1 → u →∗ y. For every y and z such that
y → z and P[z] holds P[y]. For every y and z such that y →∗ z and P[z]
holds P[y] from StarBack. �

Let us consider X, x, and y. We introduce y ←01 x as a synonym of x→01 y
and y ←∗ x as a synonym of x→∗ y and y ←+ x as a synonym of x→+ y.

We say that x↔ y if and only if

(Def. 5) (i) x→ y, or

(ii) x← y.

One can check that the predicate is symmetric.
Now we state the proposition:

(5) x ↔ y if and only if 〈〈x, y〉〉 ∈ (the reduction of X) ∪ (the reduction of
X)`.

Let us consider X, x, and y. We say that x↔01 y if and only if

(Def. 6) (i) x = y, or

(ii) x↔ y.

Observe that the predicate is reflexive and symmetric. We say that x ↔∗ y if
and only if

(Def. 7) x and y are convertible w.r.t. the reduction of X.

One can check that the predicate is reflexive and symmetric.
Now we state the propositions:

(6) If x↔ y, then x↔∗ y.

(7) If x↔∗ y ↔∗ z, then x↔∗ z.
The scheme Star2 deals with an ARS X and a unary predicate P and states

that

(Sch. 5) For every elements x, y of X such that x↔∗ y and P[x] holds P[y]

provided

• for every elements x, y of X such that x↔ y and P[x] holds P[y].

The scheme Star2A deals with an ARS X and a unary predicate P and
elements a, b of X and states that

(Sch. 6) P[b]
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provided

• a↔∗ b and

• P[a] and

• for every elements x, y of X such that x↔ y and P[x] holds P[y].

Let us consider X, x, and y. We say that x↔+ y if and only if

(Def. 8) There exists z such that x↔ z ↔∗ y.

One can check that the predicate is symmetric.
Now we state the propositions:

(8) x↔+ y if and only if there exists z such that x↔∗ z ↔ y.

(9) If x→01 y, then x→∗ y.

(10) If x→+ y, then x→∗ y. The theorem is a consequence of (2) and (3).

(11) If x→ y, then x→+ y.

(12) If x → y → z, then x →∗ z. The theorem is a consequence of (2) and
(3).

(13) If x→ y →01 z, then x→∗ z. The theorem is a consequence of (2), (9),
and (3).

(14) If x → y →∗ z, then x →∗ z. The theorem is a consequence of (2) and
(3).

(15) If x→ y →+ z, then x→∗ z. The theorem is a consequence of (2), (10),
and (3).

(16) If x→01 y → z, then x→∗ z. The theorem is a consequence of (9), (2),
and (3).

(17) If x→01 y →01 z, then x→∗ z. The theorem is a consequence of (9) and
(3).

(18) If x→01 y →∗ z, then x→∗ z. The theorem is a consequence of (9) and
(3).

(19) If x →01 y →+ z, then x →∗ z. The theorem is a consequence of (9),
(10), and (3).

(20) If x →∗ y → z, then x →∗ z. The theorem is a consequence of (2) and
(3).

(21) If x→∗ y →01 z, then x→∗ z. The theorem is a consequence of (9) and
(3).

(22) If x→∗ y →+ z, then x→∗ z. The theorem is a consequence of (10) and
(3).

(23) If x→+ y → z, then x→∗ z. The theorem is a consequence of (10), (2),
and (3).
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(24) If x →+ y →01 z, then x →∗ z. The theorem is a consequence of (10),
(9), and (3).

(25) If x →+ y →+ z, then x →∗ z. The theorem is a consequence of (10)
and (3).

(26) If x→ y → z, then x→+ z.
(27) If x→ y →01 z, then x→+ z.
(28) If x→ y →+ z, then x→+ z.
(29) If x→01 y → z, then x→+ z.
(30) If x→01 y →+ z, then x→+ z. The theorem is a consequence of (4) and

(18).

(31) If x→∗ y →+ z, then x→+ z. The theorem is a consequence of (4) and
(3).

(32) If x→+ y → z, then x→+ z.
(33) If x→+ y →01 z, then x→+ z.
(34) If x→+ y →∗ z, then x→+ z.
(35) If x→+ y →+ z, then x→+ z.
(36) If x↔01 y, then x↔∗ y.

(37) If x↔+ y, then x↔∗ y. The theorem is a consequence of (6) and (7).

(38) If x↔ y, then x↔+ y.

(39) If x ↔ y ↔ z, then x ↔∗ z. The theorem is a consequence of (6) and
(7).

(40) If x↔ y ↔01 z, then x↔∗ z. The theorem is a consequence of (6), (36),
and (7).

(41) If x↔01 y ↔ z, then x↔∗ z.
(42) If x ↔ y ↔∗ z, then x ↔∗ z. The theorem is a consequence of (6) and

(7).

(43) If x↔∗ y ↔ z, then x↔∗ z.
(44) If x↔ y ↔+ z, then x↔∗ z. The theorem is a consequence of (6), (37),

and (7).

(45) If x↔+ y ↔ z, then x↔∗ z.
(46) If x ↔01 y ↔01 z, then x ↔∗ z. The theorem is a consequence of (36)

and (7).

(47) If x ↔01 y ↔∗ z, then x ↔∗ z. The theorem is a consequence of (36)
and (7).

(48) If x↔∗ y ↔01 z, then x↔∗ z.
(49) If x ↔01 y ↔+ z, then x ↔∗ z. The theorem is a consequence of (36),

(37), and (7).

(50) If x↔+ y ↔01 z, then x↔∗ z.
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(51) If x ↔∗ y ↔+ z, then x ↔∗ z. The theorem is a consequence of (37)
and (7).

(52) If x ↔+ y ↔+ z, then x ↔∗ z. The theorem is a consequence of (37)
and (7).

(53) If x↔ y ↔ z, then x↔+ z.
(54) If x↔ y ↔01 z, then x↔+ z.
(55) If x↔ y ↔+ z, then x↔+ z.
(56) If x↔01 y ↔+ z, then x↔+ z. The theorem is a consequence of (8) and

(47).

(57) If x ↔∗ y ↔+ z, then x ↔+ z. The theorem is a consequence of (8)
and (7).

(58) If x↔+ y ↔+ z, then x↔+ z.
(59) If x↔01 y, then x← y or x = y or x→ y.

(60) If x← y or x = y or x→ y, then x↔01 y.

(61) If x↔01 y, then x←01 y or x→ y.

(62) If x←01 y or x→ y, then x↔01 y.

Let us assume that x↔01 y. Now we state the propositions:

(63) (i) x←01 y, or

(ii) x→+ y.

(64) (i) x←01 y, or

(ii) x↔ y.

Now we state the propositions:

(65) If x←01 y or x↔ y, then x↔01 y.

(66) If x↔∗ y → z, then x↔+ z.
(67) If x↔+ y → z, then x↔+ z. The theorem is a consequence of (37).

Let us assume that x↔01 y. Now we state the propositions:

(68) (i) x←01 y, or

(ii) x→ y.

(69) (i) x←01 y, or

(ii) x→+ y.

Now we state the propositions:

(70) If x←01 y or x→ y, then x↔01 y.

(71) If x←01 y or x↔ y, then x↔01 y.

(72) If x↔01 y, then x←01 y or x↔ y.

(73) If x↔+ y → z, then x↔+ z. The theorem is a consequence of (37).

(74) If x↔∗ y → z, then x↔+ z.
(75) If x↔01 y → z, then x↔+ z. The theorem is a consequence of (36).
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(76) If x ↔+ y →01 z, then x ↔+ z. The theorem is a consequence of (70)
and (56).

(77) If x ↔ y →01 z, then x ↔+ z. The theorem is a consequence of (70),
(38), and (56).

(78) If x→ y → z → u, then x→+ u.

(79) If x→ y →01 z → u, then x→+ u.

(80) If x→ y →∗ z → u, then x→+ u.

(81) If x→ y →+ z → u, then x→+ u. The theorem is a consequence of (15)
and (4).

(82) If x→∗ y, then x↔∗ y. Proof: Define P[element of X] ≡ x↔∗ $1. For
every y and z such that y → z and P[y] holds P[z]. P[y] from Star1. �

(83) Suppose for every x and y such that x → z and x → y holds y → z. If
x→ z and x→∗ y, then y → z. Proof: Define P[element of X] ≡ $1 → z.
For every u and v such that u→∗ v and P[u] holds P[v] from Star. �

(84) If for every x and y such that x → y holds y → x, then for every x

and y such that x↔∗ y holds x→∗ y. Proof: Define P[element of X] ≡
x →∗ $1. For every u and v such that u ↔ v and P[u] holds P[v]. For
every u and v such that u↔∗ v and P[u] holds P[v] from Star2. �

(85) If x →∗ y, then x = y or x →+ y. Proof: Define P[element of X] ≡
x = $1 or x →+ $1. For every y and z such that y → z and P[y] holds
P[z]. P[y] from Star1. �

(86) If for every x, y, and z such that x→ y → z holds x→ z, then for every
x and y such that x →+ y holds x → y. Proof: Consider z such that
x→ z and z →∗ y. Define P[element of X] ≡ x→ $1. P[y] from Star1. �

2. Examples of an Abstract Reduction System

The scheme ARSex deals with a non empty set A and a binary predicate R
and states that

(Sch. 7) There exists a strict non empty ARS X such that the carrier of X = A
and for every elements x, y of X, x→ y iff R[x, y].

The functors: ARS01 and ARS02 yielding strict ARS’s are defined by condi-
tions,

(Def. 9) (i) the carrier of ARS01 = {0, 1}, and

(ii) the reduction of ARS01 = {0} × {0, 1},
(Def. 10) (i) the carrier of ARS02 = {0, 1, 2}, and

(ii) the reduction of ARS02 = {0} × {0, 1, 2},
respectively. One can check that ARS01 is non empty and ARS02 is non empty.

From now on i, j, k denote elements of ARS01.
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Now we state the propositions:

(87) Let us consider a set s. Then s is an element of ARS01 if and only if
s = 0 or s = 1.

(88) i→ j if and only if i = 0. The theorem is a consequence of (87).

In the sequel l, m, n denote elements of ARS02.
Now we state the propositions:

(89) Let us consider a set s. Then s is an element of ARS02 if and only if
s = 0 or s = 1 or s = 2.

(90) m→ n if and only if m = 0. The theorem is a consequence of (89).

3. Normal Forms

Let us consider X and x. We say that x is a normal form if and only if

(Def. 11) There exists no y such that x→ y.

Now we state the proposition:

(91) x is a normal form if and only if x is a normal form w.r.t. the reduction
of X. Proof: If x is a normal form, then x is a normal form w.r.t. the
reduction of X by [13, (87)]. �

Let us consider X, x, and y. We say that x is a normal form of y if and
only if

(Def. 12) (i) x is a normal form, and

(ii) y →∗ x.

Now we state the proposition:

(92) x is a normal form of y if and only if x is a normal form of y w.r.t. the
reduction of X. The theorem is a consequence of (91).

Let us consider X and x. We say that x is normalizable if and only if

(Def. 13) There exists y such that y is a normal form of x.

Now we state the proposition:

(93) x is normalizable if and only if x has a normal form w.r.t. the reduction
of X. The theorem is a consequence of (92).

Let us consider X. We say that X is WN if and only if

(Def. 14) x is normalizable.

We say that X is SN if and only if

(Def. 15) Let us consider a function f from N into the carrier of X. Then there
exists a natural number i such that f(i) 6→ f(i+ 1).

We say that X is UN* if and only if

(Def. 16) If y is a normal form of x and z is a normal form of x, then y = z.

We say that X is UN if and only if
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(Def. 17) If x is a normal form and y is a normal form and x↔∗ y, then x = y.

We say that X is NF if and only if

(Def. 18) If x is a normal form and x↔∗ y, then y →∗ x.

Now we state the propositions:

(94) X is WN if and only if the reduction of X is weakly-normalizing. The
theorem is a consequence of (93).

(95) If X is SN, then the reduction of X is strongly-normalizing.

(96) If X is not empty and the reduction of X is strongly-normalizing, then
X is SN.

From now on A denotes a set.
Now we state the proposition:

(97) X is SN if and only if there exists no A and there exists z such that
z ∈ A and for every x such that x ∈ A there exists y such that y ∈ A and
x→ y.

The scheme notSN deals with an ARS X and a unary predicate P and states
that

(Sch. 8) X is not SN

provided

• there exists an element x of X such that P[x] and

• for every element x of X such that P[x] there exists an element y of X
such that P[y] and x→ y.

