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Summary. In this article, we mainly formalize in Mizar [2] the equiva-
lence among a few compactness definitions of metric spaces, norm spaces, and
the real line. In the first section, we formalized general topological properties of
metric spaces. We discussed openness and closedness of subsets in metric spaces
in terms of convergence of element sequences. In the second section, we firstly
formalize the definition of sequentially compact, and then discuss the equivalen-
ce of compactness, countable compactness, sequential compactness, and totally
boundedness with completeness in metric spaces.

In the third section, we discuss compactness in norm spaces. We formalize
the equivalence of compactness and sequential compactness in norm space. In
the fourth section, we formalize topological properties of the real line in terms
of convergence of real number sequences. In the last section, we formalize the
equivalence of compactness and sequential compactness in the real line. These
formalizations are based on [20], [5], [17], [14], and [4].
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1. Topological Properties of Metric Spaces

Now we state the propositions:

(1) Let us consider a non empty set M , and a sequence x of M . Suppose
rng x is finite. Then there exists an element z of M such that

(i) x−1({z}) ⊆ N, and

(ii) x−1({z}) is infinite.
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Proof: Define X (object) = x−1({$1}). Set K = {X (w), where w is
an element of M : w ∈ rng x}. K is finite from [18, Sch. 21]. For eve-
ry set Y such that Y ∈ K holds Y is finite. domx ⊆

⋃
K by [6, (3)].

�

(2) Let us consider a subset X of N. Suppose X is infinite. Then there exists
an increasing sequence N of N such that rngN ⊆ X.
Proof: Reconsider B = 2X as a non empty set. Reconsider N0 = min∗X
as an element of N. Reconsider Y0 = X as an element of B. Define
P[object, object, set, object, set] ≡ $5 = $3 \ {$2} and $4 = min∗$5. For
every natural number n and for every element x of N and for every ele-
ment y of B, there exists an element x1 of N and there exists an element y1

of B such that P[n, x, y, x1, y1]. Consider N being a sequence of N, Y being
a sequence of B such that N(0) = N0 and Y (0) = Y0 and for every natural
number n, P[n,N(n), Y (n), N(n + 1), Y (n + 1)] from [13, Sch. 3]. Define
Q[natural number] ≡ N($1) = min∗(Y ($1)) and N($1) ∈ Y ($1) and Y ($1)
is infinite and Y ($1) ⊆ N. For every natural number i such that Q[i] holds
Q[i + 1] by [8, (31)]. For every natural number i, Q[i] from [1, Sch. 2].
rngN ⊆ X by [7, (11)]. For every natural number i, N(i) < N(i+ 1). �

(3) Let us consider a non empty metric space M , and a subset V of Mtop.
Suppose V is open. Then there exists a family F of subsets of M such
that

(i) F = {Ball(x, r), where x is an element of M, r is a real number : r >
0 and Ball(x, r) ⊆ V }, and

(ii) V =
⋃
F .

Proof: Set F = {Ball(x, r), where x is an element of M, r is a real num-
ber: r > 0 and Ball(x, r) ⊆ V }. For every object z such that z ∈ F holds
z ∈ the open set family of M by [3, (29)]. Reconsider Q =

⋃
F as a subset

of Mtop. For every object z, z ∈ V iff z ∈ Q by [9, (15)], [12, (1), (11)]. �

(4) Let us consider a non empty metric space M , a subset X of Mtop, and
an element p of M . Then p ∈ X if and only if for every real number r such
that 0 < r holds X meets Ball(p, r).

(5) Let us consider a non empty metric space M , a subset X of Mtop, and
an object x. Then x ∈ X if and only if there exists a sequence S of M
such that for every natural number n, S(n) ∈ X and S is convergent and
limS = x.

(6) Let us consider a non empty metric space M , and a subset X of Mtop.
Then X is closed if and only if for every sequence S of M such that for
every natural number n, S(n) ∈ X and S is convergent holds limS ∈ X.
The theorem is a consequence of (5).
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(7) Let us consider non empty metric spaces X, Y, and a function f from
Xtop into Ytop. Then f is continuous if and only if for every sequence S of
X and for every sequence T of Y such that S is convergent and T = f · S
holds T is convergent and limT = f(limS).
Proof: For every subset B of Ytop such that B is closed holds f−1(B) is
closed by [7, (15)], (6). �

2. Compactness in Metric Spaces

Let M be a non empty metric space and X be a subset of M . We say that
X is sequentially compact if and only if

(Def. 1) for every sequence S1 of M such that rngS1 ⊆ X there exists a sequence
S2 of M such that there exists an increasing sequence N of N such that
S2 = S1 ·N and S2 is convergent and limS2 ∈ X.

Let us observe that every subset of M which is empty is also sequentially
compact.

We say that M is sequentially compact if and only if

(Def. 2) ΩM is sequentially compact.

Now we state the proposition:

(8) Let us consider a non empty metric space M , a subset X of M , a subset
Y of Mtop, an element x of M , and an element y of Mtop. Suppose X = Y

and x = y. Then y is an accumulation point of Y if and only if for every
real number r such that 0 < r holds Ball(x, r) meets X \ {x}.

Let us consider a non empty metric space M . Now we state the propositions:

(9) If Mtop is countably-compact, then M is sequentially compact.
Proof: For every subset X of M such that X is infinite there exists
an element x of M such that for every real number r such that 0 < r

holds Ball(x, r) meets X \ {x} by [16, (28)], [11, (16)], (8). For every
sequence x of M such that rng x ⊆ ΩM there exists a sequence x1 of M
such that there exists an increasing sequence N of N such that x1 = x ·N
and x1 is convergent and limx1 ∈ ΩM by (1), (2), [7, (4), (38), (15)]. �

(10) If M is sequentially compact, then Mtop is countably-compact.
Proof: For every subset X of M such that X is infinite there exists
an element x of M such that for every real number r such that 0 < r

holds Ball(x, r) meets X \ {x} by [15, (3)], [7, (2)], [19, (26)], [7, (112)].
For every subset A of Mtop such that A is infinite holds DerA is not empty
by (8), [11, (16)]. �

(11) Mtop is compact if and only if M is sequentially compact. The theorem
is a consequence of (9).
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(12) M is totally bounded and complete if and only if M is sequentially
compact. The theorem is a consequence of (11).

