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Morley’s Trisector Theorem

Roland Coghetto
Rue de la Brasserie 5

7100 La Louvière, Belgium

Summary. Morley’s trisector theorem states that “The points of intersec-
tion of the adjacent trisectors of the angles of any triangle are the vertices of an
equilateral triangle” [10].

There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3,
18]. We follow the proof given by A. Letac in [15].
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1. Preliminaries

From now on A, B, C, D, E, F , G denote points of E2T.
Now we state the propositions:

(1) ](A,B,A) = 0.

(2) 0 ¬ ](A,B,C) < 2 · π.

(3) (i) 0 ¬ ](A,B,C) < π, or

(ii) ](A,B,C) = π, or

(iii) π < ](A,B,C) < 2 · π.
The theorem is a consequence of (2).

(4) |F − E|2 = |A− E|2 + |A− F |2 − 2 · |A− E| · |A− F | · cos](E,A, F ).

(5) If A, B, C are mutually different and 0 < ](A,B,C) < π, then 0 <

](B,C,A) < π and 0 < ](C,A,B) < π.
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(6) Suppose A, B, C are mutually different and ](A,B,C) = 0. Then

(i) ](B,C,A) = 0 and ](C,A,B) = π, or

(ii) ](B,C,A) = π and ](C,A,B) = 0 and ](A,B,C) + ](B,C,A) +
](C,A,B) = π.

(7) Suppose A, B, C are mutually different and ](A,B,C) = π. Then

(i) ](B,C,A) = 0, and

(ii) ](C,A,B) = 0, and

(iii) ](A,B,C) + ](B,C,A) + ](C,A,B) = π.

(8) If A, B, C are mutually different and ](A,B,C) > π, then ](A,B,C)+
](B,C,A) + ](C,A,B) = 5 · π.

Let us assume that ](C,B,A) < π. Now we state the propositions:

(9) 0 ¬ area of M(A,B,C). The theorem is a consequence of (2).

(10) 0 ¬ �I(A,B,C). The theorem is a consequence of (9).

2. Morley’s Theorem

Now we state the propositions:

(11) Suppose A, F , C form a triangle and ](C,F,A) < π and ](A,C, F ) =
](A,C,B)/3 and ](F,A,C) = ](B,A,C)/3 and (](A,C,B)/3)+
(](B,A,C)/3) + (](C,B,A)/3) = π/3.
Then |A− F | · sin((π/3)− (](C,B,A)/3)) = |A− C| · sin(](A,C,B)/3).

(12) Suppose A, B, C form a triangle and A, F , C form a triangle and
](C,F,A) < π and ](A,C, F ) = ](A,C,B)/3 and ](F,A,C) =
](B,A,C)/3 and (](A,C,B)/3)+(](B,A,C)/3)+(](C,B,A)/3) = π/3
and sin((π/3) − (](C,B,A)/3)) 6= 0. Then |A − F | = 4 · �I(A,B,C) ·
sin(](C,B,A)/3)·sin((π/3)+(](C,B,A)/3))·sin(](A,C,B)/3). The the-
orem is a consequence of (11).

(13) Suppose C, A, B form a triangle and A, F , C form a triangle and F ,
A, E form a triangle and E, A, B form a triangle and ](B,A,E) =
](B,A,C)/3 and ](F,A,C) = ](B,A,C)/3. Then ](E,A, F ) =
](B,A,C)/3. Proof: ](E,A, F ) 6= 4 · π + (](B,A,C)/3) by [17, (5)],
(2), [7, (30)]. ](E,A, F ) 6= 2 · π + (](B,A,C)/3) by (2), [7, (30)]. �

(14) Suppose C, A, B form a triangle and ](A,C,B) < π and A, F , C
form a triangle and F , A, E form a triangle and E, A, B form a triangle
and ](B,A,E) = ](B,A,C)/3 and ](F,A,C) = ](B,A,C)/3. Then
(π/3) + (](A,C,B)/3) + ((π/3) + (](C,B,A)/3)) +](E,A, F ) = π. The
theorem is a consequence of (13).
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(15) If A, C, B form a triangle, then sin((π/3) − (](A,C,B)/3)) 6= 0. The
theorem is a consequence of (2).

(16) Suppose A, B, C form a triangle and A, B, E form a triangle and
](E,B,A) = ](C,B,A)/3 and ](B,A,E) = ](B,A,C)/3 and A, F , C
form a triangle and ](A,C, F ) = ](A,C,B)/3 and ](F,A,C) =
](B,A,C)/3 and ](A,C,B) < π. Then |F − E| = 4 · �I(A,B,C) ·
sin(](A,C,B)/3) · sin(](C,B,A)/3) · sin(](B,A,C)/3).
Proof: sin((π/3)− (](A,C,B)/3)) 6= 0. sin((π/3)− (](C,B,A)/3)) 6= 0.
0 < ](A,C,B). ](C,B,A) < π. 0 < ](A,C,B) < π and A, C, B are
mutually different. ](B,A,C) < π. 0 < ](B,A,E) < π. ](A,E,B) < π.
0 < ](F,A,C) < π. ](C,F,A) < π. F , A, E form a triangle by [19,
(4)], (5), [17, (5)], [7, (31)]. |A−F | = �I(A,B,C) · 4 · sin(](C,B,A)/3) ·
sin((π/3) + (](C,B,A)/3)) · sin(](A,C,B)/3). (π/3) + (](A,C,B)/3) +
((π/3) + (](C,B,A)/3)) + ](E,A, F ) = π. |F − E|2 = |A − E|2 + |A −
F |2 − 2 · |A− E| · |A− F | · cos](E,A, F ). �

(17) Suppose A, B, C form a triangle and ](E,B,A) = ](C,B,A)/3 and
](B,A,E) = ](B,A,C)/3. Then A, B, E form a triangle. The theorem
is a consequence of (1) and (2).

(18) Suppose A, B, C form a triangle and ](A,C, F ) = ](A,C,B)/3 and
](F,A,C) = ](B,A,C)/3. Then A, F , C form a triangle. The theorem
is a consequence of (1) and (2).

(19) Suppose A, B, C form a triangle and ](C,B,G) = ](C,B,A)/3 and
](G,C,B) = ](A,C,B)/3. Then C, G, B form a triangle. The theorem
is a consequence of (1) and (2).

Let us assume that A, B, C form a triangle and ](A,C,B) < π and
](E,B,A) = ](C,B,A)/3 and ](B,A,E) = ](B,A,C)/3 and ](A,C, F ) =
](A,C,B)/3 and ](F,A,C) = ](B,A,C)/3 and ](C,B,G) = ](C,B,A)/3
and ](G,C,B) = ](A,C,B)/3. Now we state the propositions:

(20) (i) |F − E| = 4 · �I(A,B,C) · sin(](A,C,B)/3) · sin(](C,B,A)/3) ·
sin(](B,A,C)/3), and

(ii) |G − F | = 4 · �I(C,A,B) · sin(](C,B,A)/3) · sin(](B,A,C)/3) ·
sin(](A,C,B)/3), and

(iii) |E − G| = 4 · �I(B,C,A) · sin(](B,A,C)/3) · sin(](A,C,B)/3) ·
sin(](C,B,A)/3).

The theorem is a consequence of (17), (18), (19), (2), (5), and (16).

(21) (i) |F − E| = |G− F |, and

(ii) |F − E| = |E −G|, and

(iii) |G− F | = |E −G|.
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The theorem is a consequence of (20).

(22) Morley’s trisector theorem:
Suppose A, B, C form a triangle and ](A,B,C) < π and ](E,C,A) =
](B,C,A)/3 and ](C,A,E) = ](C,A,B)/3 and ](A,B, F ) =
](A,B,C)/3 and ](F,A,B) = ](C,A,B)/3 and ](B,C,G) =
](B,C,A)/3 and ](G,B,C) = ](A,B,C)/3. Then

(i) |F − E| = |G− F |, and

(ii) |F − E| = |E −G|, and

(iii) |G− F | = |E −G|.
The theorem is a consequence of (21).
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Summary. In this article we introduce necessary notation and definitions
to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes
[31]. Our aim is to create an environment which allows to formalize the theorem
in a way that is as similar as possible to the original informal proof.

Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100
Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/
100/ [30].

MSC: 11B99 03B35
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [2], [6], [8], [15], [27], [13], [14], [23], [9], [10], [7], [25], [24],
[3], [4], [19], [5], [22], [32], [33], [11], [21], [28], [18], and [12].

1. Auxiliary Facts about Finite Sequences Concatenation

From now on x, y denote objects, D, D1, D2 denote non empty sets, i, j, k,
m, n denote natural numbers, f , g denote finite sequences of elements of D∗, f1
denotes a finite sequence of elements of D1∗, and f2 denotes a finite sequence of
elements of D2∗.

Now we state the propositions:
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(1) Let us consider a function yielding function F , and an object a. Then
a ∈ ValuesF if and only if there exists x and there exists y such that
x ∈ domF and y ∈ dom(F (x)) and a = F (x)(y).

(2) Let us consider a set D, and finite sequences f , g of elements of D∗.
Then Values f a g = Values f ∪Values g.
Proof: Set F = f a g. Values f ⊆ ValuesF by (1), [6, (26)]. Values g ⊆
ValuesF by (1), [6, (28)]. ValuesF ⊆ Values f ∪Values g by (1), [6, (25)].
�

(3) The concatenation of D � f a g = (the concatenation of D � f) a

(the concatenation of D � g).

(4) rng(the concatenation of D � f) = Values f .
Proof: Set D3 = the concatenation of D. Define P[natural number] ≡
for every finite sequence f of elements of D∗ such that len f = $1 holds
rng(D3 � f) = Values f . P[0]. If P[i], then P[i+ 1] by [8, (19), (16)], (3),
[27, (11)]. P[i] from [4, Sch. 2]. �

(5) If f1 = f2, then the concatenation of D1 � f1 = the concatenation of
D2 � f2.
Proof: Set C = the concatenation of D2. Set N = the concatenation of
D1. Define P[natural number] ≡ for every finite sequence f4 of elements
of D1∗ for every finite sequence f3 of elements of D2∗ such that $1 = len f4
and f4 = f3 holds N � f4 = C � f3. P[0]. If P[i], then P[i+ 1] by [8, (19),
(16)], (3), [27, (11)]. P[i] from [4, Sch. 2]. �

(6) i ∈ dom(the concatenation of D � f) if and only if there exists n and
there exists k such that n + 1 ∈ dom f and k ∈ dom(f(n + 1)) and
i = k + len(the concatenation of D � f�n).
Proof: Set D3 = the concatenation of D. Define P[natural number] ≡ for
every i for every finite sequence f of elements of D∗ such that len f = $1
holds i ∈ dom(D3 � f) iff there exists n and there exists k such that
n+ 1 ∈ dom f and k ∈ dom(f(n+ 1)) and i = k + len(D3 � f�n). P[0]. If
P[j], then P[j + 1] by [8, (19), (16)], (3), [27, (11)]. P[j] from [4, Sch. 2].
�

(7) Suppose i ∈ dom(the concatenation of D � f). Then

(i) (the concatenation of D�f)(i) = (the concatenation of D�f ag)(i),
and

(ii) (the concatenation of D�f)(i) = (the concatenation of D�gaf)(i+
len(the concatenation of D � g)).

The theorem is a consequence of (3).

(8) Suppose k ∈ dom(f(n+ 1)). Then f(n+ 1)(k) = (the concatenation of
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D � f)(k + len(the concatenation of D � f�n)). The theorem is a conse-
quence of (3).

2. Flexary Plus

From now on f denotes a complex-valued function and g, h denote complex-
valued finite sequences.

Let us consider k and n. Let f , g be complex-valued functions. The functor
(f, k) + . . .+(g, n) yielding a complex number is defined by

(Def. 1) (i) h(0 + 1) = f(0 + k) and ... and h(n−′ k + 1) = f(n−′ k + k), then
it =

∑
(h�(n−′ k + 1)), if f = g and k ¬ n,

(ii) it = 0, otherwise.

Now we state the propositions:

(9) Suppose k ¬ n. Then there exists h such that

(i) (f, k) + . . .+(f, n) =
∑
h, and

(ii) lenh = n−′ k + 1, and

(iii) h(0 + 1) = f(0 + k) and ... and h(n−′ k + 1) = f(n−′ k + k).

Proof: Define P(natural number) = f(k + $1 − 1). Set n3 = n −′ k + 1.
Consider p being a finite sequence such that len p = n3 and for every
i such that i ∈ dom p holds p(i) = P(i) from [6, Sch. 2]. rng p ⊆ C.
p(1 + 0) = f(k + 0) and ... and p(1 + (n −′ k)) = f(k + (n −′ k)) by [4,
(11)], [26, (25)]. �

(10) If (f, k) + . . .+(f, n) 6= 0, then there exists i such that k ¬ i ¬ n and
i ∈ dom f .
Proof: Consider h such that (f, k) + . . .+(f, n) =

∑
h and lenh = n −′

k + 1 and h(0 + 1) = f(0 + k) and ... and h(n −′ k + 1) = f(n −′ k + k).
rng h ⊆ {0} by [26, (25)], [4, (11)]. �

(11) (f, k) + . . .+(f, k) = f(k). The theorem is a consequence of (9).

(12) If k ¬ n+1, then (f, k) + . . .+(f, (n+1)) = ((f, k) + . . .+(f, n))+f(n+
1). The theorem is a consequence of (11) and (9).

(13) If k ¬ n, then (f, k) + . . .+(f, n) = f(k) + ((f, (k + 1)) + . . .+(f, n)).
The theorem is a consequence of (11) and (9).

(14) If k ¬ m ¬ n, then ((f, k) + . . .+(f,m)) + ((f, (m+ 1)) + . . .+(f, n)) =
(f, k) + . . .+(f, n).
Proof: Define P[natural number] ≡ ((f, k) + . . .+(f,m)) + ((f, (m +
1)) + . . .+(f, (m + $1))) = (f, k) + . . .+(f, (m + $1)). P[0] by [4, (13)].
If P[i], then P[i+ 1] by [4, (11)], (12). P[i] from [4, Sch. 2]. �
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(15) If k > lenh, then (h, k) + . . .+(h, n) = 0. The theorem is a consequence
of (9).

(16) If n ­ lenh, then (h, k) + . . .+(h, n) = (h, k) + . . .+(h, lenh). The the-
orem is a consequence of (15) and (12).

(17) (h, 0) + . . .+(h, k) = (h, 1) + . . .+(h, k). The theorem is a consequence
of (13).

(18) (h, 1) + . . .+(h, lenh) =
∑
h. The theorem is a consequence of (9).

(19) (gah, k) + . . .+(gah, n) = ((g, k) + . . .+(g, n))+((h, (k−′ len g)) + . . .+
(h, (n −′ len g))). The theorem is a consequence of (11), (15), (16), (17),
and (14).

Let us consider n and k. Let f be a real-valued finite sequence. One can
check that (f, k) + . . .+(f, n) is real.

Let f be a natural-valued finite sequence. Note that (f, k) + . . .+(f, n) is
natural.

Let f be a complex-valued function. Assume dom f ∩N is finite. The functor
(f, n) + . . . yielding a complex number is defined by

(Def. 2) for every k such that for every i such that i ∈ dom f holds i ¬ k holds
it = (f, n) + . . .+(f, k).

Let us consider h. One can check that the functor (h, n) + . . . yields a complex
number and is defined by the term

(Def. 3) (h, n) + . . .+(h, lenh).

Let n be a natural number and h be a natural-valued finite sequence. Let us
note that (h, n) + . . . is natural.

Now we state the propositions:

(20) Let us consider a finite, complex-valued function f . Then f(n)+(f, (n+
1)) + . . . = (f, n) + . . .. The theorem is a consequence of (13).

(21)
∑
h = (h, 1) + . . ..

(22)
∑
h = h(1)+(h, 2) + . . .. The theorem is a consequence of (18) and (20).

The scheme TT deals with complex-valued finite sequences f , g and natural
numbers a, b and non zero natural numbers n, k and states that

(Sch. 1) (f, a) + . . . = (g, b) + . . .

provided

• for every j, (f, (a + j · n)) + . . .+(f, (a + j · n + (n −′ 1))) = (g, (b + j ·
k)) + . . .+(g, (b+ j · k + (k −′ 1))).
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3. Power Function

Let r be a real number and f be a real-valued function. The functor rf

yielding a real-valued function is defined by

(Def. 4) dom it = dom f and for every x such that x ∈ dom f holds it(x) = rf(x).

Let n be a natural number and f be a natural-valued function. One can
verify that nf is natural-valued.

Let r be a real number and f be a real-valued finite sequence. One can check
that rf is finite sequence-like and rf is (len f)-element.

Let f be a one-to-one, natural-valued function. Observe that (2 + n)f is
one-to-one.

(23) Let us consider real numbers r, s. Then r〈s〉 = 〈rs〉.
(24) Let us consider a real number r, and real-valued finite sequences f , g.

Then rf
ag = rf a rg.

Proof: Set f5 = f a g. Set r2 = rf . Set r3 = rg. For every i such that
1 ¬ i ¬ len f5 holds rf5(i) = (r2 a r3)(i) by [26, (25)], [6, (25)]. �

(25) Let us consider a real-valued function f , and a function g. Then 2f · g =
2f ·g. Proof: Set h = 2f . Set f5 = f · g. dom(h · g) ⊆ dom 2f5 by [9, (11)].
dom 2f5 ⊆ dom(h · g) by [9, (11)]. For every x such that x ∈ dom 2f5 holds
(h · g)(x) = 2f5(x) by [9, (11), (13)]. �

(26) Let us consider an increasing, natural-valued finite sequence f . If n > 1,
then nf (1) + (nf , 2) + . . . < 2 · nf(len f).
Proof: Define P[natural number] ≡ for every increasing, natural-valued
finite sequence f such that n > 1 and f(len f) ¬ $1 and f 6= ∅ holds∑
nf < 2 · nf(len f). For every natural-valued finite sequence f such that

n > 1 and len f = 1 holds
∑
nf < 2 · nf(len f) by [26, (25)], [19, (83)], [6,

(40)], [11, (73)]. P[0] by [26, (25)], [4, (25)]. If P[i], then P[i+1] by [4, (8),
(25), (13)], [26, (25)]. P[i] from [4, Sch. 2].