Now we state the propositions:

(98) X is UN if and only if the reduction of X has unique normal form
property. Proof: Set R = the reduction of X. If X is UN, then R has
unique normal form property by (91), [6, (28), (31)]. x is a normal form
w.r.t. R and y is a normal form w.r.t. R and x and y are convertible w.r.t.
R. �

(99) X is NF if and only if the reduction of X has normal form property.
Proof: Set R = the reduction of X. If X is NF, then R has normal form
property by (91), [6, (28), (31), (12)]. �

Let us consider X and x. Assume there exists y such that y is a normal form
of x and for every y and z such that y is a normal form of x and z is a normal
form of x holds y = z. The functor nf x yielding an element of X is defined by

(Def. 19) it is a normal form of x.

Now we state the propositions:

(100) Suppose there exists y such that y is a normal form of x and for every y
and z such that y is a normal form of x and z is a normal form of x holds
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y = z. Then nf x = nfα(x), where α is the reduction of X. The theorem
is a consequence of (92).

(101) If x is a normal form and x →∗ y, then x = y. The theorem is a conse-
quence of (85).

(102) If x is a normal form, then x is a normal form of x.

(103) If x is a normal form and y → x, then x is a normal form of y.

(104) If x is a normal form and y →01 x, then x is a normal form of y.

(105) If x is a normal form and y →+ x, then x is a normal form of y.

(106) If x is a normal form of y and y is a normal form of x, then x = y.

(107) If x is a normal form of y and z → y, then x is a normal form of z.

(108) If x is a normal form of y and z →∗ y, then x is a normal form of z.

(109) If x is a normal form of y and z →∗ x, then x is a normal form of z.

Let us consider X. One can check that every element of X which is a normal
form is also normalizable.

Now we state the propositions:

(110) If x is normalizable and y → x, then y is normalizable.

(111) X is WN if and only if for every x, there exists y such that y is a normal
form of x.

(112) If for every x, x is a normal form, then X is WN. The theorem is a
consequence of (102).

One can verify that every ARS which is SN is also WN.
Now we state the propositions:

(113) If x 6= y and for every a and b, a→ b iff a = x, then y is a normal form
and x is normalizable. The theorem is a consequence of (2).

(114) There exists X such that

(i) X is WN, and

(ii) X is not SN.

Proof: Define R[set, set] ≡ $1 = 0. Consider X being a strict non empty
ARS such that the carrier of X = {0, 1} and for every elements x, y of X,
x→ y iff R[x, y] from ARSex. X is WN. �

One can verify that every ARS which is NF is also UN* and every ARS
which is NF is also UN and every ARS which is UN is also UN*.

Now we state the proposition:

(115) If X is WN and UN* and x is a normal form and x↔∗ y, then y →∗ x.
Proof: Define P[element of X] ≡ $1 →∗ x. For every y and z such that
y ↔ z and P[y] holds P[z]. For every y and z such that y ↔∗ z and P[y]
holds P[z] from Star2. �
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Observe that every ARS which is WN and UN* is also NF and every ARS
which is WN and UN* is also UN.

Now we state the propositions:

(116) If y is a normal form of x and z is a normal form of x and y 6= z, then
x→+ y. The theorem is a consequence of (85) and (101).

(117) If X is WN and UN*, then nf x is a normal form of x.

(118) If X is WN and UN* and y is a normal form of x, then y = nf x.

Let us assume that X is WN and UN*. Now we state the propositions:

(119) nf x is a normal form. The theorem is a consequence of (117).

(120) nf nf x = nf x. The theorem is a consequence of (119), (102), and (118).

Now we state the propositions:

(121) If X is WN and UN* and x →∗ y, then nf x = nf y. The theorem is a
consequence of (117), (108), and (118).

(122) If X is WN and UN* and x ↔∗ y, then nf x = nf y. Proof: Define
P[element of X] ≡ nf x = nf $1. For every z and u such that z ↔ u and
P[z] holds P[u]. P[y] from Star2A. �

(123) If X is WN and UN* and nf x = nf y, then x ↔∗ y. The theorem is a
consequence of (117), (82), and (7).

4. Divergence and Convergence

Let us consider X, x, and y. We say that x↙∗↘ y if and only if

(Def. 20) There exists z such that x←∗ z →∗ y.

Observe that the predicate is symmetric and reflexive. We say that x↘∗↙ y if
and only if

(Def. 21) There exists z such that x→∗ z ←∗ y.

One can check that the predicate is symmetric and reflexive. We say that
x↙01↘ y if and only if

(Def. 22) There exists z such that x←01 z →01 y.

Observe that the predicate is symmetric and reflexive. We say that x ↘01↙ y

if and only if

(Def. 23) There exists z such that x→01 z ←01 y.

One can check that the predicate is symmetric and reflexive.
Now we state the propositions:

(124) x↙∗↘ y if and only if x and y are divergent w.r.t. the reduction of X.

(125) x↘∗↙ y if and only if x and y are convergent w.r.t. the reduction of X.

(126) x ↙01↘ y if and only if x and y are divergent at most in 1 step w.r.t.
the reduction of X.
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(127) x↘01↙ y if and only if x and y are convergent at most in 1 step w.r.t.
the reduction of X.

Let us consider X. We say that X is DIAMOND if and only if

(Def. 24) If x↙01↘ y, then x↘01↙ y.

We say that X is CONF if and only if

(Def. 25) If x↙∗↘ y, then x↘∗↙ y.

We say that X is CR if and only if

(Def. 26) If x↔∗ y, then x↘∗↙ y.

We say that X is WCR if and only if

(Def. 27) If x↙01↘ y, then x↘∗↙ y.

We say that X is COMP if and only if

(Def. 28) X is SN and CONF.

The scheme isCR deals with a non empty ARS X and a unary functor F
yielding an element of X and states that

(Sch. 9) X is CR

provided

• for every element x of X , x→∗ F(x) and

• for every elements x, y of X such that x↔∗ y holds F(x) = F(y).

The scheme isCOMP deals with a non empty ARS X and a unary functor
F yielding an element of X and states that

(Sch. 10) X is COMP

provided

• X is SN and

• for every element x of X , x→∗ F(x) and

• for every elements x, y of X such that x↔∗ y holds F(x) = F(y).

Now we state the propositions:

(128) If x↙01↘ y, then x↙∗↘ y. The theorem is a consequence of (9).

(129) If x↘01↙ y, then x↘∗↙ y. The theorem is a consequence of (9).

Let us assume that x→ y. Now we state the propositions:

(130) x↙01↘ y.

(131) x↘01↙ y.

Let us assume that x→01 y. Now we state the propositions:

(132) x↙01↘ y.

(133) x↘01↙ y.

Let us assume that x↔ y. Now we state the propositions:
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(134) x↙01↘ y.

(135) x↘01↙ y.

Let us assume that x↔01 y. Now we state the propositions:

(136) x↙01↘ y. The theorem is a consequence of (59).

(137) x↘01↙ y. The theorem is a consequence of (59).

Now we state the proposition:

(138) If x→ y, then x↘∗↙ y.

Let us assume that x→∗ y. Now we state the propositions:

(139) x↘∗↙ y.

(140) x↙∗↘ y.

Let us assume that x→+ y. Now we state the propositions:

(141) x↘∗↙ y. The theorem is a consequence of (10).

(142) x↙∗↘ y. The theorem is a consequence of (10).

Now we state the propositions:

(143) If x→ y and x→ z, then y ↙01↘ z.

(144) If x→ y and z → y, then x↘01↙ z.

(145) If x↘∗↙ z ← y, then x↘∗↙ y. The theorem is a consequence of (14).

(146) If x ↘∗↙ z ←01 y, then x ↘∗↙ y. The theorem is a consequence of
(18).

(147) If x↘∗↙ z ←∗ y, then x↘∗↙ y. The theorem is a consequence of (3).

(148) If x↙∗↘ y, then x↔∗ y. The theorem is a consequence of (82) and (7).

(149) If x↘∗↙ y, then x↔∗ y. The theorem is a consequence of (82) and (7).

5. Church-Rosser Property

Now we state the propositions:

(150) X is DIAMOND if and only if the reduction of X is subcommutati-
ve. Proof: Set R = the reduction of X. If X is DIAMOND, then R is
subcommutative by [23, (15)], (127). �

(151) X is CONF if and only if the reduction of X is confluent. Proof: Set
R = the reduction of X. If X is CONF, then R is confluent by [6, (37),
(32)], (124), (125). x and y are divergent w.r.t. R. �

(152) X is CR if and only if the reduction of X has Church-Rosser property.
Proof: Set R = the reduction ofX. IfX is CR, then R has Church-Rosser
property by [6, (32)], (125), [6, (38)]. �

(153) X is WCR if and only if the reduction of X is locally-confluent. Proof:
Set R = the reduction of X. If X is WCR, then R is locally-confluent by
[23, (15)], (125). �
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(154) Let us consider a non empty ARS X. Then X is COMP if and only if
the reduction of X is complete. The theorem is a consequence of (151),
(95), and (96).

(155) If X is DIAMOND and x ←∗ z →01 y, then there exists u such that
x→01 u←∗ y. Proof: Define P[element of X] ≡ there exists u such that
$1 →01 u ←∗ y. For every u and v such that u → v and P[u] holds P[v].
For every u and v such that u→∗ v and P[u] holds P[v] from Star. �

(156) If X is DIAMOND and x ←01 y →∗ z, then there exists u such that
x→∗ u←01 z. The theorem is a consequence of (155).

One can verify that every ARS which is DIAMOND is also CONF and every
ARS which is DIAMOND is also CR and every ARS which is CR is also WCR
and every ARS which is CR is also CONF and every ARS which is CONF is
also CR.

Now we state the proposition:

(157) If X is non CONF and WN, then there exists x and there exists y and
there exists z such that y is a normal form of x and z is a normal form of
x and y 6= z. The theorem is a consequence of (108).

Newman Lemma: Every ARS which is SN and WCR is also CR and every
ARS which is CR is also NF and every ARS which is WN and UN is also CR
and every ARS which is SN and CR is also COMP and every ARS which is
COMP is also CR WCR NF UN UN* and WN.

Now we state the proposition:

(158) If X is COMP, then for every x and y such that x↔∗ y holds nf x = nf y.

Observe that every ARS which is WN and UN* is also CR and every ARS
which is SN and UN* is also COMP.

6. Term Rewriting Systems

We consider TRS structures which extend ARS’s and universal algebra struc-
tures and are systems

〈〈a carrier, a characteristic, a reduction〉〉

where the carrier is a set, the characteristic is a finite sequence of operational
functions of the carrier, the reduction is a binary relation on the carrier.

One can verify that there exists a TRS structure which is non empty, non-
empty, and strict.

Let S be a non empty universal algebra structure. We say that S is group-like
if and only if

(Def. 29) (i) Seg 3 ⊆ dom(the characteristic of S), and
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(ii) for every non empty homogeneous partial function f from (the carrier

of S)∗ to the carrier of S, if f = (the characteristic of S)(1), then
arity f = 0 and if f = (the characteristic of S)(2), then arity f = 1
and if f = (the characteristic of S)(3), then arity f = 2.

Now we state the propositions:

(159) Let us consider a non empty set X and non empty homogeneous partial
functions f1, f2, f3 from X∗ to X. Suppose

(i) arity f1 = 0, and

(ii) arity f2 = 1, and

(iii) arity f3 = 2.

Let us consider a non empty universal algebra structure S. Suppose

(iv) the carrier of S = X, and

(v) 〈f1, f2, f3〉 ⊆ the characteristic of S.

Then S is group-like.

(160) Let us consider a non empty set X, non empty quasi total homogeneous
partial functions f1, f2, f3 from X∗ to X, and a non empty universal
algebra structure S. Suppose

(i) the carrier of S = X, and

(ii) 〈f1, f2, f3〉 = the characteristic of S.

Then S is quasi total and partial. Proof: S is quasi total by [7, (89)], [19,
(1)], [7, (45)]. �

Let S be a non empty non-empty universal algebra structure, o be an ope-
ration of S, and a be an element of dom o. Let us note that the functor o(a)
yields an element of S. One can check that every operation of S is non empty.

Note that every element of dom o is relation-like and function-like.
Let S be a partial non empty non-empty universal algebra structure. Let us

observe that every operation of S is homogeneous.
Let S be a quasi total non empty non-empty universal algebra structure.

One can check that every operation of S is quasi total.
Now we state the propositions:

(161) Let us consider a non empty non-empty universal algebra structure S.
Suppose S is group-like. Then

(i) 1 is an operation symbol of S, and

(ii) 2 is an operation symbol of S, and

(iii) 3 is an operation symbol of S.

(162) Let us consider a partial non empty non-empty universal algebra struc-
ture S. Suppose S is group-like. Then
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(i) arity Den(1(∈ dom(the characteristic of S)), S) = 0, and

(ii) arity Den(2(∈ dom(the characteristic of S)), S) = 1, and

(iii) arity Den(3(∈ dom(the characteristic of S)), S) = 2.

The theorem is a consequence of (161).

