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1. Torsion Z-module and Torsion-free Z-module

Now we state the proposition:

(1) Let us consider a Z-module V , and a submodule W of V . Then 1ZR◦W =
ΩW .

Let us consider a Z-module V and submodules W1, W2, W3 of V . Now we
state the propositions:

(2) W1 ∩W2 is a submodule of (W1 +W3) ∩W2.
Proof: For every vector v of V such that v ∈ W1 ∩W2 holds v ∈ (W1 +
W3) ∩W2 by [12, (94), (93)]. �

(3) If W1 ∩W2 6= 0V , then (W1 +W3) ∩W2 6= 0V .

(4) Let us consider a Z-module V , and linearly independent subsets I, I1 of
V . If I1 ⊆ I, then Lin(I \ I1) ∩ Lin(I1) = 0V .

From now on V denotes a Z-module, W denotes a submodule of V , v, u
denote vectors of V , and i denotes an element of ZR. Let V be a Z-module and
v be a vector of V . We say that v is torsion if and only if

(Def. 1) there exists an element i of ZR such that i 6= 0ZR and i · v = 0V .

One can verify that 0V is torsion.
Now we state the propositions:

(5) If v is torsion and u is torsion, then v + u is torsion.

(6) If v is torsion, then −v is torsion.

(7) If v is torsion and u is torsion, then v − u is torsion.

(8) If v is torsion, then i · v is torsion.

(9) Let us consider a vector v of V , and a vector w of W . If v = w, then v

is torsion iff w is torsion.

Let V be a Z-module. One can verify that there exists a vector of V which
is torsion.

Now we state the propositions:

(10) If v is not torsion, then −v is not torsion.

(11) If v is not torsion and i 6= 0, then i · v is not torsion.

(12) v is not torsion if and only if {v} is linearly independent.
Proof: If v is not torsion, then {v} is linearly independent by [9, (33)],
[13, (24)]. If {v} is linearly independent, then v is not torsion by [14, (1)],
[13, (8), (29), (53)]. �

Let V be a Z-module. We say that V is torsion if and only if

(Def. 2) every vector of V is torsion.
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Let us note that 0V is torsion and there exists a Z-module which is torsion.
Now we state the propositions:

(13) Let us consider an element v of ZR, and an integer v1. Suppose v = v1.
Let us consider a natural number n. Then (Nat-mult-left ZR)(n, v) = n·v1.
Proof: Define P[natural number] ≡ (Nat-mult-left ZR)($1, v) = $1 · v1.
For every natural number n such that P[n] holds P[n + 1]. For every
natural number n, P[n] from [3, Sch. 2]. �

(14) Let us consider an element x of ZR, an element v of ZR, and an integer v1.
Suppose v = v1. Then (the left integer multiplication of (ZR))(x, v) = x·v1.
The theorem is a consequence of (13).

Note that there exists a Z-module which is non torsion.
Let V be a non torsion Z-module. Let us observe that there exists a vector

of V which is non torsion.
Let V be a Z-module. We say that V is torsion-free if and only if

(Def. 3) for every vector v of V such that v 6= 0V holds v is not torsion.

Now we state the proposition:

(15) V is cancelable on multiplication if and only if V is torsion-free.

One can verify that every cancelable on multiplication Z-module is torsion-
free and every torsion-free Z-module is cancelable on multiplication and every
free Z-module is torsion-free and there exists a Z-module which is torsion-free
and free.

Now we state the proposition:

(16) Let us consider a torsion-free Z-module V , and a vector v of V . Then v

is torsion if and only if v = 0V .

Let V be a torsion-free Z-module. Note that every submodule of V is torsion-
free.

Let V be a Z-module. Observe that 0V is trivial and every non trivial,
torsion-free Z-module is non torsion and there exists a Z-module which is trivial.

Let V be a non trivial Z-module. Let us note that there exists a vector of V
which is non zero.

Now we state the proposition:

(17) v is not torsion if and only if Lin({v}) is free and v 6= 0V . The theorem
is a consequence of (12) and (9).

Let V be a non torsion Z-module and v be a non torsion vector of V . Let us
note that Lin({v}) is free.

Now we state the propositions:

(18) Let us consider a Z-module V , a subset A of V , and a vector v of V . If
A is linearly independent and v ∈ A, then v is not torsion. The theorem
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is a consequence of (12).

(19) Let us consider an object u. Suppose u ∈ Lin({v}). Then there exists an
element i of ZR such that u = i · v.

(20) v ∈ Lin({v}).
(21) i · v ∈ Lin({v}).
(22) Lin({0V }) = 0V .
Proof: For every object x, x ∈ Lin({0V }) iff x ∈ 0V by [13, (64), (21)],
[12, (1)], [13, (66)]. �

Let V be a torsion-free Z-module and v be a vector of V . Let us note that
Lin({v}) is free. Now we state the propositions:

(23) Let us consider subsets A1, A2 of V . Suppose A1 is linearly independent
and A2 is linearly independent and A1 ∩ A2 = ∅ and A1 ∪ A2 is linearly
dependent. Then Lin(A1) ∩ Lin(A2) 6= 0V .

(24) Let us consider a Z-module V , a free submodule W of V , a subset I of V ,
and a vector v of V . Suppose I is linearly independent and Lin(I) = ΩW

and v ∈ I. Then

(i) ΩW = Lin(I \ {v}) + Lin({v}), and

(ii) Lin(I \ {v}) ∩ Lin({v}) = 0V , and

(iii) Lin(I \ {v}) is free, and

(iv) Lin({v}) is free, and

(v) v 6= 0V .

Proof: v is not torsion. Lin(I \ {v}) ∩ Lin({v}) = 0V by [16, (24)], [12,
(94)], [13, (64), (23), (10)]. �

(25) Let us consider a Z-module V , and a free submodule W of V . Then there
exists a subset A of V such that

(i) A is subset of W and linearly independent, and

(ii) Lin(A) = ΩW .

(26) Let us consider a Z-module V , and a finite rank, free submodule W of
V . Then there exists a finite subset A of V such that

(i) A is finite subset of W and linearly independent, and

(ii) Lin(A) = ΩW , and

(iii) A = rankW .

Let us consider a torsion-free Z-module V and vectors v1, v2 of V .
Let us assume that v1 6= 0V and v2 6= 0V and Lin({v1}) ∩ Lin({v2}) 6= 0V .

Now we state the propositions:
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(27) There exists a vector u of V such that

(i) u 6= 0V , and

(ii) Lin({v1}) ∩ Lin({v2}) = Lin({u}).
Proof: Consider x being a vector of V such that x ∈ Lin({v1})∩Lin({v2})
and x 6= 0V . Consider i3 being an element of ZR such that x = i3 · v1.
Consider i4 being an element of ZR such that x = i4 · v2. Consider i1, i2
being integers such that i3 = (gcd(i3, i4)) · i1 and i4 = (gcd(i3, i4)) · i2 and
i1 and i2 are relatively prime. Reconsider I1 = i1, I2 = i2 as an element
of ZR. I1 · v1 ∈ Lin({v1}) and I2 · v2 ∈ Lin({v2}). For every vector y of V
such that y ∈ Lin({I1 · v1}) holds y ∈ Lin({v1}) ∩ Lin({v2}) by (19), [12,
(37)]. Lin({I1 · v1}) = Lin({v1}) ∩ Lin({v2}) by [12, (46), (94)], (19), [12,
(37), (36)]. �

(28) There exists a vector u of V such that

(i) u 6= 0V , and

(ii) Lin({v1}) + Lin({v2}) = Lin({u}).
Proof: Consider x being a vector of V such that x 6= 0V and Lin({v1})∩
Lin({v2}) = Lin({x}). Consider i1 being an element of ZR such that x = i1·
v1. Consider i2 being an element of ZR such that x = i2 ·v2. gcd(|i1|, |i2|) =
1 by [19, (5)], [23, (2)], [12, (1)], [3, (25)]. Consider j1, j2 being elements
of ZR such that i1 · j1 + i2 · j2 = 1. Reconsider J1 = j1, J2 = j2 as
an element of ZR. Reconsider u = J1 · v2 + J2 · v1 as a vector of V .
Lin({v1}) + Lin({v2}) = Lin({u}) by (19), [12, (37), (92), (36)]. �

(29) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and vectors v, u of V . Suppose v 6= 0V and u 6= 0V and W ∩
Lin({v}) = 0V and (W + Lin({u})) ∩ Lin({v}) 6= 0V and Lin({u}) ∩
Lin({v}) = 0V . Then there exist vectors w1, w2 of V such that

(i) w1 6= 0V , and

(ii) w2 6= 0V , and

(iii) W + Lin({u}) + Lin({v}) = W + Lin({w1}) + Lin({w2}), and

(iv) W ∩ Lin({w1}) 6= 0V , and

(v) (W + Lin({w1})) ∩ Lin({w2}) = 0V , and

(vi) u, v ∈ Lin({w1}) + Lin({w2}), and

(vii) w1, w2 ∈ Lin({u}) + Lin({v}).
Proof: Consider x being a vector of V such that x ∈ (W + Lin({u})) ∩
Lin({v}) and x 6= 0V . Consider x1, x2 being vectors of V such that x1 ∈W
and x2 ∈ Lin({u}) and x = x1 + x2. Consider i4 being an element of ZR
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such that x = i4·v. Consider i3 being an element of ZR such that x2 = i3·u.
Consider i2, i1 being integers such that i4 = (gcd(i4, i3)) · i2 and i3 =
(gcd(i4, i3)) · i1 and i2 and i1 are relatively prime. Consider J4, J3 being
elements of ZR such that i2 ·J4 + i1 ·J3 = 1. Reconsider j4 = J4, j3 = J3 as
an element of ZR. Set w1 = i2 ·v− i1 ·u. Set w2 = j4 ·u+ j3 ·v. w1 6= 0V by
[29, (21)], [12, (37)], (20), [12, (94), (1)]. Reconsider i6 = gcd(i4, i3) as an
element of ZR. i6 ·w1 ∈W by [12, (8)]. W ∩Lin({w1}) 6= 0V by [12, (37)],
(20), [12, (94)], [13, (66)]. u = i2 ·w2 − j3 ·w1 by [12, (8)], [29, (29), (28),
(15)]. v = j4 · w1 + i1 · w2 by [12, (8)], [29, (28), (15)]. u ∈ Lin({w1}) +
Lin({w2}) by [12, (37)], (20), [12, (38), (92)]. v ∈ Lin({w1})+Lin({w2}) by
[12, (37)], (20), [12, (92)]. w1 ∈ Lin({u})+Lin({v}) by [12, (37)], (20), [12,
(38), (92)]. w2 ∈ Lin({u})+Lin({v}) by [12, (37)], (20), [12, (92)]. For every
object x such that x ∈W+Lin({u})+Lin({v}) holds x ∈W+Lin({w1})+
Lin({w2}) by [12, (92)], (19), [12, (37), (36), (96)]. For every object x such
that x ∈W + Lin({w1}) + Lin({w2}) holds x ∈W + Lin({u}) + Lin({v})
by [12, (92)], (19), [12, (37), (36), (96)]. w2 6= 0V by [29, (6)], [12, (37)],
(20), [12, (38), (94), (1)]. (W +Lin({w1}))∩Lin({w2}) = 0V by [16, (24)],
[12, (94), (92)], (19). �

(30) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and a vector v of V . Suppose v 6= 0V and W ∩ Lin({v}) 6= 0V .
Then W + Lin({v}) is free.
Proof: Define P[natural number] ≡ for every finite rank, free submodule
W of V for every vector v of V such that v 6= 0V and W ∩ Lin({v}) 6= 0V
and rankW = $1 + 1 holds W + Lin({v}) is free. P[0] by [22, (5)], [12,
(25)], [14, (20)], [16, (22), (23)]. For every natural number n such that
P[n] holds P[n+1] by [16, (33)], [12, (25)], [14, (20)], [12, (97), (51), (94)].
For every natural number n, P[n] from [3, Sch. 2]. Set r1 = rankW . r1−1
is a natural number by [22, (1)], [12, (51)], [16, (23)], [12, (107)]. �

Let V be a torsion-free Z-module, v be a vector of V , and W be a finite
rank, free submodule of V . Let us note that W + Lin({v}) is free.

Let V be a Z-module and W be a finitely generated submodule of V . One
can verify that W + Lin({v}) is finitely generated.

Let W1, W2 be finitely generated submodules of V . Observe that W1 + W2

is finitely generated. Now we state the proposition:

(31) Let us consider a Z-module V , a submodule W of V , submodules W6,
W8 of W , and submodules W1, W2 of V . If W6 = W1 and W8 = W2, then
W6 +W8 = W1 +W2.
Proof: Reconsider S = W6 + W8 as a strict submodule of V . For every
vector v of V , v ∈ S iff v ∈W1 +W2 by [12, (92), (28)]. �
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Let V be a torsion-free Z-module and U1, U2 be finite rank, free submodules
of V . Note that U1+U2 is free and every finitely generated, torsion-free Z-module
is free.

2. Rank of Finite Rank Free Z-module

Now we state the propositions:

(32) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Suppose W1 ∩ W2 = 0V . Then rank(W1 + W2) =
rankW1 + rankW2.

(33) Let us consider a finite rank, free Z-module V , and finite rank, free
submodules W1, W2 of V . Suppose V is the direct sum of W1 and W2.
Then rankV = rankW1 + rankW2. The theorem is a consequence of (32).

(34) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Then rank(W1 ∩W2) ¬ rankW1.

(35) Let us consider a torsion-free Z-module V , and a vector v of V . If v 6= 0V ,
then rank Lin({v}) = 1.

(36) Let us consider a Z-module V . Then rank 0V = 0.

(37) Let us consider a torsion-free Z-module V , and vectors v, u of V . Suppose
v 6= 0V and u 6= 0V and Lin({v})∩Lin({u}) 6= 0V . Then rank(Lin({v}) +
Lin({u})) = 1. The theorem is a consequence of (28).

(38) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and a vector v of V . Suppose v 6= 0V and W ∩ Lin({v}) 6= 0V .
Then rank(W + Lin({v})) = rankW .
Proof: Define P[natural number] ≡ for every finite rank, free submodule
W of V for every vector v of V such that v 6= 0V and W ∩ Lin({v}) 6= 0V
and rankW = $1 + 1 holds rank(W + Lin({v})) = rankW . P[0] by [22,
(5)], [12, (25), (26), (42)]. For every natural number n such that P[n] holds
P[n+1] by (26), (24), [9, (31)], [2, (44)]. For every natural number n, P[n]
from [3, Sch. 2]. Set r1 = rankW . r1 − 1 is a natural number by [22, (1)],
[12, (51)], [16, (23)], [12, (107)]. �

(39) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a vector v of V . Suppose W1 ∩ Lin({v}) 6= 0V and
W2 ∩ Lin({v}) 6= 0V . Then (W1 ∩W2) ∩ Lin({v}) 6= 0V . The theorem is a
consequence of (19).

(40) Let us consider Z-modules V , W , a linear transformation T from V to
W , and a subset A of V . Then T ◦(the carrier of Lin(A)) ⊆ the carrier of
Lin(T ◦A).
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Proof: For every object y such that y ∈ T ◦(the carrier of Lin(A)) holds
y ∈ the carrier of Lin(T ◦A) by [7, (65)], [13, (64)], [22, (44), (46)]. �

Let us consider Z-modules X, Y and a linear transformation L from X to
Y. Now we state the propositions:

(41) L(0X) = 0Y .

(42) If L is bijective, then there exists a linear transformation K from Y to
X such that K = L−1 and K is bijective.
Proof: Reconsider K = L−1 as a function from Y into X. K is additive
by [7, (113)], [6, (34)]. For every element r of ZR and for every element x
of Y, K(r · x) = r ·K(x) by [7, (113)], [6, (34)]. �

(43) Let us consider Z-modules X, Y, a linear combination l of X, and a linear
transformation L from X to Y. If L is bijective, then L@∗ l = l · L−1.
Proof: Reconsider K = L−1 as a function from Y into X. For every
element a of Y, (L@∗ l)(a) = (l · K)(a) by [6, (35)], [7, (35)], [6, (12),
(34)]. �

(44) Let us consider Z-modules X, Y, a subset X0 of X, a linear transfor-
mation L from X to Y, and a linear combination l of L◦X0. Suppose
X0 = the carrier of X and L is one-to-one. Then L#l = l · L.

(45) Let us consider Z-modules X, Y, a subset A of X, and a linear trans-
formation L from X to Y. Suppose L is bijective. Then A is linearly in-
dependent if and only if L◦A is linearly independent. The theorem is a
consequence of (42).

(46) Let us consider Z-modules X, Y, a subset A of X, and a linear trans-
formation T from X to Y. Suppose T is bijective. Then T ◦(the carrier of
Lin(A)) = the carrier of Lin(T ◦A). The theorem is a consequence of (40)
and (42).

(47) Let us consider a Z-module Y, and a subset A of Y. Then Lin(A) is a
strict submodule of ΩY .

(48) Let us consider Z-modules X, Y, and a linear transformation T from
X to Y. If T is bijective, then X is free iff Y is free. The theorem is a
consequence of (42).

(49) Let us consider free Z-modules X, Y, a linear transformation T from X

to Y, and a subset A of X. Suppose T is bijective. Then A is a basis of X
if and only if T ◦A is a basis of Y. The theorem is a consequence of (42).

(50) Let us consider free Z-modules X, Y, and a linear transformation T from
X to Y. If T is bijective, then X is finite rank iff Y is finite rank. The
theorem is a consequence of (42).

(51) Let us consider finite rank, free Z-modules X, Y, and a linear transfor-
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mation T from X to Y. If T is bijective, then rankX = rankY.
Proof: For every basis I of X, rankY = I by [1, (5), (33)], (49). �

(52) Let us consider a Z-module V , a finite rank, free submodule W of V ,
and an element a of ZR. If a 6= 0ZR , then rank(a ◦W ) = rankW .
Proof: Define P[element of W, object] ≡ $2 = a · $1. For every element
x of W , there exists an element y of a ◦W such that P[x, y]. Consider
F being a function from W into a ◦W such that for every element x of
W , P[x, F (x)] from [7, Sch. 3]. For every objects x1, x2 such that x1,
x2 ∈ the carrier of W and F (x1) = F (x2) holds x1 = x2 by [12, (10)]. For
every object y such that y ∈ the carrier of a ◦W holds y ∈ rngF by [7,
(4)]. F is additive by [12, (28)]. For every element r of ZR and for every
element x of W , F (r · x) = r · F (x) by [12, (29)]. �

(53) Let us consider a Z-module V , finite rank, free submodules W1, W2, W3

of V , and an element a of ZR. Suppose a 6= 0ZR and W3 = a ◦W1. Then
rank(W3 ∩W2) = rank(W1 ∩W2).
Proof: W3 ∩ W2 is a submodule of W1 ∩ W2 by [12, (105), (42)], [13,
(75)]. a ◦ (W1 ∩W2) is a submodule of W3 ∩W2 by [12, (42), (25), (94)].
rank(W1 ∩W2) ¬ rank(W3 ∩W2). �

(54) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2, W3 of V , and an element a of ZR. Suppose a 6= 0ZR and W3 =
a ◦W1. Then rank(W3 +W2) = rank(W1 +W2).
Proof: For every vector v of V such that v ∈W3 +W2 holds v ∈W1 +W2

by [12, (92)]. For every vector v of V such that v ∈ a ◦ (W1 + W2) holds
v ∈ W3 +W2 by [12, (25), (92), (29)]. rank(W1 +W2) ¬ rank(W3 +W2).
�

Let us consider a torsion-free Z-module V , finite rank, free submodules W1,
W2 of V , and a basis I of W1. Now we state the propositions:

(55) Suppose for every vector v of V such that v ∈ I holds (W1 ∩ W2) ∩
Lin({v}) 6= 0V . Then rank(W1 ∩W2) = rankW1.
Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V for every basis I of W1 such that for every vector v of V
such that v ∈ I holds (W1 ∩W2)∩Lin({v}) 6= 0V and rankW1 = $1 holds
rank(W1 ∩W2) = rankW1. P[0]. For every natural number n such that
P[n] holds P[n+ 1] by [12, (25)], [14, (15)], [13, (56)], [14, (20)]. For every
natural number n, P[n] from [3, Sch. 2]. �

(56) Suppose rank(W1 ∩W2) < rankW1. Then there exists a vector v of V
such that

(i) v ∈ I, and

(ii) (W1 ∩W2) ∩ Lin({v}) = 0V .
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(57) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a basis I of W1. Suppose rank(W1 ∩W2) = rankW1.
Let us consider a vector v of V . If v ∈ I, then (W1∩W2)∩Lin({v}) 6= 0V .
The theorem is a consequence of (24), (32), and (35).