∑
nf = nf (1) + (nf , 2) + . . .. �

(27) Let us consider increasing, natural-valued finite sequences f1, f2. Suppo-
se n > 1 and nf1(1) + (nf1 , 2) + . . . = nf2(1) + (nf2 , 2) + . . .. Then f1 = f2.
Proof: For every natural-valued finite sequence f such that n > 1 and∑
nf ¬ 0 holds f = ∅ by [11, (85)], [19, (83)]. Define P[natural number] ≡

for every increasing, natural-valued finite sequences f1, f2 such that n > 1
and
∑
nf1 ¬ $1 and

∑
nf1 =

∑
nf2 holds f1 = f2. P[0]. If P[i], then

P[i + 1] by (21), (22), [4, (8)], [11, (72)]. P[i] from [4, Sch. 2]. nf1(1) +
(nf1 , 2) + . . . =

∑
nf1 . nf2(1) + (nf2 , 2) + . . . =

∑
nf2 . �

(28) Let us consider a natural-valued function f . If n > 1, then Coim(nf , nk) =
Coim(f, k). Proof: Coim(nf , nk) ⊆ Coim(f, k) by [17, (30)]. �
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(29) Let us consider natural-valued functions f1, f2. Suppose n > 1. Then
f1 and f2 are fiberwise equipotent if and only if nf1 and nf2 are fiberwise
equipotent. Proof: If f1 and f2 are fiberwise equipotent, then nf1 and
nf2 are fiberwise equipotent by [9, (72)], [17, (30)], (28). For every object

x, Coim(f1, x) = Coim(f2, x) by [9, (72)], [17, (30)], (28). �

(30) Let us consider one-to-one, natural-valued finite sequences f1, f2. Sup-
pose n > 1 and nf1(1) + (nf1 , 2) + . . . = nf2(1) + (nf2 , 2) + . . .. Then
rng f1 = rng f2.
Proof: Reconsider F1 = f1, F2 = f2 as a finite sequence of elements of R.
Set s1 = sorta F1. Set s2 = sorta F2. nF1 and ns1 are fiberwise equipotent.
nF2 and ns2 are fiberwise equipotent. For every extended reals e1, e2 such
that e1, e2 ∈ dom s1 and e1 < e2 holds s1(e1) < s1(e2) by [16, (2)], [2,
(77)]. For every extended reals e1, e2 such that e1, e2 ∈ dom s2 and e1 < e2
holds s2(e1) < s2(e2) by [16, (2)], [2, (77)].

∑
ns1 = ns1(1) + (ns1 , 2) + . . ..∑

nf1 = nf1(1) + (nf1 , 2) + . . ..
∑
ns1 =

∑
ns2 . ns1(1) + (ns1 , 2) + . . . =

ns2(1) + (ns2 , 2) + . . . and s1 is increasing and natural-valued. �

(31) There exists an increasing, natural-valued finite sequence f such that
n = 2f (1) + (2f , 2) + . . ..
Proof: Set D = digits(n, 2). Consider d being a finite 0-sequence of N
such that dom d = domD and for every natural number i such that i ∈
dom d holds d(i) = D(i) · 2i and value(D, 2) =

∑
d. Define P[natural

number] ≡ if $1 ¬ len d, then there exists an increasing, natural-valued
finite sequence f such that (len f = 0 or f(len f) < $1) and

∑
2f =∑

(d�$1). P[(0 qua natural number)] by [11, (72)]. If P[i], then P[i+1] by
[4, (13)], [29, (86)], [20, (65)], [4, (25), (23)]. P[i] from [4, Sch. 2]. Consider
f being an increasing, natural-valued finite sequence such that len f = 0
or f(len f) < len d and

∑
2f =

∑
(d� len d).

∑
2f = 2f (1) + (2f , 2) + . . ..

�

4. Value-based Function (Re)Organization

Let o be a function yielding function and x, y be objects. The functor ox,y
yielding a set is defined by the term

(Def. 5) o(x)(y).

Let F be a function yielding function. We say that F is double one-to-one
if and only if

(Def. 6) for every objects x1, x2, y1, y2 such that x1 ∈ domF and y1 ∈ dom(F (x1))
and x2 ∈ domF and y2 ∈ dom(F (x2)) and Fx1,y1 = Fx2,y2 holds x1 = x2
and y1 = y2.
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Let D be a set. Observe that every finite sequence of elements of D∗ which
is empty is also double one-to-one and there exists a function yielding function
which is double one-to-one and there exists a finite sequence of elements of D∗

which is double one-to-one.
Let F be a double one-to-one, function yielding function and x be an object.

One can check that F (x) is one-to-one.
Let F be a one-to-one function. One can check that 〈F 〉 is double one-to-one.
Now we state the propositions:

(32) Let us consider a function yielding function f . Then f is double one-to-
one if and only if for every x, f(x) is one-to-one and for every x and y

such that x 6= y holds rng(f(x)) misses rng(f(y)).

(33) Let us consider a set D, and double one-to-one finite sequences f1, f2 of
elements of D∗. Suppose Values f1 misses Values f2. Then f1a f2 is double
one-to-one. The theorem is a consequence of (1).

Let D be a finite set.
A double reorganization of D is a double one-to-one finite sequence of ele-

ments of D∗ and is defined by

(Def. 7) Values it = D.

Now we state the propositions:

(34) (i) ∅ is a double reorganization of ∅, and

(ii) 〈∅〉 is a double reorganization of ∅.
(35) Let us consider a finite set D, and a one-to-one, onto finite sequence F

of elements of D. Then 〈F 〉 is a double reorganization of D.

(36) Let us consider finite sets D1, D2. Suppose D1 misses D2. Let us consider
a double reorganization o1 of D1, and a double reorganization o2 of D2.
Then o1

a o2 is a double reorganization of D1 ∪ D2. The theorem is a
consequence of (33) and (2).

(37) Let us consider a finite set D, a double reorganization o of D, and a one-
to-one finite sequence F . Suppose i ∈ dom o and rngF ∩ D ⊆ rng(o(i)).
Then o+· (i, F ) is a double reorganization of rngF ∪ (D \ rng(o(i))).
Proof: Set r1 = rngF . Set o3 = o(i). Set r4 = rng o3. Set o4 = o+· (i, F ).
rng o4 ⊆ (r1 ∪ (D \ r4))∗ by [7, (31), (32)]. o4 is double one-to-one by [7,
(32)], (1). Values o4 ⊆ r1∪(D\r4) by (1), [7, (31), (32)]. D\r4 ⊆ Values o4
by (1), [7, (32)]. r1 ⊆ Values o4. �

Let D be a finite set and n be a non zero natural number. One can check
that there exists a double reorganization of D which is n-element.

Let D be a finite, natural-membered set, o be a double reorganization of D,
and x be an object. One can verify that o(x) is natural-valued.
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Now we state the propositions:

(38) Let us consider a non empty finite sequence F , and a finite function
G. Suppose rngG ⊆ rngF . Then there exists a (lenF )-element double
reorganization o of domG such that for every n, F (n) = G(on,1) and ...
and F (n) = G(on,len(o(n))).
Proof: Set D = domG. Set d = the one-to-one , onto finite sequence of
elements of D. Define P[natural number] ≡ if $1 ¬ G , then there exists a
(lenF )-element double reorganization o of d◦(Seg $1) such that for every
k, F (k) = G(ok,1) and ... and F (k) = G(ok,len(o(k))). P[0]. If P[i], then
P[i+ 1] by [4, (13)], [26, (29)], [4, (11)], [26, (25)]. P[i] from [4, Sch. 2]. �

(39) Let us consider a non empty finite sequence F , and a finite sequence
G. Suppose rngG ⊆ rngF . Then there exists a (lenF )-element double
reorganization o of domG such that for every n, o(n) is increasing and
F (n) = G(on,1) and ... and F (n) = G(on,len(o(n))).
Proof: Define P[natural number] ≡ if $1 ¬ lenG, then there exists a
(lenF )-element double reorganization o of Seg $1 such that for every k,
o(k) is increasing and F (k) = G(ok,1) and ... and F (k) = G(ok,len(o(k))).
P[0]. If P[i], then P[i+ 1] by [4, (13)], [26, (29)], [4, (11)], [26, (25)]. P[i]
from [4, Sch. 2]. �

Let f be a finite function, o be a double reorganization of dom f , and x be
an object. One can check that f · o(x) is finite sequence-like and there exists a
finite sequence which is complex-functions-valued and finite sequence-yielding.

Let f be a function yielding function and g be a function. We introduce g�f
as a synonym of [g, f ].

One can check that g � f is function yielding.
Let f be a ((dom g)∗)-valued finite sequence. One can check that g � f is

finite sequence-yielding.
Let x be an object. Let us note that (g � f)(x) is (len(f(x)))-element.
Let f be a function yielding finite sequence. One can verify that g � f is

finite sequence-like and g � f is (len f)-element.
Let f be a function yielding function and g be a complex-valued function.

One can check that g � f is complex-functions-valued.
Let g be a natural-valued function. One can check that g � f is natural-

functions-valued.
Let us consider a function yielding function f and a function g. Now we

state the propositions:

(40) Values g � f = g◦(Values f).
Proof: Set g3 = g � f . Values g3 ⊆ g◦(Values f) by (1), [9, (11), (12)].
Consider b being an object such that b ∈ dom g and b ∈ Values f and
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g(b) = a. Consider x, y being objects such that x ∈ dom f and y ∈
dom(f(x)) and b = f(x)(y). �

(41) (g � f)(x) = g · f(x).

Now we state the proposition:

(42) Let us consider a function yielding function f , a finite sequence g, and
objects x, y. Then (g � f)x,y = g(fx,y). The theorem is a consequence of
(41).

Let f be a complex-functions-valued, finite sequence-yielding function. The
functor

∑
f yielding a complex-valued function is defined by

(Def. 8) dom it = dom f and for every set x, it(x) =
∑

(f(x)).

Let f be a complex-functions-valued, finite sequence-yielding finite sequence.
One can verify that

∑
f is finite sequence-like and

∑
f is (len f)-element.

Let f be a natural-functions-valued, finite sequence-yielding function. One
can verify that

∑
f is natural-valued.

Let f , g be complex-functions-valued finite sequences. One can check that
f a g is complex-functions-valued.

Let f , g be extended real-valued finite sequences. One can verify that f a g

is extended real-valued.
Let f be a complex-functions-valued function and X be a set. One can check

that f�X is complex-functions-valued.
Let f be a finite sequence-yielding function. One can check that f�X is finite

sequence-yielding.
Let F be a complex-valued function. One can check that 〈F 〉 is complex-

functions-valued.
Let us consider finite sequences f , g. Now we state the propositions:

(43) If f a g is finite sequence-yielding, then f is finite sequence-yielding and
g is finite sequence-yielding.

(44) If f a g is complex-functions-valued, then f is complex-functions-valued
and g is complex-functions-valued.

Now we state the propositions:

(45) Let us consider a complex-valued finite sequence f . Then
∑
〈f〉 = 〈

∑
f〉.

(46) Let us consider complex-functions-valued, finite sequence-yielding finite
sequences f , g. Then

∑
(f a g) =

∑
f a∑ g.

Proof: For every i such that 1 ¬ i ¬ len f + len g holds (
∑

(f a g))(i) =
(
∑
f a∑ g)(i) by [26, (25)], [6, (25)]. �

(47) Let us consider a complex-valued finite sequence f , and a double reor-
ganization o of dom f . Then

∑
f =
∑∑

(f � o).
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Proof: Define P[natural number] ≡ for every complex-valued finite se-
quence f for every double reorganization o of dom f such that len f = $1
holds

∑
f =
∑∑

(f�o). P[0] by [26, (29)], [11, (72)], [23, (11)], [11, (81)].
If P[i], then P[i + 1] by [4, (11)], [26, (25)], (1), [12, (116)]. P[i] from [4,
Sch. 2]. �

Let us note that N∗ is natural-functions-membered and C∗ is complex-
functions-membered.

Now we state the proposition:

(48) Let us consider a finite sequence f of elements of C∗.
Then

∑
(the concatenation of C� f) =

∑∑
f .

Proof: Set C = the concatenation of C. Define P[natural number] ≡
for every finite sequence f of elements of C∗ such that len f = $1 holds∑

(C � f) =
∑∑

f . P[0]. If P[i], then P[i + 1] by [8, (19), (16)], (46),
(45). P[i] from [4, Sch. 2]. �

Let f be a finite function.
A valued reorganization of f is a double reorganization of dom f and is

defined by

(Def. 9) for every n, there exists x such that x = f(itn,1) and ... and x =
f(itn,len(it(n))) and for every natural numbers n1, n2, i1, i2 such that
i1 ∈ dom(it(n1)) and i2 ∈ dom(it(n2)) and f(itn1,i1) = f(itn2,i2) holds
n1 = n2.

Now we state the propositions:

(49) Let us consider a finite function f , and a valued reorganization o of f .
Then

(i) rng((f � o)(n)) = ∅, or

(ii) rng((f � o)(n)) = {f(on,1)} and 1 ∈ dom(o(n)).

Proof: Consider y such that y ∈ rng((f � o)(n)). Consider x such that
x ∈ dom((f � o)(n)) and (f � o)(n)(x) = y. n ∈ dom(f � o). Consider
w being an object such that w = f(on,1) and ... and w = f(on,len(o(n))).
rng((f � o)(n)) ⊆ {f(on,1)} by [9, (11), (12)], [26, (25)]. �

(50) Let us consider a finite sequence f , and valued reorganizations o1, o2 of f .
Suppose rng((f � o1)(i)) = rng((f � o2)(i)). Then rng(o1(i)) = rng(o2(i)).

(51) Let us consider a finite sequence f , a complex-valued finite sequence
g, and double reorganizations o1, o2 of dom g. Suppose o1 is a valued
reorganization of f and o2 is a valued reorganization of f and rng((f �
o1)(i)) = rng((f � o2)(i)). Then (

∑
(g � o1))(i) = (

∑
(g � o2))(i). The

theorem is a consequence of (41).
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Summary. In this article we prove the Euler’s Partition Theorem which
states that the number of integer partitions with odd parts equals the number of
partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes
[28] (see also [1]).

Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100
Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/
100/ [27].
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1. Preliminaries

From now on x, y denote objects and i, j, k, m, n denote natural numbers.
Let r be an extended real number. One can verify that 〈r〉 is extended real-

valued and 〈r〉 is decreasing, increasing, non-decreasing, and non-increasing.
Now we state the proposition:
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(1) Let us consider non-decreasing, extended real-valued finite sequences f ,
g. If f(len f) ¬ g(1), then f a g is non-decreasing.
Proof: Set f3 = f a g. For every extended reals e1, e2 such that e1,
e2 ∈ dom f3 and e1 ¬ e2 holds f3(e1) ¬ f3(e2) by [7, (25)], [25, (25)]. �

Let R be a binary relation. We say that R is odd-valued if and only if

(Def. 1) rngR ⊆ Nodd.
(2) n ∈ Nodd if and only if n is odd.

Let us note that every binary relation which is odd-valued is also non-zero
and natural-valued.

Let F be a function. Observe that F is odd-valued if and only if the condition
(Def. 2) is satisfied.

(Def. 2) for every x such that x ∈ domF holds F (x) is an odd natural number.

One can check that every binary relation which is empty is also odd-valued.
Let i be an odd natural number. Let us observe that 〈i〉 is odd-valued.
Let f , g be odd-valued finite sequences. Note that f a g is odd-valued and

every binary relation which is Nodd-valued is also odd-valued.
Let n be a natural number. A partition of n is a non-zero, non-decreasing,

natural-valued finite sequence and is defined by

(Def. 3)
∑
it = n.

Now we state the proposition:

(3) ∅ is a partition of 0.

Let n be a natural number. Observe that there exists a partition of n which
is odd-valued and there exists a partition of n which is one-to-one.

Let us observe that sethood property holds for partitions of n.
Let f be an odd-valued finite sequence.
An odd organization of f is a valued reorganization of f and is defined by

(Def. 4) 2 · n− 1 = f(itn,1) and ... and 2 · n− 1 = f(itn,len(it(n))).

(4) Let us consider an odd-valued finite sequence f , and a double reorga-
nization o of dom f . Suppose for every n, 2 · n − 1 = f(on,1) and ... and
2 · n− 1 = f(on,len(o(n))). Then o is an odd organization of f .
Proof: For every n, there exists x such that x = f(on,1) and ... and
x = f(on,len(o(n))). For every natural numbers n1, n2, i1, i2 such that
i1 ∈ dom(o(n1)) and i2 ∈ dom(o(n2)) and f(on1,i1) = f(on2,i2) holds
n1 = n2 by [25, (25)]. �

(5) Let us consider an odd-valued finite sequence f , a complex-valued finite
sequence g, and double reorganizations o1, o2 of dom g. Suppose o1 is an
odd organization of f and o2 is an odd organization of f . Then (

∑
(g �

o1))(i) = (
∑

(g � o2))(i).
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Proof: For every double reorganizations o1, o2 of dom g such that o1
is an odd organization of f and o2 is an odd organization of f holds
rng((f � o1)(n)) ⊆ rng((f � o2)(n)) by [19, (49), (1)], [25, (29), (25)]. �

(6) Let us consider a partition p of n. Then there exists an odd-valued finite
sequence O and there exists a natural-valued finite sequence a such that
lenO = len p = len a and p = O · 2a and p(1) = O(1) · 2a(1) and ... and
p(len p) = O(len p) · 2a(len p).
Proof: Define P[object, object] ≡ for every i and j such that p($1) =
2i · (2 · j + 1) holds $2 = 〈〈2 · j + 1, i〉〉. For every k such that k ∈ Seg len p
there exists x such that P[k, x] by [20, (1)], [4, (4)]. Consider O3 being a
finite sequence such that domO3 = Seg len p and for every k such that k ∈
Seg len p holds P[k,O3(k)] from [7, Sch. 1]. Define Q(object) = O3($1)1.
Consider O being a finite sequence such that lenO = len p and for every
k such that k ∈ domO holds O(k) = Q(k) from [7, Sch. 2]. For every x

such that x ∈ domO holds O(x) is an odd natural number by [20, (1)].
Define T (object) = O3($1)2. Consider A being a finite sequence such that
lenA = len p and for every k such that k ∈ domA holds A(k) = T (k)
from [7, Sch. 2]. For every x such that x ∈ domA holds A(x) is natural
by [20, (1)]. Set O2 = O · 2A. p(1) = O(1) · 2A(1) and ... and p(len p) =
O(len p) · 2A(len p) by [25, (25)], [20, (1)]. For every i such that i ∈ dom p

holds p(i) = O2(i) by [25, (25)]. �

(7) Let us consider a finite set D, and a function f from D into N. Then there
exists a finite sequence K of elements of D such that for every element d
of D, Coim(K, d) = f(d).
Proof: Define P[natural number] ≡ for every finite set D such that D =
$1 for every function f from D into N, there exists a finite sequence K
of elements of D such that for every element d of D, Coim(K, d) = f(d).
P[0]. If P[i], then P[i+ 1] by [21, (55)], [8, (63)], [25, (57)], [13, (56)]. P[i]
from [5, Sch. 2]. �

(8) Let us consider complex-valued finite sequences f1, f2, g1, g2. Suppose
len f1 = len g1. Then (f1 a f2) · (g1 a g2) = (f1 · g1) a (f2 · g2).

(9) Let us consider natural-valued finite sequences f , K. Suppose for every

i, Coim(K, i) = f(i). Then
∑
K = 1 ·f(1)+2 ·f(2)+((iddom f ·f), 3) + . . ..

Proof: Define P[natural number] ≡ for every natural-valued finite sequ-

ences f , K such that len f = $1 and for every i, Coim(K, i) = f(i) holds∑
K = ((iddom f · f), 1) + . . .. P[0] by [25, (25)], [9, (72)], [19, (20), (22)].