Let S be a non empty non-empty TRS structure. We say that S is invariant
if and only if

(Def. 30) Let us consider an operation symbol o of S, elements a, b of dom Den(o,
S), and a natural number i. Suppose i ∈ dom a. Let us consider elements
x, y of S. Suppose

(i) x = a(i), and

(ii) b = a+· (i, y), and

(iii) x→ y.

Then (Den(o, S))(a)→ (Den(o, S))(b).

We say that S is compatible if and only if

(Def. 31) Let us consider an operation symbol o of S and elements a, b of dom Den(o,
S). Suppose a natural number i. Suppose i ∈ dom a. Let us consider ele-
ments x, y of S. If x = a(i) and y = b(i), then x → y. Then (Den(o,
S))(a)→∗ (Den(o, S))(b).

Now we state the proposition:

(163) Let us consider a natural number n, a non empty set X, and an element
x of X. Then there exists a non empty homogeneous quasi total partial
function f from X∗ to X such that

(i) arity f = n, and

(ii) f = Xn 7−→ x.

Proof: Set f = Xn 7−→ x. f is quasi total by [9, (132), (133)]. f is
homogeneous by [9, (132)]. �

Let X be a non empty set, O be a finite sequence of operational functions
of X, and r be a binary relation on X. Observe that 〈〈X,O, r〉〉 is non empty.

Let O be a non empty non-empty finite sequence of operational functions of
X. Let us note that 〈〈X,O, r〉〉 is non-empty.

Let x be an element of X. The functor TotalTRS(X,x) yielding a non empty
non-empty strict TRS structure is defined by

(Def. 32) (i) the carrier of it = X, and

(ii) the characteristic of it = 〈X0 7−→ x,X1 7−→ x,X2 7−→ x〉, and

(iii) the reduction of it = ∇X .

One can verify that TotalTRS(X,x) is quasi total partial group-like and
invariant and there exists a non empty non-empty TRS structure which is strict,
quasi total, partial, group-like, and invariant.
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Let S be a group-like quasi total partial non empty non-empty TRS struc-
ture. The functor 1S yielding an element of S is defined by the term

(Def. 33) (Den(1(∈ dom(the characteristic of S)), S))(∅).
Let a be an element of S. The functor a−1 yielding an element of S is defined
by the term

(Def. 34) (Den(2(∈ dom(the characteristic of S)), S))(〈a〉).
Let b be an element of S. The functor a · b yielding an element of S is defined
by the term

(Def. 35) (Den(3(∈ dom(the characteristic of S)), S))(〈a, b〉).
In the sequel S denotes a group-like quasi total partial invariant non empty

non-empty TRS structure and a, b, c denote elements of S.
Let us assume that a→ b. Now we state the propositions:

(164) a−1 → b−1. The theorem is a consequence of (162).

(165) a · c→ b · c. The theorem is a consequence of (162).

(166) c · a→ c · b. The theorem is a consequence of (162).

7. Idea of Knuth-Bendix Algorithm

In the sequel S denotes a group-like quasi total partial non empty non-empty
TRS structure and a, b, c denote elements of S.

Let us consider S. We say that S is (R1) if and only if

(Def. 36) 1S · a→ a.

We say that S is (R2) if and only if

(Def. 37) a−1 · a→ 1S .

We say that S is (R3) if and only if

(Def. 38) (a · b) · c→ a · (b · c).
We say that S is (R4) if and only if

(Def. 39) a−1 · (a · b)→ b.

We say that S is (R5) if and only if

(Def. 40) (1S)−1 · a→ a.

We say that S is (R6) if and only if

(Def. 41) (a−1)−1 · 1S → a.

We say that S is (R7) if and only if

(Def. 42) (a−1)−1 · b→ a · b.
We say that S is (R8) if and only if

(Def. 43) a · 1S → a.

We say that S is (R9) if and only if

(Def. 44) (a−1)−1 → a.
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We say that S is (R10) if and only if

(Def. 45) (1S)−1 → 1S .

We say that S is (R11) if and only if

(Def. 46) a · a−1 → 1S .

We say that S is (R12) if and only if

(Def. 47) a · (a−1 · b)→ b.

We say that S is (R13) if and only if

(Def. 48) a · (b · (a · b)−1)→ 1S .

We say that S is (R14) if and only if

(Def. 49) a · (b · a)−1 → b−1.

We say that S is (R15) if and only if

(Def. 50) (a · b)−1 → b−1 · a−1.
In the sequel S denotes a group-like quasi total partial invariant non empty

non-empty TRS structure and a, b, c denote elements of S.
Now we state the propositions:

(167) If S is (R1), (R2), and (R3), then a−1 · (a · b)↙∗↘ b. The theorem is a
consequence of (2), (165), and (3).

(168) If S is (R1) and (R4), then (1S)−1 · a ↙∗↘ a. The theorem is a conse-
quence of (2) and (166).

(169) If S is (R2) and (R4), then (a−1)−1 · 1S ↙∗↘ a. The theorem is a
consequence of (2) and (166).

(170) If S is (R1), (R3), and (R6), then (a−1)−1 · b↙∗↘ a · b. The theorem is
a consequence of (2), (166), (3), and (165).

(171) If S is (R6) and (R7), then a · 1S ↙∗↘ a. The theorem is a consequence
of (2).

(172) If S is (R6) and (R8), then (a−1)−1 ↙∗↘ a. The theorem is a consequ-
ence of (2).

(173) If S is (R5) and (R8), then (1S)−1 ↙∗↘ 1S . The theorem is a consequ-
ence of (2).

(174) If S is (R2) and (R9), then a·a−1 ↙∗↘ 1S . The theorem is a consequence
of (2) and (165).

(175) If S is (R1), (R3), and (R11), then a · (a−1 · b) ↙∗↘ b. The theorem is
a consequence of (2), (165), and (12).

(176) If S is (R3) and (R11), then a · (b · (a · b)−1)↙∗↘ 1S . The theorem is a
consequence of (2).

(177) If S is (R4), (R8), and (R13), then a · (b · a)−1 ↙∗↘ b−1. The theorem
is a consequence of (2), (166), and (12).
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(178) If S is (R4) and (R14), then (a · b)−1 ↙∗↘ b−1 · a−1. The theorem is a
consequence of (2) and (166).

(179) If S is (R1) and (R10), then (1S)−1·a→∗ a. The theorem is a consequence
of (165) and (12).

(180) If S is (R8) and (R9), then (a−1)−1 · 1S →∗ a. The theorem is a conse-
quence of (12).

(181) If S is (R9), then (a−1)−1 · b →∗ a · b. The theorem is a consequence of
(2) and (165).

(182) If S is (R11) and (R14), then a · (b · (a · b)−1) →∗ 1S . The theorem is a
consequence of (166) and (12).

(183) If S is (R12) and (R15), then a · (b · a)−1 →∗ b−1. The theorem is a
consequence of (166) and (12).
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1. Double Series and their Convergence

From now on R1, R2, R3 denote functions from N× N into R.
Let f be a function from N × N into R. Let us note that f is non-negative

yielding if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let us consider natural numbers i, j. Then f(i, j)  0.

Now we state the propositions:

(1) Suppose R1 is non-decreasing. Then
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(i) for every element m of N, curry(R1,m) is non-decreasing, and

(ii) for every element n of N, curry′(R1, n) is non-decreasing.

(2) If R1 is non-decreasing and convergent in the first coordinate, then the
lim in the first coordinate of R1 is non-decreasing.

(3) If R1 is non-decreasing and convergent in the second coordinate, then
the lim in the second coordinate of R1 is non-decreasing.

(4) If R1 is non-decreasing and p-convergent, then for every natural numbers
n, m, R1(n,m) ¬ P-limR1.

(5) (i) dom(R2 +R3) = N× N, and

(ii) dom(R2 −R3) = N× N, and

(iii) for every natural numbers n, m, (R2 + R3)(n,m) = R2(n,m) +
R3(n,m), and

(iv) for every natural numbers n, m, (R2 − R3)(n,m) = R2(n,m) −
R3(n,m).

(6) Let us consider non empty sets C, D, E and a function f from C ×D
into E. Then there exists a function g from D × C into E such that for
every element d of D for every element c of C, g(d, c) = f(c, d). Proof:
Define F(element of D, element of C) = f($2, $1). Consider I being a
function from D × C into E such that for every element d of D and for
every element c of C, I(d, c) = F(d, c) from [5, Sch. 2]. �

Let C, D, E be non empty sets and f be a function from C×D into E. The
functor fT yielding a function from D × C into E is defined by

(Def. 2) Let us consider an element d of D and an element c of C. Then it(d, c) =
f(c, d).

Now we state the proposition:

(7) Let us consider non empty sets C, D, E and a function f from C ×D
into E. Then f = (fT)T.

The scheme RecEx2D1 deals with a non empty set C and a non empty set
D and a function H from C into D and a ternary functor F yielding an element
of D and states that

(Sch. 1) There exists a function g from C ×N into D such that for every element
a of C, g(a, 0) = H(a) and for every natural number n, g(a, n + 1) =
F(g(a, n), a, n).

The scheme RecEx2D1R deals with a non empty set C and a function H
from C into R and a ternary functor F yielding a real number and states that

(Sch. 2) There exists a function g from C ×N into R such that for every element
a of C, g(a, 0) = H(a) and for every natural number n, g(a, n + 1) =
F(g(a, n), a, n).
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The scheme RecEx2D2 deals with a non empty set C and a non empty set
D and a function H from C into D and a ternary functor F yielding an element
of D and states that

(Sch. 3) There exists a function g from N×C into D such that for every element
a of C, g(0, a) = H(a) and for every natural number n, g(n + 1, a) =
F(g(n, a), a, n).

The scheme RecEx2D2R deals with a non empty set C and a function H
from C into R and a ternary functor F yielding a real number and states that

(Sch. 4) There exists a function g from N×C into R such that for every element
a of C, g(0, a) = H(a) and for every natural number n, g(n + 1, a) =
F(g(n, a), a, n).

Let R1 be a function from N × N into R. The partial sums in the second
coordinate of R1 yielding a function from N× N into R is defined by

(Def. 3) Let us consider natural numbers n, m. Then

(i) it(n, 0) = R1(n, 0), and

(ii) it(n,m+ 1) = it(n,m) +R1(n,m+ 1).

The partial sums in the first coordinate of R1 yielding a function from N×
N into R is defined by

(Def. 4) Let us consider natural numbers n, m. Then

(i) it(0,m) = R1(0,m), and

(ii) it(n+ 1,m) = it(n,m) +R1(n+ 1,m).

Now we state the propositions:

(8) (i) the partial sums in the second coordinate of R2+R3 = (the partial
sums in the second coordinate ofR2)+(the partial sums in the second
coordinate of R3), and

(ii) the partial sums in the first coordinate of R2 + R3 = (the partial
sums in the first coordinate of R2) + (the partial sums in the first
coordinate of R3).

The theorem is a consequence of (5).

(9) Let us consider natural numbers n, m. Then

(i) (the partial sums in the second coordinate ofR1)(n,m) = (the partial
sums in the first coordinate of R1T)(m,n), and

(ii) (the partial sums in the first coordinate of R1)(n,m) = (the partial
sums in the second coordinate of R1T)(m,n).

(10) (i) the partial sums in the second coordinate of R1 = (the partial
sums in the first coordinate of R1T)T, and

(ii) the partial sums in the second coordinate of R1T = (the partial sums
in the first coordinate of R1)T, and
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(iii) (the partial sums in the second coordinate of R1)T = the partial
sums in the first coordinate of R1T, and

(iv) (the partial sums in the second coordinate of R1T)T = the partial
sums in the first coordinate of R1.

The theorem is a consequence of (9).

Let R1 be a function from N × N into R. The functor (
∑κ
α=0R1(α))κ∈N

yielding a function from N× N into R is defined by the term

(Def. 5) The partial sums in the second coordinate of the partial sums in the first
coordinate of R1.

Now we state the propositions:

(11) Let us consider natural numbers n, m. Then

(i) (
∑κ
α=0R1(α))κ∈N(n+ 1,m) = (the partial sums in the second

coordinate of R1)(n+ 1,m) + (
∑κ
α=0R1(α))κ∈N(n,m), and

(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of R1)(n,m + 1) = (the partial sums in the first
coordinate of R1)(n,m+1)+(the partial sums in the first coordinate
of the partial sums in the second coordinate of R1)(n,m).

Proof: Set R4 = (
∑κ
α=0R1(α))κ∈N. Set C5 = the partial sums in the

first coordinate of the partial sums in the second coordinate of R1. Set
R5 = the partial sums in the first coordinate of R1. Set C6 = the partial
sums in the second coordinate of R1. Define P[natural number] ≡ R4(n+
1, $1) = C6(n + 1, $1) + R4(n, $1). For every natural number k such that
P[k] holds P[k + 1]. For every natural number k, P[k] from [3, Sch. 2].
Define Q[natural number] ≡ C5($1,m+1) = R5($1,m+1)+C5($1,m). For
every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [3, Sch. 2]. �

(12) (
∑κ
α=0R1(α))κ∈N = the partial sums in the first coordinate of the partial

sums in the second coordinate of R1.