Let us consider a non empty metric space M and a non empty subset S of
M . Now we state the propositions:

(13) S is sequentially compact if and only if M�S is sequentially compact.
Proof: For every sequence S1 of M such that rngS1 ⊆ S there exists
a sequence S2 of M such that there exists an increasing sequence N of N
such that S2 = S1 ·N and S2 is convergent and limS2 ∈ S by [7, (6)]. �

(14) S is sequentially compact if and only if M�S is compact. The theorem
is a consequence of (11) and (13).

(15) Let us consider a non empty metric space M , a subset S of M , and
a subset T of Mtop. If T = S, then T is compact iff S is sequentially
compact. The theorem is a consequence of (11) and (13).

(16) Let us consider a non empty metric space M , a non empty subset S of
M , and a non empty subset T of Mtop. Suppose T = S. Then Mtop�T is
countably-compact if and only if S is sequentially compact. The theorem
is a consequence of (11) and (13).

(17) Let us consider a non empty metric space M , and a non empty subset
S of M . Then M�S is totally bounded and complete if and only if S is
sequentially compact. The theorem is a consequence of (12) and (13).

3. Compactness in Norm Spaces

Now we state the propositions:

(18) Let us consider a real normed space N , a subset S of N , and a subset T
of MetricSpaceNormN . If S = T , then S is compact iff T is sequentially
compact.

(19) Let us consider a real normed space N , a subset S of N , and a subset T
of TopSpaceNormN . If S = T , then S is compact iff T is compact. The
theorem is a consequence of (15) and (18).

4. Topological Properties of the Real Line

Let us consider a sequence S1 of the metric space of real numbers, a sequence
s of real numbers, a real number g, and an element g1 of the metric space of
real numbers. Now we state the propositions:

(20) Suppose S1 = s and g = g1. Then for every real number p such that
0 < p there exists a natural number n such that for every natural number
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m such that n ¬ m holds |s(m) − g| < p if and only if for every real
number p such that 0 < p there exists a natural number n such that for
every natural number m such that n ¬ m holds ρ(S1(m), g1) < p.
Proof: For every real number p such that 0 < p there exists a natural
number n such that for every natural number m such that n ¬ m holds
|s(m)− g| < p by [9, (11)]. �

(21) If S1 = s and g = g1, then s is convergent and lim s = g iff S1 is
convergent and limS1 = g1. The theorem is a consequence of (20).

(22) Let us consider a sequence S1 of the metric space of real numbers, and
a sequence s of real numbers. Suppose S1 = s and s is convergent. Then

(i) S1 is convergent, and

(ii) limS1 = lim s.

The theorem is a consequence of (20).

5. Compactness in the Real Line

Now we state the propositions:

(23) Let us consider a subset N of R, and a subset M of R1. Suppose N = M .
Then for every family F of subsets of R such that F is a cover of N and for
every subset P of R such that P ∈ F holds P is open there exists a family
G of subsets of R such that G ⊆ F and G is cover of N and finite if and
only if for every family F1 of subsets of R1 such that F1 is cover of M and
open there exists a family G1 of subsets of R1 such that G1 ⊆ F1 and G1

is cover of M and finite.
Proof: Reconsider F1 = F as a family of subsets of R1. For every subset
P1 of R1 such that P1 ∈ F1 holds P1 is open by [10, (39)]. Consider G1

being a family of subsets of R1 such that G1 ⊆ F1 and G1 is cover of M
and finite. �

(24) Let us consider a subset N of R. Then N is compact if and only if for
every family F of subsets of R such that F is a cover of N and for every
subset P of R such that P ∈ F holds P is open there exists a family G of
subsets of R such that G ⊆ F and G is cover of N and finite. The theorem
is a consequence of (23).
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Double Sequences and Iterated Limits in
Regular Space
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Summary. First, we define in Mizar [5], the Cartesian product of two
filters bases and the Cartesian product of two filters. After comparing the product
of two Fréchet filters on N (F1) with the Fréchet filter on N×N (F2), we compare
limF1 and limF2 for all double sequences in a non empty topological space.

Endou, Okazaki and Shidama formalized in [14] the “convergence in Pring-
sheim’s sense” for double sequence of real numbers. We show some basic corre-
spondences between the p-convergence and the filter convergence in a topological
space. Then we formalize that the double sequence (xm,n = 1

m+1 )(m,n) ∈ N× N
converges in “Pringsheim’s sense” but not in Frechet filter on N× N sense.

In the next section, we generalize some definitions: “is convergent in the first
coordinate”, “is convergent in the second coordinate”, “the lim in the first coor-
dinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff
space.

Finally, we generalize two theorems: (3) and (4) from [14] in the case of
double sequences and we formalize the “iterated limit” theorem (“Double limit”
[7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were
inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
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Keywords: filter; double limits; Pringsheim convergence; iterated limits; re-
gular space
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1. Preliminaries

From now on x denotes an object, X, Y, Z denote sets, i, j, k, l, m, n denote
natural numbers, r, s denote real numbers, n1 denotes an element of the ordered
N, and A denotes a subset of N× N.
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Now we state the propositions:

(1) Let us consider a finite subset W of X. If X \W ⊆ Z, then X \ Z is
finite.

(2) If Z ⊆ X and X \ Z is finite, then there exists a finite subset W of X
such that X \W = Z.

(3) Let us consider sets X1, X2, a family S1 of subsets of X1, and a family
S2 of subsets of X2. Then {s, where s is a subset of X1 ×X2 : there exist
sets s1, s2 such that s1 ∈ S1 and s2 ∈ S2 and s = s1 × s2} is a family of
subsets of X1 ×X2.

(4) If x ∈ X × Y, then x is pair.

(5) If 0 < r, then there exists m such that m is not zero and 1
m < r.

(6) Let us consider points x, y of the metric space of real numbers. Then
there exist real numbers x1, y1 such that

(i) x = x1, and

(ii) y = y1, and

(iii) ρ(x, y) = ρR (x, y), and

(iv) ρ(x, y) = ρ1(〈x〉, 〈y〉), and

(v) ρ(x, y) = |x1 − y1|.

(7) Let us consider points x, y of (E1)top. Then there exist points x2, y2 of
the metric space of real numbers and there exist real numbers x1, y1 such
that x2 = x1 and y2 = y1 and x = 〈x1〉 and y = 〈y1〉 and ρ(x2, y2) =
ρR (x1, y1) and ρ(x2, y2) = ρ1(〈x1〉, 〈y1〉) and ρ(x2, y2) = |x1 − y1|.

