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Summary. In this paper we account for the formalization of the seven
bridges of Königsberg puzzle. The problem originally posed and solved by Euler
in 1735 is historically notable for having laid the foundations of graph theory, cf.
[7]. Our formalization utilizes a simple set-theoretical graph representation with
four distinct sets for the graph’s vertices and another seven sets that represent
the edges (bridges). The work appends the article by Nakamura and Rudnicki [10]
by introducing the classic example of a graph that does not contain an Eulerian
path.

This theorem is item #54 from the “Formalizing 100 Theorems” list mainta-
ined by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ .
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The notation and terminology used in this paper have been introduced in the
following articles: [11], [2], [8], [3], [4], [9], [10], [6], [1], [13], [12], and [5].

The functors: KVertices and KEdges yielding sets are defined by terms,

(Def. 1) {0, 1, 2, 3},
(Def. 2) {10, 20, 30, 40, 50, 60, 70},

respectively. The functors: KSource and KTarget yielding functions from KEdges
into KVertices are defined by terms,

(Def. 3) {〈〈10, 0〉〉, 〈〈20, 0〉〉, 〈〈30, 0〉〉, 〈〈40, 1〉〉, 〈〈50, 1〉〉, 〈〈60, 2〉〉, 〈〈70, 2〉〉},
(Def. 4) {〈〈10, 1〉〉, 〈〈20, 2〉〉, 〈〈30, 3〉〉, 〈〈40, 2〉〉, 〈〈50, 2〉〉, 〈〈60, 3〉〉, 〈〈70, 3〉〉},

respectively. The functor KönigsbergBridges yielding a graph is defined by the
term
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(Def. 5) 〈KVertices,KEdges,KSource,KTarget〉.
Let us observe that KönigsbergBridges is finite and connected.
Let us consider a vertex v of KönigsbergBridges. Now we state the proposi-

tions:

(1) If v = 0, then the degree of v = 3. Proof: EdgesIn v = ∅ by [3, (1)].
EdgesOut v = {10, 20, 30} by [3, (1)]. The degree of v = 3 by [10, (24)]. �

(2) If v = 1, then the degree of v = 3. Proof: EdgesIn v = {10} by [3, (1)].
EdgesOut v = {40, 50} by [3, (1)]. The degree of v = 3 by [10, (24)]. �

(3) If v = 2, then the degree of v = 5. Proof: EdgesIn v = {20, 40, 50} by
[3, (1)]. EdgesOut v = {60, 70} by [3, (1)]. The degree of v = 5 by [10,
(24)]. �

(4) If v = 3, then the degree of v = 3. Proof: EdgesIn v = {30, 60, 70} by
[3, (1)]. EdgesOut v = ∅ by [3, (1)]. The degree of v = 3 by [10, (24)]. �

Now we state the propositions:

(5) Seven Bridges of Königsberg:
There exists no path p of KönigsbergBridges such that p is cyclic and
Eulerian. The theorem is a consequence of (1).

(6) There exists no path p of KönigsbergBridges such that p is non cyclic
and Eulerian. The theorem is a consequence of (4), (1), and (2).
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