Let us consider natural numbers n, m. Now we state the propositions:

(13) R1(n+ 1,m+ 1) = (
∑κ
α=0R1(α))κ∈N(n+ 1,m+ 1)− (

∑κ
α=0R1(α))κ∈N

(n,m+ 1)− (
∑κ
α=0R1(α))κ∈N(n+ 1,m) + (

∑κ
α=0R1(α))κ∈N(n,m).

(14) R1(n+1,m+1) = (the partial sums in the first coordinate of the partial
sums in the second coordinate of R1)(n + 1,m + 1) − (the partial sums
in the first coordinate of the partial sums in the second coordinate of
R1)(n + 1,m) − (the partial sums in the first coordinate of the partial
sums in the second coordinate of R1)(n,m+ 1) + (the partial sums in the
first coordinate of the partial sums in the second coordinate of R1)(n,m).

Now we state the propositions:

(15) If (
∑κ
α=0R1(α))κ∈N is p-convergent, thenR1 is p-convergent and P-limR1
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= 0. Proof: For every real number e such that 0 < e there exists a natural
number N such that for every natural numbers n, m such that n  N and
m  N holds |R1(n,m)− 0| < e by [3, (13), (20)], (13), [8, (57)]. �

(16) (
∑κ
α=0(R2 + R3)(α))κ∈N = (

∑κ
α=0R2(α))κ∈N + (

∑κ
α=0R3(α))κ∈N. The

theorem is a consequence of (8).

(17) Suppose (
∑κ
α=0R2(α))κ∈N is p-convergent and (

∑κ
α=0R3(α))κ∈N is p-

convergent. Then (
∑κ
α=0(R2 + R3)(α))κ∈N is p-convergent. The theorem

is a consequence of (16).

(18) Let us consider elements m, n of N. Then

(i) (the partial sums in the first coordinate of R1)(m,n) =

(
∑κ
α=0(curry′(R1, n))(α))κ∈N(m), and

(ii) (the partial sums in the second coordinate of R1)(m,n) =

(
∑κ
α=0(curry(R1,m))(α))κ∈N(n).

Proof: Define P[natural number] ≡ (the partial sums in the first
coordinate of R1)($1, n) = (

∑κ
α=0(curry′(R1, n))(α))κ∈N($1). For every na-

tural number k such that P[k] holds P[k+1]. For every natural number k,
P[k] from [3, Sch. 2]. Define Q[natural number] ≡ (the partial sums in the
second coordinate of R1)(m, $1) = (

∑κ
α=0(curry(R1,m))(α))κ∈N($1). For

every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [3, Sch. 2]. �

(19) (i) curry((
∑κ
α=0R1(α))κ∈N, 0) = curry(the partial sums in the second

coordinate of R1, 0), and

(ii) curry′((
∑κ
α=0R1(α))κ∈N, 0) = curry′(the partial sums in the first

coordinate of R1, 0).
The theorem is a consequence of (12).

(20) Let us consider non empty sets C, D, functions F1, F2 from C×D into R,
and an element c of C. Then curry(F1+F2, c) = curry(F1, c)+curry(F2, c).

(21) Let us consider non empty sets C, D, functions F1, F2 from C × D

into R, and an element d of D. Then curry′(F1 + F2, d) = curry′(F1, d) +
curry′(F2, d).

(22) (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate if and only if the

partial sums in the first coordinate of R1 is convergent in the first coordi-
nate. The theorem is a consequence of (19), (12), and (11).

(23) (
∑κ
α=0R1(α))κ∈N is convergent in the second coordinate if and only if

the partial sums in the second coordinate of R1 is convergent in the second
coordinate. The theorem is a consequence of (19), (12), and (11).

Let us consider a natural number k. Now we state the propositions:

(24) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate. Then

(the lim in the first coordinate of (
∑κ
α=0R1(α))κ∈N)(k + 1) = (the lim
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in the first coordinate of (
∑κ
α=0R1(α))κ∈N)(k) + (the lim in the first

coordinate of the partial sums in the first coordinate of R1)(k + 1). The
theorem is a consequence of (22).

(25) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the second coordinate. Then

(the lim in the second coordinate of (
∑κ
α=0R1(α))κ∈N)(k+ 1) = (the lim

in the second coordinate of (
∑κ
α=0R1(α))κ∈N)(k)+(the lim in the second

coordinate of the partial sums in the second coordinate of R1)(k+1). The
theorem is a consequence of (23) and (12).

Now we state the propositions:

(26) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate. Then

the lim in the first coordinate of (
∑κ
α=0R1(α))κ∈N = (

∑κ
α=0(the lim in the

first coordinate of the partial sums in the first coordinate of R1)(α))κ∈N.
The theorem is a consequence of (19) and (24).

(27) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the second coordinate. Then

the lim in the second coordinate of (
∑κ
α=0R1(α))κ∈N = (

∑κ
α=0(the lim

in the second coordinate of the partial sums in the second coordinate of
R1)(α))κ∈N. The theorem is a consequence of (19) and (25).

2. Double Series of Non-Negative Double Sequence

Let us assume that R1 is non-negative yielding. Now we state the proposi-
tions:

(28) (i) the partial sums in the second coordinate of R1 is non-negative
yielding, and

(ii) the partial sums in the first coordinate of R1 is non-negative yielding.

(29) (
∑κ
α=0R1(α))κ∈N is non-decreasing. The theorem is a consequence of

(11) and (28).

(30) (
∑κ
α=0R1(α))κ∈N is p-convergent if and only if (

∑κ
α=0R1(α))κ∈N is lower

bounded and upper bounded. The theorem is a consequence of (29).

Let us consider natural numbers i, j. Now we state the propositions:

(31) Suppose for every natural numbers n, m, R2(n,m) ¬ R3(n,m). Then

(i) (the partial sums in the first coordinate of R2)(i, j) ¬ (the partial
sums in the first coordinate of R3)(i, j), and

(ii) (the partial sums in the second coordinate of R2)(i, j) ¬ (the partial
sums in the second coordinate of R3)(i, j).

Proof: Set R4 = the partial sums in the first coordinate of R2. Set R5 =
the partial sums in the first coordinate of R3. Set C1 = the partial sums
in the second coordinate of R2. Set C2 = the partial sums in the second
coordinate of R3. Define R[natural number] ≡ R4($1, j) ¬ R5($1, j). For
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every natural number k such that R[k] holds R[k + 1]. For every natural
number k, R[k] from [3, Sch. 2]. Define C[natural number] ≡ C1(i, $1) ¬
C2(i, $1). For every natural number k such that C[k] holds C[k + 1]. For
every natural number k, C[k] from [3, Sch. 2]. �

(32) Suppose R2 is non-negative yielding and for every natural numbers n, m,
R2(n,m) ¬ R3(n,m). Then (

∑κ
α=0R2(α))κ∈N(i, j) ¬ (

∑κ
α=0R3(α))κ∈N(i,

j). Proof: Set R4 = (
∑κ
α=0R2(α))κ∈N. Set R5 = (

∑κ
α=0R3(α))κ∈N. De-

fine P[natural number] ≡ R4(i, $1) ¬ R5(i, $1). P[0]. For every natural
number k such that P[k] holds P[k+ 1]. For every natural number k, P[k]
from [3, Sch. 2]. �

Now we state the propositions:

(33) Suppose R2 is non-negative yielding and for every natural numbers n,
m, R2(n,m) ¬ R3(n,m) and (

∑κ
α=0R3(α))κ∈N is p-convergent. Then

(
∑κ
α=0R2(α))κ∈N is p-convergent. The theorem is a consequence of (29)

and (32).

(34) Let us consider a sequence r1 of real numbers and a natural number
m. Suppose r1 is non-negative. Then r1(m) ¬ (

∑κ
α=0 r1(α))κ∈N(m). Pro-

of: Define P[natural number] ≡ r1($1) ¬ (
∑κ
α=0 r1(α))κ∈N($1). For every

natural number k such that P[k] holds P[k + 1] by [19, (34)]. For every
natural number k, P[k] from [3, Sch. 2]. �

Let us assume that R1 is non-negative yielding. Now we state the proposi-
tions:

(35) Let us consider natural numbers m, n. Then

(i) R1(m,n) ¬ (the partial sums in the first coordinate of R1)(m,n),
and

(ii) R1(m,n) ¬ (the partial sums in the second coordinate of R1)(m,n).

The theorem is a consequence of (34) and (18).

(36) (i) for every natural numbers i1, i2, j such that i1 ¬ i2 holds (the partial
sums in the first coordinate of R1)(i1, j) ¬ (the partial sums in the
first coordinate of R1)(i2, j), and

(ii) for every natural numbers i, j1, j2 such that j1 ¬ j2 holds (the partial
sums in the second coordinate of R1)(i, j1) ¬ (the partial sums in
the second coordinate of R1)(i, j2).

(37) (i) for every natural numbers i1, i2, j such that i1 ¬ i2 holds

(
∑κ
α=0R1(α))κ∈N(i1, j) ¬ (

∑κ
α=0R1(α))κ∈N(i2, j), and

(ii) for every natural numbers i, j1, j2 such that j1 ¬ j2 holds

(
∑κ
α=0R1(α))κ∈N(i, j1) ¬ (

∑κ
α=0R1(α))κ∈N(i, j2).

The theorem is a consequence of (36).

(38) Let us consider natural numbers i1, i2, j1, j2. Suppose
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(i) i1 ¬ i2, and

(ii) j1 ¬ j2.
Then (

∑κ
α=0R1(α))κ∈N(i1, j1) ¬ (

∑κ
α=0R1(α))κ∈N(i2, j2). The theorem is

a consequence of (37).

(39) Let us consider an element k of N. Then

(i) curry′(the partial sums in the first coordinate of R1, k) is non-decre-
asing, and

(ii) curry(the partial sums in the second coordinate of R1, k) is non-
decreasing, and

(iii) curry′(the partial sums in the first coordinate ofR1, k) is non-negative,
and

(iv) curry(the partial sums in the second coordinate of R1, k) is non-
negative, and

(v) curry′(the partial sums in the second coordinate of R1, k) is non-
negative, and

(vi) curry(the partial sums in the first coordinate ofR1, k) is non-negative.

The theorem is a consequence of (18) and (34).

Let us assume that R1 is non-negative yielding and (
∑κ
α=0R1(α))κ∈N is p-

convergent. Now we state the propositions:

(40) (i) the partial sums in the first coordinate of R1 is convergent in the
first coordinate, and

(ii) the partial sums in the second coordinate of R1 is convergent in the
second coordinate.

The theorem is a consequence of (39), (18), (34), and (29).

(41) (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate and convergent in

the second coordinate. The theorem is a consequence of (40), (22), and
(23).

(42) (i) the lim in the first coordinate of the partial sums in the first coor-
dinate of R1 is summable, and

(ii) the lim in the second coordinate of the partial sums in the second
coordinate of R1 is summable.

The theorem is a consequence of (41), (26), and (27).

(43) (i) P-lim(
∑κ
α=0R1(α))κ∈N =

∑
(the lim in the first coordinate of

the partial sums in the first coordinate of R1), and

(ii) P-lim(
∑κ
α=0R1(α))κ∈N =

∑
(the lim in the second coordinate of

the partial sums in the second coordinate of R1).
The theorem is a consequence of (41), (26), and (27).
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3. Summability for Rearrangements of Non-Negative Real
Sequence

Now we state the propositions:

(44) Let us consider sequences s1, s2 of real numbers. Suppose

(i) s1 is non-negative, and

(ii) s1 and s2 are fiberwise equipotent.

Then s2 is non-negative.

(45) Let us consider a non empty set X, a sequence s of X, and a natural
number n. Then dom Shift(s�Zn, 1) = Seg n.

Let X be a non empty set, s be a sequence of X, and n be a natural number.
Note that Shift(s�Zn, 1) is finite sequence-like.

Now we state the propositions:

(46) Let us consider a non empty set X, a sequence s of X, and a natural
number n. Then Shift(s�Zn, 1) is a finite sequence of elements of X.

(47) Let us consider a non empty set X, a sequence s of X, and natural num-
bers n, m. Suppose m+1 ∈ dom Shift(s�Zn, 1). Then (Shift(s�Zn, 1))(m+
1) = s(m).

(48) Let us consider a non empty set X and a sequence s of X. Then

(i) Shift(s�Z0, 1) = ∅, and

(ii) Shift(s�Z1, 1) = 〈s(0)〉, and

(iii) Shift(s�Z2, 1) = 〈s(0), s(1)〉, and

(iv) for every natural number n, Shift(s�Zn+1, 1) = Shift(s�Zn, 1)a〈s(n)〉.
The theorem is a consequence of (45) and (47).