(8) Let us consider points x, y of E1, and real numbers r, s. If x = 〈r〉 and
y = 〈s〉, then ρ(x, y) = |r − s|. The theorem is a consequence of (7).

One can check that N× N is countable and N× N is denumerable.
Now we state the propositions:

(9) the set of all 〈〈0, n〉〉 where n is a natural number is infinite.
Proof: Define F(object) = 〈〈0, $1〉〉. Consider f being a function such that
dom f = N and for every object x such that x ∈ N holds f(x) = F(x)
from [9, Sch. 3]. f is one-to-one. rng f = the set of all 〈〈0, n〉〉 where n is
a natural number by [9, (3)]. �

(10) If i ¬ k and j ¬ l, then Zi × Zj ⊆ Zk × Zl.
(11) (N \ Zm)× (N \ Zn) ⊆ N× N \ Zm × Zn.

(12) If n = n1 and n ¬ m, then m ∈ ↑n1.

(13) If n = n1 and m ∈ ↑n1, then n ¬ m.

(14) If n = n1, then ↑n1 = N \ Zn.
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Proof: ↑n1 ⊆ N \ Zn by [12, (50)], (13), [1, (44)]. N \ Zn ⊆ ↑n1 by [1,
(44)], [12, (50)]. �

(15) π1(A) = {x, where x is an element of N : there exists an element y of
N such that 〈〈x, y〉〉 ∈ A}.

(16) π2(A) = {y, where y is an element of N : there exists an element x of
N such that 〈〈x, y〉〉 ∈ A}.

(17) Let us consider a finite subset A of N×N. Then there exists m and there
exists n such that A ⊆ Zm × Zn. The theorem is a consequence of (15)
and (16).

(18) Let us consider a non empty set X. Then every filter of X is a proper
filter of 2X⊆ .

(19) Let us consider a non empty set X, and a filter F of X. Then there
exists a filter base B of X such that

(i) B = F , and

(ii) [B) = F .

(20) Let us consider a non empty topological space T , and a filter F of the car-
rier of T . If x ∈ LimFilter(F), then x is a cluster point of F ,T .

(21) Let us consider an element B of the base of Frechet filter. Then there
exists n such that B = N \ Zn. The theorem is a consequence of (14).

(22) Let us consider a subset B of N. Suppose B = N \Zn. Then B is an ele-
ment of the base of Frechet filter. The theorem is a consequence of (14).

2. Cartesian Product of Two Filters

From now on X, Y, X1, X2 denote non empty sets, A1, B1 denote filter bases
of X1, A2, B2 denote filter bases of X2, F1 denotes a filter of X1, F2 denotes
a filter of X2, B3 denotes a generalized basis of F1.

Let X1, X2 be non empty sets, B1 be a filter base of X1, and B2 be a filter
base of X2. The functor B1 × B2 yielding a filter base of X1 ×X2 is defined by
the term

(Def. 1) the set of all B1 ×B2 where B1 is an element of B1, B2 is an element of
B2.

Now we state the propositions:

(23) Suppose F1 = [B1) and F1 = [A1) and F2 = [B2) and F2 = [A2). Then
[B1 × B2) = [A1 ×A2).

(24) If B3 = B1, then [B1] = F1.
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(25) There exists B1 such that [B1) = F1. The theorem is a consequence of
(24).

Let X1, X2 be non empty sets, F1 be a filter of X1, and F2 be a filter of X2.
The functor 〈F1,F2) yielding a filter of X1 ×X2 is defined by

(Def. 2) there exists a filter base B1 of X1 and there exists a filter base B2 of X2

such that [B1) = F1 and [B2) = F2 and it = [B1 × B2).

Let B1 be a generalized basis of F1 and B2 be a generalized basis of F2. The
functor B1 × B2 yielding a generalized basis of 〈F1,F2) is defined by

(Def. 3) there exists a filter base B3 of X1 and there exists a filter base B4 of X2

such that B1 = B3 and B2 = B4 and it = B3 × B4.

Let n be a natural number. The functor ↑2(n) yielding a subset of N× N is
defined by

(Def. 4) for every element x of N× N, x ∈ it iff there exist natural numbers n1,
n2 such that n1 = (x)1 and n2 = (x)2 and n ¬ n1 and n ¬ n2.

Now we state the proposition:

(26) 〈〈n, n〉〉 ∈↑2(n).

Let us consider n. One can check that ↑2(n) is non empty.
Now we state the propositions:

(27) If 〈〈i, j〉〉 ∈↑2(n), then 〈〈i+ k, j〉〉, 〈〈i, j + l〉〉 ∈↑2(n).

(28) ↑2 (n) is an infinite subset of N × N. The theorem is a consequence of
(17).

(29) If n1 = n, then ↑2(n) = ↑n1×↑n1. The theorem is a consequence of (12)
and (13).

(30) If m = n− 1, then ↑2(n) ⊆ N× N \ Segm× Segm.
Proof: Reconsider y = x as an element of N× N. Consider n1, n2 being
natural numbers such that n1 = (y)1 and n2 = (y)2 and n ¬ n1 and
n ¬ n2. x /∈ Segm× Segm by [3, (1)]. �

(31) ↑2(n) ⊆ N× N \ Zn × Zn.
Proof: Reconsider y = x as an element of N× N. Consider n1, n2 being
natural numbers such that n1 = (y)1 and n2 = (y)2 and n ¬ n1 and
n ¬ n2. x /∈ Zn × Zn by [16, (10)]. �

(32) ↑2(n) = (N \ Zn) × (N \ Zn). The theorem is a consequence of (14) and
(29).

(33) There exists n such that ↑2 (n) ⊆ (N \ Zi) × (N \ Zj). The theorem is
a consequence of (4).

(34) If n = max(i, j), then ↑2(n) ⊆ (↑2(i)) ∩ (↑2(j)).
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Let n be a natural number. The functor ↓2(n) yielding a subset of N× N is
defined by

(Def. 5) for every element x of N× N, x ∈ it iff there exist natural numbers n1,
n2 such that n1 = (x)1 and n2 = (x)2 and n1 < n and n2 < n.