If P[i], then P[i + 1] by [25, (55)], [5, (13)], [7, (59)], [8, (51)]. P[i] from
[5, Sch. 2]. �

(10) Let us consider a natural-valued finite sequence g, and a double reorgani-
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zation s1 of dom g. Then there exists a (2 · len s1)-element finite sequence
K of elements of N such that for every j, K(2 · j) = 0 and K(2 · j −
1) = g(s1j,1) + ((g � s1)(j), 2) + . . .. Proof: Define P[object, object] ≡ if
$1 = 2 ·j−1, then $2 = g(s1j,1)+((g�s1)(j), 2) + . . . and if $1 = 2 ·j, then
$2 = 0. Set S = Seg(2 · len s1). For every k such that k ∈ S there exists x
such that P[k, x] by [22, (9)]. Consider f being a finite sequence such that
dom f = S and for every i such that i ∈ S holds P[i, f(i)] from [7, Sch. 1].
rng f ⊆ N by [22, (9)]. f(2·i) = 0. f(2·i−1) = g(s1i,1)+((g�s1)(i), 2) + . . .

by [25, (25)], [5, (13)], [19, (15)]. �

2. Euler Transformation

Now we state the proposition:

(11) Let us consider a one-to-one partition d of n. Then there exists an odd-
valued partition e of n such that for every natural number j for every odd-
valued finite sequence O1 for every natural-valued finite sequence a1 such
that lenO1 = len d = len a1 and d = O1·2a1 for every double reorganization
s1 of dom d such that 1 = O1(s11,1) and ... and 1 = O1(s11,len(s1(1))) and
3 = O1(s12,1) and ... and 3 = O1(s12,len(s1(2))) and 5 = O1(s13,1) and
... and 5 = O1(s13,len(s1(3))) and for every i, 2 · i − 1 = O1(s1i,1) and ...

and 2 · i − 1 = O1(s1i,len(s1(i))) holds Coim(e, 1) = 2a1(s11,1) + ((2a1 �
s1)(1), 2) + . . . and Coim(e, 3) = 2a1(s12,1) + ((2a1 � s1)(2), 2) + . . . and

Coim(e, 5) = 2a1(s13,1) + ((2a1 � s1)(3), 2) + . . . and Coim(e, j · 2− 1) =
2a1(s1j,1) + ((2a1 � s1)(j), 2) + . . ..
Proof: Consider O being an odd-valued finite sequence, a being a natural-
valued finite sequence such that lenO = len d = len a and d = O · 2a
and d(1) = O(1) · 2a(1) and ... and d(len d) = O(len d) · 2a(len d). n =
d(1) + ((d, 2) + . . .+(d, len d)) by [19, (22)]. n = 2a(1) ·O(1) + 2a(2) ·O(2) +
((O · 2a, 3) + . . .+(O · 2a, len d)) by [19, (20)], [25, (25)]. Reconsider s1 =
the odd organization of O as a double reorganization of dom 2a. Consider
µ being a (2 · len s1)-element finite sequence of elements of N such that for
every j, µ(2 · j) = 0 and µ(2 · j−1) = 2a(s1j,1) + ((2a� s1)(j), 2) + . . .. Set
α = a ·s1(1). Set β = a ·s1(2). Set γ = a ·s1(3). n = (2α(1)+(2α, 2) + . . .) ·
1+(2β(1)+(2β, 2) + . . .) ·3+(2γ(1)+(2γ , 2) + . . .) ·5+((iddomµ ·µ), 7) + . . .

by [25, (29)], [19, (41)], [25, (25)], [9, (12)]. n = µ(1) · 1 + µ(3) · 3 + µ(5) ·
5 + ((iddomµ · µ), 7) + . . . by [19, (42), (41), (25)]. Consider K being an
odd-valued finite sequence such that K is non-decreasing and for every i,
Coim(K, i) = µ(i). n = Coim(K, 1) · 1 + Coim(K, 3) · 3 + Coim(K, 5) ·
5 + ((iddomµ · µ), 7) + . . .. n =

∑
K by [19, (20)], (9). For every j such
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that 1 ¬ j ¬ len d holds O(j) = O1(j) and a(j) = a1(j) by [25, (25)],

[22, (9)], [4, (4)]. For every j, Coim(K, j · 2− 1) = 2a1(sort1j,1) + ((2a1 �
sort1)(j), 2) + . . . by [19, (42)], [25, (29)], [9, (72)], [19, (22)]. �

Let n be a natural number and p be a one-to-one partition of n. The Euler
transformation p yielding an odd-valued partition of n is defined by

(Def. 5) for every odd-valued finite sequence O and for every natural-valued finite
sequence a such that lenO = len p = len a and p = O · 2a for every
double reorganization s1 of dom p such that 1 = O(s11,1) and ... and 1 =
O(s11,len(s1(1))) and 3 = O(s12,1) and ... and 3 = O(s12,len(s1(2))) and 5 =
O(s13,1) and ... and 5 = O(s13,len(s1(3))) and for every i, 2 · i− 1 = O(s1i,1)

and ... and 2 · i−1 = O(s1i,len(s1(i))) holds Coim(it , 1) = 2a(s11,1) + ((2a�
s1)(1), 2) + . . . and Coim(it , 3) = 2a(s12,1) + ((2a � s1)(2), 2) + . . . and

Coim(it , 5) = 2a(s13,1) + ((2a � s1)(3), 2) + . . . and Coim(it , j · 2− 1) =
2a(s1j,1) + ((2a � s1)(j), 2) + . . ..

Now we state the proposition:

(12) Let us consider a natural number n, a one-to-one partition p of n, and
an odd-valued partition e of n. Then e = the Euler transformation p if
and only if for every odd-valued finite sequence O and for every natural-
valued finite sequence a and for every odd organization s1 of O such that
lenO = len p = len a and p = O · 2a for every j, Coim(e, j · 2− 1) =
((2a � s1)(j), 1) + . . ..
Proof: If e = the Euler transformation p, then for every odd-valued finite
sequence O and for every natural-valued finite sequence a and for every
odd organization s1 of O such that lenO = len p = len a and p = O · 2a

for every j, Coim(e, j · 2− 1) = ((2a � s1)(j), 1) + . . . by [25, (29)], [19,
(42), (20)]. For every j and for every odd-valued finite sequence O and
for every natural-valued finite sequence a such that lenO = len p = len a
and p = O · 2a for every double reorganization s1 of dom p such that
1 = O(s11,1) and ... and 1 = O(s11,len(s1(1))) and 3 = O(s12,1) and ... and
3 = O(s12,len(s1(2))) and 5 = O(s13,1) and ... and 5 = O(s13,len(s1(3))) and
for every i, 2 · i− 1 = O(s1i,1) and ... and 2 · i− 1 = O(s1i,len(s1(i))) holds

Coim(e, 1) = 2a(s11,1)+((2a�s1)(1), 2) + . . . and Coim(e, 3) = 2a(s12,1)+

((2a � s1)(2), 2) + . . . and Coim(e, 5) = 2a(s13,1) + ((2a � s1)(3), 2) + . . .

and Coim(e, j · 2− 1) = 2a(s1j,1)+((2a�s1)(j), 2) + . . . by [25, (29)], (4),
[19, (42), (20)]. �

One can verify that every real-valued function which is one-to-one and non-
decreasing is also increasing.
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(13) Let us consider an odd-valued finite sequence O, a natural-valued finite
sequence a, and an odd organization s of O. Suppose lenO = len a and
O · 2a is one-to-one. Then (a� s)(i) is one-to-one.
Proof: (a� s)(i) is one-to-one by [9, (11), (12)], [25, (25)]. �

(14) Let us consider one-to-one partitions p1, p2 of n. Suppose the Euler
transformation p1 = the Euler transformation p2. Then p1 = p2.

(15) Let us consider an odd-valued partition e of n. Then there exists a one-
to-one partition p of n such that e = the Euler transformation p.
Proof: Define K(object) = Coim(e, $1). Consider H being a finite se-
quence such that lenH = n and for every k such that k ∈ domH holds
H(k) = K(k) from [7, Sch. 2]. rngH ⊆ N.

∑
e =
∑

(idseq(n) ·H) by [25,
(25)], [5, (14)], [9, (72)], [30, (5)]. Define F [natural number, object] ≡ there
exists an increasing, natural-valued finite sequence f such that H($1) =
2f (1) + (2f , 2) + . . . and $2 = $1 · 2f . There exists a finite sequence p

of elements of N∗ such that dom p = Seg lenH and for every k such
that k ∈ Seg lenH holds F [k, p(k)] by [19, (31)]. Consider p being a
finite sequence of elements of N∗ such that dom p = Seg lenH and for
every k such that k ∈ Seg lenH holds F [k, p(k)]. For every k such that
p(k) 6= ∅ holds k is odd by [18, (83)], [12, (85)], [19, (22)], [9, (72)]. Set
N = the concatenation of N. Set n3 = N�p. Set s2 = sorta n3. s2 is a one-
to-one partition of n by [19, (1)], [25, (25)], [12, (45)], [18, (83)]. For every
odd-valued finite sequence O and for every natural-valued finite sequence
a and for every odd organization s1 of O such that lenO = len s2 = len a
and s2 = O · 2a for every j, Coim(e, j · 2− 1) = ((2a � s1)(j), 1) + . . . by
[25, (29)], [5, (14)], [9, (72)], [25, (25)]. �

3. Main Theorem

Now we state the proposition:

(16) Euler’s partition theorem:
the set of all p where p is an odd-valued partition of n =
the set of all p where p is a one-to-one partition of n . The theorem is a
consequence of (15) and (14).
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[17] Magdalena Jastrzȩbska and Adam Grabowski. Some properties of Fibonacci numbers.

Formalized Mathematics, 12(3):307–313, 2004.
[18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,

1990.
[19] Karol Pąk. Flexary operations. Formalized Mathematics, 23(2):81–92, 2015. doi:10.1515

/forma-2015-0008.
[20] Karol Pąk. The Nagata-Smirnov theorem. Part II. Formalized Mathematics, 12(3):385–

389, 2004.
[21] Karol Pąk. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337–345,

2005.
[22] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-

matics, 6(3):335–338, 1997.
[23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1

(2):329–334, 1990.
[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. For-

malized Mathematics, 1(3):569–573, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[27] Freek Wiedijk. Formalizing 100 theorems.
[28] Herbert S. Wilf. Lectures on integer partitions.
[29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.
[30] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of

probability, and addition of matrices of real elements. Formalized Mathematics, 14(3):
101–108, 2006. doi:10.2478/v10037-006-0012-1.

Received March 26, 2015

http://fm.mizar.org/1991-2/pdf2-1/card_4.pdf
http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf
http://fm.mizar.org/1990-1/pdf1-2/partfun1.pdf
http://fm.mizar.org/1990-1/pdf1-4/rvsum_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf
http://dx.doi.org/10.2478/v10037-011-0025-2
http://dx.doi.org/10.2478/v10037-011-0027-0
http://fm.mizar.org/1990-1/pdf1-1/finset_1.pdf
http://fm.mizar.org/2004-12/pdf12-3/fib_num2.pdf
http://fm.mizar.org/1990-1/pdf1-5/newton.pdf
http://dx.doi.org/\spaceskip 0.08mm 1 0 . 1 5 1 5 / f o r m a - 2 0 1 5 - 0 0 0 8
http://dx.doi.org/\spaceskip 0.08mm 1 0 . 1 5 1 5 / f o r m a - 2 0 1 5 - 0 0 0 8
http://fm.mizar.org/2004-12/pdf12-3/nagata_2.pdf
http://fm.mizar.org/2005-13/pdf13-2/stirl2_1.pdf
http://fm.mizar.org/1997-6/pdf6-3/abian.pdf
http://fm.mizar.org/1990-1/pdf1-2/funcop_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/finseq_3.pdf
http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf
http://www.cs.ru.nl/~freek/100/
http://www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://dx.doi.org/10.2478/v10037-006-0012-1




FORMALIZED MATHEMATICS

Vol. 23, No. 2, Pages 101–106, 2015
DOI: 10.1515/forma-2015-0010 degruyter.com/view/j/forma

Introduction to Diophantine Approximation

Yasushige Watase
Suginami-ku Matsunoki 6

3-21 Tokyo, Japan

Summary. In this article we formalize some results of Diophantine appro-
ximation, i.e. the approximation of an irrational number by rationals. A typical
example is finding an integer solution (x, y) of the inequality |xθ − y| ¬ 1/x,
where θ is a real number. First, we formalize some lemmas about continued
fractions. Then we prove that the inequality has infinitely many solutions by
continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of
the solution [12], [1].
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The notation and terminology used in this paper have been introduced in the
following articles: [24], [2], [6], [22], [14], [5], [11], [7], [8], [28], [20], [26], [3], [25],
[19], [4], [9], [32], [15], [13], [21], [30], [31], [18], [23], [29], and [10].
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(2) (rfs r)(n) is irrational.
Proof: Reconsider r3 = (rfs r)(n) as a real number. (scf r3)(m) = (scf r)
(n+m) and (rfs r3)(m) = (rfs r)(n+m). Consider n1 such that for every
m1 such that m1 ­ n1 holds (scf r3)(m1) = 0. For every m1 such that
m1 ­ n1 holds (scf r)(n + m1) = 0. For every m such that m ­ n1 + n

holds (scf r)(m) = 0 by [28, (3)]. �

(3) (i) (rfs r)(n) 6= 0, and

(ii) (rfs r)(1) · (rfs r)(2) 6= 0, and

(iii) (scf r)(1) · (rfs r)(2) + 1 6= 0.
Proof: (rfs r)(n) 6= 0 by [21, (28), (42)]. (rfs r)(1) 6= 0 and (rfs r)(2) 6= 0.
(rfs r)(1) = (scf r)(1) + (1/(rfs r)(1+1)). �

(4) (i) (scf r)(n) < (rfs r)(n) < (scf r)(n) + 1, and

(ii) 1 < (rfs r)(n+ 1).
The theorem is a consequence of (2) and (1).

(5) 0 < (scf r)(n+ 1). The theorem is a consequence of (4).

Let us consider r and n. Observe that (cn r)(n) is integer.
Let us assume that r is irrational. Now we state the propositions:

(6) (cd r)(n+ 1) ­ (cd r)(n).
Proof: Define P[natural number] ≡ (cd r)($1) ¬ (cd r)($1 + 1). P[0] by
(4), [28, (7)]. For every natural number n such that P[n] holds P[n+1] by
(4), [28, (7)], [21, (51)]. For every natural number n, P[n] from [3, Sch. 2].
�

(7) (cd r)(n) ­ 1.
Proof: Define P[natural number] ≡ (cd r)($1) ­ 1. For every natural
number n such that P[n] holds P[n+1]. For every natural number n, P[n]
from [3, Sch. 2]. �

(8) (cd r)(n + 2) > (cd r)(n + 1). The theorem is a consequence of (5) and
(7).

(9) (cd r)(n) ­ n.
Proof: Define P[natural number] ≡ (cd r)($1) ­ $1. For every natural
number n such that P[n] holds P[n + 1] by (7), (5), [21, (40)]. For every
natural number n, P[n] from [3, Sch. 2]. �

Now we state the proposition:

(10) If c3 = (cn r)(n) and c1 = (cd r)(n) and c3 6= 0, then c3 and c1 are
relatively prime.

Let us assume that r is irrational. Now we state the propositions:

(11) (i) (cd r)(n+ 1) · (rfs r)(n+ 2) + (cd r)(n) > 0, and
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(ii) (cd r)(n+ 1) · (rfs r)(n+ 2)− (cd r)(n) > 0.
The theorem is a consequence of (7), (4), and (6).

(12) (cd r)(n+ 1) · ((cd r)(n+ 1) · (rfs r)(n+ 2) + (cd r)(n)) > 0. The theorem
is a consequence of (7) and (11).

(13) r = (cn r)(n+ 1) · (rfs r)(n+ 2) + (cn r)(n)/(cd r)(n+1)·(rfs r)(n+2)+(cd r)(n).
Proof: Define P[natural number] ≡ r = (cn r)($1 + 1) · (rfs r)($1 + 2) +
(cn r)($1)/(cd r)($1+1)·(rfs r)($1+2)+(cd r)($1). P[0]. For every natural number
n such that P[n] holds P[n + 1]. For every natural number n, P[n] from
[3, Sch. 2]. �

(14) ((cn r)(n+ 1)/(cd r)(n+1))− r =
(−1)n/(cd r)(n+1)·((cd r)(n+1)·(rfs r)(n+2)+(cd r)(n)). The theorem is a consequ-
ence of (7), (11), and (13).

Now we state the propositions:

(15) If r is irrational and n is even and n > 0, then r > (cn r)(n)/(cd r)(n).
The theorem is a consequence of (12) and (14).

(16) If r is irrational and n is odd, then r < (cn r)(n)/(cd r)(n). The theorem
is a consequence of (12) and (14).

(17) Suppose r is irrational and n > 0. Then |r − ((cn r)(n)/(cd r)(n))| + |r −
((cn r)(n+1)/(cd r)(n+1))| = |((cn r)(n)/(cd r)(n))−((cn r)(n+1)/(cd r)(n+1))|.
The theorem is a consequence of (15) and (16).

Let us assume that r is irrational. Now we state the propositions:

(18) |r − ((cn r)(n)/(cd r)(n))| > 0.

(19) (cd r)(n + 2) ­ 2 · (cd r)(n). The theorem is a consequence of (5), (7),
and (6).

(20) |r− ((cn r)(n+ 1)/(cd r)(n+1))| < 1/(cd r)(n+1)·(cd r)(n+2). The theorem is a
consequence of (7), (4), and (14).

(21) (i) |r · (cd r)(n+ 1)− (cn r)(n+ 1)| < |r · (cd r)(n)− (cn r)(n)|, and

(ii) |r − ((cn r)(n+ 1)/(cd r)(n+1))| < |r − ((cn r)(n)/(cd r)(n))|.
The theorem is a consequence of (13), (11), (4), (7), (18), and (6).

Now we state the propositions:

(22) If r is irrational and m > n, then |r − ((cn r)(n)/(cd r)(n))| > |r −
((cn r)(m)/(cd r)(m))|.
Proof: Define P[natural number] ≡ |r − ((cn r)(n)/(cd r)(n))| > |r −
((cn r)(n+ 1 + $1)/(cd r)(n+1+$1))|. P[0]. For every natural number k such
that P[k] holds P[k+1]. For every natural number k, P[k] from [3, Sch. 2].
�

(23) If r is irrational, then |r − ((cn r)(n)/(cd r)(n))| < 1/(cd r)(n)2 .
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Proof: |r − ((cn r)(n)/(cd r)(n))| < 1/(cd r)(n)2 by [28, (43)], (7), [16, (1)],
(6). �

(24) Let us consider a subset S of Q, and r. Suppose r is irrational and
S = {p, where p is an element of Q : |r − p| < 1/(den p)2}. Then S is
infinite.
Proof: Define F(natural number) = (cn r)($1 + 1)/(cd r)($1+1). Consider
f being a sequence of real numbers such that for every natural number n,
f(n) = F(n) from [17, Sch. 1]. For every real number o such that o ∈ rng f
holds o ∈ S by [21, (50)], (7), [15, (28)], [16, (1)]. f is one-to-one. �

(25) If r is irrational, then cocf r is convergent and lim cocf r = r.
Proof: For every real number p such that 0 < p there exists n such that
for every m such that n ¬ m holds |(cocf r)(m)− r| < p by [27, (25)], [28,
(3)], [17, (8)], [6, (52)]. �

2. Integer Solution of |xθ − y| ¬ 1/x

Let us observe that there exists a natural number which is greater than 1.
From now on t denotes a greater than 1 natural number.
Let us consider t. The functor EDI(t) yielding a sequence of subsets of R is

defined by

(Def. 1) for every natural number n, it(n) = [n/t, n+ 1/t[.