(49) Let us consider a sequence s of real numbers and a natural number n.
Then (

∑κ
α=0 s(α))κ∈N(n) =

∑
Shift(s�Zn+1, 1). Proof: Define P[natural

number] ≡ (
∑κ
α=0 s(α))κ∈N($1) =

∑
Shift(s�Z$1+1, 1). Shift(s�Z0+1, 1) =

〈s(0)〉. For every natural number k such that P[k] holds P[k+ 1] by (48),
[14, (74)]. For every natural number k, P[k] from [3, Sch. 2]. �

(50) Let us consider a non empty set X, sequences s1, s2 of X, and a natural
number n. Suppose s1 and s2 are fiberwise equipotent. Then there exists
a natural number m and there exists a subset f2 of Shift(s2�Zm, 1) such
that Shift(s1�Zn+1, 1) and f2 are fiberwise equipotent. Proof: Consider
P being a permutation of dom s1 such that s1 = s2 · P . Define F(set) =
P ($1) + 1. Define G[set] ≡ $1 is a natural number. {F(i), where i is a
natural number : i ¬ n and G[i]} is finite from [6, Sch. 6]. Reconsider
D = {F(i), where i is a natural number : i ¬ n and G[i]} as a finite set.
Set f2 = {〈〈j + 1, s2(j)〉〉, where j is a natural number : j + 1 ∈ D}. Define
G[object, object] ≡ there exists a natural number i such that $1 = i + 1
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and $2 = P (i) + 1. For every object x such that x ∈ Seg(n + 1) the-
re exists an object y such that G[x, y] by [6, (1)], [3, (21)]. Consider G
being a function such that domG = Seg(n + 1) and for every object x
such that x ∈ Seg(n + 1) holds G[x,G(x)] from [11, Sch. 2]. domG =
dom Shift(s1�Zn+1, 1). dom(f2 ·G) = dom Shift(s1�Zn+1, 1). For every ob-
ject x such that x ∈ dom Shift(s1�Zn+1, 1) holds (Shift(s1�Zn+1, 1))(x) =
(f2 ·G)(x) by (45), [6, (1)], [3, (21)], (47). �

(51) Let us consider a non empty set X, a finite sequence f1 of elements of
X, and a subset f3 of f1. Then Seq f3 and f3 are fiberwise equipotent.

(52) Let us consider sequences s1, s2 of real numbers and a natural number
n. Suppose

(i) s1 and s2 are fiberwise equipotent, and

(ii) s1 is non-negative.

Then there exists a natural number m such that (
∑κ
α=0 s1(α))κ∈N(n) ¬

(
∑κ
α=0 s2(α))κ∈N(m). The theorem is a consequence of (44), (50), (46),

(51), (47), (49), and (48).

(53) Let us consider sequences s1, s2 of real numbers. Suppose

(i) s1 and s2 are fiberwise equipotent, and

(ii) s1 is non-negative and summable.

Then

(iii) s2 is summable, and

(iv)
∑
s1 =

∑
s2.

The theorem is a consequence of (44) and (52).

4. Basic Relations between Double Sequences and Matrices

Now we state the propositions:

(54) Let us consider a non empty set D, a function R1 from N × N into
D, and natural numbers n, m. Then there exists a matrix M over D of
dimension n+ 1×m+ 1 such that for every natural numbers i, j such that
i ¬ n and j ¬ m holds R1(i, j) = Mi+1,j+1. Proof: Define P[natural
number,natural number, object] ≡ there exist natural numbers i1, j1 such
that i1 = $1 − 1 and j1 = $2 − 1 and $3 = R1(i1, j1). Consider M being
a matrix over D of dimension n + 1×m + 1 such that for every natural
numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M holds P[i, j,Mi,j ]. �

(55) Let us consider natural numbers n, m, a function R1 from N × N into
R, and a matrix M over R of dimension n + 1×m + 1. Suppose natu-
ral numbers i, j. If i ¬ n and j ¬ m, then R1(i, j) = Mi+1,j+1. Then



Double series and sums 67

(
∑κ
α=0R1(α))κ∈N(n,m) = SumAllM . Proof: For every natural number

i such that i ¬ n holds (the partial sums in the second coordinate of
R1)(i,m) = (LineSumM)(i + 1) by [3, (11)], [6, (1), (59)], [26, (112)].
Define G[natural number] ≡ if $1 ¬ n, then (the partial sums in the first
coordinate of the partial sums in the second coordinate of R1)($1,m) =∑

(LineSumM�($1+ 1)). For every natural number k such that G[k] holds
G[k+1] by [3, (11)], [30, (20)], [6, (59)], [10, (21)]. For every natural number
k, G[k] from [3, Sch. 2]. �
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Summary. In this article, we deal with dual spaces and the Hahn-Banach
Theorem. At the first, we defined dual spaces of real linear spaces and proved
related basic properties. Next, we defined dual spaces of real normed spaces. We
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1. Dual Spaces of Real Linear Spaces

From now on V denotes a non empty real linear space.
Let X be a real linear space. The functor MultFReal∗X yielding a function
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(Def. 1) The external multiplication of X.
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Now we state the proposition:

(1) Let us consider a real linear spaceX. Then 〈the carrier ofX, the addition
of X, the zero of X,MultFReal∗X〉 is a vector space over RF.

Let X be a real linear space. The functor RLSp2RVSpX yielding a vector
space over RF is defined by the term

(Def. 2) 〈the carrier of X, the addition of X, the zero of X,MultFReal∗X〉.
Let X be a vector space structure over RF. The functor MultReal∗X yielding

a function from R × (the carrier of X) into the carrier of X is defined by the
term

(Def. 3) The left multiplication of X.

Now we state the proposition:

(2) Let us consider a vector spaceX over RF. Then 〈the carrier ofX, the zero
of X, the addition of X,MultReal∗X〉 is a real linear space.

Let X be a vector space over RF. The functor RVSp2RLSpX yielding a real
linear space is defined by the term

(Def. 4) 〈the carrier of X, the zero of X, the addition of X,MultReal∗X〉.
Now we state the propositions:

(3) Let us consider a real linear space X, elements v, w of X, and elements
v1, w1 of RLSp2RVSpX. If v = v1 and w = w1, then v+w = v1+w1 and
v − w = v1 − w1.

(4) Let us consider a vector space X over RF, elements v, w of X, and
elements v1, w1 of RVSp2RLSpX. If v = v1 and w = w1, then v + w =
v1 + w1 and v − w = v1 − w1.

Let V be a non empty real linear space. The functor V yielding a strict non
empty real linear space is defined by

(Def. 5) There exists a non empty vector space X over RF such that

(i) X = RLSp2RVSpV , and

(ii) it = RVSp2RLSp X .

Now we state the proposition:

(5) Let us consider an object x. Then x ∈ the carrier of V if and only if x
is a linear functional in V .

Let V be a non empty real linear space. One can check that V is constituted
functions.

Let f be an element of V and v be a vector of V . Note that the functor f(v)
yields an element of R. Now we state the propositions:

(6) Let us consider a non empty real linear space V and vectors f , g, h of V .
Then h = f + g if and only if for every vector x of V , h(x) = f(x) + g(x).
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(7) Let us consider a non empty real linear space V , vectors f , h of V , and
a real number a. Then h = a · f if and only if for every vector x of V ,
h(x) = a · f(x).

(8) Let us consider a non empty real linear space V . Then 0V = (the carrier
of V ) 7−→ 0.

(9) Let us consider a real linear space X. Then (the carrier of X) 7−→ 0 is
a linear functional in X. Proof: Set f = (the carrier of X) 7−→ 0. f is
additive by [23, (7)]. f is homogeneous by [23, (7)]. �

Let X be a real linear space. The linear functionals of X yielding a subset
of R(the carrier of X)R is defined by

(Def. 6) Let us consider an object x. Then x ∈ it if and only if x is a linear
functional in X.

Let X be a real normed space. One can verify that the linear functionals of
X is non empty.

Let X be a real linear space. One can verify that the linear functionals of X
is non empty and functional.

Let us consider a real linear space X. Now we state the propositions:

(10) The linear functionals ofX is linearly closed. Proof: SetW = the linear
functionals of X. For every vectors v, u of Rα

R such that v, u ∈ the linear
functionals of X holds v + u ∈ the linear functionals of X, where α is the
carrier of X by [7, (66)], [18, (1)]. For every real number a and for every
vector v of Rα

R such that v ∈W holds a · v ∈W , where α is the carrier of
X by [7, (66)], [18, (4)]. �

(11) 〈the linear functionals of X,Zero(the linear functionals of X,Rα
R),Add

(the linear functionals of X,Rα
R),Mult(the linear functionals of X,Rα

R)〉 is
a subspace of Rα

R, where α is the carrier of X.

Let X be a real linear space. Note that 〈the linear functionals of X,Zero
(the linear functionals of X,R(the carrier of X)R ),Add(the linear functionals of

X,R(the carrier of X)R ),Mult(the linear functionals of X,R(the carrier of X)R )〉 is Abe-
lian add-associative right zeroed right complementable scalar distributive vector
distributive scalar associative and scalar unital.

The functor X yielding a strict real linear space is defined by the term

(Def. 7) 〈the linear functionals of X,Zero(the linear functionals of X,Rα
R),Add

(the linear functionals of X,Rα
R),Mult(the linear functionals of X,Rα

R)〉,
where α is the carrier of X.

Observe that X is constituted functions.
Let f be an element of X and v be a vector of X. One can verify that the

functor f(v) yields an element of R. Now we state the propositions:

(12) Let us consider a real linear space X and vectors f , g, h of X . Then
h = f + g if and only if for every vector x of X, h(x) = f(x) + g(x). The
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theorem is a consequence of (10).

(13) Let us consider a real linear space X, vectors f , h of X , and a real
number a. Then h = a · f if and only if for every vector x of X, h(x) =
a · f(x). The theorem is a consequence of (10).

(14) Let us consider a real linear space X. Then 0X = (the carrier of X) 7−→
0. The theorem is a consequence of (10).

2. Dual Spaces of Real Normed Spaces

In the sequel S denotes a sequence of real numbers, k, n, m, m1 denote
natural numbers, and g, h, r, x denote real numbers.

Let S be a sequence of real numbers and x be a real number. The functor
S − x yielding a sequence of real numbers is defined by

(Def. 8) it(n) = S(n)− x.

Now we state the proposition:

(15) If S is convergent, then S − x is convergent and lim(S − x) = limS − x.

Let X be a real normed space and I be a functional in X. We say that I is
Lipschitzian if and only if

(Def. 9) There exists a real number K such that

(i) 0 ¬ K, and

(ii) for every vector x of X, |I(x)| ¬ K · ‖x‖.
Now we state the proposition:

(16) Let us consider a real normed space X and a functional f in X. If for
every vector x of X, f(x) = 0, then f is Lipschitzian.

Let X be a real normed space. One can check that there exists a linear
functional in X which is Lipschitzian.

The bounded linear functionals X yielding a subset of X is defined by

(Def. 10) Let us consider a set x. Then x ∈ it if and only if x is a Lipschitzian
linear functional in X.

One can check that the bounded linear functionals X is non empty.
Let us consider a real normed space X. Now we state the propositions:

(17) The bounded linear functionals X is linearly closed. Proof: Set W =
the bounded linear functionals X. For every vectors v, u of X such that
v, u ∈W holds v+ u ∈W by [5, (56)], (12). For every real number a and
for every vector v of X such that v ∈W holds a · v ∈W by [5, (46), (65)],
(13). �

(18) 〈the bounded linear functionals X,Zero(the bounded linear functionals
X, X ),Add(the bounded linear functionalsX, X ),Mult(the bounded linear
functionals X, X )〉 is a subspace of X .
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Let X be a real normed space. Let us observe that 〈the bounded linear
functionals X,Zero(the bounded linear functionals X, X ),Add(the bounded
linear functionals X, X ),Mult(the bounded linear functionals X, X )〉 is Abe-
lian add-associative right zeroed right complementable vector distributive scalar
distributive scalar associative and scalar unital.

The R-vector space of bounded linear functionals of X yielding a strict real
linear space is defined by the term

(Def. 11) 〈the bounded linear functionals X,Zero(the bounded linear functionals
X, X ),Add(the bounded linear functionals X, X ),Mult(the bounded
linear functionals X, X )〉.

One can check that every element of the R-vector space of bounded linear
functionals of X is function-like and relation-like.

Let f be an element of the R-vector space of bounded linear functionals of
X and v be a vector of X. Note that the functor f(v) yields an element of R.
Now we state the propositions:

(19) Let us consider a real normed space X and vectors f , g, h of the R-vector
space of bounded linear functionals of X. Then h = f +g if and only if for
every vector x of X, h(x) = f(x) + g(x). The theorem is a consequence of
(17) and (12).