Now we state the propositions:

(35) ↓2(n) = Zn × Zn.
Proof: ↓2(n) ⊆ Zn × Zn by [1, (44)]. Consider y2, y1 being objects such
that y2 ∈ Zn and y1 ∈ Zn and x = 〈〈y2, y1〉〉. �

(36) Let us consider a finite subset A of N×N. Then there exists n such that
A ⊆↓2(n).
Proof: Considerm, n such thatA ⊆ Zm×Zn. Reconsiderm1 = max(m,n)
as a natural number. A ⊆↓2(m1) by [1, (39)], [11, (96)], (35). �

(37) ↓2(n) is a finite subset of N× N. The theorem is a consequence of (35).

3. Comparison between Cartesian Product of Frechet Filter on N
and the Frechet Filter of N× N

Let us consider an element x of (the base of Frechet filter) × (the base of
Frechet filter). Now we state the propositions:

(38) There exists i and there exists j such that x = (N \ Zi)× (N \ Zj). The
theorem is a consequence of (21).

(39) There exists n such that ↑2 (n) ⊆ x. The theorem is a consequence of
(38) and (33).

(40) (The base of Frechet filter) × (the base of Frechet filter) is a filter base
of N× N.

(41) There exists a generalized basis B of FrechetFilter(N) such that

(i) B = the base of Frechet filter, and

(ii) B × B is a generalized basis of 〈FrechetFilter(N), FrechetFilter(N)).

The functor ↑2N yielding a filter base of N× N is defined by the term

(Def. 6) the set of all ↑2(n) where n is a natural number.

Now we state the propositions:

(42) ↑2N and (the base of Frechet filter)× (the base of Frechet filter) are equ-
ivalent generators. The theorem is a consequence of (22), (32), and (39).

(43) [(the base of Frechet filter)×(the base of Frechet filter)) = 〈FrechetFilter
(N),FrechetFilter(N)). The theorem is a consequence of (41).

(44) [↑2N) = 〈FrechetFilter(N),FrechetFilter(N)).
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(45) 〈FrechetFilter(N), FrechetFilter(N)) is finer than FrechetFilter(N × N).
The theorem is a consequence of (17), (11), (22), and (43).

(46) (i) N×N\the set of all 〈〈0, n〉〉 where n is a natural number ∈ 〈Frechet
Filter(N),FrechetFilter(N)), and

(ii) N× N \ the set of all 〈〈0, n〉〉 where n is a natural number /∈ Frechet
Filter(N× N).

Proof: Set X = N×N\the set of all 〈〈0, n〉〉 where n is a natural number.
↑2(1) ⊆ X by (32), [1, (44)]. X /∈ FrechetFilter(N × N) by [12, (51)], [15,
(5)], (9). �

(47) FrechetFilter(N× N) 6= 〈FrechetFilter(N),FrechetFilter(N)).

4. Topological Space and Double Sequence

In the sequel T denotes a non empty topological space, s denotes a function
from N × N into the carrier of T , M denotes a subset of the carrier of T , and
F1, F2 denote filters of the carrier of T . Now we state the propositions:

(48) If F2 is finer than F1, then LimFilter(F1) ⊆ LimFilter(F2).

(49) Let us consider a function f from X into Y, and filters F1, F2 of X.
Suppose F2 is finer than F1. Then the image of filter F2 under f is finer
than the image of filter F1 under f .

(50) s−1(M) ∈ FrechetFilter(N×N) if and only if there exists a finite subset
A of N× N such that s−1(M) = N× N \A.

(51) s−1(M) ∈ 〈FrechetFilter(N),FrechetFilter(N)) if and only if there exists
n such that ↑2(n) ⊆ s−1(M). The theorem is a consequence of (43), (39),
and (42).

(52) The image of filter FrechetFilter(N × N) under s = {M , where M is
a subset of the carrier of T : there exists a finite subset A of N× N such
that s−1(M) = N× N \A}. The theorem is a consequence of (50).

(53) The image of filter 〈FrechetFilter(N),FrechetFilter(N)) under s = {M ,
where M is a subset of the carrier of T : there exists a natural number n
such that ↑2(n) ⊆ s−1(M)}. The theorem is a consequence of (51).

Let us consider a point x of T . Now we state the propositions:

(54) x ∈ limFrechetFilter(N×N) s if and only if for every neighbourhood A of x,
there exists a finite subset B of N×N such that s−1(A) = N×N \B. The
theorem is a consequence of (52).

(55) x ∈ limFrechetFilter(N×N) s if and only if for every neighbourhood A of x,
N × N \ s−1(A) is finite. The theorem is a consequence of (54), (1), and
(2).
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(56) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every neighbour-
hood A of x, there exists a natural number n such that ↑2(n) ⊆ s−1(A).
The theorem is a consequence of (53).

Let us consider a point x of T and a generalized basis B of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:

(57) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every element B
of B, there exists a natural number n such that ↑2 (n) ⊆ s−1(B). The
theorem is a consequence of (56).

(58) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists a finite subset A of N × N such that s−1(B) = N × N \ A. The
theorem is a consequence of (54), (1), and (55).

(59) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every element B of
B, there exists a natural number n such that s◦(↑2(n)) ⊆ B. The theorem
is a consequence of (57).

(60) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists a finite subset A of N× N such that s◦(N× N \A) ⊆ B.
Proof: For every neighbourhood A of x, N × N \ s−1(A) is finite by [4,
(2)], [19, (143)], [9, (76)]. �

(61) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists n and there exists m such that s◦(N × N \ Zn × Zm) ⊆ B. The
theorem is a consequence of (60) and (17).

(62) x ∈ s◦(↑2(n)) if and only if there exists i and there exists j such that
n ¬ i and n ¬ j and x = s(i, j).

(63) x ∈ s◦(N× N \ Zi × Zj) if and only if there exist natural numbers n, m
such that (i ¬ n or j ¬ m) and x = s(n,m).
Proof: Consider n, m being natural numbers such that i ¬ n or j ¬ m

and x = s(n,m). 〈〈n, m〉〉 /∈ Zi × Zj by [1, (44)]. �

Let us consider a point x of T and a generalized basis B of BooleanFilter
ToFilter(the neighborhood system of x). Now we state the propositions:

(64) x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every element B
of B, there exists a natural number n such that for every natural numbers
n1, n2 such that n ¬ n1 and n ¬ n2 holds s(n1, n2) ∈ B. The theorem is
a consequence of (62) and (59).