Now we state the propositions:

(26) (The partial unions of EDI(t))(i) = [0, i+ 1/t[.
Proof: Define P[natural number] ≡ (the partial unions of EDI(t))($1) =
[0, $1 + 1/t[. For every natural number k such that P[k] holds P[k + 1].
For every natural number n, P[n] from [3, Sch. 2]. �

(27) Let us consider a real number r, and a natural number i. If br · tc = i,
then r ∈ (EDI(t))(i).

(28) If r1, r2 ∈ (EDI(t))(i), then |r1 − r2| < t−1.

(29) (The partial unions of EDI(t))(t − 1) = [0, 1[. The theorem is a conse-
quence of (26).

(30) Let us consider a real number r. Suppose r ∈ [0, 1[. Then there exists a
natural number i such that

(i) i ¬ t− 1, and

(ii) r ∈ (EDI(t))(i).

The theorem is a consequence of (29).

(31) Let us consider a real number r, and a natural number i. If r ∈ (EDI(t))(i),
then br · tc = i.
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(32) Let us consider a real number r. Suppose r ∈ [0, 1[. Then there exists a
natural number i such that

(i) i ¬ t− 1, and

(ii) br · tc = i.

The theorem is a consequence of (30) and (31).

Let us consider t and a. The functor FDP(t, a) yielding a finite sequence of
elements of Zt is defined by

(Def. 2) len it = t+ 1 and for every i such that i ∈ dom it holds it(i) = bfrac((i−
1) · a) · tc.

Let us note that rng FDP(t, a) is non empty.
Now we state the proposition:

(33) rng FDP(t, a) ∈ dom FDP(t, a).

Let us consider t and a. One can verify that FDP(t, a) is non one-to-one.

3. Proof of Dirichlet’s Theorem

Now we state the proposition:

(34) Dirichlet’s approximation theorem:
There exist integers x, y such that

(i) |x · a− y| < 1/t, and

(ii) 0 < x ¬ t.
The theorem is a consequence of (27) and (28).
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Summary. We formalize that the image of a semiring of sets [17] by an
injective function is a semiring of sets. We offer a non-trivial example of a semiring
of sets in a topological space [21]. Finally, we show that the finite product of a
semiring of sets is also a semiring of sets [21] and that the finite product of a
classical semiring of sets [8] is a classical semiring of sets. In this case, we use
here the notation from the book of Aliprantis and Border [1].
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1. Preliminaries

From now on X1, X2, X3, X4 denote sets.
Now we state the propositions:

(1) (i) X1 ∩X4 \ (X2 ∪X3) misses X1 \ ((X2 ∪X3) ∪X4), and

(ii) X1 ∩X4 \ (X2 ∪X3) misses (X1 ∩X3) ∩X4 \X2, and

(iii) X1 \ ((X2 ∪X3) ∪X4) misses (X1 ∩X3) ∩X4 \X2.
(2) (X1 \X2) \ (X3 \X4) = (X1 \ (X2 ∪X3)) ∪ (X1 ∩X4 \X2).
(3) (X1 \ (X2∪X3))∪ (X1∩X4 \X2) = ((X1∩X4 \ (X2∪X3))∪ (X1 \ ((X2∪

X3) ∪X4))) ∪ ((X1 ∩X3) ∩X4 \X2).
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(4) (X1 \ X2) \ (X3 \ X4) = ((X1 ∩ X4 \ (X2 ∪ X3)) ∪ (X1 \ ((X2 ∪ X3) ∪
X4))) ∪ ((X1 ∩X3) ∩X4 \X2). The theorem is a consequence of (2) and
(3).

(5)
⋃
{X1, X2, X3} = (X1 ∪X2) ∪X3.

2. The Direct Image of a Semiring of Sets by an Injective
Function

Now we state the proposition:

(6) Let us consider sets T , S, a function f from T into S, and a family G of
subsets of T . Then f◦G = {f◦A, where A is a subset of T : A ∈ G}.

Let T , S be sets, f be a function from T into S, and G be a finite family of
subsets of T . Let us note that f◦G is finite.

Let f be a function and A be a countable set. Let us note that f◦A is
countable.

The scheme FraenkelCountable deals with a set A and a set X and a unary
functor F yielding a set and states that

(Sch. 1) {F(w), where w is an element of A : w ∈ X} is countable

provided

• X is countable.

Let T , S be sets, f be a function from T into S, and G be a countable family
of subsets of T . Let us note that f◦G is countable.

Let X, Y be sets, S be a family of subsets of X with the empty element, and
f be a function from X into Y. One can verify that f◦S has the empty element.

Now we state the propositions:

(7) Let us consider sets X, Y, a function f from X into Y, and families
S1, S2 of subsets of X. If S1 ⊆ S2, then f◦S1 ⊆ f◦S2. The theorem is a
consequence of (6).

(8) Let us consider sets X, Y, a ∩-closed family S of subsets of X, and a
function f from X into Y. Suppose f is one-to-one. Then f◦S is a ∩-closed
family of subsets of Y.

(9) Let us consider non empty sets X, Y, a ∩fp-closed family S of subsets
of X, and a function f from X into Y. Suppose f is one-to-one. Then f◦S
is a ∩fp-closed family of subsets of Y.

(10) Let us consider non empty sets X, Y, a \⊆fp-closed family S of subsets of
X, and a function f from X into Y. Suppose f is one-to-one and f◦S is
not empty. Then f◦S is a \⊆fp-closed family of subsets of Y.
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Proof: Reconsider f1 = f◦S as a family of subsets of Y. f1 is \⊆fp-closed
by [10, (64), (87)], [11, (103)], [26, (123)]. �

(11) Let us consider non empty sets X, Y, a \fp-closed family S of subsets of
X, and a function f from X into Y. Suppose f is one-to-one. Then f◦S is
a \fp-closed family of subsets of Y.

(12) Let us consider non empty sets X, Y, a semiring S of sets of X, and a
function f from X into Y. If f is one-to-one, then f◦S is a semiring of sets
of Y.

3. The Set of Set Differences of All Elements of a Semiring of
Sets

Now we state the proposition:

(13) Let us consider a 1-element finite sequence X. Suppose X(1) is not
empty. Then there exists a function I from X(1) into

∏
X such that

(i) I is one-to-one and onto, and

(ii) for every object x such that x ∈ X(1) holds I(x) = 〈x〉.
Let X be a set. Observe that 2X∗ is ∩-closed and there exists a ∩-closed

family of subsets of X which has the empty element and there exists a ∩-closed
family of subsets of X with the empty element which is ∪-closed.

Let X, Y be non empty sets. Let us observe that X \\Y is non empty.
Now we state the proposition:

(14) Let us consider a set X, and a family S of subsets of X with the empty
element. Then S \\S = the set of all A \B where A,B are elements of S.

Let X be a set and S be a family of subsets of X with the empty element.
The functor semidiff S yielding a family of subsets of X is defined by the term

(Def. 1) S \\S.

Now we state the proposition:

(15) Let us consider a set X, a family S of subsets of X with the empty ele-
ment, and an object x. Suppose x ∈ semidiff S. Then there exist elements
A, B of S such that x = A \B. The theorem is a consequence of (14).

Let X be a set and S be a family of subsets of X with the empty element.
Observe that semidiff S has the empty element.

Let S be a ∩-closed, ∪-closed family of subsets of X with the empty element.
Note that semidiff S is ∩-closed and \fp-closed.

Now we state the proposition:

(16) Let us consider a set X, and a ∩-closed, ∪-closed family S of subsets of
X with the empty element. Then semidiff S is a semiring of sets of X.
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4. The Collection of All Locally Closed Sets LC(X, τ) of a
Topological Space (X, τ)

Let T be a non empty topological space. The functor LC(T ) yielding a family
of subsets of ΩT is defined by the term

(Def. 2) {A ∩B, where A, B are subsets of T : A is open and B is closed}.

Let us note that LC(T ) is ∩-closed and \fp-closed and has the empty element.

(17) Let us consider a non empty topological space T . Then LC(T ) is a se-
miring of sets of ΩT .

5. The Finite Product of Semirings of Sets

Let n be a natural number. Note that there exists an n-element finite sequ-
ence which is non-empty.

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A semiring family of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number i such that i ∈ Seg n holds it(i) is a semiring
of sets of X(i).

In the sequel n denotes a non zero natural number and X denotes a non-
empty, n-element finite sequence. Now we state the propositions:

(18) Let us consider a semiring family S of X. Then domS = domX.

(19) Let us consider a semiring family S of X, and a natural number i. If
i ∈ Seg n, then

⋃
(S(i)) ⊆ X(i).

(20) Let us consider a function f , and an n-element finite sequence X. If
f ∈
∏
X, then f is an n-element finite sequence.

Let n be a non zero natural number and X be an n-element finite sequence.
The functor SemiringProductX yielding a set is defined by

(Def. 4) for every object f , f ∈ it iff there exists a function g such that f =
∏
g

and g ∈
∏
X.

Now we state the propositions:

(21) Let us consider an n-element finite sequence X.
Then SemiringProductX ⊆ 2(

⋃⋃
X)domX .

(22) Let us consider a semiring family S of X. Then SemiringProductS is a
family of subsets of

∏
X.

Proof: Reconsider S1 = SemiringProductS as a subset of 2(
⋃⋃

S)domS .
S1 ⊆ 2

∏
X by [3, (9)], (18), [7, (89)], (19). �
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(23) Let us consider a non-empty, 1-element finite sequence X. Then
∏
X =

the set of all 〈x〉 where x is an element of X(1). The theorem is a conse-
quence of (13).

One can check that
∏
〈∅〉 is empty. Now we state the propositions:

(24) Let us consider a non empty set x. Then
∏
〈x〉 = the set of all 〈y〉 where

y is an element of x. The theorem is a consequence of (23).

(25) Let us consider a non-empty, 1-element finite sequence X, and a semi-
ring family S of X. Then SemiringProductS = the set of all

∏
〈s〉 where

s is an element of S(1). Proof: S is non-empty by (18), [7, (3)].
∏
S =

the set of all 〈s〉 where s is an element of S(1). �

Let us consider sets x, y. Now we state the propositions:

(26)
∏
〈x〉 ∩

∏
〈y〉 =

∏
〈x ∩ y〉. The theorem is a consequence of (24).

(27)
∏
〈x〉 \

∏
〈y〉 =

∏
〈x \ y〉. The theorem is a consequence of (24).

Let us consider a non-empty, 1-element finite sequence X and a semiring
family S of X. Now we state the propositions:

(28) the set of all
∏
〈s〉 where s is an element of S(1) is a semiring of sets

of the set of all 〈x〉 where x is an element of X(1). The theorem is a
consequence of (24), (26), and (27).

(29) SemiringProductS is a semiring of sets of
∏
X. The theorem is a con-

sequence of (23), (25), and (28).

(30) Let us consider sets X1, X2, a semiring S1 of sets of X1, and a semiring
S2 of sets of X2. Then the set of all s1 × s2 where s1 is an element of S1,
s2 is an element of S2 is a semiring of sets of X1 ×X2.

(31) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a semiring family S3 of X3, and a semiring
family S1 of X1. Suppose SemiringProductS3 is a semiring of sets of

∏
X3

and SemiringProductS1 is a semiring of sets of
∏
X1. Let us consider a

family S4 of subsets of
∏
X3 ×

∏
X1. Suppose S4 = the set of all s1 ×

s2 where s1 is an element of SemiringProductS3, s2 is an element of
SemiringProductS1. Then there exists a function I from

∏
X3 ×

∏
X1

into
∏

(X3 a X1) such that

(i) I is one-to-one and onto, and

(ii) for every finite sequences x, y such that x ∈
∏
X3 and y ∈

∏
X1

holds I(x, y) = x a y, and

(iii) I◦S4 = SemiringProduct(S3 a S1).

Proof:
⋃

(S1(1)) ⊆ X1(1). Consider I being a function from
∏
X3×

∏
X1

into
∏

(X3aX1) such that I is one-to-one and I is onto and for every finite
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sequences x, y such that x ∈
∏
X3 and y ∈

∏
X1 holds I(x, y) = x a y.

I◦S4 = SemiringProduct(S3 a S1) by (25), (20), [7, (89)], [24, (153)]. �

(32) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a semiring family S3 of X3, and a semi-
ring family S1 of X1. Suppose SemiringProductS3 is a semiring of sets
of
∏
X3 and SemiringProductS1 is a semiring of sets of

∏
X1. Then

SemiringProduct(S3aS1) is a semiring of sets of
∏

(X3aX1). The theorem
is a consequence of (30), (31), (9), and (10).

(33) Let us consider a semiring family S of X. Then SemiringProductS is a
semiring of sets of

∏
X. Proof: Define P[non zero natural number] ≡ for

every non-empty, $1-element finite sequence X for every semiring family
S of X, SemiringProductS is a semiring of sets of

∏
X. P[1]. For every

non zero natural number n, P[n] from [5, Sch. 10]. �

Let n be a non zero natural number, X be a non-empty, n-element finite
sequence, and S be a semiring family of X. We say that S is ∩-closed yielding
if and only if

(Def. 5) for every natural number i such that i ∈ Seg n holds S(i) is ∩-closed.

Note that there exists a semiring family of X which is ∩-closed yielding.

6. The Finite Product of Classical Semirings of Sets

Let X be a set. Note that there exists a semiring of sets of X which is
∩-closed.

Let us consider a non-empty, 1-element finite sequence X and a ∩-closed
yielding semiring family S of X. Now we state the propositions:

(34) the set of all
∏
〈s〉 where s is an element of S(1) is a ∩-closed semiring

of sets of the set of all 〈x〉 where x is an element of X(1). The theorem is
a consequence of (26) and (28).

(35) SemiringProductS is a ∩-closed semiring of sets of
∏
X. The theorem

is a consequence of (23), (25), and (34).

Now we state the propositions:

(36) Let us consider sets X1, X2, a ∩-closed semiring S1 of sets of X1, and a
∩-closed semiring S2 of sets of X2. Then the set of all s1 × s2 where s1 is
an element of S1, s2 is an element of S2 is a ∩-closed semiring of sets of
X1 ×X2.

(37) Let us consider a non-empty, n-element finite sequence X3, a non-empty,
1-element finite sequence X1, a ∩-closed yielding semiring family S3 of X3,
and a ∩-closed yielding semiring family S1 ofX1. Suppose SemiringProduct
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S3 is a ∩-closed semiring of sets of
∏
X3 and SemiringProductS1 is a

∩-closed semiring of sets of
∏
X1. Then SemiringProduct(S3 a S1) is a

∩-closed semiring of sets of
∏

(X3 a X1). The theorem is a consequence of
(30), (31), (36), (8), and (10).

Let us consider n and X. Let S be a ∩-closed yielding semiring family of X.
One can check that SemiringProductS is ∩-closed.

(38) Let us consider a ∩-closed yielding semiring family S of X.
Then SemiringProductS is a ∩-closed semiring of sets of

∏
X.

7. Measurable Rectangle

Let n be a non zero natural number and X be a non-empty, n-element finite
sequence.

A classical semiring family of X is an n-element finite sequence and is defined
by

(Def. 6) for every natural number i such that i ∈ Seg n holds it(i) is a semi-diff-
closed, ∩-closed family of subsets of X(i) with the empty element.

LetX be an n-element finite sequence. We introduce MeasurableRectangleX
as a synonym of SemiringProductX. Now we state the propositions:

(39) Every classical semiring family ofX is a ∩-closed yielding semiring family
of X.

(40) Let us consider a classical semiring family S of X.
Then MeasurableRectangleS is a semi-diff-closed, ∩-closed family of sub-
sets of

∏
X with the empty element. The theorem is a consequence of (39)

and (33).
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Summary. Nelson algebras were first studied by Rasiowa and Białynicki-
Birula [1] under the name N-lattices or quasi-pseudo-Boolean algebras. Later, in
investigations by Monteiro and Brignole [3, 4], and [2] the name “Nelson algebras”
was adopted – which is now commonly used to show the correspondence with
Nelson’s paper [14] on constructive logic with strong negation.

By a Nelson algebra we mean an abstract algebra

〈L,>,−,¬,→,⇒,t,u〉

where L is the carrier, − is a quasi-complementation (Rasiowa used the sign
∼, but in Mizar “−” should be used to follow the approach described in [12]
and [10]), ¬ is a weak pseudo-complementation, → is weak relative pseudo-
complementation and ⇒ is implicative operation. t and u are ordinary lattice
binary operations of supremum and infimum.

In this article we give the definition and basic properties of these algebras
according to [16] and [15]. We start with preliminary section on quasi-Boolean
algebras (i.e. de Morgan bounded lattices). Later we give the axioms in the form
of Mizar adjectives with names corresponding with those in [15]. As our main
result we give two axiomatizations (non-equational and equational) and the full
formal proof of their equivalence.

The second set of equations is rather long but it shows the logical essence of
Nelson lattices. This formalization aims at the construction of algebraic model of
rough sets [9] in our future submissions. Section 4 contains all items from Th. 1.2
and 1.3 (and the itemization is given in the text). In the fifth section we provide
full formal proof of Th. 2.1 p. 75 [16].
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The notation and terminology used in this paper have been introduced in the
following articles: [5], [6], [7], [18], [11], [13], [17], and [8].

1. De Morgan and Quasi-Boolean Lattices

Let L be a non empty ortholattice structure. We say that L is de Morgan if
and only if

(Def. 1) for every elements x, y of L, (x u y)c = xc t yc.
One can verify that every non empty ortholattice structure which is de Mor-

gan and involutive is also de Morgan and every non empty ortholattice structure
which is de Morgan and involutive is also de Morgan.

Every non empty ortholattice structure which is trivial is also de Morgan and
there exists a non empty ortholattice structure which is de Morgan, involutive,
bounded, distributive, and lattice-like.

A de Morgan algebra is a de Morgan, involutive, distributive, lattice-like,
non empty ortholattice structure.

A quasi-Boolean algebra is a bounded de Morgan algebra. From now on L

denotes a quasi-Boolean algebra and x, y, z denote elements of L.
Now we state the propositions:

(1) (x t y)c = xc u yc.
(2) (>L)c = ⊥L.

(3) (⊥L)c = >L.

(4) x u (x u y) = x u y.

(5) x t (x t y) = x t y.

2. The Structure and Operators in Nelson Algebras

We consider Nelson structures which extend ortholattice structures and are
systems

〈〈a carrier, a unity, a complement operation, a weak pseudo-complementation,

a weak relative pseudo-complementation, an implicative operation,

a join operation, a meet operation〉〉

where the carrier is a set, the unity is an element of the carrier, the complement
operation and the weak pseudo-complementation are unary operations on the
carrier, the weak relative pseudo-complementation and the implicative operation
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and the join operation and the meet operation are binary operations on the
carrier.

Note that there exists a Nelson structure which is strict and non empty and
there exists a non empty Nelson structure which is trivial, de Morgan, involutive,
bounded, distributive, and lattice-like.

Let L be a non empty Nelson structure and a, b be elements of L. The
functor a→ b yielding an element of L is defined by the term

(Def. 2) (the weak relative pseudo-complementation of L)(a, b).

We say that a < b if and only if

(Def. 3) a→ b = >L.

We say that a ¬ b if and only if

(Def. 4) a = a u b.
Let a be an element of L. The functor ¬ a yielding an element of L is defined

by the term

(Def. 5) (the weak pseudo-complementation of L)(a).

Let a, b be elements of L. The functor a ⇒ b yielding an element of L is
defined by the term

(Def. 6) (the implicative operation of L)(a, b).