(58) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a basis I of W1. Suppose for every vector v of V such that
v ∈ I holds (W1 ∩W2)∩Lin({v}) 6= 0V . Then rank(W1 +W2) = rankW2.
Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V for every basis I of W1 such that for every vector v of V
such that v ∈ I holds (W1 ∩W2)∩Lin({v}) 6= 0V and rankW1 = $1 holds
rank(W1 + W2) = rankW2. P[0] by [22, (1)], [12, (51), (42)], [16, (22)].
For every natural number n such that P[n] holds P[n + 1] by [12, (25)],
[14, (15)], [13, (56)], [14, (20)]. For every natural number n, P[n] from [3,
Sch. 2]. �

(59) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Suppose rank(W1 ∩W2) = rankW1. Then rank(W1 +
W2) = rankW2. The theorem is a consequence of (57) and (58).

(60) Let us consider a field G, a vector space V over G, and a subset A of V .
If A is linearly independent, then A is a basis of Lin(A).

(61) Let us consider a cancelable on multiplication, finite rank, free Z-module
V , and finite rank, free submodules W1, W2 of V . Then rank(W1 +W2) +
rank(W1 ∩W2) = rankW1 + rankW2.
Proof: Consider I1 being a finite subset of V such that I1 is finite subset
of W1 and linearly independent and Lin(I1) = ΩW1 and I1 = rankW1.
Consider I2 being a finite subset of V such that I2 is finite subset of W2

and linearly independent and Lin(I2) = ΩW2 and I2 = rankW2. Consider
I4 being a finite subset of V such that I4 is finite subset of W1 + W2

and linearly independent and Lin(I4) = ΩW1+W2 and I4 = rank(W1 +
W2). Consider I3 being a finite subset of V such that I3 is finite subset
of W1 ∩W2 and linearly independent and Lin(I3) = ΩW1∩W2 and I3 =
rank(W1 ∩W2). Set I6 = (MorphsZQV )◦I1. Set I8 = (MorphsZQV )◦I2.
Set I5 = (MorphsZQV )◦I4. Set I7 = (MorphsZQV )◦I3. For every vector
v of Z MQ VectSpV , v ∈ Lin(I6) + Lin(I8) iff v ∈ Lin(I5) by [30, (1)], [31,
(7)], [16, (9), (10)]. For every vector v of Z MQ VectSpV , v ∈ Lin(I6) ∩
Lin(I8) iff v ∈ Lin(I7) by [30, (3)], [31, (7)], [16, (9), (10)]. �

Let us consider a torsion-free Z-module V and finite rank, free submodules
W1, W2 of V . Now we state the propositions:

(62) rank(W1 +W2) + rank(W1 ∩W2) = rankW1 + rankW2.
Proof: Set W5 = W1 + W2. Reconsider W4 = W1 as a finite rank, free
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submodule of W5. Reconsider W7 = W2 as a finite rank, free submodule
of W5. rank(W4 +W7) + rank(W4 ∩W7) = rankW4 + rankW7. For every
vector v of V , v ∈ W4 +W7 iff v ∈ W1 +W2 by [12, (92), (25), (28)]. For
every vector v of V , v ∈W4 ∩W7 iff v ∈W1 ∩W2 by [12, (94)]. �

(63) If rank(W1 + W2) = rankW2, then rank(W1 ∩ W2) = rankW1. The
theorem is a consequence of (62).

(64) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a vector v of V . Suppose v 6= 0V and W1∩Lin({v}) = 0V
and (W1 + W2) ∩ Lin({v}) = 0V . Then rank((W1 + Lin({v})) ∩W2) =
rank(W1 ∩W2).
Proof: For every vector u of V such that u ∈W1 ∩W2 holds u ∈ (W1 +
Lin({v})) ∩W2 by [12, (94), (93)]. There exists a vector u of V such that
u ∈ (W1+Lin({v}))∩W2 and u /∈W1∩W2 by [12, (44)], [22, (2)]. Consider
u being a vector of V such that u ∈ (W1+Lin({v}))∩W2 and u /∈W1∩W2.
Consider u1, u2 being vectors of V such that u1 ∈ W1 and u2 ∈ Lin({v})
and u = u1 + u2. �

Let us consider a torsion-free Z-module V , a finite rank, free submodule W
of V , and a vector v of V .

Let us assume that v 6= 0V and W ∩ Lin({v}) 6= 0V . Now we state the
propositions:

(65) rank(W ∩ Lin({v})) = 1.
Proof: rank Lin({v}) = 1. rank(W ∩Lin({v})) 6= 0 by [22, (1)], [12, (51)].
�

(66) There exists a vector u of V such that

(i) u 6= 0V , and

(ii) W ∩ Lin({v}) = Lin({u}).

The theorem is a consequence of (65).

(67) Let us consider a torsion-free Z-module V , a finite rank, free submodule
W of V , and vectors u, v of V . Suppose W ∩ Lin({v}) = 0V and (W +
Lin({u})) ∩ Lin({v}) 6= 0V . Then W ∩ Lin({u}) = 0V . The theorem is a
consequence of (19).

(68) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a vector v of V . Suppose rank(W1∩W2) = rankW1 and
(W1 +W2) ∩ Lin({v}) 6= 0V . Then W2 ∩ Lin({v}) 6= 0V .
Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V for every vector v of V such that rank(W1 ∩W2) = rankW1

and (W1 +W2)∩Lin({v}) 6= 0V and rankW1 = $1 holds W2 ∩Lin({v}) 6=
0V . P[0] by [22, (1)], [12, (51), (42)], [16, (22)]. For every natural number
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n such that P[n] holds P[n + 1] by (26), [14, (20), (16)], (24). For every
natural number n, P[n] from [3, Sch. 2]. �

(69) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2, W3 of V . Suppose rank(W1 +W2) = rankW2 and W3 is a
submodule of W1. Then rank(W3 +W2) = rankW2.

Proof: For every vector v of V such that v ∈W3 +W2 holds v ∈W1 +W2

by [12, (92), (23)]. �

(70) Let us consider a torsion-free Z-module V , finite rank, free submodules
W1, W2 of V , and a basis I of W1. Suppose rank(W1 + W2) = rankW2.
Let us consider a vector v of V . If v ∈ I, then (W1∩W2)∩Lin({v}) 6= 0V .

Proof: For every vector v of V such that v ∈ I holds (W1 ∩ W2) ∩
Lin({v}) 6= 0V by [14, (15)], [13, (57), (65)], [9, (31)]. �

(71) Let us consider a torsion-free Z-module V , and finite rank, free submo-
dules W1, W2 of V . Suppose rank(W1 ∩W2) = rankW1. Then there exists
an element a of ZR such that a ◦W1 is a submodule of W2.

Proof: Define P[natural number] ≡ for every finite rank, free submodules
W1, W2 of V such that rank(W1∩W2) = rankW1 and rankW1 = $1 there
exists an element a of ZR such that a ◦W1 is a submodule of W2. P[0] by
[22, (1)], [12, (55)], (1). For every natural number n such that P[n] holds
P[n + 1] by [12, (25)], [14, (15)], [13, (56)], [14, (20)]. For every natural
number n, P[n] from [3, Sch. 2]. �
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Now we state the propositions:

(1) Let us consider an add-associative, right zeroed, right complementable,
distributive, well unital, non empty double loop structure R, and a finite
sequence F of elements of R. Suppose there exists a natural number i such
that i ∈ domF and F (i) = 0R. Then

∏
F = 0R.

(2) Let us consider an add-associative, right zeroed, right complementable,
well unital, distributive, integral domain-like, non degenerated double
loop structure R, and a finite sequence F of elements of R. Then

∏
F = 0R

if and only if there exists a natural number i such that i ∈ domF and
F (i) = 0R. The theorem is a consequence of (1).

Let X be a set.
A chain of X is a sequence of X. Let X be a non empty set and C be a

chain of X. We say that C is ascending if and only if

(Def. 1) for every natural number i, C(i) ⊆ C(i+ 1).

We say that C is stagnating if and only if

(Def. 2) there exists a natural number i such that for every natural number j
such that j  i holds C(j) = C(i).

Let x be an element of X. One can check that N 7−→ x is ascending and
stagnating as a chain of X and there exists a chain of X which is ascending and
stagnating.

Now we state the proposition:

(3) Let us consider a non empty set X, an ascending chain C of X, and
natural numbers i, j. If i ¬ j, then C(i) ⊆ C(j).

Let R be a ring. The functor IdealsR yielding a family of subsets of the
carrier of R is defined by the term

(Def. 3) the set of all I where I is an ideal of R.

One can verify that IdealsR is non empty.
Now we state the propositions:

(4) Let us consider a commutative ring R, an ideal I of R, and an element
a of R. If a ∈ I, then {a}–ideal ⊆ I.

(5) Let us consider a ring R, and an ascending chain C of IdealsR. Then⋃
the set of all C(i) where i is a natural number is an ideal of R.

Let R be a non empty double loop structure and S be a right zeroed, non
empty double loop structure. Let us note that R 7−→ 0S is additive.

Let S be an add-associative, right zeroed, right complementable, right
distributive, non empty double loop structure. Observe that R 7−→ 0S is mul-
tiplicative.
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Let R be a well unital, non empty double loop structure and S be a well
unital, non degenerated double loop structure. Note that R 7−→ 0S is non unity-
preserving.

Let R be a non empty double loop structure. One can verify that idR is
additive, multiplicative, and unity-preserving and idR is monomorphic and epi-
morphic.

Let S be a right zeroed, non empty double loop structure. Observe that
there exists a function from R into S which is additive.

Let S be an add-associative, right zeroed, right complementable, right
distributive, non empty double loop structure. Let us observe that there exists
a function from R into S which is multiplicative.

Let R, S be well unital, non empty double loop structures. One can verify
that there exists a function from R into S which is unity-preserving.

Let R be a non empty double loop structure and S be an add-associative,
right zeroed, right complementable, right distributive, non empty double loop
structure. One can verify that there exists a function from R into S which is
additive and multiplicative.