(65) x ∈ limFrechetFilter(N×N) s if and only if for every element B of B, there
exists i and there exists j such that for every m and n such that i ¬ m or
j ¬ n holds s(m,n) ∈ B. The theorem is a consequence of (61).

(66) limFrechetFilter(N×N) s ⊆ lim[↑2N) s. The theorem is a consequence of (42),
(43), (45), (48), and (49).
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5. Metric Space and Double Sequence

Now we state the propositions:

(67) Let us consider a non empty metric space M , a point p of M , a point x
of Mtop, and a function s from N×N into Mtop. Suppose x = p. Then x ∈
lim〈FrechetFilter(N),FrechetFilter(N)) s if and only if for every non zero natural
number m, there exists a natural number n such that for every natural
numbers n1, n2 such that n ¬ n1 and n ¬ n2 holds s(n1, n2) ∈ {q, where
q is a point of M : ρ(p, q) < 1

m}.
Proof: x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s iff for every non zero natural
number m, there exists a natural number n such that for every natural
numbers n1, n2 such that n ¬ n1 and n ¬ n2 holds s(n1, n2) ∈ {q, where
q is a point of M : ρ(p, q) < 1

m} by [13, (6)], (64). �

(68) Let us consider a non empty metric space M , a point p of M , a point x of
Mtop, a function s from N×N into Mtop, and a function s2 from N×N into
M . Suppose x = p and s = s2. Then x ∈ lim〈FrechetFilter(N),FrechetFilter(N)) s

if and only if for every non zero natural number m, there exists a natural
number n such that for every natural numbers n1, n2 such that n ¬ n1

and n ¬ n2 holds s2(n1, n2) ∈ {q, where q is a point of M : ρ(p, q) < 1
m}.

6. One-dimensional Euclidean Metric Space and Double Sequence

In the sequel R denotes a function from N× N into R.
Now we state the proposition:

(69) Let us consider a point x of (E1)top, a point y of E1, a generalized basis B
of BooleanFilterToFilter(the neighborhood system of x), and an element b
of B. Suppose x = y and B = Ballsx. Then there exists a natural number
n such that b = {q, where q is an element of E1 : ρ(y, q) < 1

n}.
Let s be a function from N× N into R. The functor # s yielding a function

from N× N into R1 is defined by the term

(Def. 7) s.

Now we state the propositions:

(70) Let us consider a function s from N × N into (E1)top, and a point y of
E1. Then s◦(↑2(n)) ⊆ {q, where q is an element of E1 : ρ(y, q) < 1

m} if and
only if for every object x such that x ∈ s◦(↑2(n)) there exist real numbers
r1, r2 such that x = 〈r1〉 and y = 〈r2〉 and |r2 − r1| < 1

m . The theorem is
a consequence of (8).

(71) r ∈ lim〈FrechetFilter(N),FrechetFilter(N)) #R if and only if for every non zero
natural number m, there exists a natural number n such that for every
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natural numbers n1, n2 such that n ¬ n1 and n ¬ n2 holds |R(n1, n2)−r| <
1
m .
Proof: Reconsider p = r as a point of the metric space of real numbers.
for every non zero natural number m, there exists a natural number n
such that for every natural numbers n1, n2 such that n ¬ n1 and n ¬
n2 holds R(n1, n2) ∈ {q, where q is a point of the metric space of real
numbers : ρ(p, q) < 1

m} iff for every non zero natural number m, there
exists a natural number n such that for every natural numbers n1, n2 such
that n ¬ n1 and n ¬ n2 holds |R(n1, n2)− r| < 1

m by (6), [8, (60)]. �

7. Basic Relations Convergence in Pringsheim’s Sense and Filter
Convergence

Now we state the propositions:

(72) Suppose lim〈FrechetFilter(N),FrechetFilter(N)) #R 6= ∅. Then there exists a re-
al number x such that lim〈FrechetFilter(N),FrechetFilter(N)) #R = {x}.

(73) If R is P-convergent, then P-limR ∈ lim〈FrechetFilter(N),FrechetFilter(N)) #R.
The theorem is a consequence of (71).

(74) R is P-convergent if and only if lim〈FrechetFilter(N),FrechetFilter(N)) #R 6= ∅.
The theorem is a consequence of (71) and (5).

(75) Suppose R is P-convergent. Then {P-limR} =
lim〈FrechetFilter(N),FrechetFilter(N)) #R. The theorem is a consequence of (73)
and (72).

(76) Suppose lim〈FrechetFilter(N),FrechetFilter(N)) #R is not empty. Then

(i) R is P-convergent, and

(ii) {P-limR} = lim〈FrechetFilter(N),FrechetFilter(N)) #R.

8. Example: Double Sequence Converges in Pringsheim’s Sense but
not in Frechet Filter of N× N Sense

The functor DblSeq-ex1 yielding a function from N×N into R is defined by

(Def. 8) for every natural numbers m, n, it(m,n) = 1
m+1 .

Now we state the propositions:

(77) Let us consider a non zero natural number m. Then there exists a natural
number n such that for every natural numbers n1, n2 such that n ¬ n1

and n ¬ n2 holds |(DblSeq-ex1)(n1, n2)− 0| < 1
m .

(78) 0 ∈ lim〈FrechetFilter(N),FrechetFilter(N)) # DblSeq-ex1.



182 roland coghetto

(79) limFrechetFilter(N×N) # DblSeq-ex1 = ∅. The theorem is a consequence of
(66), (42), (43), (72), (78), and (65).

(80) lim〈FrechetFilter(N),FrechetFilter(N)) # DblSeq-ex1 6=
limFrechetFilter(N×N) # DblSeq-ex1.

9. Correspondence with some Definitions from [14]

Let X1, X2 be non empty sets, F1 be a filter of X1, Y be a Hausdorff, non
empty topological space, and f be a function from X1 ×X2 into Y. Assume for
every element x of X2, limF1 curry′(f, x) 6= ∅. The functor lim1(f,F1) yielding
a function from X2 into Y is defined by

(Def. 9) for every element x of X2, {it(x)} = limF1 curry′(f, x).

Let F2 be a filter ofX2. Assume for every element x ofX1, limF2 curry(f, x) 6=
∅. The functor lim2(f,F2) yielding a function from X1 into Y is defined by

(Def. 10) for every element x of X1, {it(x)} = limF2 curry(f, x).