3. The Non-Equational Axiomatization

Let L be a non empty Nelson structure. We say that L has reflexive < if
and only if

(Def. 7) for every element a of L, a < a.

We say that L has transitive < if and only if

(Def. 8) for every elements a, b, c of L such that a < b < c holds a < c.

Let L be a bounded, lattice-like, non empty Nelson structure. We say that
L is quasi-Boolean if and only if

(Def. 9) L is de Morgan, involutive, and distributive.

Let us note that every bounded, lattice-like, non empty Nelson structure
which is quasi-Boolean is also de Morgan, involutive, and distributive.

Every bounded, lattice-like, non empty Nelson structure which is de Morgan,
involutive, and distributive is also quasi-Boolean.

Let L be a non empty Nelson structure. We say that L satisfies (qpB3) if
and only if

(Def. 10) for every elements x, a, b of L, a u x < b iff x < a→ b.

We say that L satisfies (qpB4) if and only if
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(Def. 11) for every elements a, b of L, a⇒ b = (a→ b) u (−b→−a).

We say that L satisfies (qpB5) if and only if

(Def. 12) for every elements a, b of L, a⇒ b = >L iff a u b = a.

We say that L satisfies (qpB6) if and only if

(Def. 13) for every elements a, b, c of L such that a < c and b < c holds at b < c.

We say that L satisfies (qpB7) if and only if

(Def. 14) for every elements a, b, c of L such that a < b and a < c holds a < bu c.
We say that L satisfies (qpB8) if and only if

(Def. 15) for every elements a, b of L, a u −b < −(a→ b).

We say that L satisfies (qpB9) if and only if

(Def. 16) for every elements a, b of L, −(a→ b) < a u −b.
We say that L satisfies (qpB10) if and only if

(Def. 17) for every element a of L, a < −¬ a.

We say that L satisfies (qpB11) if and only if

(Def. 18) for every element a of L, −¬ a < a.

We say that L satisfies (qpB12) if and only if

(Def. 19) for every elements a, b of L, a u −a < b.

We say that L satisfies (qpB13) if and only if

(Def. 20) for every element a of L, ¬ a = a→−>L.

Let us observe that there exists a bounded, lattice-like, non empty Nelson
structure which is quasi-Boolean and has reflexive < and transitive < and satis-
fies (qpB3), (qpB4), (qpB5), (qpB6), (qpB7), (qpB8), (qpB9), (qpB10), (qpB11),
(qpB12), and (qpB13).

A Nelson algebra is a quasi-Boolean, bounded, lattice-like, non empty Nelson
structure with reflexive < and transitive <. Let L be a bounded, non empty
Nelson structure and a, b be elements of L. Let us observe that the functor
a⇒ b is defined by the term

(Def. 21) (a→ b) u (−b→−a).

From now on L denotes a Nelson algebra and a, b, c, d, x, y, z denote
elements of L.

Now we state the propositions:

(6) a v b if and only if a ¬ b.
(7) a ¬ b ¬ a if and only if a = b.
Proof: If a ¬ b ¬ a, then a = b by [18, (4), (8)]. �

(8) a u b = >L if and only if a = >L and b = >L.
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(9) a ¬ b if and only if a < b and −b < −a. The theorem is a consequence
of (8).

(10) a u b < a. The theorem is a consequence of (9).

(11) a < a t b. The theorem is a consequence of (9).

(12) a ¬ b if and only if a⇒ b = >L.

(13) −(a u b) = −a t −b. The theorem is a consequence of (1).

(14) (au−a)u (bt−b) = au−a. The theorem is a consequence of (1), (13),
and (9).

(15) If a ¬ b ¬ c, then a ¬ c.
(16) If b ¬ c, then atb ¬ atc and aub ¬ auc. The theorem is a consequence

of (9), (1), and (13).

(17) −at b ¬ a→ b. The theorem is a consequence of (1), (2), (9), (10), (16),
and (15).

(18) (a→ b) u (−a t b) = −a t b. The theorem is a consequence of (1), (13),
(17), (10), (9), and (7).

(19) −a t b < a→ b. The theorem is a consequence of (18) and (9).

(20) a u (a→ b) = a u (−a t b). The theorem is a consequence of (11), (10),
(13), (1), (19), (9), and (7).

(21) If −x < −y, then −(z→x) < −(z→ y).

Let us assume that x < y. Now we state the propositions:

(22) a u (a→x) < y. The theorem is a consequence of (20) and (10).

(23) a→x < a→ y. The theorem is a consequence of (22).

(24) a→(b u c) = (a→ b) u (a→ c). The theorem is a consequence of (11),
(13), (10), (23), (9), and (7).

4. Properties of Nelson Algebras

Now we state the propositions:

(25) [see also [16] p. 69, Th. 1.2 (5)]:
a⇒ a = >L.

(26) [see also [16] p. 69, Th. 1.2 (6)]:
If a⇒ b = >L and b⇒ c = >L, then a⇒ c = >L.

(27) [see also [16] p. 69, Th. 1.2 (7)]:
If a⇒ b = >L and b⇒ a = >L, then a = b.

(28) [see also [16] p. 69, Th. 1.2 (8)]:
a⇒ >L = >L.
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(29) [see also [16] p. 69, Th. 1.3 (9)]:
a→ a = >L.

(30) [see also [16] p. 69, Th. 1.3 (10)]:
If a→ b = >L and b→ c = >L, then a→ c = >L.

(31) [see also [16] p. 69, Th. 1.3 (11)]:
If b < c, then a t b < a t c and a u b < a u c.

(32) [see also [16] p. 69, Th. 1.3 (12)]:
If a < b and c < d, then a t c < b t d and a u c < b u d.

(33) [see also [16] p. 69, Th. 1.3 (13)]:
a u (a→ b) < b.

(34) [see also [16] p. 69, Th. 1.3 (14)]:
a→(b→ c) = (a u b)→ c.

(35) [see also [16] p. 69, Th. 1.3 (15)]:
a→(b→ c) = b→(a→ c).

(36) [see also [16] p. 69, Th. 1.3 (16)]:
a < (a→ b)→ b. The theorem is a consequence of (33).

(37) [see also [16] p. 71, Th. 1.3 (50)]:
a < b→(a u b). The theorem is a consequence of (9).

(38) [see also [16] p. 69, Th. 1.3 (17)]:
a u −a ¬ b t −b. The theorem is a consequence of (1) and (9).

(39) [see also [16] p. 70, Th. 1.3 (18)]:
a ¬ b⇒ a u b. The theorem is a consequence of (37) and (9).

(40) [see also [16] p. 70, Th. 1.3 (19)]:
a→¬ b = b→¬ a. The theorem is a consequence of (35).

(41) [see also [16] p. 70, Th. 1.3 (20)]:
a→>L = >L. The theorem is a consequence of (9).

(42) [see also [16] p. 70, Th. 1.3 (21)]:
⊥L→ a = >L. The theorem is a consequence of (9).

(43) [see also [16] p. 70, Th. 1.3 (22)]:
>L→ b = b. The theorem is a consequence of (9), (33), and (7).

(44) [see also [16] p. 70, Th. 1.3 (23)]:
If a = >L and a→ b = >L, then b = >L.

(45) [see also [16] p. 70, Th. 1.3 (24)]:
a→(b→ a) = >L. The theorem is a consequence of (9).

(46) [see also [16] p. 70, Th. 1.3 (25)]:
(a→(b→ c))→((a→ b)→(a→ c)) = >L. The theorem is a consequence of
(33) and (35).
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(47) [see also [16] p. 70, Th. 1.3 (26)]:
a→(a t b) = >L. The theorem is a consequence of (11).

(48) [see also [16] p. 70, Th. 1.3 (27)]:
b→(a t b) = >L. The theorem is a consequence of (11).

(49) [see also [16] p. 70, Th. 1.3 (28)]:
(a→ c)→((b→ c)→((a t b)→ c)) = >L. The theorem is a consequence of
(33) and (10).

(50) [see also [16] p. 70, Th. 1.3 (29)]:
(a u b)→ a = >L. The theorem is a consequence of (10).

(51) [see also [16] p. 70, Th. 1.3 (30)]:
(a u b)→ b = >L. The theorem is a consequence of (10).

(52) [see also [16] p. 70, Th. 1.3 (31)]:
(a→ b)→((a→ c)→(a→(b u c))) = >L. The theorem is a consequence of
(33).

(53) [see also [16] p. 70, Th. 1.3 (32)]:
(a→¬ b)→(b→¬ a) = >L. The theorem is a consequence of (40) and
(29).

(54) [see also [16] p. 70, Th. 1.3 (33)]:
¬(a→ a)→ b = >L. The theorem is a consequence of (29), (2), (43), and
(42).

(55) [see also [16] p. 70, Th. 1.3 (34)]:
−a→(a→ b) = >L.

(56) [see also [16] p. 70, Th. 1.3 (35)]:
(−(a→ b)→(a u −b)) u ((a u −b)→−(a→ b)) = >L.

(57) [see also [16] p. 70, Th. 1.3 (36)]:
(−¬ a→ a) u (a→−¬ a) = >L.

(58) [see also [16] p. 70, Th. 1.3 (37)]:
−−a = a.

(59) [see also [16] p. 70, Th. 1.3 (38)]:
−(a t b) = −a u −b.

(60) [see also [16] p. 70, Th. 1.3 (39)]:
−(a u b) = −a t −b. The theorem is a consequence of (1).

(61) [see also [16] p. 70, Th. 1.3 (40)]:
If a < b, then b→ c < a→ c and c→ a < c→ b. The theorem is a consequ-
ence of (43), (46), (10), and (41).

(62) [see also [16] p. 70, Th. 1.3 (41)]:
(a→ b)→((c→ d)→((auc)→(bud))) = >L. The theorem is a consequence
of (33).
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(63) [see also [16] p. 70, Th. 1.3 (42)]:
(a→ b)→((c→ d)→((atc)→(btd))) = >L. The theorem is a consequence
of (10).

(64) [see also [16] p. 70, Th. 1.3 (43)]:
(b→ a)→((c→ d)→((a→ c)→(b→ d))) = >L. The theorem is a consequ-
ence of (33).

5. Alternative Equational Axiomatics by Rasiowa

Let L be a non empty Nelson structure. We say that L satisfies (qpB∗0) if
and only if

(Def. 22) for every elements a, b of L, a ¬ b iff a⇒ b = >L.

We say that L satisfies (qpB∗1) if and only if

(Def. 23) for every elements a, b of L, a→(b→ a) = >L.

We say that L satisfies (qpB∗2) if and only if

(Def. 24) for every elements a, b, c of L, (a→(b→ c))→((a→ b)→(a→ c)) = >L.

We say that L satisfies (qpB∗3) if and only if

(Def. 25) for every element a of L, >L→ a = a.

We say that L satisfies (qpB∗5) if and only if

(Def. 26) for every elements a, b of L, (a⇒ b)→((b⇒ a)→ b) = (b⇒ a)→((a⇒
b)→ a).

We say that L satisfies (qpB∗6) if and only if

(Def. 27) for every elements a, b of L, a→(a t b) = >L.

We say that L satisfies (qpB∗7) if and only if

(Def. 28) for every elements a, b of L, b→(a t b) = >L.

We say that L satisfies (qpB∗8) if and only if

(Def. 29) for every elements a, b, c of L, (a→ c)→((b→ c)→((a t b)→ c)) = >L.

We say that L satisfies (qpB∗9) if and only if

(Def. 30) for every elements a, b of L, (a u b)→ a = >L.

We say that L satisfies (qpB∗10) if and only if

(Def. 31) for every elements a, b of L, (a u b)→ b = >L.

We say that L satisfies (qpB∗11) if and only if

(Def. 32) for every elements a, b, c of L, (a→ b)→((a→ c)→(a→(b u c))) = >L.

We say that L satisfies (qpB∗12) if and only if

(Def. 33) for every elements a, b of L, (a→¬ b)→(b→¬ a) = >L.

We say that L satisfies (qpB∗13) if and only if



Two axiomatizations of Nelson algebras 123

(Def. 34) for every elements a, b of L, ¬(a→ a)→ b = >L.

We say that L satisfies (qpB∗14) if and only if

(Def. 35) for every elements a, b of L, −a→(a→ b) = >L.

We say that L satisfies (qpB∗15) if and only if

(Def. 36) for every elements a, b of L, (−(a→ b)→(au−b))u((au−b)→−(a→ b)) =
>L.

We say that L satisfies (qpB∗17) if and only if

(Def. 37) for every elements a, b of L, −(a t b) = −a u −b.
We say that L satisfies (qpB∗19) if and only if

(Def. 38) for every element a of L, (−¬ a→ a) u (a→−¬ a) = >L.

We introduce L satisfies (qpB∗4) as a synonym of L satisfies (qpB4) and L

satisfies (qpB∗16) as a synonym of L is de Morgan and L satisfies (qpB∗18) as a
synonym of L is involutive.

Note that every Nelson algebra satisfies (qpB∗1), (qpB∗2), (qpB∗3), (qpB∗4),
(qpB∗5), (qpB∗6), (qpB∗7), (qpB∗8), (qpB∗9), (qpB∗10), (qpB∗11), (qpB∗12), (qpB∗13),
(qpB∗14), (qpB∗15), (qpB∗16), (qpB∗17), (qpB∗18), and (qpB∗19).

Now we state the proposition:

(65) Let us consider a non empty Nelson structure L. Suppose L satisfies
(qpB∗0). Then L is a Nelson algebra if and only if L satisfies (qpB∗1),
(qpB∗2), (qpB∗3), (qpB∗4), (qpB∗5), (qpB∗6), (qpB∗7), (qpB∗8), (qpB∗9), (qpB∗10),
(qpB∗11), (qpB∗12), (qpB∗13), (qpB∗14), (qpB∗15), (qpB∗16), (qpB∗17), (qpB∗18),
and (qpB∗19).
Proof: Reconsider L1 = L as a de Morgan, non empty Nelson structure.
For every elements a, b of L1 such that a u b = >L1 holds a = >L1 and
b = >L1 . For every elements a, b of L1, a ¬ b iff a < b and −b < −a. Set
d = (>L)c. For every element a of L, a ¬ >L. For every element a of L,
d ¬ a. For every element a of L, d u a = d. For every element a of L1,
a→>L1 = >L1 . For every elements a, b, c of L1 such that a→ b = >L1 and
b→ c = >L1 holds a→ c = >L1 . L1 has transitive <. L1 satisfies (qpB6).
For every element a of L1, a→ a = >L1 . L1 satisfies (qpB7). For every
elements a, b of L1, a u b ¬ a. For every elements a, b of L1, a ¬ a t b.
For every elements a, b of L1, b ¬ a t b. For every elements a, b of L1,
a u b ¬ b. For every element a of L1, a⇒ a = >L1 . For every elements a,
b of L1, a = b iff a ⇒ b = >L1 and b ⇒ a = >L1 . For every elements a,
b of L1, a ¬ b ¬ a iff a = b. L1 has reflexive <. For every elements a, b,
c of L1 such that a < b holds b→ c < a→ c and c→ a < c→ b. For every
elements a, b of L1, a→(b→(a u b)) = >L1 . For every elements a, b, c of
L1 such that a < b→ c holds b < a→ c. For every elements a, c of L1,
a→(a→ c) < a→ c. L1 satisfies (qpB3). For every elements a, b, c of L1
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such that b < c holds a u b < a u c. For every elements a, b, c of L1 such
that b < c holds a t b < a t c. For every elements a, b, c of L1 such that
a ¬ c and b ¬ c holds at b ¬ c. For every elements a, b, c of L1 such that
c ¬ a and c ¬ b holds c ¬ aub. For every elements a, b of L1, bta ¬ atb.
For every elements a, b of L1, at b = bt a. For every elements a, b of L1,
aub ¬ bua. For every elements a, b of L1, aub = bua. For every elements
a, b, c of L1 such that a ¬ b holds a t c ¬ b t c. For every elements a, b
of L1, b = (a u b) t b. For every elements a, b of L1, a u (a t b) = a. For
every elements a, b, c of L1 such that b ¬ c holds a u b ¬ a u c. For every
elements a, b, c of L1 such that a ¬ b ¬ c holds a ¬ c. For every elements
a, b, c of L1, a u (b u c) = (a u b) u c. For every elements a, b, c of L1,
a t (b t c) = (a t b) t c. Set c = >L1 . For every element a of L1, c t a = c

and atc = c by [18, (4)]. L1 is distributive. L1 satisfies (qpB5). L1 satisfies
(qpB8). L1 satisfies (qpB9). L1 satisfies (qpB10). L1 satisfies (qpB11). L1
satisfies (qpB12). For every elements a, b, c of L1, ¬>L1 = −>L1 . For
every elements a, b of L1, a→¬ b = b→¬ a. L1 satisfies (qpB13). �
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1. Additive Notation for Groups – GROUP 1

From now on m, n denote natural numbers, i, j denote integers, S denotes
a non empty additive magma, and r, r1, r2, s, s1, s2, t, t1, t2 denote elements
of S.

The scheme SeqEx2Dbis deals with non empty sets X , Z and a ternary
predicate P and states that

(Sch. 1) There exists a function f from N×X into Z such that for every natural
number x for every element y of X , P[x, y, f(x, y)]

provided

• for every natural number x and for every element y of X , there exists an
element z of Z such that P[x, y, z].

Let I1 be an additive magma. We say that I1 is add-unital if and only if

(Def. 1) there exists an element e of I1 such that for every element h of I1,
h+ e = h and e+ h = h.

We say that I1 is additive group-like if and only if

(Def. 2) there exists an element e of I1 such that for every element h of I1,
h + e = h and e + h = h and there exists an element g of I1 such that
h+ g = e and g + h = e.

Let us note that every additive magma which is additive group-like is also
add-unital and there exists an additive magma which is strict, additive group-
like, add-associative, and non empty.

An additive group is an additive group-like, add-associative, non empty
additive magma. Now we state the propositions:

(1) Suppose for every r, s, and t, (r+ s) + t = r+ (s+ t) and there exists t
such that for every s1, s1+ t = s1 and t+ s1 = s1 and there exists s2 such
that s1 + s2 = t and s2 + s1 = t. Then S is an additive group.

(2) Suppose for every r, s, and t, (r+s) + t = r+ (s+ t) and for every r and
s, there exists t such that r+ t = s and there exists t such that t+ r = s.
Then S is add-associative and additive group-like.

(3) 〈R,+R〉 is add-associative and additive group-like.

From now on G denotes an additive group-like, non empty additive magma
and e, h denote elements of G.

Let G be an additive magma. Assume G is add-unital. The functor 0G yiel-
ding an element of G is defined by

(Def. 3) for every element h of G, h+ it = h and it + h = h.

Now we state the proposition:
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(4) If for every h, h+ e = h and e+ h = h, then e = 0G.

From now on G denotes an additive group and f , g, h denote elements of G.
Let us consider G and h. The functor −h yielding an element of G is defined

by

(Def. 4) h+ it = 0G and it + h = 0G.

Let us note that the functor is involutive.
Now we state the propositions:

(5) If h+ g = 0G and g + h = 0G, then g = −h.

(6) If h+ g = h+ f or g + h = f + h, then g = f .

(7) If h+ g = h or g+ h = h, then g = 0G. The theorem is a consequence of
(6).

(8) −0G = 0G.