(20) Let us consider a real normed space X, vectors f , h of the R-vector space
of bounded linear functionals of X, and a real number a. Then h = a · f
if and only if for every vector x of X, h(x) = a · f(x). The theorem is a
consequence of (17) and (13).

(21) Let us consider a real normed space X. Then 0α = (the carrier of
X) 7−→ 0, where α is the R-vector space of bounded linear functionals of
X. The theorem is a consequence of (14) and (17).

Let X be a real normed space and f be an object.
The functor Bound2Lipschitz(f,X) yielding a Lipschitzian linear functional

in X is defined by the term

(Def. 12) f(∈ the bounded linear functionals X).

Let u be a linear functional in X. The functor PreNorms(u) yielding a non
empty subset of R is defined by the term

(Def. 13) {|u(t)|, where t is a vector of X : ‖t‖ ¬ 1}.

Let g be a Lipschitzian linear functional in X. Observe that PreNorms(g) is
upper bounded.

Now we state the proposition:

(22) Let us consider a real normed space X and a linear functional g in X.
Then g is Lipschitzian if and only if PreNorms(g) is upper bounded.

Let X be a real normed space. The bounded linear functionals norm X

yielding a function from the bounded linear functionals X into R is defined by
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(Def. 14) Let us consider an object x. Suppose x ∈ the bounded linear functionals
X. Then it(x) = sup PreNorms(Bound2Lipschitz(x,X)).

Let us consider a real normed space X and a Lipschitzian linear functional
f in X. Now we state the propositions:

(23) Bound2Lipschitz(f,X) = f .

(24) (The bounded linear functionals norm X)(f) = sup PreNorms(f). The
theorem is a consequence of (23).

Let X be a real normed space. The functor DualSpX yielding a non empty
normed structure is defined by the term

(Def. 15) 〈the bounded linear functionals X,Zero(the bounded linear functionals
X, X ),Add(the bounded linear functionals X, X ),Mult(the bounded
linear functionals X, X ), the bounded linear functionals norm X〉.

Now we state the propositions:

(25) Let us consider a real normed space X. Then (the carrier of X) 7−→ 0 =
0DualSpX . The theorem is a consequence of (21).

(26) Let us consider a real normed space X, a point f of DualSpX, and a
Lipschitzian linear functional g in X. Suppose g = f . Let us consider a
vector t of X. Then |g(t)| ¬ ‖f‖·‖t‖. The theorem is a consequence of (24).

(27) Let us consider a real normed space X and a point f of DualSpX. Then
0 ¬ ‖f‖. The theorem is a consequence of (24).

(28) Let us consider real normed spaces X, Y and a point f of DualSpX.
If f = 0DualSpX , then 0 = ‖f‖. Proof: ‖f‖ = 0 by [23, (45)], [13, (45)],
(25), [23, (7)]. �

Let X be a real normed space. Note that every element of DualSpX is
function-like and relation-like.

Let f be an element of DualSpX and v be a vector of X. Let us note that
the functor f(v) yields an element of R. Now we state the propositions:

(29) Let us consider a real normed space X and points f , g, h of DualSpX.
Then h = f + g if and only if for every vector x of X, h(x) = f(x) + g(x).
The theorem is a consequence of (19).

(30) Let us consider a real normed space X, points f , h of DualSpX, and
a real number a. Then h = a · f if and only if for every vector x of X,
h(x) = a · f(x). The theorem is a consequence of (20).

(31) Let us consider a real normed space X, points f , g of DualSpX, and a
real number a. Then

(i) ‖f‖ = 0 iff f = 0DualSpX , and

(ii) ‖a · f‖ = |a| · ‖f‖, and

(iii) ‖f + g‖ ¬ ‖f‖+ ‖g‖.



Dual spaces and Hahn-Banach theorem 75

Proof: ‖f + g‖ ¬ ‖f‖+ ‖g‖ by [13, (45)], (27), [5, (56)], (26). ‖a · f‖ =
|a| · ‖f‖ by (27), (26), [5, (65), (46)]. �

Let X be a real normed space. Note that DualSpX is reflexive discernible
and real normed space-like.

Now we state the proposition:

(32) Let us consider a real normed space X. Then DualSpX is a real normed
space.

Let X be a real normed space. Let us note that DualSpX is reflexive di-
scernible real normed space-like vector distributive scalar distributive scalar
associative scalar unital Abelian add-associative right zeroed and right comple-
mentable.

Now we state the proposition:

(33) Let us consider a real normed space X and points f , g, h of DualSpX.
Then h = f − g if and only if for every vector x of X, h(x) = f(x)− g(x).
The theorem is a consequence of (29).

Let X be a real normed space, s be a sequence of DualSpX, and n be a
natural number. Let us note that the functor s(n) yields an element of DualSpX.
Now we state the propositions:

(34) Let us consider a real normed space X and a sequence s1 of DualSpX.
If s1 is Cauchy sequence by norm, then s1 is convergent. Proof: Define
P[set, set] ≡ there exists a sequence x1 of R such that for every natural
number n, x1(n) = (Bound2Lipschitz(vseq(n), X))($1) and x1 is conver-
gent and $2 = limx1. For every element x of X, there exists an element
y of R such that P[x, y] by (23), (33), (26), [5, (44)]. Consider f being
a function from the carrier of X into R such that for every element x of
X, P[x, f(x)] from [7, Sch. 3]. Reconsider t1 = f as a function from the
carrier of X into R. t1 is Lipschitzian by [13, (14)], [11, (12)], (23), (26).
For every real number e such that e > 0 there exists a natural number
k such that for every natural number n such that n  k for every vector
x of X, |(Bound2Lipschitz(vseq(n), X))(x)− t1(x)| ¬ e · ‖x‖ by [22, (8)],
(23), (33), (26). Reconsider t2 = t1 as a point of DualSpX. For every real
number e such that e > 0 there exists a natural number k such that for
every natural number n such that n  k holds ‖vseq(n)− t2‖ ¬ e by (23),
(33), [13, (45)], (24). For every real number e such that e > 0 there exists a
natural number m such that for every natural number n such that n  m
holds ‖vseq(n)− t2‖ < e. �

(35) Let us consider a real normed space X. Then DualSpX is a real Banach
space. The theorem is a consequence of (34).

Let X be a real normed space. One can verify that DualSpX is complete.



76 keiko narita, noboru endou, and yasunari shidama

3. Hahn-Banach Extension Theorem

Let V be a real normed space.
A subreal normal space of V is a real normed space and is defined by

(Def. 16) (i) the carrier of it ⊆ the carrier of V , and

(ii) 0it = 0V , and

(iii) the addition of it = (the addition of V ) � (the carrier of it), and

(iv) the external multiplication of it = (the external multiplication of
V )�(R× (the carrier of it)), and

(v) the normed of it = (the normed of V )�(the carrier of it).

(36) Let us consider a real normed space V , a subreal normal space X of V , a
Lipschitzian linear functional f in X, and a point F of DualSpX. Suppose
f = F . Then there exists a Lipschitzian linear functional g in V and the-
re exists a point G of DualSpV such that g = G and g�(the carrier
of X) = f and ‖G‖ = ‖F‖. Proof: Reconsider X0 = X as a re-
al linear space. Reconsider f3 = f as a linear functional in X0. Define
F(element of the carrier of V ) = ‖F‖ · ‖$1‖. Consider q being a function
from the carrier of V into R such that for every element v of the car-
rier of V , q(v) = F(v) from [7, Sch. 8]. q is a Banach functional in V .
For every vector x of X0 and for every vector v of V such that x = v

holds f3(x) ¬ q(v) by [19, (4)], (26), [6, (49)]. Consider g being a linear
functional in V such that g�(the carrier of X0) = f3 and for every vec-
tor x of V , g(x) ¬ q(x). For every vector x of V , |g(x)| ¬ ‖F‖ · ‖x‖
by [26, (16)], [20, (2)], [19, (5)]. (The bounded linear functionals norm
V )(g) ¬ (the bounded linear functionals norm X)(f). (The bounded
linear functionals norm X)(f) ¬ sup PreNorms(g). (The bounded linear
functionals norm X)(f) ¬ (the bounded linear functionals norm V )(g). �

(37) Hahn-Banach extension theorem (real normed spaces):
Let us consider a real normed space V , a subreal normal space X of V , a
Lipschitzian linear functional f in X, and a point F of DualSpX. Suppose

(i) f = F , and

(ii) for every vector x of X and for every vector v of V such that x = v

holds f(x) ¬ ‖v‖.
Then there exists a Lipschitzian linear functional g in V and there exists
a point G of DualSpV such that g = G and g�(the carrier of X) = f and
for every vector x of V , g(x) ¬ ‖x‖ and ‖G‖ = ‖F‖. Proof: Consider g
being a Lipschitzian linear functional in V , G being a point of DualSpV
such that g = G and g�(the carrier of X) = f and ‖G‖ = ‖F‖. ‖G‖ ¬ 1.
For every vector x of V , g(x) ¬ ‖x‖ by [19, (4)], (26). �
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Summary. Schmets [22] has developed a measure theory from a generali-
zed notion of a semiring of sets. Goguadze [15] has introduced another generalized
notion of semiring of sets and proved that all known properties that semiring ha-
ve according to the old definitions are preserved. We show that this two notions
are almost equivalent. We note that Patriota [20] has defined this quasi-semiring.
We propose the formalization of some properties developed by the authors.
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1. Preliminaries

From now on X denotes a set and S denotes a family of subsets of X.
Now we state the proposition:

(1) Let us consider sets X, Y. Then (X ∪ Y ) \ (Y \X) = X.

Let us consider X and S. Let S1, S2 be finite subsets of S. Let us note that
S1 e S2 is finite.

Now we state the proposition:

(2) Let us consider a family S of subsets of X and an element A of S. Then
{x, where x is an element of S : x ∈

⋃
(PARTITIONS(A) ∩ FinS)} =⋃

(PARTITIONS(A) ∩ FinS).

Let us consider X and S. Note that
⋃

(PARTITIONS(∅) ∩ FinS) is empty.
Note that 2X∗ has empty element. Now we state the proposition:
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(3) Let us consider a set X. Suppose X is ∩-closed and ∪-closed. Then X is
a ring of sets.

2. The Existence of Partitions

Let X be a set and S be a family of subsets of X. We say that S is ∩fp-closed
if and only if

(Def. 1) Let us consider elements S1, S2 of S. Suppose S1∩S2 is not empty. Then
there exists a finite subset x of S such that x is a partition of S1 ∩ S2.

Let us observe that 2X∗ is ∩fp-closed.
Observe that there exists a family of subsets of X which is ∩fp-closed.
One can verify that every family of subsets of X which is ∩-closed is also

∩fp-closed.
Now we state the propositions:

(4) Let us consider a non empty set A, a ∩fp-closed family S of subsets of
X, and partitions P1, P2 of A. Suppose

(i) P1 is a finite subset of S, and

(ii) P2 is a finite subset of S.

Then there exists a partition P of A such that

(iii) P is a finite subset of S, and

(iv) P b P1 ∧ P2.
Proof: Define F [object, object] ≡ $1 ∈ P1∧P2 and $2 is a finite subset of
S and there exists a set A such that A = $1 and $2 is a partition of A. Set
F1 = {y, where y is a finite subset of S : there exists a set t such that
t ∈ P1 ∧ P2 and y is a partition of t}. F1 ⊆ 22

x
by [10, (67)]. For every

object u such that u ∈ P1 ∧ P2 there exists an object v such that v ∈ F1
and F [u, v]. Consider f being a function such that dom f = P1 ∧ P2 and
rng f ⊆ F1 and for every object x such that x ∈ P1 ∧ P2 holds F [x, f(x)]
from [8, Sch. 6].

⋃
f is a finite subset of S by [2, (88)].

⋃
f is a partition

of x by [10, (77), (81), (74)].
⋃
f b P1 ∧ P2. �

(5) Let us consider a ∩fp-closed family S of subsets of X and finite subsets
A, B of S. Suppose

(i) A is mutually-disjoint, and

(ii) B is mutually-disjoint.

Then there exists a finite subset P of S such that P is a partition of⋃
A ∩
⋃
B.

(6) Let us consider a ∩fp-closed family S of subsets of X and a finite subset
W of S. Then there exists a finite subset P of S such that P is a partition
of
⋂
W .
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(7) Let us consider a ∩fp-closed family S of subsets of X. Then {
⋃
x, where

x is a finite subset of S : x is mutually-disjoint} is ∩-closed. The theorem
is a consequence of (5).

Let X be a set and S be a family of subsets of X. We say that S is \fp-closed
if and only if

(Def. 2) Let us consider elements S1, S2 of S. Suppose S1 \S2 is not empty. Then
there exists a finite subset x of S such that x is a partition of S1 \ S2.