Now we state the propositions:

(81) Every function from X into R is a function from X into R1.
(82) Every sequence of R is a function from N into R1.

From now on f denotes a function from Ωthe ordered N into R1 and s1 denotes
a function from N into R.

Now we state the propositions:

(83) Suppose f = s1 and LimF(f) 6= ∅. Then

(i) s1 is convergent, and

(ii) there exists a real number z such that z ∈ LimF(f) and for every real
number p such that 0 < p there exists a natural number n such that
for every natural number m such that n ¬ m holds |s1(m)− z| < p.

Proof: Consider x being an object such that x ∈ LimF(f). Reconsider
y = x as a point of (the metric space of real numbers)top. Reconsider
z = y as a real number. Consider y1 being a point of the metric space
of real numbers such that y1 = y and Balls y = {Ball(y1,

1
n), where n is

a natural number : n 6= 0}. For every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n ¬ m holds |s1(m)− z| < p by (5), [12, (84), (50)], [2, (18)]. �

(84) If f = s1 and LimF(f) 6= ∅, then LimF(f) = {lim s1}.
Proof: Consider x being an object such that x ∈ LimF(f). Consider u
being an object such that LimF(f) = {u}. LimF(f) = {lim s1} by (83),
[11, (3)]. �
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(85) Let us consider a function f from Ωα into T , and a sequence s of T . If
f = s, then LimF(f) = LimF(s), where α is the ordered N.

(86) Let us consider a function f from Ωα into T , and a function g from N
into T . If f = g, then LimF(f) = LimF(g), where α is the ordered N.

(87) Let us consider a function f from N into R1. Suppose f = s1 and
LimF(f) 6= ∅. Then LimF(f) = {lim s1}. The theorem is a consequen-
ce of (84).

(88) for every element x of N, limFrechetFilter(N) curry′(#R, x) 6= ∅ if and only
if R is convergent in the first coordinate. The theorem is a consequence of
(5).

(89) for every element x of N, limFrechetFilter(N) curry(#R, x) 6= ∅ if and only
if R is convergent in the second coordinate. The theorem is a consequence
of (5).

Let us consider an element t of N, a function f from N × N into R1, and
a function s1 from N× N into R. Now we state the propositions:

(90) Suppose f = s1 and for every element x of N, limFrechetFilter(N) curry(f, x)
6= ∅. Then limFrechetFilter(N) curry(f, t) = {lim curry(s1, t)}. The theorem is
a consequence of (87).

(91) Suppose f = s1 and for every element x of N, limFrechetFilter(N) curry′(f, x)
6= ∅. Then limFrechetFilter(N) curry′(f, t) = {lim curry′(s1, t)}. The theorem
is a consequence of (87).

(92) Let us consider a Hausdorff, non empty topological space Y, and a func-
tion f from N×N into Y. Suppose for every element x of N, limFrechetFilter(N)

curry′(f, x) 6= ∅ and f = R and Y = R1. Then lim1(f,FrechetFilter(N)) =
the lim in the first coordinate of R. The theorem is a consequence of (91).

(93) Let us consider a non empty, Hausdorff topological space Y, and a func-
tion f from N×N into Y. Suppose for every element x of N, limFrechetFilter(N)

curry(f, x) 6= ∅ and f = R and Y = R1. Then lim2(f,FrechetFilter(N)) =
the lim in the second coordinate of R. The theorem is a consequence of
(90).

10. Regular Space, Double Limit and Iterated Limit

From now on Y denotes a non empty topological space, x denotes a point
of Y, and f denotes a function from X1 ×X2 into Y.

Now we state the proposition:

(94) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Let us consider
a subset V of Y. Suppose V is open and x ∈ V . Then there exists an ele-
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ment B1 of B1 and there exists an element B2 of B2 such that f◦(B1 ×
B2) ⊆ V .

Let us consider a neighbourhood U of x. Now we state the propositions:

(95) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that f◦(B1 ×B2) ⊆ IntU .

(96) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that for every element y of B1, f◦({y} × B2) ⊆ IntU . The
theorem is a consequence of (95).

(97) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that for every element z of X1 for every element y of Y such
that z ∈ B1 and y ∈ limF2 curry(f, z) holds y ∈ IntU .
Proof: Consider B1 being an element of B1, B2 being an element of B2

such that f◦(B1 × B2) ⊆ IntU . For every element y of B1, f◦({y} ×
B2) ⊆ IntU by [11, (95)], [19, (125)]. For every element z of B1 and for
every element y of Y such that y ∈ limF2 curry(f, z) holds the image of
filter F2 under curry(f, z) is a proper filter of 2ΩY

⊆ and IntU ∈ the image of
filter F2 under curry(f, z) and y is a cluster point of the image of filter F2

under curry(f, z),Y by (18), [19, (132)], [10, (95)], (20). For every element
z of B1 and for every element y of Y such that y ∈ limF2 curry(f, z) holds
y ∈ IntU by [4, (25)]. �

(98) Suppose x ∈ lim〈F1,F2) f and [B1) = F1 and [B2) = F2. Then suppose U
is closed. Then there exists an element B1 of B1 and there exists an element
B2 of B2 such that for every element z of X2 for every element y of Y such
that z ∈ B2 and y ∈ limF1 curry′(f, z) holds y ∈ IntU .
Proof: Consider B1 being an element of B1, B2 being an element of B2

such that f◦(B1×B2) ⊆ IntU . For every element y of B2, f◦(B1×{y}) ⊆
IntU by [11, (95)], [19, (125)]. For every element z of B2 and for every
element y of Y such that y ∈ limF1 curry′(f, z) holds the image of filter
F1 under curry′(f, z) is a proper filter of 2ΩY

⊆ and IntU ∈ the image of
filter F1 under curry′(f, z) and y is a cluster point of the image of filter F1

under curry′(f, z),Y by (18), [19, (132)], [10, (95)], (20). For every element
z of B2 and for every element y of Y such that y ∈ limF1 curry′(f, z) holds
y ∈ IntU by [4, (25)]. �

Let us consider a Hausdorff, regular, non empty topological space Y and
a function f from X1 ×X2 into Y. Now we state the propositions:

(99) Suppose for every element x ofX2, limF1 curry′(f, x) 6= ∅. Then lim〈F1,F2)
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f ⊆ limF2 lim1(f,F1). The theorem is a consequence of (19) and (98).