(9) If −h = −g, then h = g. The theorem is a consequence of (6).

(10) If −h = 0G, then h = 0G. The theorem is a consequence of (8).

(11) If h+ g = 0G, then h = −g and g = −h. The theorem is a consequence
of (6).

(12) h + f = g if and only if f = −h + g. The theorem is a consequence of
(6).

(13) f + h = g if and only if f = g + −h. The theorem is a consequence of
(6).

(14) There exists f such that g + f = h. The theorem is a consequence of
(12).

(15) There exists f such that f + g = h. The theorem is a consequence of
(13).

(16) −(h+ g) = −g +−h. The theorem is a consequence of (11).

(17) g + h = h + g if and only if −(g + h) = −g + −h. The theorem is a
consequence of (16) and (6).

(18) g + h = h + g if and only if −g + −h = −h + −g. The theorem is a
consequence of (16) and (17).

(19) g+h = h+g if and only if g+−h = −h+g. The theorem is a consequence
of (18), (11), and (16).

From now on u denotes a unary operation on G.
Let us consider G. The functor add inverseG yielding a unary operation on

G is defined by

(Def. 5) it(h) = −h.

Let G be an add-associative, non empty additive magma. Let us note that
the addition of G is associative.
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Let us consider an add-unital, non empty additive magma G. Now we state
the propositions:

(20) 0G is a unity w.r.t. the addition of G.

(21) 1α = 0G, where α is the addition of G. The theorem is a consequence of
(20).

Let G be an add-unital, non empty additive magma. Let us note that the
addition of G is unital.

Now we state the proposition:

(22) add inverseG is an inverse operation w.r.t. the addition of G. The the-
orem is a consequence of (21).

Let us consider G. One can verify that the addition of G has inverse opera-
tion.

Now we state the proposition:

(23) The inverse operation w.r.t. the addition of G = add inverseG. The
theorem is a consequence of (22).

Let G be a non empty additive magma. The functor multG yielding a func-
tion from N× (the carrier of G) into the carrier of G is defined by

(Def. 6) for every element h of G, it(0, h) = 0G and for every natural number n,
it(n+ 1, h) = it(n, h) + h.

Let us consider G, i, and h. The functor i · h yielding an element of G is
defined by the term

(Def. 7)

{
(multG)(|i|, h), if 0 ¬ i,
−(multG)(|i|, h), otherwise.

Let us consider n. One can check that the functor n ·h is defined by the term

(Def. 8) (multG)(n, h).

Now we state the propositions:

(24) 0 · h = 0G.

(25) 1 · h = h.

(26) 2 · h = h+ h. The theorem is a consequence of (25).

(27) 3 · h = h+ h+ h. The theorem is a consequence of (26).

(28) 2 · h = 0G if and only if −h = h. The theorem is a consequence of (26)
and (11).

(29) If i ¬ 0, then i · h = −|i| · h. The theorem is a consequence of (8).

(30) i · 0G = 0G. The theorem is a consequence of (8).

(31) (−1) · h = −h. The theorem is a consequence of (25).

(32) (i+ j) · h = i · h+ j · h.
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Proof: Define P[integer] ≡ for every i, (i + $1) · h = i · h + $1 · h. For
every j such that P[j] holds P[j − 1] and P[j + 1]. P[0]. For every j, P[j]
from [40, Sch. 4]. �

(33) (i) (i+ 1) · h = i · h+ h, and

(ii) (i+ 1) · h = h+ i · h.
The theorem is a consequence of (25) and (32).

(34) (−i) · h = −i · h.

Let us assume that g + h = h+ g. Now we state the propositions:

(35) i · (g + h) = i · g + i · h. The theorem is a consequence of (16).

(36) i · g+ j · h = j · h+ i · g. The theorem is a consequence of (19) and (16).

(37) g + i · h = i · h+ g. The theorem is a consequence of (25) and (36).

Let us consider G and h. We say that h is of order 0 if and only if

(Def. 9) if n · h = 0G, then n = 0.

One can check that 0G is non of order 0.
Let us consider h. The functor ord(h) yielding an element of N is defined by

(Def. 10) (i) it = 0, if h is of order 0,

(ii) it · h = 0G and it 6= 0 and for every m such that m · h = 0G and
m 6= 0 holds it ¬ m, otherwise.

Now we state the propositions:

(38) ord(h) · h = 0G.

(39) ord(0G) = 1.

(40) If ord(h) = 1, then h = 0G. The theorem is a consequence of (25).

Observe that there exists an additive group which is strict and Abelian.
Now we state the proposition:

(41) 〈R,+R〉 is an Abelian additive group. The theorem is a consequence of
(3).

In the sequel A denotes an Abelian additive group and a, b denote elements
of A.

Now we state the propositions:

(42) −(a+ b) = −a+−b.
(43) i · (a+ b) = i · a+ i · b.
(44) 〈the carrier of A, the addition of A, 0A〉 is Abelian, add-associative, right

zeroed, and right complementable.

Let us consider an add-unital, non empty additive magma L and an element
x of L. Now we state the propositions:

(45) (multL)(1, x) = x.
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(46) (multL)(2, x) = x+ x. The theorem is a consequence of (45).

Now we state the proposition:

(47) Let us consider an add-associative, Abelian, add-unital, non empty
additive magma L, elements x, y of L, and a natural number n. Then
(multL)(n, x+ y) = (multL)(n, x) + (multL)(n, y).
Proof: Define P[natural number] ≡ (multL)($1, x+y) = (multL)($1, x)+
(multL)($1, y). For every natural number n, P[n] from [5, Sch. 2]. �

Let G, H be additive magmas and I1 be a function from G into H. We say
that I1 preserves zero if and only if

(Def. 11) I1(0G) = 0H .

2. Subgroups and Lagrange Theorem – GROUP 2

In the sequel x denotes an object, y, y1, y2, Y, Z denote sets, k denotes a
natural number, G denotes an additive group, a, g, h denote elements of G, and
A denotes a subset of G.

Let us consider G and A. The functor −A yielding a subset of G is defined
by the term

(Def. 12) {−g : g ∈ A}.

One can check that the functor is involutive.
Now we state the propositions:

(48) x ∈ −A if and only if there exists g such that x = −g and g ∈ A.

(49) −{g} = {−g}.
(50) −{g, h} = {−g,−h}.
(51) −∅α = ∅, where α is the carrier of G.

(52) −Ωα = the carrier of G, where α is the carrier of G.

(53) A 6= ∅ if and only if −A 6= ∅. The theorem is a consequence of (48).

Let us consider G. Let A be an empty subset of G. Observe that −A is
empty.

Let A be a non empty subset of G. One can check that −A is non empty.
In the sequelG denotes a non empty additive magma, A, B, C denote subsets

of G, and a, b, g, g1, g2, h, h1, h2 denote elements of G.
Let G be an Abelian, non empty additive magma and A, B be subsets of G.

One can check that the functor A+B is commutative.

(54) x ∈ A + B if and only if there exists g and there exists h such that
x = g + h and g ∈ A and h ∈ B.

(55) A 6= ∅ and B 6= ∅ if and only if A+B 6= ∅. The theorem is a consequence
of (54).
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(56) If G is add-associative, then (A+B) + C = A+ (B + C).

(57) Let us consider an additive group G, and subsets A, B of G. Then
−(A+B) = −B +−A. The theorem is a consequence of (16).

(58) A+ (B ∪ C) = A+B ∪ (A+ C).

(59) (A ∪B) + C = A+ C ∪ (B + C).

(60) A+B ∩ C ⊆ (A+B) ∩ (A+ C).

(61) A ∩B + C ⊆ (A+ C) ∩ (B + C).

(62) (i) ∅α +A = ∅, and

(ii) A+ ∅α = ∅,
where α is the carrier of G. The theorem is a consequence of (54).

(63) Let us consider an additive group G, and a subset A of G. Suppose
A 6= ∅. Then

(i) Ωα +A = the carrier of G, and

(ii) A+ Ωα = the carrier of G,

where α is the carrier of G.

(64) {g}+ {h} = {g + h}.
(65) {g}+ {g1, g2} = {g + g1, g + g2}.
(66) {g1, g2}+ {g} = {g1 + g, g2 + g}.
(67) {g, h}+ {g1, g2} = {g + g1, g + g2, h+ g1, h+ g2}.

Let us consider an additive group G and a subset A of G. Now we state the
propositions:

(68) Suppose for every elements g1, g2 of G such that g1, g2 ∈ A holds g1+g2 ∈
A and for every element g of G such that g ∈ A holds −g ∈ A. Then
A+A = A.

(69) If for every element g of G such that g ∈ A holds −g ∈ A, then −A = A.

(70) If for every a and b such that a ∈ A and b ∈ B holds a+ b = b+ a, then
A+B = B +A.

(71) If G is an Abelian additive group, then A+B = B +A.

(72) Let us consider an Abelian additive group G, and subsets A, B of G.
Then −(A+B) = −A+−B. The theorem is a consequence of (42).

Let us consider G, g, and A. The functors: g+A and A+ g yielding subsets
of G are defined by terms,

(Def. 13) {g}+A,

(Def. 14) A+ {g},
respectively. Now we state the propositions:

(73) x ∈ g +A if and only if there exists h such that x = g + h and h ∈ A.
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(74) x ∈ A+ g if and only if there exists h such that x = h+ g and h ∈ A.

Let us assume that G is add-associative. Now we state the propositions:

(75) (g +A) +B = g + (A+B).

(76) (A+ g) +B = A+ (g +B).

(77) (A+B) + g = A+ (B + g).

(78) (g + h) + A = g + (h + A). The theorem is a consequence of (64) and
(56).

(79) (g +A) + h = g + (A+ h).

(80) (A + g) + h = A + (g + h). The theorem is a consequence of (56) and
(64).

(81) (i) ∅α + a = ∅, and

(ii) a+ ∅α = ∅,
where α is the carrier of G.

From now on G denotes an additive group-like, non empty additive magma,
h, g, g1, g2 denote elements of G, and A denotes a subset of G.

(82) Let us consider an additive group G, and an element a of G. Then

(i) Ωα + a = the carrier of G, and

(ii) a+ Ωα = the carrier of G,

where α is the carrier of G.

(83) (i) 0G +A = A, and

(ii) A+ 0G = A.
The theorem is a consequence of (73) and (74).

(84) If G is an Abelian additive group, then g +A = A+ g.

Let G be an additive group-like, non empty additive magma.
A subgroup of G is an additive group-like, non empty additive magma and

is defined by

(Def. 15) the carrier of it ⊆ the carrier of G and the addition of it = (the addition
of G) � (the carrier of it).

In the sequel H denotes a subgroup of G and h, h1, h2 denote elements of
H.

Now we state the propositions:

(85) If G is finite, then H is finite.

(86) If x ∈ H, then x ∈ G.

(87) h ∈ G.

(88) h is an element of G.

(89) If h1 = g1 and h2 = g2, then h1 + h2 = g1 + g2.
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Let G be an additive group. Let us observe that every subgroup of G is
add-associative.

In the sequel G, G1, G2, G3 denote additive groups, a, a1, a2, b, b1, b2, g,
g1, g2 denote elements of G, A, B denote subsets of G, H, H1, H2, H3 denote
subgroups of G, and h, h1, h2 denote elements of H.

(90) 0H = 0G. The theorem is a consequence of (87), (89), and (7).

(91) 0H1 = 0H2 . The theorem is a consequence of (90).

(92) 0G ∈ H. The theorem is a consequence of (90).

(93) 0H1 ∈ H2. The theorem is a consequence of (90) and (92).

(94) If h = g, then −h = −g. The theorem is a consequence of (87), (89),
(90), and (11).

(95) add inverseH = add inverseG�(the carrier of H). The theorem is a con-
sequence of (87) and (94).

(96) If g1, g2 ∈ H, then g1 + g2 ∈ H. The theorem is a consequence of (89).

(97) If g ∈ H, then −g ∈ H. The theorem is a consequence of (94).

Let us consider G. Observe that there exists a subgroup of G which is strict.

(98) Suppose A 6= ∅ and for every g1 and g2 such that g1, g2 ∈ A holds
g1 + g2 ∈ A and for every g such that g ∈ A holds −g ∈ A. Then there
exists a strict subgroup H of G such that the carrier of H = A.
Proof: Reconsider D = A as a non empty set. Set o = (the addition of
G) � A. rng o ⊆ A by [17, (87)], [14, (47)]. Set H = 〈D, o〉. H is additive
group-like. �

(99) If G is an Abelian additive group, then H is Abelian. The theorem is a
consequence of (87) and (89).

Let G be an Abelian additive group. One can check that every subgroup of
G is Abelian.

(100) G is a subgroup of G.

(101) Suppose G1 is a subgroup of G2 and G2 is a subgroup of G1. Then
the additive magma of G1 = the additive magma of G2.

(102) If G1 is a subgroup of G2 and G2 is a subgroup of G3, then G1 is a
subgroup of G3.

(103) If the carrier of H1 ⊆ the carrier of H2, then H1 is a subgroup of H2.

(104) If for every g such that g ∈ H1 holds g ∈ H2, then H1 is a subgroup of
H2. The theorem is a consequence of (87) and (103).

(105) Suppose the carrier of H1 = the carrier of H2. Then the additive magma
of H1 = the additive magma of H2. The theorem is a consequence of (103)
and (101).



136 roland coghetto

(106) Suppose for every g, g ∈ H1 iff g ∈ H2. Then the additive magma of
H1 = the additive magma of H2. The theorem is a consequence of (104)
and (101).

Let us consider G. Let H1, H2 be strict subgroups of G. One can check that
H1 = H2 if and only if the condition (Def. 16) is satisfied.

(Def. 16) for every g, g ∈ H1 iff g ∈ H2.
Now we state the propositions:

(107) Let us consider an additive group G, and a subgroup H of G. Suppose
the carrier of G ⊆ the carrier of H. Then the additive magma of H =
the additive magma of G. The theorem is a consequence of (100) and
(105).

(108) Suppose for every element g of G, g ∈ H. Then the additive magma of
H = the additive magma of G. The theorem is a consequence of (100) and
(106).

Let us consider G. The functor 0G yielding a strict subgroup of G is defined
by

(Def. 17) the carrier of it = {0G}.
The functor ΩG yielding a strict subgroup of G is defined by the term

(Def. 18) the additive magma of G.

Note that the functor is projective.
Now we state the propositions:

(109) 0H = 0G. The theorem is a consequence of (90) and (102).

(110) 0H1 = 0H2 . The theorem is a consequence of (109).

(111) 0G is a subgroup of H. The theorem is a consequence of (109).

(112) Let us consider a strict additive group G. Then every subgroup of G is
a subgroup of ΩG.

(113) Every strict additive group is a subgroup of ΩG.

(114) 0G is finite.

Let us consider G. Note that 0G is finite and there exists a subgroup of G
which is strict and finite and there exists an additive group which is strict and
finite.

Let G be a finite additive group. One can verify that every subgroup of G
is finite.

Now we state the propositions:

(115) 0G = 1.

(116) Let us consider a strict, finite subgroup H of G. If H = 1, then H = 0G.
The theorem is a consequence of (92).
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(117) H ⊆ G .

Let us consider a finite additive group G and a subgroup H of G. Now we
state the propositions:

(118) H ¬ G .

(119) Suppose G = H . Then the additive magma of H = the additive magma
of G.
Proof: The carrier of H = the carrier of G by [3, (48)]. �

Let us consider G and H. The functor H yielding a subset of G is defined
by the term

(Def. 19) the carrier of H.

Now we state the propositions:

(120) If g1, g2 ∈ H, then g1 + g2 ∈ H. The theorem is a consequence of (96).

(121) If g ∈ H, then −g ∈ H. The theorem is a consequence of (97).

(122) H +H = H. The theorem is a consequence of (121), (120), and (68).

(123) −H = H. The theorem is a consequence of (121) and (69).

(124) (i) if H1 +H2 = H2 +H1, then there exists a strict subgroup H of G
such that the carrier of H = H1 +H2, and

(ii) if there exists H such that the carrier of H = H1+H2, thenH1+H2 =
H2 +H1.

The theorem is a consequence of (121), (16), (120), (55), and (98).

(125) Suppose G is an Abelian additive group. Then there exists a strict sub-
group H of G such that the carrier of H = H1 + H2. The theorem is a
consequence of (71) and (124).

Let us considerG,H1, andH2. The functorH1∩H2 yielding a strict subgroup
of G is defined by

(Def. 20) the carrier of it = H1 ∩H2.
Now we state the propositions:

(126) (i) for every subgroup H of G such that H = H1∩H2 holds the carrier
of H = (the carrier of H1) ∩ (the carrier of H2), and

(ii) for every strict subgroup H of G such that the carrier of H =

(the carrier of H1) ∩ (the carrier of H2) holds H = H1 ∩H2.
(127) H1 ∩H2 = H1 ∩H2.
(128) x ∈ H1 ∩H2 if and only if x ∈ H1 and x ∈ H2.
(129) Let us consider a strict subgroup H of G. Then H∩H = H. The theorem

is a consequence of (105).

Let us considerG,H1, andH2. Note that the functorH1∩H2 is commutative.
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(130) (H1∩H2)∩H3 = H1∩(H2∩H3). The theorem is a consequence of (105).

(131) (i) 0G ∩H = 0G, and

(ii) H ∩ 0G = 0G.
The theorem is a consequence of (111).

(132) Let us consider a strict additive group G, and a strict subgroup H of G.
Then

(i) H ∩ ΩG = H, and

(ii) ΩG ∩H = H.

(133) Let us consider a strict additive group G. Then ΩG ∩ ΩG = G.

(134) H1 ∩H2 is subgroup of H1 and subgroup of H2.

(135) Let us consider a subgroup H1 of G. Then H1 is a subgroup of H2 if and
only if the additive magma of H1 ∩H2 = the additive magma of H1.

(136) If H1 is a subgroup of H2, then H1∩H3 is a subgroup of H2. The theorem
is a consequence of (102).

(137) If H1 is subgroup of H2 and subgroup of H3, then H1 is a subgroup of
H2 ∩H3. The theorem is a consequence of (86), (128), and (104).

(138) If H1 is a subgroup of H2, then H1 ∩H3 is a subgroup of H2 ∩H3. The
theorem is a consequence of (126) and (103).

(139) If H1 is finite or H2 is finite, then H1 ∩H2 is finite.

Let us consider G, H, and A. The functors: A + H and H + A yielding
subsets of G are defined by terms,

(Def. 21) A+H,

(Def. 22) H +A,

respectively. Now we state the propositions:

(140) x ∈ A + H if and only if there exists g1 and there exists g2 such that
x = g1 + g2 and g1 ∈ A and g2 ∈ H.

(141) x ∈ H + A if and only if there exists g1 and there exists g2 such that
x = g1 + g2 and g1 ∈ H and g2 ∈ A.

(142) (A+B) +H = A+ (B +H).

(143) (A+H) +B = A+ (H +B).

(144) (H +A) +B = H + (A+B).

(145) (A+H1) +H2 = A+ (H1 +H2).

(146) (H1 +A) +H2 = H1 + (A+H2).

(147) (H1 +H2) +A = H1 + (H2 +A).

(148) If G is an Abelian additive group, then A+H = H +A.
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Let us consider G, H, and a. The functors: a+H and H+a yielding subsets
of G are defined by terms,

(Def. 23) a+H,

(Def. 24) H + a,

respectively. Now we state the propositions:

(149) x ∈ a + H if and only if there exists g such that x = a + g and g ∈ H.
The theorem is a consequence of (73).