2. Homomorphisms, Kernel and Image

Let R, S be rings. We say that S is R-homomorphic if and only if

(Def. 4) there exists a function f from R into S such that f inherits ring homo-
morphism.

LetR be a ring. One can verify that there exists a ring which isR-homomorphic.
Let R be a commutative ring. Let us observe that there exists a commutative

ring which is R-homomorphic and there exists a ring which is R-homomorphic.
Let R be a field. Observe that there exists a field which is R-homomorphic

and there exists a commutative ring which is R-homomorphic and there exists
a ring which is R-homomorphic.

Let R be a ring and S be an R-homomorphic ring. Note that there exists a
function from R into S which is additive, multiplicative, and unity-preserving.

A homomorphism fromR to S is an additive, multiplicative, unity-preserving
function from R into S. Let R, S, T be rings, f be a unity-preserving function
from R into S, and g be a unity-preserving function from S into T . Observe
that g · f is unity-preserving as a function from R into T .

Let R be a ring and S be an R-homomorphic ring. Note that every S-
homomorphic ring is R-homomorphic.

Let R, S be non empty double loop structures. We introduce R and S are
isomorphic as a synonym of R is ring isomorphic to S.

Now we state the propositions:
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(6) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R, an add-associative, right zeroed, right
complementable, right distributive, non empty double loop structure S,
and an additive function f from R into S. Then f(0R) = 0S .

(7) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R, an add-associative, right zeroed, right
complementable, right distributive, non empty double loop structure
S, an additive function f from R into S, and an element x of R. Then
f(−x) = −f(x). The theorem is a consequence of (6).

(8) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R, an add-associative, right zeroed, right
complementable, right distributive, non empty double loop structure S,
an additive function f from R into S, and elements x, y of R. Then
f(x− y) = f(x)− f(y). The theorem is a consequence of (7).

(9) Let us consider a right unital, non empty double loop structure R, an
add-associative, right zeroed, right complementable, right unital, Abe-
lian, right distributive, integral domain-like, non empty double loop
structure S, and a multiplicative function f from R into S. Then

(i) f(1R) = 0S , or

(ii) f(1R) = 1S .

Let us consider fields E, F and an additive, multiplicative function f from
E into F . Now we state the propositions:

(10) f(1E) = 0F if and only if f = E 7−→ 0F .

(11) f(1E) = 1F if and only if f is monomorphic.

Let E, F be fields. One can check that every function from E into F which
is additive, multiplicative, and unity-preserving is also monomorphic.

Let R be a ring and I be an ideal of R. The canonical homomorphism of I
into quotient field yielding a function from R into R/I is defined by

(Def. 5) for every element a of R, it(a) = [a]EqRel(R,I).

Let us note that the canonical homomorphism of I into quotient field is
additive, multiplicative, and unity-preserving and the canonical homomorphism
of I into quotient field is epimorphic and R/I is R-homomorphic.

Let R be an add-associative, right zeroed, right complementable, non empty
double loop structure, S be an add-associative, right zeroed, right complemen-
table, right distributive, non empty double loop structure, and f be an additive
function from R into S. One can check that ker f is non empty.

Let R be a non empty double loop structure and S be an add-associative,
right zeroed, right complementable, non empty double loop structure. One can
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check that ker f is closed under addition.
Let S be an add-associative, right zeroed, right complementable, right

distributive, non empty double loop structure and f be a multiplicative function
from R into S. Observe that ker f is left ideal.

Let S be an add-associative, right zeroed, right complementable, distri-
butive, non empty double loop structure. Let us observe that ker f is right
ideal.

Let R be a well unital, non empty double loop structure, S be a well unital,
non degenerated double loop structure, and f be a unity-preserving function
from R into S. Observe that ker f is proper.

Now we state the propositions:

(12) Let us consider a ring R, an R-homomorphic ring S, and a homomor-
phism f from R to S. Then f is monomorphic if and only if ker f = {0R}.
The theorem is a consequence of (6) and (8).

(13) Let us consider a ring R, and an ideal I of R. Then ker the canonical
homomorphism of I into quotient field = I.

(14) Let us consider a ring R, and a subset I of R. Then I is an ideal of
R if and only if there exists an R-homomorphic ring S and there exists
a homomorphism f from R to S such that ker f = I. The theorem is a
consequence of (13).

Let R be a ring, S be an R-homomorphic ring, and f be a homomorphism
from R to S. The functor Im f yielding a strict double loop structure is defined
by

(Def. 6) the carrier of it = rng f and the addition of it = (the addition of S) �
rng f and the multiplication of it = (the multiplication of S) � rng f and
the one of it = 1S and the zero of it = 0S .

Note that Im f is non empty and Im f is Abelian, add-associative, right
zeroed, and right complementable and Im f is associative, well unital, and di-
stributive.

Let R be a commutative ring and S be an R-homomorphic commutative
ring. One can verify that Im f is commutative.

Let R be a ring and S be an R-homomorphic ring. Let us note that the
functor Im f yields a strict subring of S. The canonical homomorphism of f
into quotient field yielding a function from R/ker f into Im f is defined by

(Def. 7) for every element a of R, it([a]EqRel(R,ker f)) = f(a).

One can check that the canonical homomorphism of f into quotient field is
additive, multiplicative, and unity-preserving and the canonical homomorphism
of f into quotient field is monomorphic and epimorphic.
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Let us consider a ring R, an R-homomorphic ring S, and a homomorphism
f from R to S. Now we state the propositions:

(15) R/ker f and Im f are isomorphic.

(16) If f is onto, then R/ker f and S are isomorphic.

Now we state the proposition:

(17) Let us consider a ring R. Then R/{0R} and R are isomorphic. The the-
orem is a consequence of (12).

Let R be a ring. Let us note that R/ΩR is trivial.

3. Units and Non Units

Let L be a right unital, non empty multiplicative loop structure. Let us note
that there exists an element of L which is unital.

A unit of L is a unital element of L. Let L be an add-associative, right
zeroed, right complementable, left distributive, non degenerated double loop
structure. One can check that there exists an element of L which is non unital.

A non-unit of L is a non unital element of L. Note that 0L is non unital.
Let L be a right unital, non empty multiplicative loop structure. Let us note

that 1L is unital.
Let L be an add-associative, right zeroed, right complementable, left di-

stributive, right unital, non degenerated double loop structure. One can verify
that every unit of L is non zero.

Let F be a field. Note that every non zero element of F is unital.
Let R be an integral domain and u, v be unital elements of R. One can check

that u · v is unital.
Let us consider a commutative ring R and elements a, b of R. Now we state

the propositions:

(18) a | b if and only if b ∈ {a}–ideal.

(19) a | b if and only if {b}–ideal ⊆ {a}–ideal. The theorem is a consequence
of (18).

Now we state the propositions:

(20) Let us consider a commutative ring R, and an element a of R. Then a is
a unit of R if and only if {a}–ideal = ΩR. The theorem is a consequence
of (18).

(21) Let us consider a commutative ring R, and elements a, b of R. Then a

is associated to b if and only if {a}–ideal = {b}–ideal.
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4. Prime and Irreducible Elements

Let R be a right unital, non empty double loop structure and x be an element
of R. We say that x is prime if and only if

(Def. 8) x 6= 0R and x is not a unit of R and for every elements a, b of R such
that x | a · b holds x | a or x | b.

We say that x is irreducible if and only if

(Def. 9) x 6= 0R and x is not a unit of R and for every element a of R such that
a | x holds a is unit of R or associated to x.

We introduce x is reducible as an antonym for x is irreducible.

Note that there exists an element of R which is non prime and there exists
an element of ZR which is prime.

Let R be a right unital, non empty double loop structure. Let us observe
that every element of R which is prime is also non zero and non unital and every
element of R which is irreducible is also non zero and non unital.

Let R be an integral domain. Observe that every element of R which is prime
is also irreducible.

Let F be a field. Let us note that every element of F is reducible.

Let R be a right unital, non empty double loop structure. The functor
IRR(R) yielding a subset of R is defined by the term

(Def. 10) {x, where x is an element of R : x is irreducible}.

Let F be a field. One can check that IRR(F ) is empty.

Now we state the propositions:

(22) Let us consider an integral domain R, a non zero element c of R, and
elements b, a, d of R. Suppose a · b is associated to c ·d and a is associated
to c. Then b is associated to d.

(23) Let us consider an integral domain R, and elements a, b of R. Suppose
a is irreducible and b is associated to a. Then b is irreducible.

Let us consider a non degenerated commutative ring R and a non zero ele-
ment a of R. Now we state the propositions:

(24) a is prime if and only if {a}–ideal is prime. The theorem is a consequence
of (18).

(25) If {a}–ideal is maximal, then a is irreducible. The theorem is a consequ-
ence of (19) and (18).
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5. Principal Ideal Domains and Factorial Rings

Note that every field is PID and there exists a non empty double loop struc-
ture which is PID.

A principal ideal domain is a PID integral domain. Now we state the pro-
position:

(26) Let us consider a principal ideal domain R, and a non zero element a of
R. Then {a}–ideal is maximal if and only if a is irreducible. The theorem
is a consequence of (19), (20), (18), and (25).

Let R be a principal ideal domain. Observe that every element of R which is
irreducible is also prime and every commutative ring which is Euclidean is also
PID.

Let R be a principal ideal domain. One can verify that every chain of IdealsR
which is ascending is also stagnating.

Let R be a right unital, non empty double loop structure, x be an element
of R, and F be a non empty finite sequence of elements of R. We say that F is
a factorization of x if and only if

(Def. 11) x =
∏
F and for every element i of domF , F (i) is irreducible.

We say that x is factorizable if and only if

(Def. 12) there exists a non empty finite sequence F of elements of R such that F
is a factorization of x.

Assume x is factorizable.
A factorization of x is a non empty finite sequence of elements of R and is

defined by

(Def. 13) it is a factorization of x.

We say that x is uniquely factorizable if and only if

(Def. 14) x is factorizable and for every factorizations F , G of x, there exists a
function B from domF into domG such that B is bijective and for every
element i of domF , G(B(i)) is associated to F (i).

One can verify that every element of R which is uniquely factorizable is also
factorizable.

Let R be an integral domain. Let us observe that every element of R which
is factorizable is also non zero and non unital.

Let R be a right unital, non empty double loop structure. Let us note that
every element of R which is irreducible is also factorizable.