Let us note that 2X∗ is \fp-closed.
Note that there exists a family of subsets of X which is \fp-closed.
Observe that every family of subsets of X which is diff-closed is also \fp-

closed. Now we state the proposition:

(8) Let us consider a \fp-closed family S of subsets of X, an element S1 of
S, and a finite subset T of S. Then there exists a finite subset P of S
such that P is a partition of S1 \

⋃
T . Proof: Consider p0 being a finite

sequence such that T = rng p0. Define P[finite sequence] ≡ there exists a
finite subset p1 of S such that p1 is a partition of S1 \

⋃
rng $1. For every

finite sequence p of elements of S and for every element x of S such that
P[p] holds P[p a 〈x〉] by [6, (31)], [10, (78)], [6, (38)], [12, (8), (7)]. P[εS ]
by [26, (1)], [21, (45)], [26, (41)], [21, (39)]. For every finite sequence p of
elements of S, P[p] from [7, Sch. 2]. �

3. Partitions in a Difference of Sets

Let X be a set and S be a family of subsets of X. We say that S is \⊆fp-closed
if and only if

(Def. 3) Let us consider elements S1, S2 of S. Suppose S2 ⊆ S1. Then there exists
a finite subset x of S such that x is a partition of S1 \ S2.

Now we state the proposition:

(9) Let us consider a family S of subsets of X. Suppose S is \fp-closed. Then
S is \⊆fp-closed.

Let us consider X. Note that every family of subsets of X which is \fp-closed
is also \⊆fp-closed.

Observe that 2X∗ is \⊆fp-closed. Observe that there exists a family of subsets

of X which is \⊆fp-closed, \fp-closed, and ∩fp-closed and has empty element.
Now we state the propositions:

(10) Let us consider a \fp-closed family S of subsets of X. Then {
⋃
x, where

x is a finite subset of S : x is mutually-disjoint} is diff-closed. Proof: Set
Y = {

⋃
x, where x is a finite subset of S : x is mutually-disjoint}. For

every sets A, B such that A, B ∈ Y holds A \B ∈ Y by [6, (52)], (8), (5),
[12, (8), (7)]. �
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(11) Let us consider a ∩fp-closed \⊆fp-closed family S of subsets of X, an
element A of S, and a finite subset Q of S. Suppose

(i)
⋃
Q ⊆ A, and

(ii) Q is a partition of
⋃
Q.

Then there exists a finite subset R of S such that

(iii)
⋃
R misses

⋃
Q, and

(iv) Q ∪R is a partition of A.

(12) Every \⊆fp-closed ∩fp-closed family of subsets of X is \fp-closed. Proof:
For every elements S1, S2 of S such that S1 \ S2 is not empty there exists
a finite subset P0 of S such that P0 is a partition of S1 \ S2 by (11), [10,
(77), (81)]. �

Let X be a set. Let us observe that every ∩fp-closed family of subsets of X
which is \⊆fp-closed is also \fp-closed. Now we state the propositions:

(13) Let us consider a ∩fp-closed \⊆fp-closed family S of subsets of X and
finite subsets W , T of S. Then there exists a finite subset P of S such
that P is a partition of

⋂
W \
⋃
T .

(14) Let us consider a ∩fp-closed \⊆fp-closed family S of subsets of X and a
finite subset W of S. Then there exists a finite subset P of S such that

(i) P is a partition of
⋃
W , and

(ii) for every element Y of W , Y =
⋃
{s, where s is an element of S : s ∈

P and s ⊆ Y }.
(15) Let us consider a ∩fp-closed \⊆fp-closed family S of subsets of X and a

function W from N+ into S. Then there exists a countable subset P of S
such that

(i) P is a partition of
⋃
W , and

(ii) for every positive natural number n,
⋃

(W �Seg n) =
⋃
{s, where s is

an element of S : s ∈ P and s ⊆
⋃

(W �Seg n)}.
The theorem is a consequence of (8).

4. Countable Covers

Let X be a set and S be a family of subsets of X. We say that S has countable
cover if and only if

(Def. 4) There exists a countable subset X1 of S such that X1 is a cover of X.

Let us consider X. One can check that 2X∗ has countable cover.
One can check that there exists a family of subsets of X which is \⊆fp-closed,

\fp-closed, and ∩fp-closed and has empty element and countable cover.
Now we state the proposition:
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(16) Let us consider a ∩fp-closed \⊆fp-closed family S of subsets of X. Suppose
S has countable cover. Then there exists a countable subset P of S such
that P is a partition of X. The theorem is a consequence of (15).

5. Semiring of Sets

Let X be a set. A semiring of sets of X is a ∩fp-closed \⊆fp-closed family of
subsets of X with empty element.

Let us consider a ∩fp-closed family S of subsets of X and an element A of
S. Now we state the propositions:

(17) {x, where x is an element of S : x ∈
⋃

(PARTITIONS(A) ∩ FinS)} is a
∩fp-closed family of subsets of A. The theorem is a consequence of (4).

(18) {x, where x is an element of S : x ∈
⋃

(PARTITIONS(A) ∩ FinS)} is a
\⊆fp-closed family of subsets of A. The theorem is a consequence of (4).

(19)
⋃

(PARTITIONS(A) ∩ FinS) is ∩fp-closed \fp-closed family of subsets
of A and has non empty elements. The theorem is a consequence of (2),
(17), and (18).

(20) {∅} ∪
⋃

(PARTITIONS(A) ∩ FinS) is a semiring of sets of A. Proof:
Set A1 =

⋃
(PARTITIONS(A) ∩ FinS). Set B =

⋃
(PARTITIONS(A) ∩

FinS)∪{∅}. A1 is a ∩fp-closed \fp-closed family of subsets of A. B ⊆ 2A.
B is ∩fp-closed. B is \fp-closed by (19), [21, (39)]. �

6. A Ring of Sets

Let us consider a ∩fp-closed \fp-closed family S of subsets of X. Now we
state the propositions:

(21) {
⋃
x, where x is a finite subset of S : x is mutually-disjoint} is ∪-closed.

The theorem is a consequence of (14).

(22) {
⋃
x, where x is a finite subset of S : x is mutually-disjoint} is a ring of

sets. The theorem is a consequence of (7), (21), and (3).
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The notation and terminology used in this paper have been introduced in the
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1. Preliminaries

From now on X denotes a set and S denotes a family of subsets of X.
Now we state the propositions:

(1) Let us consider sets X1, X2, a family S1 of subsets of X1, and a family S2
of subsets of X2. Then {a×b, where a is an element of S1, b is an element
of S2 : a ∈ S1 and b ∈ S2} = {s, where s is a subset of X1 ×X2 : there
exist sets a, b such that a ∈ S1 and b ∈ S2 and s = a × b}. Proof: {a ×
b, where a is an element of S1, b is an element of S2 : a ∈ S1 and b ∈
S2} ⊆ {s, where s is a subset of X1×X2 : there exist sets a, b such that
a ∈ S1 and b ∈ S2 and s = a× b} by [6, (96)]. �

(2) Let us consider sets X1, X2, a non empty family S1 of subsets of X1,
and a non empty family S2 of subsets of X2. Then {s, where s is a subset
of X1 × X2 : there exist sets x1, x2 such that x1 ∈ S1 and x2 ∈ S2 and
s = x1 × x2} = the set of all x1 × x2 where x1 is an element of S1, x2 is
an element of S2.

(3) Let us consider sets X1, X2, a family S1 of subsets of X1, and a family
S2 of subsets of X2. Suppose
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(i) S1 is ∩-closed, and

(ii) S2 is ∩-closed.

Then {s, where s is a subset of X1 × X2 : there exist sets x1, x2 such
that x1 ∈ S1 and x2 ∈ S2 and s = x1 × x2} is ∩-closed. Proof: Set
Y = {s, where s is a subset of X1×X2 : there exist sets x1, x2 such that
x1 ∈ S1 and x2 ∈ S2 and s = x1 × x2}. Y is ∩-closed by [6, (100)]. �

Let X be a set. Note that every σ-field of subsets of X is ∩fp-closed and
\⊆fp-closed and has countable cover and empty element.

2. Ordinary Examples of Semirings of Sets

Now we state the proposition:

(4) Every σ-field of subsets of X is a semiring of sets of X.

Let X be a set. Note that 2X is ∩fp-closed and \⊆fp-closed and has countable
cover and empty element as a family of subsets of X.

Now we state the proposition:

(5) 2X is a semiring of sets of X.

Let us consider X. Note that FinX is ∩fp-closed and \⊆fp-closed and has
empty element as a family of subsets of X.

Let D be a denumerable set. Observe that FinD has countable cover as a
family of subsets of D.

Now we state the propositions:

(6) FinX is a semiring of sets of X.

(7) Let us consider sets X1, X2, a semiring S1 of sets of X1, and a semiring
S2 of sets of X2. Then {s, where s is a subset of X1 × X2 : there exist
sets x1, x2 such that x1 ∈ S1 and x2 ∈ S2 and s = x1 × x2} is a semiring
of sets of X1 ×X2. Proof: Set Y = {s, where s is a subset of X1 ×X2 :
there exist sets x1, x2 such that x1 ∈ S1 and x2 ∈ S2 and s = x1 × x2}.
Y has empty element. Y is ∩fp-closed by [6, (100)], [4, (8)], [1, (10)]. Y is
\fp-closed by [1, (10)], [11, (39)], [4, (8)], [11, (45)]. �

(8) Let us consider non empty sets X1, X2, a family S1 of subsets of X1 with
countable cover, a family S2 of subsets of X2 with countable cover, and
a family S of subsets of X1 × X2. Suppose S = {s, where s is a subset
of X1 × X2 : there exist sets x1, x2 such that x1 ∈ S1 and x2 ∈ S2 and
s = x1×x2}. Then S has countable cover. Proof: There exists a countable
subset U of S such that

⋃
U = X1 ×X2 and U is a subset of S by [6, (2),

(77)], [2, (95)], [3, (7)]. �

Let us consider a family S of subsets of R. Now we state the propositions:

(9) Suppose S = {]a, b], where a, b are real numbers : a ¬ b}. Then
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(i) S is ∩-closed, and

(ii) S is \fp-closed and has empty element, and

(iii) S has countable cover.

(10) Suppose S = {s, where s is a subset of R : s is left open interval}. Then

(i) S is ∩-closed, and

(ii) S is \fp-closed and has empty element, and

(iii) S has countable cover.

Proof: S is ∩-closed. S has empty element. S is \fp-closed by [11, (39)],
[6, (75)]. �

3. Numerical Example

The functor sring48 yielding a family of subsets of {1, 2, 3, 4} is defined by
the term

(Def. 1) {{1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, ({2}), ({3}), ({4}), (∅)}.
One can verify that sring48 has empty element and sring48 is ∩fp-closed and

non ∩-closed and sring48 is \fp-closed.
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Summary. Rough sets, developed by Pawlak, are an important model of
incomplete or partially known information. In this article, which is essentially a
continuation of [11], we characterize rough sets in terms of topological closure and
interior, as the approximations have the properties of the Kuratowski operators.
We decided to merge topological spaces with tolerance approximation spaces.
As a testbed for our developed approach, we restated the results of Isomichi [13]
(formalized in Mizar in [14]) and about fourteen sets of Kuratowski [17] (encoded
with the help of Mizar adjectives and clusters’ registrations in [1]) in terms of
rough approximations. The upper bounds which were 14 and 7 in the original
paper of Kuratowski, in our case are six and three, respectively.

It turns out that within the classification given by Isomichi, 1st class subsets
are precisely crisp sets, 2nd class subsets are proper rough sets, and there are
no 3rd class subsets in topological spaces generated by approximations. Also the
important results about these spaces is that they are extremally disconnected
[15], hence lattices of their domains are Boolean.

Furthermore, we develop the theory of abstract spaces equipped with maps
possessing characteristic properties of rough approximations which enables us
to freely use the notions from the theory of rough sets and topological spaces
formalized in the Mizar Mathematical Library [10].
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1. Preliminaries

Now we state the proposition:

(1) Let us consider a set T and a family F of subsets of T . Then F =
{B, where B is a subset of T : B ∈ F}.

Let f be a function and A be a set. We say that A is f -closed if and only if

(Def. 1) A = f(A).

Let X be a set and F be a family of subsets of X. One can check that F is
∩-closed if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let us consider subsets a, b of X. If a, b ∈ F , then a ∩ b ∈ F .

We say that F is union-closed if and only if

(Def. 3) Let us consider a family a of subsets of X. If a ⊆ F , then
⋃
a ∈ F .

We say that F is topology-like if and only if

(Def. 4) (i) ∅, X ∈ F , and

(ii) F is union-closed and ∩-closed.

Let us observe that there exists a family of subsets of X which is topology-
like.

2. Ordinary Properties of Maps

Let X be a set and f be a function from 2X into 2X . We say that f is
extensive if and only if

(Def. 5) Let us consider a subset A of X. Then A ⊆ f(A).