(150) x ∈ H + a if and only if there exists g such that x = g + a and g ∈ H.
The theorem is a consequence of (74).

(151) (a+ b) +H = a+ (b+H).

(152) (a+H) + b = a+ (H + b).

(153) (H + a) + b = H + (a+ b).

(154) (i) a ∈ a+H, and

(ii) a ∈ H + a.
The theorem is a consequence of (92), (149), and (150).

(155) (i) 0G +H = H, and

(ii) H + 0G = H.

(156) (i) 0G + a = {a}, and

(ii) a+ 0G = {a}.
The theorem is a consequence of (64).

(157) (i) a+ ΩG = the carrier of G, and

(ii) ΩG + a = the carrier of G.
The theorem is a consequence of (63).

(158) If G is an Abelian additive group, then a+H = H + a.

(159) a ∈ H if and only if a+H = H. The theorem is a consequence of (149),
(96), (97), and (92).

(160) a+H = b+H if and only if −b+ a ∈ H. The theorem is a consequence
of (78), (83), and (159).

(161) a + H = b + H if and only if a + H meets b + H. The theorem is a
consequence of (154), (149), (97), (13), (12), (96), and (160).

(162) (a+ b) +H ⊆ a+H + (b+H). The theorem is a consequence of (149)
and (92).

(163) (i) H ⊆ a+H + (−a+H), and

(ii) H ⊆ −a+H + (a+H).
The theorem is a consequence of (83) and (162).
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(164) 2 · a+H ⊆ a+H + (a+H). The theorem is a consequence of (26) and
(162).

(165) a ∈ H if and only if H + a = H. The theorem is a consequence of (150),
(96), (97), and (92).

(166) H + a = H + b if and only if b+−a ∈ H. The theorem is a consequence
of (83), (80), and (165).

(167) H + a = H + b if and only if H + a meets H + b. The theorem is a
consequence of (154), (150), (97), (12), (13), (96), and (166).

(168) (H + a) + b ⊆ H + a + (H + b). The theorem is a consequence of (92),
(150), and (80).

(169) (i) H ⊆ H + a+ (H +−a), and

(ii) H ⊆ H +−a+ (H + a).
The theorem is a consequence of (80), (83), and (168).

(170) H + 2 · a ⊆ H + a+ (H + a). The theorem is a consequence of (80), (26),
and (168).

(171) a + H1 ∩ H2 = (a + H1) ∩ (a + H2). The theorem is a consequence of
(149), (128), and (6).

(172) H1 ∩ H2 + a = (H1 + a) ∩ (H2 + a). The theorem is a consequence of
(150), (128), and (6).

(173) There exists a strict subgroup H1 of G such that the carrier of H1 =
a + H2 + −a. The theorem is a consequence of (154), (74), (149), (97),
(150), (16), (73), (56), (96), and (98).

(174) a+H ≈ b+H.
Proof: Define P[object, object] ≡ there exists g1 such that $1 = g1 and
$2 = b+−a+ g1. For every object x such that x ∈ a+H there exists an
object y such that P[x, y]. Consider f being a function such that dom f =
a + H and for every object x such that x ∈ a + H holds P[x, f(x)] from
[4, Sch. 1]. rng f = b+H. f is one-to-one. �

(175) a+H ≈ H + b.
Proof: Define P[object, object] ≡ there exists g1 such that $1 = g1 and
$2 = −a+ g1 + b. For every object x such that x ∈ a+H there exists an
object y such that P[x, y]. Consider f being a function such that dom f =
a + H and for every object x such that x ∈ a + H holds P[x, f(x)] from
[4, Sch. 1]. rng f = H + b. f is one-to-one. �

(176) H + a ≈ H + b. The theorem is a consequence of (175).

(177) (i) H ≈ a+H, and

(ii) H ≈ H + a.
The theorem is a consequence of (83), (174), and (176).
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(178) (i) H = a+H , and

(ii) H = H + a .

(179) Let us consider a finite subgroup H of G. Then there exist finite sets B,
C such that

(i) B = a+H, and

(ii) C = H + a, and

(iii) H = B , and

(iv) H = C .

The theorem is a consequence of (177).

Let us consider G and H. The functors: the left cosets of H and the right
cosets of H yielding families of subsets of G are defined by conditions,

(Def. 25) A ∈ the left cosets of H iff there exists a such that A = a+H,

(Def. 26) A ∈ the right cosets of H iff there exists a such that A = H + a,

respectively. Now we state the propositions:

(180) If G is finite, then the right cosets of H is finite and the left cosets of H
is finite.

(181) (i) H ∈ the left cosets of H, and

(ii) H ∈ the right cosets of H.
The theorem is a consequence of (83).

(182) The left cosets of H ≈ the right cosets of H.
Proof: Define P[object, object] ≡ there exists g such that $1 = g+H and
$2 = H +−g. For every object x such that x ∈ the left cosets of H there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = the left cosets of H and for every object x such that x ∈ the left
cosets of H holds P[x, f(x)] from [4, Sch. 1]. rng f = the right cosets of
H. f is one-to-one. �

(183) (i)
⋃

(the left cosets of H) = the carrier of G, and

(ii)
⋃

(the right cosets of H) = the carrier of G.
The theorem is a consequence of (87), (149), and (150).

(184) The left cosets of 0G = the set of all {a}. The theorem is a consequence
of (156).

(185) The right cosets of 0G = the set of all {a}. The theorem is a consequence
of (156).

Let us consider a strict subgroup H of G. Now we state the propositions:

(186) If the left cosets of H = the set of all {a}, then H = 0G. The theorem
is a consequence of (87), (149), (92), and (6).
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(187) If the right cosets of H = the set of all {a}, then H = 0G. The theorem
is a consequence of (87), (150), (92), and (6).

(188) (i) the left cosets of ΩG = {the carrier of G}, and

(ii) the right cosets of ΩG = {the carrier of G}.
The theorem is a consequence of (157).

Let us consider a strict additive group G and a strict subgroup H of G. Now
we state the propositions:

(189) If the left cosets of H = {the carrier of G}, then H = G. The theorem
is a consequence of (149), (6), and (108).

(190) If the right cosets of H = {the carrier of G}, then H = G. The theorem
is a consequence of (150), (6), and (108).

Let us consider G and H. The functor |• : H| yielding a cardinal number is
defined by the term

(Def. 27) α , where α is the left cosets of H.

Now we state the proposition:

(191) (i) |• : H| = α , and

(ii) |• : H| = β ,
where α is the left cosets of H and β is the right cosets of H.

Let us consider G and H. Assume the left cosets of H is finite. The functor
|• : H|N yielding an element of N is defined by

(Def. 28) there exists a finite set B such that B = the left cosets of H and it = B .

Now we state the proposition:

(192) Suppose the left cosets of H is finite. Then

(i) there exists a finite set B such that B = the left cosets of H and
|• : H|N = B , and

(ii) there exists a finite set C such that C = the right cosets of H and
|• : H|N = C .

The theorem is a consequence of (182).

Let us consider a finite additive group G and a subgroup H of G. Now we
state the propositions:

(193) Lagrange theorem for additive groups:
G = H · |• : H|N. The theorem is a consequence of (179), (174), (161),
and (183).

(194) H | G . The theorem is a consequence of (193).
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(195) Let us consider a finite additive group G, subgroups I, H of G, and a
subgroup J of H. Suppose I = J . Then |• : I|N = |• : J |N · |• : H|N. The
theorem is a consequence of (193).

(196) |• : ΩG|N = 1. The theorem is a consequence of (188).

(197) Let us consider a strict additive group G, and a strict subgroup H of G.
Suppose the left cosets of H is finite and |• : H|N = 1. Then H = G. The
theorem is a consequence of (183) and (189).

(198) |• : 0G| = G .
Proof: Define F(object) = {$1}. Consider f being a function such that
dom f = the carrier of G and for every object x such that x ∈ the carrier
of G holds f(x) = F(x) from [14, Sch. 3]. rng f = the left cosets of 0G. f
is one-to-one by [17, (3)]. �

(199) Let us consider a finite additive group G. Then |• : 0G|N = G . The
theorem is a consequence of (193) and (115).

(200) Let us consider a finite additive group G, and a strict subgroup H of G.
Suppose |• : H|N = G . Then H = 0G. The theorem is a consequence of
(193) and (116).

(201) Let us consider a strict subgroup H of G. Suppose the left cosets of H
is finite and |• : H| = G . Then

(i) G is finite, and

(ii) H = 0G.

The theorem is a consequence of (200).

3. Classes of Conjugation and Normal Subgroups – GROUP 3

From now on x, y, y1, y2 denote sets, G denotes an additive group, a, b, c,
d, g, h denote elements of G, A, B, C, D denote subsets of G, H, H1, H2, H3
denote subgroups of G, n denotes a natural number, and i denotes an integer.

Now we state the propositions:

(202) (i) a+ b+−b = a, and

(ii) a+−b+ b = a, and

(iii) −b+ b+ a = a, and

(iv) b+−b+ a = a, and

(v) a+ (b+−b) = a, and

(vi) a+ (−b+ b) = a, and

(vii) −b+ (b+ a) = a, and
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(viii) b+ (−b+ a) = a.

(203) G is an Abelian additive group if and only if the addition of G is com-
mutative.

(204) 0G is Abelian.

(205) If A ⊆ B and C ⊆ D, then A+ C ⊆ B +D.

(206) If A ⊆ B, then a+A ⊆ a+B and A+ a ⊆ B + a.

(207) If H1 is a subgroup of H2, then a+H1 ⊆ a+H2 and H1 + a ⊆ H2 + a.
The theorem is a consequence of (205).

(208) a+H = {a}+H.

(209) H + a = H + {a}.
(210) (A+ a) +H = A+ (a+H). The theorem is a consequence of (142).

(211) (a+H) +A = a+ (H +A). The theorem is a consequence of (143).

(212) (A+H) + a = A+ (H + a). The theorem is a consequence of (143).

(213) (H + a) +A = H + (a+A). The theorem is a consequence of (144).

(214) (H1 + a) +H2 = H1 + (a+H2).

Let us consider G. The functor SubGrG yielding a set is defined by

(Def. 29) for every object x, x ∈ it iff x is a strict subgroup of G.

Note that SubGrG is non empty.
Now we state the propositions:

(215) Let us consider a strict additive group G. Then G ∈ SubGrG. The
theorem is a consequence of (100).

(216) If G is finite, then SubGrG is finite.
Proof: Define P[object, object] ≡ there exists a strict subgroup H of G
such that $1 = H and $2 = the carrier of H. For every object x such that
x ∈ SubGrG there exists an object y such that P[x, y]. Consider f being
a function such that dom f = SubGrG and for every object x such that
x ∈ SubGrG holds P[x, f(x)] from [4, Sch. 1]. rng f ⊆ 2α, where α is the
carrier of G. f is one-to-one. �

Let us consider G, a, and b. The functor a · b yielding an element of G is
defined by the term

(Def. 30) −b+ a+ b.

Now we state the propositions:

(217) If a · g = b · g, then a = b. The theorem is a consequence of (6).

(218) 0G ·a = 0G.

(219) If a · b = 0G, then a = 0G. The theorem is a consequence of (11) and (7).

(220) a · 0G = a. The theorem is a consequence of (8).
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(221) a · a = a.

(222) (i) a · (−a) = a, and

(ii) (−a) · a = −a.

(223) a · b = a if and only if a + b = b + a. The theorem is a consequence of
(12).

(224) (a+ b) · g = a · g + b · g.

(225) a · g · h = a · (g + h). The theorem is a consequence of (16).

(226) (i) a · b · (−b) = a, and

(ii) a · (−b) · b = a.
The theorem is a consequence of (225) and (220).

(227) (−a) · b = −a · b. The theorem is a consequence of (16).

(228) (n · a) · b = n · (a · b).
(229) (i · a) · b = i · (a · b). The theorem is a consequence of (29) and (227).

(230) If G is an Abelian additive group, then a · b = a. The theorem is a
consequence of (202).

(231) If for every a and b, a · b = a, then G is Abelian. The theorem is a
consequence of (223).

Let us consider G, A, and B. The functor A · B yielding a subset of G is
defined by the term

(Def. 31) {g · h : g ∈ A and h ∈ B}.

Now we state the propositions:

(232) x ∈ A·B if and only if there exists g and there exists h such that x = g ·h
and g ∈ A and h ∈ B.

(233) A ·B 6= ∅ if and only if A 6= ∅ and B 6= ∅. The theorem is a consequence
of (232).

(234) A ·B ⊆ −B +A+B.

(235) (A+B) · C ⊆ A · C +B · C. The theorem is a consequence of (224).

(236) A ·B · C = A · (B + C). The theorem is a consequence of (225).

(237) (−A) ·B = −A ·B. The theorem is a consequence of (227).

(238) {a} ·{b} = {a ·b}. The theorem is a consequence of (49), (64), (233), and
(234).

(239) {a} · {b, c} = {a · b, a · c}.
(240) {a, b} · {c} = {a · c, b · c}.
(241) {a, b} · {c, d} = {a · c, a · d, b · c, b · d}.

Let us consider G, A, and g. The functors: A · g and g · A yielding subsets
of G are defined by terms,
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(Def. 32) A · {g},
(Def. 33) {g} ·A,

respectively. Now we state the propositions:

(242) x ∈ A · g if and only if there exists h such that x = h · g and h ∈ A.

(243) x ∈ g ·A if and only if there exists h such that x = g · h and h ∈ A.

(244) g ·A ⊆ −A+ g +A. The theorem is a consequence of (243) and (74).

(245) A ·B · g = A · (B + g).

(246) A · g ·B = A · (g +B).

(247) g ·A ·B = g · (A+B).

(248) A · a · b = A · (a+ b). The theorem is a consequence of (236) and (64).

(249) a ·A · b = a · (A+ b).

(250) a · b ·A = a · (b+A). The theorem is a consequence of (238) and (236).

(251) A · g = −g + A + g. The theorem is a consequence of (234), (49), (74),
(73), and (242).

(252) (A+B) · a ⊆ A · a+B · a.

(253) A · 0G = A. The theorem is a consequence of (251), (83), and (8).

(254) If A 6= ∅, then 0G ·A = {0G}. The theorem is a consequence of (243) and
(218).

(255) (i) A · a · (−a) = A, and

(ii) A · (−a) · a = A.
The theorem is a consequence of (248) and (253).

(256) G is an Abelian additive group if and only if for every A and B such
that B 6= ∅ holds A ·B = A. The theorem is a consequence of (230), (238),
and (231).

(257) G is an Abelian additive group if and only if for every A and g, A ·g = A.
The theorem is a consequence of (256), (238), and (231).

(258) G is an Abelian additive group if and only if for every A and g such that
A 6= ∅ holds g · A = {g}. The theorem is a consequence of (256), (238),
and (231).

Let us consider G, H, and a. The functor H · a yielding a strict subgroup of
G is defined by

(Def. 34) the carrier of it = H · a.

Now we state the propositions:

(259) x ∈ H · a if and only if there exists g such that x = g · a and g ∈ H. The
theorem is a consequence of (242).
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(260) The carrier of H · a = −a + H + a. The theorem is a consequence of
(251).

(261) H · a · b = H · (a+ b). The theorem is a consequence of (248) and (105).

Let us consider a strict subgroup H of G. Now we state the propositions:

(262) H · 0G = H. The theorem is a consequence of (253) and (105).

(263) (i) H · a · (−a) = H, and

(ii) H · (−a) · a = H.
The theorem is a consequence of (261) and (262).

Now we state the propositions:

(264) (H1 ∩H2) · a = H1 · a∩ (H2 · a). The theorem is a consequence of (259),
(128), and (217).

(265) H = H · a .
Proof: Define F(element of G) = $1 ·a. Consider f being a function from
the carrier of G into the carrier of G such that for every g, f(g) = F(g)
from [15, Sch. 4]. Set g = f�(the carrier of H). rng g = the carrier of H · a
by [46, (62)], (88), (242), [14, (47)]. g is one-to-one by [46, (62)], (88), [14,
(47)], (217). �

(266) H is finite if and only if H · a is finite. The theorem is a consequence of
(265).

Let us consider G and a. Let H be a finite subgroup of G. Observe that H ·a
is finite.

Now we state the propositions:

(267) Let us consider a finite subgroup H of G. Then H = H · a .

(268) 0G · a = 0G. The theorem is a consequence of (238) and (218).

(269) Let us consider a strict subgroup H of G. If H · a = 0G, then H = 0G.
The theorem is a consequence of (266), (115), (265), and (116).

(270) Let us consider an additive group G, and an element a of G. Then
ΩG · a = ΩG. The theorem is a consequence of (225), (220), and (259).

(271) Let us consider a strict subgroup H of G. If H · a = G, then H = G.
The theorem is a consequence of (259), (217), and (108).

(272) |• : H| = |• : H · a|.
Proof: Define P[object, object] ≡ there exists b such that $1 = b + H

and $2 = b · a+H · a. For every object x such that x ∈ the left cosets of
H there exists an object y such that P[x, y]. Consider f being a function
such that dom f = the left cosets of H and for every object x such that
x ∈ the left cosets of H holds P[x, f(x)] from [4, Sch. 1]. For every x, y1,
and y2 such that x ∈ the left cosets of H and P[x, y1] and P[x, y2] holds
y1 = y2. rng f = the left cosets of H · a. f is one-to-one. �
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(273) If the left cosets of H is finite, then |• : H|N = |• : H · a|N. The theorem
is a consequence of (272).

(274) If G is an Abelian additive group, then for every strict subgroup H of G
and for every a, H · a = H. The theorem is a consequence of (260), (158),
(153), (155), and (105).

Let us consider G, a, and b. We say that a and b are conjugated if and only
if

(Def. 35) there exists g such that a = b · g.

Now we state the proposition:

(275) a and b are conjugated if and only if there exists g such that b = a · g.
The theorem is a consequence of (226).

Let us consider G, a, and b. Observe that a and b are conjugated is reflexive
and symmetric.

Now we state the propositions:

(276) If a and b are conjugated and b and c are conjugated, then a and c are
conjugated. The theorem is a consequence of (225).

(277) If a and 0G are conjugated or 0G and a are conjugated, then a = 0G.
The theorem is a consequence of (275) and (219).

(278) a · ΩG = {b : a and b are conjugated}. The theorem is a consequence of
(243).

Let us consider G and a. The functor a• yielding a subset of G is defined by
the term

(Def. 36) a · ΩG.

Now we state the propositions:

(279) x ∈ a• if and only if there exists b such that b = x and a and b are
conjugated. The theorem is a consequence of (278).

(280) a ∈ b• if and only if a and b are conjugated. The theorem is a consequence
of (279).

(281) a · g ∈ a•.
(282) a ∈ a•.
(283) If a ∈ b•, then b ∈ a•. The theorem is a consequence of (280).

(284) a• = b• if and only if a• meets b•. The theorem is a consequence of (280),
(279), and (276).

(285) a• = {0G} if and only if a = 0G. The theorem is a consequence of (280),
(279), and (277).

(286) a• + A = A + a•. The theorem is a consequence of (280), (202), (226),
(224), (221), (225), (279), and (275).
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Let us consider G, A, and B. We say that A and B are conjugated if and
only if

(Def. 37) there exists g such that A = B · g.