Now we state the propositions:

(27) Let us consider a right unital, non empty double loop structure R, and
an element a of R. Then a is irreducible if and only if 〈a〉 is a factorization
of a.
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(28) Let us consider a well unital, associative, non empty double loop struc-
ture R, elements a, b of R, and non empty finite sequences F , G of elements
of R. Suppose F is a factorization of a and G is a factorization of b. Then
F a G is a factorization of a · b.

Let R be a principal ideal domain. Observe that every element of R which
is factorizable is also uniquely factorizable.

Let R be a non degenerated ring. We say that R is factorial if and only if

(Def. 15) for every non zero element a of R such that a is a non-unit of R holds a
is uniquely factorizable.

One can check that there exists a non degenerated ring which is factorial.
Let R be a factorial, non degenerated ring. Note that every element of R

which is non zero and non unital is also factorizable.
A factorial ring is a factorial, non degenerated ring. One can check that every

integral domain which is PID is also factorial.

6. Polynomial Rings over Fields

Let L be a field and p be a polynomial of L. The functor deg∗ p yielding a
natural number is defined by the term

(Def. 16)

{
deg p, if p 6= 0. L,
0, otherwise.

The functor deg∗L yielding a function from Polynom-RingL into N is defi-
ned by

(Def. 17) for every polynomial p of L, it(p) = deg∗ p.
Now we state the propositions:

(29) Let us consider a field L, a polynomial p of L, and a non zero polynomial
q of L. Then deg(p mod q) < deg q.

(30) Let us consider a field L, an element p of Polynom-RingL, and a non
zero element q of Polynom-RingL. Then there exist elements u, r of
Polynom-RingL such that

(i) p = u · q + r, and

(ii) r = 0Polynom-RingL or (deg∗L)(r) < (deg∗L)(q).

The theorem is a consequence of (29).

Let L be a field. One can check that Polynom-RingL is Euclidean.
Note that the functor deg∗L yields a DegreeFunction of Polynom-RingL.
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1. The Application of Hahn-Banach Theorem

Now we state the propositions:

(1) Let us consider a real normed space V , a real normed subspace X of V ,
a point x0 of V , and a real number d. Suppose there exists a non empty
subset Z of R such that Z = {‖x− x0‖, where x is a point of V : x ∈ X}
and d = inf Z > 0. Then

(i) x0 /∈ X, and

(ii) there exists a point G of DualSp(V ) such that for every point x
of V such that x ∈ X holds (Bound2Lipschitz(G,V ))(x) = 0 and
(Bound2Lipschitz(G,V ))(x0) = 1 and ‖G‖ = 1

d .

Proof: Consider Z being a non empty subset of R such that Z = {‖x−
x0‖, where x is a point of V : x ∈ X} and d = inf Z > 0. Set M0 =
{z + a · x0, where z is a point of V, a is a real number : z ∈ X}. Set M =
NLinM0. M0 is linearly closed by [25, (20), (21)]. For every point v of M ,
there exists a point x of V and there exists a real number a such that
v = x+a ·x0 and x ∈ X by [13, (31)]. Reconsider r0 = 0 as a real number.
For every extended real r such that r ∈ Z holds r0 ¬ r. For every points
x1, x2 of V and for every real numbers a1, a2 such that x1, x2 ∈ X and
x1 +a1 ·x0 = x2 +a2 ·x0 holds x1 = x2 and a1 = a2 by [26, (5), (35), (15)].
Define P[object, object] ≡ there exists a point z of V and there exists a
real number a such that z ∈ X and $1 = z + a · x0 and $2 = a. For every
element v of M , there exists an element a of R such that P[v, a]. Consider
f being a function from M into R such that for every element x of M ,
P[x, f(x)] from [4, Sch. 3]. For every point v of M and for every point z
of V and for every real number a such that z ∈ X and v = z + a · x0

holds f(v) = a. f is a linear functional in M by [13, (28)], [25, (20), (21)].
For every point v of M , |f(v)| ¬ 1

d · ‖v‖ by [17, (2)], [18, (2)], [26, (30),
(25)]. Reconsider F = f as a point of DualSp(M). Consider g being a
Lipschitzian linear functional in V , G being a point of DualSp(V ) such
that g = G and g�(the carrier of M) = f and ‖G‖ = ‖F‖. For every point
x of V such that x ∈ X holds (Bound2Lipschitz(G,V ))(x) = 0 by [26,
(10)], [3, (49)]. �

(2) Let us consider a real normed space V , a non empty subset Y of V , and
a point x0 of V . Suppose Y is linearly closed and closed and x0 /∈ Y. Then
there exists a point G of DualSp(V ) such that

(i) for every point x of V such that x ∈ Y holds

(Bound2Lipschitz(G,V ))(x) = 0, and
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(ii) (Bound2Lipschitz(G,V ))(x0) = 1.

Proof: Set X = NLinY. Set Z = {‖x−x0‖, where x is a point of V : x ∈
X}. Reconsider r0 = 0 as a real number. For every extended real r such
that r ∈ Z holds r0 ¬ r. Reconsider d = inf Z as a real number. d > 0 by
[9, (16), (7)], [18, (7)]. Consider G being a point of DualSp(V ) such that for
every point x of V such that x ∈ X holds (Bound2Lipschitz(G,V ))(x) = 0
and (Bound2Lipschitz(G,V ))(x0) = 1 and ‖G‖ = 1

d . �

Let us consider a real normed space V and a point x0 of V .
Let us assume that x0 6= 0V . Now we state the propositions:

(3) There exists a point G of DualSp(V ) such that

(i) (Bound2Lipschitz(G,V ))(x0) = 1, and

(ii) ‖G‖ = 1
‖x0‖ .

Proof: Set X = NLin{0V }. Set Y = the carrier of Lin({0V }). For every
object s, s ∈ Y iff s ∈ {0V } by [27, (8)]. Set Z = {‖x − x0‖, where x is
a point of V : x ∈ X}. For every object s, s ∈ Z iff s ∈ {‖x0‖} by [18,
(2)]. Reconsider d = inf Z as a real number. Consider G being a point
of DualSp(V ) such that for every point x of V such that x ∈ X holds
(Bound2Lipschitz(G,V ))(x) = 0 and (Bound2Lipschitz(G,V ))(x0) = 1
and ‖G‖ = 1

d . �

(4) There exists a point F of DualSp(V ) such that

(i) ‖F‖ = 1, and

(ii) (Bound2Lipschitz(F, V ))(x0) = ‖x0‖.
The theorem is a consequence of (3).

Let us consider a real normed space V .
Let us assume that V is not trivial. Now we state the propositions:

(5) There exists a point F of DualSp(V ) such that ‖F‖ = 1. The theorem
is a consequence of (4).

(6) DualSp(V ) is not trivial. The theorem is a consequence of (5).

2. Bidual Spaces of Real Normed Spaces

Let us consider a real normed space V and a point x of V . Now we state the
propositions:

(7) Suppose V is not trivial. Then

(i) there exists a non empty subset X of R such that
X = {|(Bound2Lipschitz(F, V ))(x)|, where F is a point of DualSp(V ) :
‖F‖ = 1} and ‖x‖ = supX, and
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(ii) there exists a non empty subset Y of R such that

Y = {|(Bound2Lipschitz(F, V ))(x)|, where F is a point of DualSp(V ) :
‖F‖ ¬ 1} and ‖x‖ = supY.

The theorem is a consequence of (5) and (4).

(8) If for every Lipschitzian linear functional f in V , f(x) = 0, then x = 0V .
The theorem is a consequence of (3).

Let X be a real normed space and x be a point of X. The functor Bidualx
yielding a point of DualSp(DualSp(X)) is defined by

(Def. 1) for every point f of DualSp(X), it(f) = f(x).

The functor BidualFuncX yielding a function from X

into DualSp(DualSp(X)) is defined by

(Def. 2) for every point x of X, it(x) = Bidualx.

Let us observe that BidualFuncX is additive and homogeneous and
BidualFuncX is one-to-one.
Let us consider a real normed space X.
Let us assume that X is not trivial. Now we state the propositions:

(9) (i) BidualFuncX is a linear operator from X into DualSp(DualSp(X)),
and

(ii) for every point x of X, ‖x‖ = ‖(BidualFuncX)(x)‖.
(10) There exists a real normed subspace D of DualSp(DualSp(X)) and there

exists a Lipschitzian linear operator L from X into D such that L is
bijective and D = =(BidualFuncX) and for every point x of X, L(x) =
Bidualx and for every point x of X, ‖x‖ = ‖L(x)‖.
Proof: Set F = BidualFuncX. Set V1 = rngF . V1 6= ∅ by [29, (42)].
Reconsider L = BidualFuncX as a function from X into =(F ). L is addi-
tive by [13, (28)]. L is homogeneous by [13, (28)]. For every point x of X,
‖x‖ = ‖L(x)‖ by [13, (28)]. �

3. Uniform Boundedness Theorem for Linear Functionals

The real normed space of R yielding a real normed space is defined by the
term

(Def. 3) 〈R, 0(∈ R),+R, ·R, |�|R〉.
Now we state the proposition:

(11) Let us consider a real normed space X, an element x of R, and a point
v of the real normed space of R. If x = v, then −x = −v.
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Let us consider a real normed space X and an object x. Now we state the
propositions:

(12) x is an additive, homogeneous function from X into R if and only if x is
an additive, homogeneous function from X into the real normed space of
R.

(13) x is a Lipschitzian, additive, homogeneous function from X into R if
and only if x is a Lipschitzian, additive, homogeneous function from X

into the real normed space of R. The theorem is a consequence of (12).

Now we state the propositions:

(14) Let us consider a real normed space X. Then the carrier of DualSp(X) =
the carrier of the real norm space of bounded linear operators from X into
the real normed space of R. The theorem is a consequence of (13).