We say that f is intensive if and only if

(Def. 6) Let us consider a subset A of X. Then f(A) ⊆ A.

We say that f is idempotent if and only if

(Def. 7) Let us consider a subset A of X. Then f(f(A)) = f(A).

We say that f is ⊆-monotone if and only if

(Def. 8) Let us consider subsets A, B of X. If A ⊆ B, then f(A) ⊆ f(B).

We say that f preserves ∪ if and only if

(Def. 9) Let us consider subsets A, B of X. Then f(A ∪B) = f(A) ∪ f(B).

We say that f preserves ∩ if and only if

(Def. 10) Let us consider subsets A, B of X. Then f(A ∩B) = f(A) ∩ f(B).

Let O be a function from 2X into 2X . We say that O is a preclosure if and
only if

(Def. 11) O is extensive and preserves ∪ and empty set.

We say that O is closure if and only if

(Def. 12) O is extensive and idempotent and preserves ∪ and empty set.
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We say that O is a preinterior if and only if

(Def. 13) O is intensive and preserves ∩ and universe.

We say that O is an interior if and only if

(Def. 14) O is intensive and idempotent and preserves ∩ and universe.

Let us observe that every function from 2X into 2X which preserves ∪ is
also ⊆-monotone and every function from 2X into 2X which preserves ∩ is also
⊆-monotone.

One can verify that id2X is closure as a function from 2X into 2X and id2X
is an interior as a function from 2X into 2X .

One can check that there exists a function from 2X into 2X which is closure
and interior.

Observe that every function from 2X into 2X which is closure is also a
preclosure.

3. Structural Part

Let T be a 1-sorted structure.
A map of T is a function from 2(the carrier of T ) into 2(the carrier of T ). We con-

sider 1stOpStrs which extend 1-sorted structures and are systems

〈〈a carrier, a FirstOp〉〉

where the carrier is a set, the FirstOp is a function from 2(the carrier) into
2(the carrier).

We consider 2ndOpStrs which extend 1-sorted structures and are systems

〈〈a carrier, a SecondOp〉〉

where the carrier is a set, the SecondOp is a function from 2(the carrier) into
2(the carrier).

We consider TwoOpStructs which extend 1stOpStrs and 2ndOpStrs and are
systems

〈〈a carrier, a FirstOp, a SecondOp〉〉

where the carrier is a set, the FirstOp and the SecondOp are functions from
2(the carrier) into 2(the carrier).

Let X be a 1stOpStr. We say that X has closure if and only if

(Def. 15) The FirstOp of X is closure.

We say that X has preclosure if and only if

(Def. 16) The FirstOp of X is a preclosure.

Let T be a topological space. Let us observe that ClMapT is closure and
IntMapT is an interior and there exists a 1stOpStr which is non empty and has
closure and every 1stOpStr which has closure has also preclosure.
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Let X be a 1stOpStr and A be a subset of X. We say that A is op-closed if
and only if

(Def. 17) A = (the FirstOp of X)(A).

We say that X has op-closed subsets if and only if

(Def. 18) There exists a subset A of X such that A is op-closed.

One can check that there exists a 1stOpStr which has op-closed subsets.
Let X be 1stOpStr with op-closed subsets. One can check that there exists

a subset of X which is op-closed.
Let X be a 2ndOpStr and A be a subset of X. We say that A is op-open if

and only if

(Def. 19) A = (the SecondOp of X)(A).

We say that X has op-open subsets if and only if

(Def. 20) There exists a subset A of X such that A is op-open.

Let us observe that there exists a 2ndOpStr which has op-open subsets.
Let X be 2ndOpStr with op-open subsets. Let us observe that there exists

a subset of X which is op-open.
Let X be a 2ndOpStr. We say that X has interior if and only if

(Def. 21) The SecondOp of X is an interior.

We say that X has preinterior if and only if

(Def. 22) The SecondOp of X is a preinterior.

Note that there exists a TwoOpStruct which has closure and interior.

4. Merging with Topologies

We consider 1TopStructs which extend 1stOpStrs and topological structures
and are systems

〈〈a carrier, a FirstOp, a topology〉〉

where the carrier is a set, the FirstOp is a function from 2(the carrier) into
2(the carrier), the topology is a family of subsets of the carrier.

We consider 2TopStructs which extend 2ndOpStrs and topological structures
and are systems

〈〈a carrier, a SecondOp, a topology〉〉

where the carrier is a set, the SecondOp is a function from 2(the carrier) into
2(the carrier), the topology is a family of subsets of the carrier.

Let us observe that there exists a 1TopStruct which is non empty and strict
and there exists a 2TopStruct which is non empty and strict.

Let T be a 1TopStruct. We say that T has properly defined topology if and
only if
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(Def. 23) Let us consider an object x. Then x ∈ the topology of T if and only if
there exists a subset S of T such that Sc = x and S is op-closed.

Let T be a 2TopStruct. We say that T has properly defined Topology if and
only if

(Def. 24) Let us consider an object x. Then x ∈ the topology of T if and only if
there exists a subset S of T such that S = x and S is op-open.

One can verify that there exists a 1TopStruct which has closure and properly
defined topology and there exists a 2TopStruct which has interior and properly
defined Topology.

(2) Let us consider 1TopStruct T with properly defined topology and a sub-
set A of T . Then A is op-closed if and only if A is closed. Proof: If A is
op-closed, then A is closed by [28, (3)]. If A is closed, then A is op-closed
by [28, (3)]. �

Observe that every 1TopStruct with properly defined topology which has
preclosure is also topological space-like.

(3) Let us consider 2TopStruct T with properly defined Topology and a
subset A of T . Then A is op-open if and only if A is open.

Note that every 2TopStruct with properly defined Topology which has pre-
interior is also topological space-like.

(4) Let us consider 1TopStruct T with closure properly defined topology
and a subset A of T . Then (the FirstOp of T )(A) = A. Proof: Set f =
the FirstOp of T . Consider F being a family of subsets of T such that for
every subset C of T , C ∈ F iff C is closed and A ⊆ C and A =

⋂
F .

A ⊆ f(A) by (2), [18, (3)]. Define P[subset of T ] ≡ $1 ∈ F . Set G =
{f(B), where B is a subset of T : B ∈ F}. Define T = 2(the carrier of T ).
Define F(element of T ) = f($1). Define G(element of T ) = $1. For every
element B of T such that P[B] holds F(B) = G(B). {F(B), where B is
an element of T : P[B]} = {G(B), where B is an element of T : P[B]}
from [23, Sch. 6]. F = G. For every set Z such that Z ∈ G holds f(A) ⊆ Z.
�

5. Introducing Rough Sets

Let R be a tolerance space. Let us note that LAp(R) is a preinterior and
UAp(R) is a preclosure.

Let R be an approximation space. Observe that LAp(R) is an interior and
UAp(R) is closure.

Let X be a set and f be a function from 2X into 2X . The functor GenTop f
yielding a family of subsets of X is defined by

(Def. 25) Let us consider an object x. Then x ∈ it if and only if there exists a
subset S of X such that S = x and S is f -closed.
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Now we state the proposition:

(5) Let us consider a set X and a function f from 2X into 2X . If f is a
preinterior, then GenTop f is topology-like. Proof: Set F = GenTop f .
There exists a subset S of X such that S = X and S is f -closed. There
exists a subset S of X such that S = ∅ and S is f -closed. F is ∩-closed.
For every family a of subsets of X such that a ⊆ F holds

⋃
a ∈ F by [8,

(74), (76)]. �

Let C be a set, I be a binary relation on C, and f be a topology-like family
of subsets of C. Observe that 〈C, I, f〉 is topological space-like and there exists a
FR-structure which is topological space-like and non empty and has equivalence
relation.

6. On Sequential Closure and Frechet Spaces

Let T be a non empty topological space. The functor ClSeq T yielding a map
of T is defined by

(Def. 26) Let us consider a subset A of T . Then it(A) = ClSeqA.

One can verify that ClSeq T is a preclosure and there exists a non empty
topological space which is Frechet.

Let T be a Frechet non empty topological space. Note that ClSeq T is closure.

7. Connections between Closures and Approximations

Let T be a non empty FR-structure. We say that T is Natural if and only if

(Def. 27) Let us consider a subset x of T . Then x ∈ the topology of T if and only
if x is (LAp(T ))-closed.

We say that T is naturally generated if and only if

(Def. 28) The topology of T = GenTop LAp(T ).

Now we state the proposition:

(6) Let us consider a non empty FR-structure T . Suppose T is naturally
generated. Let us consider a subset A of T . Then A is open if and only if
LAp(A) = A.

Let us consider a non empty FR-structure T and a non empty relational
structure R.

Let us assume that the relational structure of T = the relational structure
of R. Now we state the propositions:

(7) LAp(T ) = LAp(R).

(8) UAp(T ) = UAp(R).
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One can verify that there exists a non empty FR-structure which is Natu-
ral and topological space-like and has equivalence relation and every non empty
FR-structure with equivalence relation which is naturally generated is also topo-
logical space-like and there exists a non empty FR-structure which is naturally
generated and topological space-like and has equivalence relation.

Let T be a naturally generated non empty FR-structure with equivalence
relation and A be a subset of T . One can check that LAp(A) is open.

Let us consider a naturally generated non empty FR-structure T with equ-
ivalence relation and a subset A of T . Now we state the propositions:

(9) LAp(A) = IntA. Proof: IntA ⊆ LAp(A) by [28, (22), (23)], [11, (24)].
�

(10) A is closed if and only if UAp(A) = A. Proof: If A is closed, then
UAp(A) = A by (6), [11, (28)]. �

Let T be a naturally generated non empty FR-structure with equivalence
relation and A be a subset of T . One can check that UAp(A) is closed.

Let us consider a naturally generated non empty FR-structure T with equ-
ivalence relation and a subset A of T . Now we state the propositions:

(11) UAp(A) = A. Proof: UAp(A) ⊆ A by (10), [11, (25)], [19, (15)]. �

(12) BndAp(A) = FrA. The theorem is a consequence of (11) and (9).

Let T be a naturally generated non empty FR-structure with equivalence
relation and A be a subset of T . We identify LAp(A) with IntA. We identify
UAp(A) with A. We identify IntA with LAp(A). We identify A with UAp(A).
We identify FrA with BndAp(A). We identify BndAp(A) with FrA.

8. Isomichi Results Reuse

Let us consider a naturally generated non empty FR-structure T with equ-
ivalence relation and a subset A of T . Now we state the propositions:

(13) A is 1st class if and only if LAp(UAp(A)) ⊆ UAp(LAp(A)).

(14) A is 1st class if and only if UAp(A) ⊆ LAp(A).

(15) A is 1st class if and only if A is exact. Proof: If A is 1st class, then A

is exact by [11, (14)], (14), [11, (13), (12)]. �

Let T be a naturally generated non empty FR-structure with equivalence
relation. Note that every subset of T which is 1st class is also exact and every
subset of T which is exact is also 1st class.

Let us consider a naturally generated non empty FR-structure T with equ-
ivalence relation and a subset A of T . Now we state the propositions:

(16) A is 2nd class if and only if LAp(A) ⊂ UAp(A).

(17) A is 2nd class if and only if A is rough. Proof: LAp(A) 6= UAp(A) by
[11, (13), (12)]. �
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Let T be a naturally generated non empty FR-structure with equivalence
relation. Note that every subset of T which is 2nd class is also rough and every
subset of T which is rough is also 2nd class.

Now we state the propositions:

(18) Let us consider a naturally generated non empty FR-structure T with
equivalence relation and a subset A of T . Then IntA and A are ⊆-
comparable.

(19) Let us consider a naturally generated non empty FR-structure T with
equivalence relation and a subset A of T . Then A is not 3rd class.

Let T be a topological space.
Observe that every naturally generated non empty FR-structure with equ-

ivalence relation is without 3rd class subsets and there exists a topological space
which is without 3rd class subsets.

Let T be a topological space and A be a 1st class subset of T . One can verify
that BorderA is empty.

Let T be a naturally generated non empty FR-structure with equivalence
relation and A be a subset of T . Note that A is open and IntA is closed and
every naturally generated non empty FR-structure with equivalence relation is
extremally disconnected.

9. Reexamination of Kuratowski’s 14 Sets for Approximation
Spaces

Let us consider a naturally generated non empty FR-structure T with equ-
ivalence relation and a subset A of T . Now we state the propositions:

(20) Kurat7Set(A) = {A,A, IntA}.
(21) Kurat7Set(A) ¬ 3. The theorem is a consequence of (20).

(22) Kurat14Set(A) = {A,UAp(A), (UAp(A))c, Ac, (LAp(A))c,LAp(A)}.
(23) Kurat14Set(A) ¬ 6. The theorem is a consequence of (22).
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