Now we state the propositions:

(287) A and B are conjugated if and only if there exists g such that B = A · g.
The theorem is a consequence of (255).

(288) A and A are conjugated. The theorem is a consequence of (253).

(289) If A and B are conjugated, then B and A are conjugated. The theorem
is a consequence of (255).

Let us consider G, A, and B. Let us observe that A and B are conjugated
is reflexive and symmetric.

Now we state the propositions:

(290) If A and B are conjugated and B and C are conjugated, then A and C

are conjugated. The theorem is a consequence of (248).

(291) {a} and {b} are conjugated if and only if a and b are conjugated.
Proof: If {a} and {b} are conjugated, then a and b are conjugated by
(287), (238), (275), [17, (3)]. Consider g such that a · g = b. {b} = {a} · g.
�

(292) If A and H1 are conjugated, then there exists a strict subgroup H2 of G
such that the carrier of H2 = A.

Let us consider G and A. The functor A• yielding a family of subsets of G
is defined by the term

(Def. 38) {B : A and B are conjugated}.

Now we state the propositions:

(293) x ∈ A• if and only if there exists B such that x = B and A and B are
conjugated.

(294) A ∈ B• if and only if A and B are conjugated.

(295) A · g ∈ A•. The theorem is a consequence of (287).

(296) A ∈ A•.
(297) If A ∈ B•, then B ∈ A•. The theorem is a consequence of (294).

(298) A• = B• if and only if A• meets B•. The theorem is a consequence of
(294) and (290).

(299) {a}• = {{b} : b ∈ a•}. The theorem is a consequence of (287), (275),
(280), (238), and (291).

(300) If G is finite, then A• is finite.

Let us consider G, H1, and H2. We say that H1 and H2 are conjugated if
and only if
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(Def. 39) there exists g such that the additive magma of H1 = H2 · g.

Now we state the propositions:

(301) Let us consider strict subgroups H1, H2 of G. Then H1 and H2 are
conjugated if and only if there exists g such that H2 = H1 ·g. The theorem
is a consequence of (263).

(302) Let us consider a strict subgroup H1 of G. Then H1 and H1 are conju-
gated. The theorem is a consequence of (262).

(303) Let us consider strict subgroups H1, H2 of G. If H1 and H2 are conju-
gated, then H2 and H1 are conjugated. The theorem is a consequence of
(263).

Let us consider G. Let H1, H2 be strict subgroups of G. Observe that H1
and H2 are conjugated is reflexive and symmetric.

Now we state the proposition:

(304) Let us consider strict subgroups H1, H2 of G. Suppose H1 and H2 are
conjugated and H2 and H3 are conjugated. Then H1 and H3 are conjuga-
ted. The theorem is a consequence of (261).

In the sequel L denotes a subset of SubGrG.
Let us consider G and H. The functor H• yielding a subset of SubGrG is

defined by

(Def. 40) for every object x, x ∈ it iff there exists a strict subgroup H1 of G such
that x = H1 and H and H1 are conjugated.

Now we state the propositions:

(305) If x ∈ H•, then x is a strict subgroup of G.

(306) Let us consider strict subgroups H1, H2 of G. Then H1 ∈ H2
• if and

only if H1 and H2 are conjugated.

Let us consider a strict subgroup H of G. Now we state the propositions:

(307) H · g ∈ H•. The theorem is a consequence of (301).

(308) H ∈ H•.
Let us consider strict subgroups H1, H2 of G. Now we state the propositions:

(309) If H1 ∈ H2•, then H2 ∈ H1•. The theorem is a consequence of (306).

(310) H1
• = H2

• if and only if H1• meets H2•. The theorem is a consequence
of (308), (305), (306), and (304).

Now we state the propositions:

(311) If G is finite, then H• is finite.

(312) Let us consider a strict subgroup H1 of G. Then H1 and H2 are conju-
gated if and only if H1 and H2 are conjugated.
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Let us consider G. Let I1 be a subgroup of G. We say that I1 is normal if
and only if

(Def. 41) for every a, I1 · a = the additive magma of I1.

Let us note that there exists a subgroup of G which is strict and normal.
From now on N2 denotes a normal subgroup of G.
Now we state the propositions:

(313) (i) 0G is normal, and

(ii) ΩG is normal.

(314) Let us consider strict, normal subgroups N1, N2 of G. Then N1 ∩N2 is
normal. The theorem is a consequence of (264).

(315) Let us consider a strict subgroup H of G. If G is an Abelian additive
group, then H is normal.

(316) H is a normal subgroup of G if and only if for every a, a+H = H + a.
The theorem is a consequence of (260), (79), (151), (83), (153), (155), and
(105).

Let us consider a subgroup H of G. Now we state the propositions:

(317) H is a normal subgroup of G if and only if for every a, a+H ⊆ H + a.
The theorem is a consequence of (316), (205), (151), (155), (152), (80),
and (83).

(318) H is a normal subgroup of G if and only if for every a, H + a ⊆ a+H.
The theorem is a consequence of (316), (205), (151), (155), (152), (80),
and (83).

(319) H is a normal subgroup of G if and only if for every A, A+H = H +A.
The theorem is a consequence of (140), (149), (316), (150), and (141).

Let us consider a strict subgroup H of G. Now we state the propositions:

(320) H is a normal subgroup of G if and only if for every a, H is a subgroup
of H · a. The theorem is a consequence of (100), (260), (80), (83), (207),
and (318).

(321) H is a normal subgroup of G if and only if for every a, H ·a is a subgroup
of H. The theorem is a consequence of (100), (260), (80), (83), (207), and
(317).

(322) H is a normal subgroup of G if and only if H• = {H}.
Proof: If H is a normal subgroup of G, then H• = {H} by (301), (308),
[17, (31)]. H is normal. �

(323) H is a normal subgroup of G if and only if for every a such that a ∈ H
holds a• ⊆ H. The theorem is a consequence of (279), (275), (259), and
(226).
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Let us consider strict, normal subgroups N1, N2 of G. Now we state the
propositions:

(324) N1 +N2 = N2 +N1.

(325) There exists a strict, normal subgroup N of G such that the carrier of
N = N1 + N2. The theorem is a consequence of (124), (75), (316), (76),
and (77).

Now we state the propositions:

(326) Let us consider a normal subgroup N of G. Then the left cosets of
N = the right cosets of N . The theorem is a consequence of (316).

(327) Let us consider a subgroup H of G. Suppose the left cosets of H is finite
and |• : H|N = 2. Then H is a normal subgroup of G.
Proof: There exists a finite set B such that B = the left cosets of
H and |• : H|N = B . Consider x, y being objects such that x 6= y

and the left cosets of H = {x, y}. H ∈ the left cosets of H. Consider
z3 being an object such that {x, y} = {H, z3}. H misses z3 by (155),
(161), [34, (29)], [17, (4)].

⋃
(the left cosets of H) = the carrier of G and⋃

(the left cosets of H) = H ∪ z3.
⋃

(the right cosets of H) = the carrier
of G and z3 = (the carrier of G) \H. There exists a finite set C such that
C = the right cosets of H and |• : H|N = C . Consider z1, z2 being objects
such that z1 6= z2 and the right cosets of H = {z1, z2}. H ∈ the right
cosets of H. Consider z4 being an object such that {z1, z2} = {H, z4}. H
misses z4 by (155), (167), [34, (29)], [17, (4)]. �

Let us consider G and A. The functor N(A) yielding a strict subgroup of G
is defined by

(Def. 42) the carrier of it = {h : A · h = A}.
Now we state the propositions:

(328) x ∈ N(A) if and only if there exists h such that x = h and A · h = A.

(329) A• = |• : N(A)|.
Proof: Define P[object, object] ≡ there exists a such that $1 = A · a and
$2 = N(A) + a. For every object x such that x ∈ A• there exists an object
y such that P[x, y]. Consider f being a function such that dom f = A•

and for every object x such that x ∈ A• holds P[x, f(x)] from [4, Sch. 1].
For every x, y1, and y2 such that x ∈ A• and P[x, y1] and P[x, y2] holds
y1 = y2. rng f = the right cosets of N(A). f is one-to-one. �

(330) Suppose A• is finite or the left cosets of N(A) is finite. Then there exists
a finite set C such that

(i) C = A•, and

(ii) C = |• : N(A)|N.
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The theorem is a consequence of (329).

(331) a• = |• : N({a})|.
Proof: Define F(object) = {$1}. Consider f being a function such that
dom f = a• and for every object x such that x ∈ a• holds f(x) = F(x)
from [14, Sch. 3]. rng f = {a}•. f is one-to-one by [17, (3)]. �

(332) Suppose a• is finite or the left cosets of N({a}) is finite. Then there exists
a finite set C such that

(i) C = a•, and

(ii) C = |• : N({a})|N.

The theorem is a consequence of (331).

Let us consider G and H. The functor N(H) yielding a strict subgroup of G
is defined by the term

(Def. 43) N(H).

Let us consider a strict subgroup H of G. Now we state the propositions:

(333) x ∈ N(H) if and only if there exists h such that x = h and H · h = H.
The theorem is a consequence of (328).

(334) H• = |• : N(H)|.
Proof: Define P[object, object] ≡ there exists a strict subgroup H1 of G
such that $1 = H1 and $2 = H1. For every object x such that x ∈ H• there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = H• and for every object x such that x ∈ H• holds P[x, f(x)]
from [4, Sch. 1]. rng f = H

•. f is one-to-one. �

(335) Suppose H• is finite or the left cosets of N(H) is finite. Then there exists
a finite set C such that

(i) C = H•, and

(ii) C = |• : N(H)|N.

The theorem is a consequence of (334).

Now we state the proposition:

(336) Let us consider a strict additive group G, and a strict subgroup H of G.
Then H is a normal subgroup of G if and only if N(H) = G. The theorem
is a consequence of (333) and (108).

Let us consider a strict additive group G. Now we state the propositions:

(337) N(0G) = G. The theorem is a consequence of (313) and (336).

(338) N(ΩG) = G. The theorem is a consequence of (313) and (336).
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4. Topological Groups – TOPGRP 1

In the sequel S, R denote 1-sorted structures, X denotes a subset of R, T
denotes a topological structure, x denotes a set, H denotes a non empty additive
magma, P , Q, P1, Q1 denote subsets of H, and h denotes an element of H.

Now we state the proposition:

(339) If P ⊆ P1 and Q ⊆ Q1, then P +Q ⊆ P1 +Q1.

Let us assume that P ⊆ Q. Now we state the propositions:

(340) P + h ⊆ Q+ h. The theorem is a consequence of (74).

(341) h+ P ⊆ h+Q. The theorem is a consequence of (73).

From now on a denotes an element of G.
Now we state the propositions:

(342) a ∈ −A if and only if −a ∈ A.

(343) A ⊆ B if and only if −A ⊆ −B.

(344) (add inverseG)◦A = −A.

(345) (add inverseG)−1(A) = −A.

(346) add inverseG is one-to-one. The theorem is a consequence of (9).

(347) rng add inverseG = the carrier of G.

Let G be an additive group. One can verify that add inverseG is one-to-one
and onto.

Now we state the propositions:

(348) (add inverseG)−1 = add inverseG.

(349) (The addition of H)◦(P ×Q) = P +Q.

Let G be a non empty additive magma and a be an element of G. The
functors: a+ and +a yielding functions from G into G are defined by conditions,

(Def. 44) for every element x of G, a+(x) = a+ x,

(Def. 45) for every element x of G, +a(x) = x+ a,

respectively. Let G be an additive group. One can verify that a+ is one-to-one
and onto and +a is one-to-one and onto.

Now we state the propositions:

(350) (h+)◦P = h+ P . The theorem is a consequence of (73).

(351) (+h)◦P = P + h. The theorem is a consequence of (74).

(352) (a+)−1 = (−a)+.

(353) (+a)−1 = +(−a).

We consider topological additive group structures which extend additive
magmas and topological structures and are systems

〈〈a carrier, an addition, a topology〉〉
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where the carrier is a set, the addition is a binary operation on the carrier, the
topology is a family of subsets of the carrier.

Let A be a non empty set, R be a binary operation on A, and T be a family
of subsets of A. Let us observe that 〈〈A,R, T 〉〉 is non empty.

Let x be a set, R be a binary operation on {x}, and T be a family of
subsets of {x}. Observe that 〈〈{x}, R, T 〉〉 is trivial and every 1-element additive
magma is additive group-like, add-associative, and Abelian and there exists a
topological additive group structure which is strict and non empty and there
exists a topological additive group structure which is strict, topological space-
like, and 1-element.

Let G be an additive group-like, add-associative, non empty topological
additive group structure. We say that G is inverse-continuous if and only if

(Def. 46) add inverseG is continuous.

Let G be a topological space-like topological additive group structure. We
say that G is continuous if and only if

(Def. 47) for every function f from G × G into G such that f = the addition of
G holds f is continuous.

One can check that there exists a topological space-like, additive group-like,
add-associative, 1-element topological additive group structure which is strict,
Abelian, inverse-continuous, and continuous.

A semi additive topological group is a topological space-like, additive group-
like, add-associative, non empty topological additive group structure.

A topological additive group is an inverse-continuous, continuous semi ad-
ditive topological group. Now we state the propositions:

(354) Let us consider a continuous, non empty, topological space-like topolo-
gical additive group structure T , elements a, b of T , and a neighbourhood
W of a + b. Then there exists an open neighbourhood A of a and there
exists an open neighbourhood B of b such that A+B ⊆W .

(355) Let us consider a topological space-like, non empty topological additive
group structure T . Suppose for every elements a, b of T for every neighbo-
urhood W of a + b, there exists a neighbourhood A of a and there exists
a neighbourhood B of b such that A+B ⊆W . Then T is continuous.
Proof: For every point W of T × T and for every neighbourhood G of
f(W ), there exists a neighbourhood H of W such that f◦H ⊆ G by [32,
(10)], (349). �

(356) Let us consider an inverse-continuous semi additive topological group T ,
an element a of T , and a neighbourhood W of −a. Then there exists an
open neighbourhood A of a such that −A ⊆W .

(357) Let us consider a semi additive topological group T . Suppose for every
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element a of T for every neighbourhood W of −a, there exists a neigh-
bourhood A of a such that −A ⊆ W . Then T is inverse-continuous. The
theorem is a consequence of (344).

(358) Let us consider a topological additive group T , elements a, b of T , and a
neighbourhood W of a+−b. Then there exists an open neighbourhood A of
a and there exists an open neighbourhood B of b such that A+−B ⊆W .
The theorem is a consequence of (354) and (356).

(359) Let us consider a semi additive topological group T . Suppose for every
elements a, b of T for every neighbourhood W of a + −b, there exists a
neighbourhood A of a and there exists a neighbourhood B of b such that
A+−B ⊆W . Then T is a topological additive group.
Proof: For every element a of T and for every neighbourhood W of −a,
there exists a neighbourhood A of a such that −A ⊆ W by [28, (4)]. For
every elements a, b of T and for every neighbourhood W of a + b, there
exists a neighbourhood A of a and there exists a neighbourhood B of b
such that A+B ⊆W . �

LetG be a continuous, non empty, topological space-like topological additive
group structure and a be an element of G. One can check that a+ is continuous
and +a is continuous.

Let us consider a continuous semi additive topological group G and an ele-
ment a of G. Now we state the propositions:

(360) a+ is a homeomorphism of G. The theorem is a consequence of (352).

(361) +a is a homeomorphism of G. The theorem is a consequence of (353).

Let G be a continuous semi additive topological group and a be an element
of G. The functors: a+ and +a yield homeomorphisms of G. Now we state the
proposition:

(362) Let us consider an inverse-continuous semi additive topological group G.
Then add inverseG is a homeomorphism of G. The theorem is a consequ-
ence of (348).

Let G be an inverse-continuous semi additive topological group. Let us note
that the functor add inverseG yields a homeomorphism of G. Let us note that
every semi additive topological group which is continuous is also homogeneous.

Let us consider a continuous semi additive topological group G, a closed
subset F of G, and an element a of G. Now we state the propositions:

(363) F + a is closed. The theorem is a consequence of (351).

(364) a+ F is closed. The theorem is a consequence of (350).

Let G be a continuous semi additive topological group, F be a closed subset
of G, and a be an element of G. Let us note that F + a is closed and a + F is
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closed.
Now we state the proposition:

(365) Let us consider an inverse-continuous semi additive topological group
G, and a closed subset F of G. Then −F is closed. The theorem is a
consequence of (344).

Let G be an inverse-continuous semi additive topological group and F be a
closed subset of G. One can verify that −F is closed.

Let us consider a continuous semi additive topological group G, an open
subset O of G, and an element a of G. Now we state the propositions:

(366) O + a is open. The theorem is a consequence of (351).

(367) a+O is open. The theorem is a consequence of (350).

Let G be a continuous semi additive topological group, A be an open subset
of G, and a be an element of G. One can check that A+ a is open and a+A is
open.

Now we state the proposition:

(368) Let us consider an inverse-continuous semi additive topological group
G, and an open subset O of G. Then −O is open. The theorem is a
consequence of (344).

Let G be an inverse-continuous semi additive topological group and A be an
open subset of G. Observe that −A is open.

Let us consider a continuous semi additive topological group G and subsets
A, O of G.

Let us assume that O is open. Now we state the propositions:

(369) O +A is open.
Proof: Int(O +A) = O +A by [48, (16)], (74), [48, (22)]. �

(370) A+O is open.
Proof: Int(A+O) = A+O by [48, (16)], (73), [48, (22)]. �

Let G be a continuous semi additive topological group, A be an open subset
of G, and B be a subset of G. Note that A+B is open and B +A is open.

Now we state the propositions:

(371) Let us consider an inverse-continuous semi additive topological group G,
a point a of G, and a neighbourhood A of a. Then −A is a neighbourhood
of −a. The theorem is a consequence of (343).

(372) Let us consider a topological additive group G, a point a of G, and a
neighbourhood A of a+−a. Then there exists an open neighbourhood B
of a such that B + −B ⊆ A. The theorem is a consequence of (358) and
(342).
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(373) Let us consider an inverse-continuous semi additive topological group
G, and a dense subset A of G. Then −A is dense. The theorem is a
consequence of (345).

Let G be an inverse-continuous semi additive topological group and A be a
dense subset of G. Observe that −A is dense.

Let us consider a continuous semi additive topological group G, a dense
subset A of G, and a point a of G. Now we state the propositions:

(374) a+A is dense. The theorem is a consequence of (350).

(375) A+ a is dense. The theorem is a consequence of (351).

Let G be a continuous semi additive topological group, A be a dense subset
of G, and a be a point of G. Let us observe that A + a is dense and a + A is
dense.

Now we state the proposition:

(376) Let us consider a topological additive group G, a basis B of 0G, and a
dense subset M of G. Then {V +x, where V is a subset of G, x is a point
of G : V ∈ B and x ∈M} is a basis of G.
Proof: Set Z = {V +x, where V is a subset of G, x is a point of G : V ∈
B and x ∈ M}. Z ⊆ the topology of G by [38, (12)]. For every subset W
of G such that W is open for every point a of G such that a ∈ W there
exists a subset V of G such that V ∈ Z and a ∈ V and V ⊆ W by (8),
[28, (3)], (74), (372). Z ⊆ 2α, where α is the carrier of G. �

One can check that every topological additive group is regular.

Acknowledgement: The author wants to express his gratitude to the ano-
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