(15) Let us consider a real normed space X, points x, y of DualSp(X), and
points v, w of the real norm space of bounded linear operators from X

into the real normed space of R. If x = v and y = w, then x+ y = v + w.
Proof: Reconsider z = x + y as a point of DualSp(X). Reconsider u =
v + w as a point of the real norm space of bounded linear operators from
X into the real normed space of R. For every object t such that t ∈ dom z

holds z(t) = u(t) by [14, (29)], [22, (35)]. �

(16) Let us consider a real normed space X, an element a of R, a point
x of DualSp(X), and a point v of the real norm space of bounded linear
operators from X into the real normed space of R. If x = v, then a·x = a·v.
Proof: Reconsider z = a ·x as a point of DualSp(X). Reconsider u = a ·v
as a point of the real norm space of bounded linear operators from X into
the real normed space of R. For every object t such that t ∈ dom z holds
z(t) = u(t) by [14, (30)], [22, (36)]. �

Let us consider a real normed space X, a point x of DualSp(X), and a point v
of the real norm space of bounded linear operators from X into the real normed
space of R.

Let us assume that x = v. Now we state the propositions:

(17) −x = −v. The theorem is a consequence of (16).

(18) ‖x‖ = ‖v‖.
Now we state the propositions:

(19) Let us consider a real normed space X, and a subset L of X. Suppose
X is not trivial and for every point f of DualSp(X), there exists a real
number K1 such that 0 ¬ K1 and for every point x of X such that x ∈ L
holds |f(x)| ¬ K1. Then there exists a real number M such that

(i) 0 ¬M , and
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(ii) for every point x of X such that x ∈ L holds ‖x‖ ¬M .

The theorem is a consequence of (14) and (18).

(20) Let us consider a real normed space X, and a non empty subset L of X.
Suppose X is not trivial and for every point f of DualSp(X), there exists
a subset Y1 of R such that Y1 = {|f(x)|, where x is a point of X : x ∈ L}
and supY1 < +∞. Then there exists a subset Y of R such that

(i) Y = {‖x‖, where x is a point of X : x ∈ L}, and

(ii) supY < +∞.

Proof: For every point f of DualSp(X), there exists a real number K1

such that 0 ¬ K1 and for every point x of X such that x ∈ L holds
|f(x)| ¬ K1 by [2, (46)]. Consider M being a real number such that
0 ¬ M and for every point x of X such that x ∈ L holds ‖x‖ ¬ M .
Consider x0 being an object such that x0 ∈ L. Set Y = {‖x‖, where x is
a point of X : x ∈ L}. Y ⊆ R. For every extended real r such that r ∈ Y
holds r ¬M . �

4. Reflexivity of Real Normed Spaces

Let X be a real normed space. We say that X is reflexive if and only if

(Def. 4) BidualFuncX is onto.

Let us consider a real normed space X. Now we state the propositions:

(21) X is reflexive if and only if for every point f of DualSp(DualSp(X)),
there exists a point x of X such that for every point g of DualSp(X),
f(g) = g(x).

(22) X is reflexive if and only if =(BidualFuncX) = DualSp(DualSp(X)).

(23) If X is non trivial and reflexive, then X is a real Banach space.
Proof: For every sequence s1 of X such that s1 is Cauchy sequence by
norm holds s1 is convergent by [23, (8)], [3, (13)], [26, (16)], [4, (113)]. �

Now we state the propositions:

(24) Let us consider a real Banach space X, and a non empty subset M of X.
Suppose X is reflexive and M is linearly closed and closed. Then NLinM
is reflexive.
Proof: Set M0 = NLinM . For every point y of DualSp(DualSp(M0)),
there exists a point x of M0 such that for every point g of DualSp(M0),
y(g) = g(x) by [4, (32)], [13, (28)], [3, (49)], [14, (26), (29), (30)]. �

(25) Let us consider real normed spaces X, Y, a Lipschitzian linear operator
L from X into Y, and a Lipschitzian linear functional y in Y. Then y · L
is a Lipschitzian linear functional in X.
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Proof: Consider M being a real number such that 0 ¬ M and for every
vector x of X, ‖L(x)‖ ¬M · ‖x‖. Set x = y · L. For every vectors v, w of
X, x(v + w) = x(v) + x(w) by [3, (13)]. For every vector v of X and for
every real number r, x(r · v) = r · x(v) by [3, (13)]. Consider N being a
real number such that 0 ¬ N and for every vector v of Y, |y(v)| ¬ N · ‖v‖.
For every vector v of X, |x(v)| ¬M ·N · ‖v‖ by [3, (13)]. �

(26) Let us consider real normed spaces X, Y, and a Lipschitzian linear ope-
rator L from X into Y. Suppose L is isomorphism. Then there exists a
Lipschitzian linear operator T from DualSp(X) into DualSp(Y ) such that

(i) T is isomorphism, and

(ii) for every point x of DualSp(X), T (x) = x · L−1.

Proof: Consider K being a Lipschitzian linear operator from Y into X
such that K = L−1 and K is isomorphism. Define P[function, function] ≡
$2 = $1 ·K. For every element x of DualSp(X), there exists an element y of
DualSp(Y ) such that P[x, y]. Consider T being a function from DualSp(X)
into DualSp(Y ) such that for every element x of DualSp(X), P[x, T (x)]
from [4, Sch. 3]. For every points v, w of DualSp(X), T (v + w) = T (v) +
T (w) by [3, (13)], [14, (29)]. For every point v of DualSp(X) and for every
real number r, T (r · v) = r · T (v) by [3, (13)], [14, (30)]. For every object
v such that v ∈ the carrier of DualSp(Y ) there exists an object s such
that s ∈ the carrier of DualSp(X) and v = T (s) by (25), [29, (36)], [3,
(39)], [29, (51)]. For every point v of DualSp(X), ‖T (v)‖ = ‖v‖ by [3, (34),
(13)], [14, (23)]. For every objects x1, x2 such that x1, x2 ∈ the carrier of
DualSp(X) and T (x1) = T (x2) holds x1 = x2 by [26, (16), (5)], [18, (6)].
�

(27) Let us consider real normed spaces X, Y, a Lipschitzian linear operator L
from X into Y, and a Lipschitzian linear operator T from DualSp(X) into
DualSp(Y ). Suppose L is isomorphism and T is isomorphism and for every
point x of DualSp(X), T (x) = x · L−1. Then there exists a Lipschitzian
linear operator S from DualSp(Y ) into DualSp(X) such that

(i) S is isomorphism, and

(ii) S = T−1, and

(iii) for every point y of DualSp(Y ), S(y) = y · L.

Proof: Consider K being a Lipschitzian linear operator from Y into X
such that K = L−1 and K is isomorphism. Consider S being a Lipschit-
zian linear operator from DualSp(Y ) into DualSp(X) such that S is iso-
morphism and for every point y of DualSp(Y ), S(y) = y ·K−1. For every
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objects y, x, y ∈ the carrier of DualSp(Y ) and S(y) = x iff x ∈ the carrier
of DualSp(X) and T (x) = y by [4, (5)], [29, (36)], [3, (39)], [29, (51)]. �

(28) Let us consider real normed spaces X, Y. Suppose there exists a Lip-
schitzian linear operator L from X into Y such that L is isomorphism.
Then X is reflexive if and only if Y is reflexive.

(29) Let us consider a real normed space X. Suppose X is not trivial. Then
there exists a Lipschitzian linear operator L from X into =(BidualFuncX)
such that L is isomorphism. The theorem is a consequence of (10).

(30) Let us consider a real Banach space X. Suppose X is not trivial. Then
X is reflexive if and only if DualSp(X) is reflexive.
Proof: DualSp(X) is not trivial. Consider L being a Lipschitzian linear
operator from X into =(BidualFuncX) such that L is isomorphism. Set
f = BidualFuncX. rng f 6= ∅ by [29, (42)]. =(f) is reflexive. �
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Summary. We calculate the values of the trigonometric functions for an-
gles: π

3 and π
6 , by [16]. After defining some trigonometric identities, we demon-

strate conventional trigonometric formulas in the triangle, and the geometric
property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31
in [15]. Then we define the diameter of the circumscribed circle of a triangle using
the definition of the area of a triangle and prove some identities of a triangle [9].
We conclude by indicating that the diameter of a circle is twice the length of the
radius.
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1. Values of the Trigonometric Functions for Angles: π3 and
π
6

Let us consider a real number a. Now we state the propositions:

(1) sin(π − a) = sin a.

(2) cos(π − a) = −cos a.

(3) sin(2 · π − a) = −sin a.

(4) cos(2 · π − a) = cos a.

(5) sin(−2 · π + a) = sin a.
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(6) cos(−2 · π + a) = cos a.

(7) sin(3·π
2 + a) = −cos a.

(8) cos(3·π
2 + a) = sin a.

(9) sin(3·π
2 + a) = −sin(π2 − a). The theorem is a consequence of (7).

(10) cos(3·π
2 + a) = cos(π2 − a). The theorem is a consequence of (8).

(11) sin(2·π
3 − a) = sin(π3 + a).

(12) cos(2·π
3 − a) = −cos(π3 + a).

(13) sin(2·π
3 + a) = sin(π3 − a).

Now we state the propositions:

(14) cos π3 = 1
2 .

(15) sin π
3 =

√
3

2 .
Proof: sin π

3  0 by [20, (5)], [29, (79), (81)]. �

(16) tg π
3 =
√

3. The theorem is a consequence of (14) and (15).

(17) sin π
6 = 1

2 . The theorem is a consequence of (14).

(18) cos π6 =
√

3
2 . The theorem is a consequence of (15).

(19) tg π
6 =

√
3

3 . The theorem is a consequence of (17) and (18).

(20) (i) sin(−π
6 ) = −1

2 , and

(ii) cos(−π
6 ) =

√
3

2 , and

(iii) tg(−π
6 ) = −

√
3

3 , and

(iv) sin(−π
3 ) = −

√
3

2 , and

(v) cos(−π
3 ) = 1

2 , and

(vi) tg(−π
3 ) = −

√
3.

(21) (i) arcsin 1
2 = π

6 , and

(ii) arcsin
√

3
2 = π

3 .
The theorem is a consequence of (15) and (17).

(22) sin 2·π
3 =

√
3

2 . The theorem is a consequence of (11) and (15).

(23) cos 2·π
3 = −1

2 . The theorem is a consequence of (12) and (14).

2. Some Trigonometric Identities

Now we state the proposition:

(24) Let us consider a real number x. Then (sin(−x))2 = (sinx)2.

Let us consider real numbers x, y, z. Now we state the propositions:

(25) If x+ y+ z = π, then (sinx)2+ (sin y)2− 2 · sinx · sin y · cos z = (sin z)2.
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(26) If x− y+ z = π, then (sinx)2+ (sin y)2+ 2 · sinx · sin y · cos z = (sin z)2.
The theorem is a consequence of (24) and (25).