(100) Suppose for every element x of X1, limF2 curry(f, x) 6= ∅. Then lim〈F1,F2)
f ⊆ limF1 lim2(f,F2). The theorem is a consequence of (19) and (97).

Let us consider non empty sets X1, X2, a filter F1 of X1, a filter F2 of X2,
a Hausdorff, regular, non empty topological space Y, and a function f from
X1 ×X2 into Y. Now we state the propositions:

(101) Suppose lim〈F1,F2) f 6= ∅ and for every element x of X1, limF2 curry(f, x)
6= ∅. Then lim〈F1,F2) f = limF1 lim2(f,F2). The theorem is a consequence
of (100).

(102) Suppose lim〈F1,F2) f 6= ∅ and for every element x of X2, limF1 curry′(f, x)
6= ∅. Then lim〈F1,F2) f = limF2 lim1(f,F1). The theorem is a consequence
of (99).

(103) Suppose lim〈F1,F2) f 6= ∅ and for every element x of X1, limF2 curry(f, x)
6= ∅ and for every element x of X2, limF1 curry′(f, x) 6= ∅. Then limF1 lim2

(f,F2) = limF2 lim1(f,F1). The theorem is a consequence of (102) and
(101).
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Summary. Representation of a non zero integer as a signed product of
primes is unique similarly to its representations in various types of positional
notations [4], [3]. The study focuses on counting the prime factors of integers in
the form of sums or differences of two equal powers (thus being represented by 1
and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they pro-
vide a couple of shortcuts useful for integer factorization, which could serve in
further development of Mizar projects [2]. This could be regarded as one of the
important benefits of proof formalization [9].

MSC: 11A51 03B35

Keywords: integers; factorization; primes

MML identifier: NEWTON03, version: 8.1.05 5.37.1275

From now on a, b, c, d, x, j, k, l, m, n, o denote natural numbers, p, q, t, z,
u, v denote integers, and a1, b1, c1, d1 denote complexes.

Now we state the propositions:

(1) a1
n+k + b1

n+k = a1
n · (a1

k + b1
k) + b1

k · (b1n − a1
n).

(2) a1
n+k − b1n+k = a1

n · (a1
k − b1k) + b1

k · (a1
n − b1n).

(3) a1
m+2 + b1

m+2 = (a1 + b1) · (a1
m+1 + b1

m+1)− a1 · b1 · (a1
m + b1

m).

Let a be a natural number. Let us note that a is trivial if and only if the
condition (Def. 1) is satisfied.

(Def. 1) a ¬ 1.

Let a be a complex. Let us note that the functor a2 yields a set and is defined
by the term
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(Def. 2) a2.

Let a, b be integers. The functors: gcd(a, b) and lcm(a, b) yielding natural
numbers are defined by terms

(Def. 3) gcd(|a|, |b|),
(Def. 4) lcm(|a|, |b|),

respectively. Let a, b be positive real numbers. Note that max(a, b) is positive
and min(a, b) is positive.

Let a be a non zero integer and b be an integer. One can check that gcd(a, b)
is non zero.

Let a be a non zero complex and n be a natural number. Let us observe that
an is non zero.

Let a be a non trivial natural number and n be a non zero natural number.
Note that an is non trivial.

Let a be an integer. One can check that |a| is natural.
Let a be an even integer. Note that |a| is even.
Let a be a natural number. Let us note that lcm(a, a) reduces to a and

gcd(a, a) reduces to a.
Let a be a non zero integer and b be an integer. Note that gcd(a, b) is positive.
Let a, b be integers. One can check that gcd(a, gcd(a, b)) reduces to gcd(a, b)

and lcm(a, lcm(a, b)) reduces to lcm(a, b).
Let a be an integer. Observe that gcd(a, 1) reduces to 1 and gcd(a + 1, a)

reduces to 1.
Now we state the proposition:

(4) Let us consider integers t, z. Then gcd(tn, zn) = (gcd(t, z))n.

Let a be an integer and n be a natural number.
One can verify that gcd((a+ 1)n, an) reduces to 1.
Let us consider a1 and b1. One can verify that a1

0 − b10 reduces to 0.
Let a be a non negative real number and n be a natural number. One can

verify that an is non negative and there exists an odd natural number which is
non trivial and there exists an even natural number which is non trivial.

Let a be a positive real number and n be a natural number. One can verify
that an is positive.

Let a be an integer. One can verify that a · a is square and a
a is square and

there exists an element of N which is non square and every element of N which
is prime is also non square and there exists a prime natural number which is
even and there exists a prime natural number which is odd and every integer
which is prime is also non square.

Let a be a square element of N. Observe that
√
a is natural.
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Let a be an integer. Let us note that a2 is square and a · a is square and
there exists an integer which is non square and every natural number which is
zero is also trivial and there exists a natural number which is square and there
exists an element of N which is non zero and there exists a square element of
N which is non trivial and every natural number which is trivial is also square
and every integer which is non square is also non zero.

Now we state the propositions:

(5) Let us consider integers a, b, c, d. If a | b and c | d, then a · c | b · d.

(6) Let us consider integers a, b. Then a | b if and only if lcm(a, b) = |b|.
Proof: If a | b, then lcm(a, b) = |b| by [8, (16)], [7, (44)]. �

Let a be an integer. Observe that lcm(a, 0) reduces to 0.
Let a be a natural number. Note that lcm(a, 1) reduces to a.
Let us consider a and b. Let us observe that lcm(a · b, a) reduces to a · b and

lcm(gcd(a, b), b) reduces to b and gcd(a, lcm(a, b)) reduces to a.
Let us consider integers a, b. Now we state the propositions:

(7) |a · b| = (gcd(a, b)) · lcm(a, b).

(8) lcm(an, bn) = lcm(a, b)n. The theorem is a consequence of (4) and (7).

Let a be a square element of N and b be a square element of N. One can
check that gcd(a, b) is square and lcm(a, b) is square.

Let a, b be square integers. One can verify that gcd(a, b) is square and
lcm(a, b) is square.

Now we state the proposition:

(9) Let us consider an integer t. Then t is odd if and only if gcd(t, 2) = 1.
Proof: If t is odd, then gcd(t, 2) = 1 by [13, (1)], [14, (5)]. �

Let t be an integer. One can check that t is odd if and only if the condition
(Def. 5) is satisfied.