(27) Suppose x− (−2 · π+y)+z = π. Then (sinx)2+(sin y)2+2 · sinx · sin y ·
cos z = (sin z)2. The theorem is a consequence of (24), (5), and (25).

(28) If π−x− (π−y) + z = π, then (sinx)2+ (sin y)2+ 2 · sinx · sin y · cos z =
(sin z)2. The theorem is a consequence of (24), (1), and (25).

Now we state the proposition:

(29) Let us consider a real number a. Then sin(3 · a) = 4 · sin a · sin(π3 + a) ·
sin(π3 − a). The theorem is a consequence of (15).

3. Trigonometric Functions and Right Triangle

Let us consider points A, B, C of E2
T.

Let us assume that A, B, C form a triangle. Now we state the propositions:

(30) (i) ](A,B,C) is not zero, and

(ii) ](B,C,A) is not zero, and

(iii) ](C,A,B) is not zero, and

(iv) ](A,C,B) is not zero, and

(v) ](C,B,A) is not zero, and

(vi) ](B,A,C) is not zero.

(31) (i) ](A,B,C) = 2 · π − ](C,B,A), and

(ii) ](B,C,A) = 2 · π − ](A,C,B), and

(iii) ](C,A,B) = 2 · π − ](B,A,C), and

(iv) ](B,A,C) = 2 · π − ](C,A,B), and

(v) ](A,C,B) = 2 · π − ](B,C,A), and

(vi) ](C,B,A) = 2 · π − ](A,B,C).

Now we state the proposition:

(32) Suppose A, B, C form a triangle and |(B −A,C −A)| = 0. Then

(i) |C −B| · sin](C,B,A) = |A− C|, or

(ii) |C −B| · (−sin](C,B,A)) = |A− C|.
Let us assume that A, B, C form a triangle and ](B,A,C) = π

2 . Now we
state the propositions:

(33) ](C,B,A) + ](A,C,B) = π
2 .

(34) (i) |C −B| · sin](C,B,A) = |A− C|, and
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(ii) |C −B| · sin](A,C,B) = |A−B|, and

(iii) |C −B| · cos](C,B,A) = |A−B|, and

(iv) |C −B| · cos](A,C,B) = |A− C|.
(35) (i) tg](A,C,B) = |A−B|

|A−C| , and

(ii) tg](C,B,A) = |A−C|
|A−B| .

The theorem is a consequence of (34).

4. Triangle Inscribed in a Semicircle is a Right Triangle

Let a, b be real numbers and r be a negative real number. Let us note that
circle(a, b, r) is empty.

Now we state the proposition:

(36) Let us consider real numbers a, b. Then circle(a, b, 0) = {[a, b]}.
Let a, b be real numbers. One can verify that circle(a, b, 0) is trivial.
Now we state the propositions:

(37) Let us consider points A, B, C of E2
T, and real numbers a, b, r. Suppose

A, B, C form a triangle and A, B ∈ circle(a, b, r). Then r is positive. The
theorem is a consequence of (36).

(38) Let us consider a point A of E2
T, real numbers a, b, and a positive real

number r. If A ∈ circle(a, b, r), then A 6= [a, b].

(39) Let us consider points A, B, C of E2
T, and real numbers a, b, r. Suppose

A, B, C form a triangle and ](C,B,A), ](B,A,C) ∈ ]0, π[ and A, B,
C ∈ circle(a, b, r) and [a, b] ∈ L(A,C). Then ](C,B,A) = π

2 .
Proof: Set O = [a, b]. Consider J1 being a point of E2

T such that A = J1

and |J1− [a, b]| = r. Consider J2 being a point of E2
T such that B = J2 and

|J2−[a, b]| = r. Consider J3 being a point of E2
T such that C = J3 and |J3−

[a, b]| = r. r is positive. O 6= A and O 6= C. ](C,B,O) < π by [25, (16),
(9)], [19, (47)]. A, O, B form a triangle and C, O, B form a triangle by (37),
(38), [6, (72), (75)]. ](C,B,O)+](O,C,B)+](O,B,A)+](B,A,O) = π

or ](C,B,O) +](O,C,B) +](O,B,A) +](B,A,O) = −π by [25, (13)],
[19, (47)]. ](O,C,B) = ](C,B,O) and ](B,A,O) = ](O,B,A). �

(40) Let us consider points A, B, C of E2
T, and a positive real number r.

Suppose ](A,B,C) is not zero. Then sin(r · ](C,B,A)) = sin(r · 2 · π) ·
cos(r · ](A,B,C))− cos(r · 2 · π) · sin(r · ](A,B,C)).

(41) Let us consider points A, B, C of E2
T. Suppose ](A,B,C) is not zero.

Then sin ](C,B,A)
3 =

√
3

2 · cos ](A,B,C)
3 + 1

2 · sin
](A,B,C)

3 . The theorem is a
consequence of (40), (22), and (23).
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5. Diameter of the Circumcircle of a Triangle

Let us consider points A, B, C of E2
T. Now we state the propositions:

(42) (i) area of M(A,B,C) = area of M(B,C,A), and

(ii) area of M(A,B,C) = area of M(C,A,B).

(43) area of M(A,B,C) = −(area of M(B,A,C)).

Let A, B, C be points of E2
T. The functor �I(A,B,C) yielding a real number

is defined by the term

(Def. 1)
|A−B|·|B−C|·|C−A|

2
area of M(A,B,C) .

Let us consider points A, B, C of E2
T.

Let us assume that A, B, C form a triangle. Now we state the propositions:

(44) �I(A,B,C) = |C−A|
sin ](C,B,A) .

(45) �I(A,B,C) = − |C−A|
sin ](A,B,C) . The theorem is a consequence of (44).

Now we state the proposition:

(46) �I(A,B,C) = �I(B,C,A).

Let us assume that A, B, C form a triangle. Now we state the propositions:

(47) �I(A,B,C) = −�I(B,A,C). The theorem is a consequence of (43).

(48) �I(A,B,C) = −�I(A,C,B). The theorem is a consequence of (42)
and (47).

(49) �I(A,B,C) = −�I(C,B,A). The theorem is a consequence of (48)
and (42).

6. Some Identities of a Triangle

Let us consider points A, B, C of E2
T.

Let us assume that A, B, C form a triangle. Now we state the propositions:

(50) (i) |A−B| = �I(A,B,C) · sin](A,C,B), and

(ii) |B − C| = �I(A,B,C) · sin](B,A,C), and

(iii) |C −A| = �I(A,B,C) · sin](C,B,A).
The theorem is a consequence of (42).

(51) |A−B| = �I(A,B,C)·4·sin ](A,C,B)
3 ·sin(π3 + ](A,C,B)

3 )·sin(π3−
](A,C,B)

3 ).
The theorem is a consequence of (29).

Let us consider points A, B, C, P of E2
T. Now we state the propositions:

(52) Suppose A, B, P are mutually different and ](P,B,A) = ](C,B,A)
3

and ](B,A, P ) = ](B,A,C)
3 and ](A,P,B) < π. Then |A − P | · sin(π −

(](C,B,A)
3 + ](B,A,C)

3 )) = |A−B| · sin ](C,B,A)
3 .
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(53) Suppose A, B, P are mutually different and ](P,B,A) = ](C,B,A)
3 and

](B,A, P ) = ](B,A,C)
3 and ](A,P,B) < π and ](C,B,A)

3 + ](B,A,C)
3 +

](A,C,B)
3 = π

3 . Then |A− P | · sin(2·π
3 + ](A,C,B)

3 ) = |A−B| · sin ](C,B,A)
3 .

Now we state the proposition:

(54) Let us consider points A, B, C of E2
T. Suppose A, B, C form a triangle

and ](C,A,B) < π. Then

(i) ](C,B,A) + ](B,A,C) + ](A,C,B) = 5 · π, and

(ii) ](C,A,B) + ](A,B,C) + ](B,C,A) = π.

Let us consider points A, B, C, P of E2
T. Now we state the propositions:

(55) Suppose A, B, C form a triangle and ](C,B,A) < π and A, B, P are
mutually different and ](P,B,A) = ](C,B,A)

3 and ](B,A, P ) = ](B,A,C)
3

and ](A,P,B) < π. Then |A−P |·sin(π3−
](A,C,B)

3 ) = |A−B|·sin ](C,B,A)
3 .

The theorem is a consequence of (1).

(56) Suppose A, B, C form a triangle and A, B, P form a triangle and

](C,B,A) < π and ](A,P,B) < π and ](P,B,A) = ](C,B,A)
3 and

](B,A, P ) = ](B,A,C)
3 and sin(π3 −

](A,C,B)
3 ) 6= 0. Then |A − P | =

−�I(C,B,A) · 4 · sin ](A,C,B)
3 · sin(π3 + ](A,C,B)

3 ) · sin ](C,B,A)
3 . The theo-

rem is a consequence of (53), (29), (50), (13), and (49).

7. Diameter of a Circle

Now we state the propositions:

(57) Let us consider points A, B, C of E2
T. Suppose A, B, C are mutually

different and C ∈ L(A,B). Then |A−B| = |A− C|+ |C −B|.
(58) Let us consider points A, B of E2

T, real numbers a, b, and a positive
real number r. Suppose A, B, [a, b] are mutually different and A, B ∈
circle(a, b, r) and [a, b] ∈ L(A,B). Then |A−B| = 2 · r. The theorem is a
consequence of (57).

(59) Let us consider real numbers a, b, a positive real number r, and a subset
C of E2. If C = circle(a, b, r), then ∅C = 2 · r.
Proof: For every points x, y of E2 such that x, y ∈ C holds ρ(x, y) ¬ 2 · r
by [11, (22), (67)], [17, (4)], [22, (5)]. For every real number s such that for
every points x, y of E2 such that x, y ∈ C holds ρ(x, y) ¬ s holds 2 · r ¬ s
by [11, (62)], [4, (12)], [19, (24)], [26, (22)]. �
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1. Preliminaries: Affine Maps

Now we state the proposition:

(1) Let us consider real numbers a, b. Suppose a ¬ b. Then R \ ]a, b[ 6= ∅.
From now on a, b, c, x denote real numbers.
Now we state the propositions:

(2) (AffineMap( 1
b−a ,−

a
b−a))(a) = 0.

(3) If b− a 6= 0, then (AffineMap( 1
b−a ,−

a
b−a))(b) = 1.

(4) If c− b 6= 0, then (AffineMap(− 1
c−b ,

c
c−b))(b) = 1.

(5) (AffineMap(− 1
c−b ,

c
c−b))(c) = 0.

(6) If b−a 6= 0 and (AffineMap( 1
b−a ,−

a
b−a))(x) = 1, then x = b. The theorem

is a consequence of (3).

(7) If c−b 6= 0 and (AffineMap(− 1
c−b ,

c
c−b))(x) = 1, then x = b. The theorem

is a consequence of (4).

(8) rng(AffineMap(0, a)) = {a}.
(9) Let us consider a non empty subset C of R.

Then rng((AffineMap(0, a))�C) = {a}.
Proof: Set f = (AffineMap(0, a))�C. rng f ⊆ {a} by [3, (49)]. �

(10) If b− a > 0, then rng((AffineMap( 1
b−a ,−

a
b−a))�[a, b]) = [0, 1].

Proof: Set f = AffineMap( 1
b−a ,−

a
b−a). Set g = f�[a, b]. rng g ⊆ [0, 1] by

[21, (57)], [3, (47)], (2), [16, (53)]. �

Let us assume that c− b > 0. Now we state the propositions:

(11) rng((AffineMap(− 1
c−b ,

c
c−b))�]b, c]) = [0, 1[.

Proof: Set f = AffineMap(− 1
c−b ,

c
c−b). Set g = f�]b, c]. rng g ⊆ [0, 1[ by

[21, (57)], [3, (47)], (4), [16, (52), (54)]. �

(12) rng((AffineMap(− 1
c−b ,

c
c−b))�[b, c]) = [0, 1].

Proof: Set f = AffineMap(− 1
c−b ,

c
c−b). Set g = f�[b, c]. rng g ⊆ [0, 1] by

[21, (57)], [3, (47)], (4), [16, (54)]. �

Now we state the propositions:

(13) (AffineMap(0, 0))(x) 6= 1.

(14) (AffineMap(0, 1))(b) = 1.

(15) Let us consider a real number a. Then (AffineMap(0, b))(a) = b.



The formal construction of fuzzy numbers 323

2. Towards Development of Fuzzy Numbers

In the sequel C denotes a non empty set.
Let C be a non empty set.
A fuzzy set of C is a membership function of C. Let F be a fuzzy set of C.

We say that F is normalized if and only if

(Def. 1) there exists an element x of C such that F (x) = 1.

We introduce F is normal as a synonym of F is normalized.
We introduce F is subnormal as an antonym for F is normal.
We say that F is strictly normalized if and only if

(Def. 2) there exists an element x of C such that F (x) = 1 and for every element
y of C such that F (y) = 1 holds y = x.

One can verify that every fuzzy set of C which is strictly normalized is also
normalized.

Let F be a fuzzy set of C and α be a real number. The functor α-cut(F )
yielding a subset of C is defined by the term

(Def. 3) {x, where x is an element of C : F (x)  α}.

Now we state the proposition:

(16) Let us consider a fuzzy set F of C, and a real number α. Then α-cut(F ) =
F−1([α, 1]).
Proof: α-cut(F ) ⊆ F−1([α, 1]) by [6, (4)]. �

Let us consider C. Let us note that UMFC is normalized and there exists a
fuzzy set of C which is normalized.

Let F be a fuzzy set of C. The functor CoreF yielding a subset of C is
defined by the term

(Def. 4) {x, where x is an element of C : F (x) = 1}.

Now we state the propositions:

(17) Core UMFC = C.

(18) Core EMFC = ∅.
Let us consider C. One can check that Core EMFC is empty.
Let us consider a fuzzy set F of C. Now we state the propositions:

(19) CoreF = F−1({1}).
(20) CoreF = 1-cut(F ). The theorem is a consequence of (16) and (19).
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3. Convexity and the Height of a Fuzzy Set

Let F be a fuzzy set of R. We say that F is convex if and only if

(Def. 5) for every real numbers x1, x2 and for every real number l such that
0 ¬ l ¬ 1 holds F (l · x1 + (1− l) · x2)  min(F (x1), F (x2)).

Observe that UMF R is convex and EMF R is convex.
Let C be a non empty set and F be a fuzzy set of C. The functor heightF

yielding an extended real is defined by the term

(Def. 6) sup rngF .

Now we state the propositions:

(21) Let us consider a fuzzy set F of C. Then 0 ¬ heightF ¬ 1.
Proof: 0 is a lower bound of rngF by [15, (1)]. 1 is a upper bound of
rngF by [15, (1)]. �

(22) Let us consider a fuzzy set F of C. If F is normalized, then heightF = 1.
The theorem is a consequence of (21).

4. Pasting aka Glueing Lemmas

Let us consider partial functions f , g from R to R. Now we state the propo-
sition:

(23) Suppose f is continuous and g is continuous and there exists an object
x such that dom f ∩ dom g = {x} and for every object x such that x ∈
dom f ∩ dom g holds f(x) = g(x). Then there exists a partial function h

from R to R such that

(i) h = f+·g, and

(ii) for every real number x such that x ∈ dom f ∩ dom g holds h is
continuous in x.

Proof: Reconsider h = f+·g as a partial function from R to R. For every
real number r such that 0 < r there exists a real number s such that 0 < s

and for every real number x1 such that x1 ∈ domh and |x1− x| < s holds
|h(x1)− h(x)| < r by [21, (57)], [16, (3)], [5, (12)], [3, (47)]. �

Let us assume that f is continuous and non empty and g is continuous and
non empty and there exist real numbers a, b, c such that dom f = [a, b] and
dom g = [b, c] and f ≈ g. Now we state the propositions:

(24) There exists a partial function h from R to R such that

(i) h = f+·g, and
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(ii) for every real number x such that x ∈ domh holds h is continuous in
x.

(25) f+·g is continuous. The theorem is a consequence of (24).

Now we state the proposition:

(26) Suppose g is not empty and f = (AffineMap(0, 0))�(R\]a, b[) and dom g =
[a, b] and g(a) = 0 and g(b) = 0. Then f ≈ g.
Proof: For every object x such that x ∈ dom f ∩dom g holds f(x) = g(x)
by [18, (1)], [3, (47)], (15). �

Let us assume that g is continuous and non empty and
f = (AffineMap(0, 0))�(R \ ]a, b[) and dom g = [a, b] and g(a) = 0 and

g(b) = 0. Now we state the propositions:

(27) There exists a partial function h from R to R such that

(i) h = f+·g, and

(ii) for every real number x such that x ∈ domh holds h is continuous in
x.

The theorem is a consequence of (26).

(28) f+·g is continuous. The theorem is a consequence of (27).

Note that there exists a subset of R which is non trivial, closed interval, and
closed.

5. Triangular and Trapezoidal Fuzzy Sets

Let a, b, c be real numbers. Assume a < b and b < c.
The functor TriangularFS(a, b, c) yielding a fuzzy set of R is defined by the

term

(Def. 7) ((AffineMap(0, 0))�(R \ ]a, c[)+·
(AffineMap( 1

b−a ,−
a
b−a))�[a, b])+·

(AffineMap(− 1
c−b ,

c
c−b))�[b, c].

Let us consider real numbers a, b, c. Let us assume that a < b < c. Now we
state the propositions:

(29) TriangularFS(a, b, c) is strictly normalized.
Proof: Set F = TriangularFS(a, b, c). Reconsider b1 = b as an element of
R. For every element y of R such that F (y) = 1 holds y = b1 by [21, (57)],
[5, (11), (13)], [3, (49)]. �

(30) TriangularFS(a, b, c) is continuous.
Proof: Set f1 = AffineMap(0, 0). Set f = f1�(R \ ]a, c[). Set g1 =
AffineMap( 1

b−a ,−
a
b−a). Reconsider g = g1�[a, b] as a partial function from
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R to R. Set h1 = AffineMap(− 1
c−b ,

c
c−b). Reconsider h = h1�[b, c] as a par-

tial function from R to R. For every object x such that x ∈ dom g∩domh

holds g(x) = h(x) by [3, (49)], (4), (3). Set h = g+·h. Consider h2 being
a partial function from R to R such that h2 = f+·h and for every real
number x such that x ∈ domh2 holds h2 is continuous in x. �

Let a, b, c, d be real numbers. Assume a < b and b < c and c < d. The
functor TrapezoidalFS(a, b, c, d) yielding a fuzzy set of R is defined by the term

(Def. 8) (((AffineMap(0, 0))�(R \ ]a, d[)+·
(AffineMap( 1

b−a ,−
a
b−a))�[a, b])+·

(AffineMap(0, 1))�[b, c])+·(AffineMap(− 1
d−c ,

d
d−c))�[c, d].

Let us consider real numbers a, b, c, d. Let us assume that a < b < c < d.
Now we state the propositions:

(31) TrapezoidalFS(a, b, c, d) is normalized. The theorem is a consequence of
(4).

(32) TrapezoidalFS(a, b, c, d) is continuous.
Proof: Set f1 = AffineMap(0, 0). Set f = f1�(R \ ]a, d[). Set g1 =
AffineMap( 1

b−a ,−
a
b−a). Reconsider g = g1�[a, b] as a partial function from

R to R. Set h1 = AffineMap(− 1
d−c ,

d
d−c). Reconsider h = h1�[c, d] as

a partial function from R to R. Set i1 = AffineMap(0, 1). Reconsider
i = i1�[b, c] as a partial function from R to R. For every object x such
that x ∈ dom g ∩ dom i holds g(x) = i(x) by [3, (49)], (15), (3). Set
h = g+·i. h is continuous. For every object x such that x ∈ dom h∩domh

holds h(x) = h(x) by [5, (13)], [3, (49)], (15). Set g2 = h+·h. Consider h2

being a partial function from R to R such that h2 = f+·g2 and for every
real number x such that x ∈ domh2 holds h2 is continuous in x. �

Let F be a fuzzy set of R. We say that F is triangular if and only if

(Def. 9) there exist real numbers a, b, c such that F = TriangularFS(a, b, c).

We say that F is trapezoidal if and only if

(Def. 10) there exist real numbers a, b, c, d such that F = TrapezoidalFS(a, b, c, d).

One can verify that there exists a fuzzy set of R which is triangular and
there exists a fuzzy set of R which is trapezoidal.
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