(Def. 5) gcd(t, 2) = 1.

Let a be an odd integer. Let us observe that |a| is odd and −a is odd.
Let a, b be even integers. Note that gcd(a, b) is even.
Let a be an integer and b be an odd integer. Note that gcd(a, b) is odd.
Let a be a natural number. One can check that |−a| reduces to a.
Let t, z be even integers. One can check that t+ z is even and t− z is even

and t · z is even.
Let t, z be odd integers. Note that t+ z is even and t− z is even and t · z is

odd.
Let t be an odd integer and z be an even integer. Let us observe that t+ z

is odd and t− z is odd and t · z is even.
Now we state the proposition:
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(10) Let us consider a non zero, square integer a, and an integer b. If a · b is
square, then b is square.

Let a be a square element of N and n be a natural number. Let us observe
that an is square.

Let a be a square integer. Note that an is square.
Let a be a non zero, square integer and b be a non square integer. Let us

note that a · b is non square.
Let a be an element of N and b be an even natural number. Note that ab is

square.
Let a be a non square element of N and b be an odd natural number. Note

that ab is non square.
Let a be a non zero, square integer. Note that a+ 1 is non square.
Let a be a non zero, square element of N. Let us observe that a + 1 is non

square.
Let a be a non zero, square object and b be a non square element of N. Let

us observe that a · b is non square.
Let a be a non zero, square integer and n, m be natural numbers. Let us

observe that an + am is non square.
Let a be a non zero, square element of N. Let us note that an + am is non

square.
Let a be a non zero, square integer and p be a prime natural number. Note

that p · a is non square.
Let a be a non trivial element of N. One can verify that a− 1 is non zero.
Let q be a square integer. Let us observe that |q| is square.
Let x be a non zero integer. Let us observe that |x| is non zero.
Let a be a non trivial, square element of N. Let us observe that a− 1 is non

square.
Let a be a non trivial element of N. Let us note that a · (a−1) is non square.
Let a, b be integers and n, m be natural numbers. One can verify that

(an + bn) · (am − bm) + (am + bm) · (an − bn) is even and (an + bn) · (am + bm) +
(am − bm) · (an − bn) is even.

Let a be an even integer. Let us note that a
2 is integer.

Let a, b be non zero natural numbers. Note that a+ b is non trivial.
Let b be a non zero natural number and a, c be non trivial natural numbers.

Let us observe that c-count(ca-count(b)) reduces to a-count(b).
Let a, b be non zero integers. Let us note that a

gcd(a,b) is integer and lcm(a,b)
b

is integer and lcm(a,b)
gcd(a,b) is integer.

Let a be an even integer. One can verify that gcd(a, 2) reduces to 2.
Let us observe that there exists an even natural number which is non zero.
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Let a be an even integer and n be a non zero natural number. Let us observe
that a · n is even and an is even.

Let a be an integer and n be a zero natural number. One can check that a ·n
is even and an is odd.

Let a be an element of N. Note that |a| reduces to a.
One can check that every integer which is non negative is also natural.
Let a be a non negative real number and n be a non zero natural number.

Let us note that n
√
an reduces to a and (n

√
a )n reduces to a.

Now we state the propositions:

(11) If a - b, then a · c - b.
(12) Let us consider non negative real numbers a, b, and a positive natural

number n. Then an = bn if and only if a = b.

Let a be a real number and n be an even natural number. One can verify
that an is non negative.

Let a be a negative real number and n be an odd natural number. One can
verify that an is negative.

Now we state the propositions:

(13) Let us consider real numbers a, b, and an odd natural number n. Then
an = bn if and only if a = b. The theorem is a consequence of (12).

(14) If a and b are relatively prime, then for every non zero natural number
n, a · b = cn iff n

√
a, n
√
b ∈ N and c = n

√
a · n
√
b.

Proof: If a · b = cn, then n
√
a, n
√
b ∈ N and c = n

√
a · n
√
b by [14, (30)], [11,

(11)], [1, (14)]. �

(15) Let us consider a non zero natural number n, an integer a, and an integer
b. Then bn | an if and only if b | a.
Proof: If bn | an, then b | a by [10, (1)], [14, (3)], (4), [5, (3)]. �

(16) Let us consider an integer a, and natural numbers m, n. If m ­ n, then
an | am.

(17) Let us consider integers a, b. If a | b and bm | c, then am | c. The theorem
is a consequence of (4).

(18) Let us consider integers a, p. If p2·n+k | a2, then pn | a. The theorem is
a consequence of (16), (4), and (12).

(19) Let us consider odd, square elements a, b of N. Then 8 | a− b.
Let us consider odd natural numbers a, b. Now we state the propositions:

(20) If 4 | a− b, then 4 - an + bn.

(21) If 4 | an + bn, then 4 - a2·n + b2·n.

(22) If 4 | an − bn, then 4 - a2·n + b2·n.
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(23) Let us consider odd natural numbers a, b. If 2m | an − bn, then 2m+1 |
a2·n − b2·n.

(24) a1
3− b13 = (a1− b1) · (a1

2 + b1
2 + a1 · b1). The theorem is a consequence

of (2).

(25) Let us consider an odd natural number n. Then 3 | an + bn if and only
if 3 | a+ b.
Proof: Consider k such that n = 2 · k+ 1. If 3 | an + bn, then 3 | a+ b by
[14, (173)], [5, (4)], [8, (1), (10)]. �

(26) Let us consider an integer c. If c | a− b, then c | an − bn.

(27) Let us consider an odd natural number n. Then 3 | an − bn if and only
if 3 | a− b.
Proof: Consider k such that n = 2 · k+ 1. If 3 | an− bn, then 3 | a− b by
[14, (173)], [8, (10)], [5, (4)], [8, (1)]. �

(28) Let us consider a natural number n. Then an ≡ (a− b)n (mod b).

(29) Let us consider a non trivial natural number a. Then there exists a prime
natural number n such that n | a.

(30) Let us consider a prime natural number p. If p | (p+(k+1))·(p−(k+1)),
then k + 1 ­ p.

(31) Let us consider a prime natural number p, and a non zero natural number
k. If k < p, then p - p2 − k2. The theorem is a consequence of (30).

(32) Let us consider integers a, b, and an odd, prime natural number p. If
p - b, then if p | a− b, then p - a+ b.

(33) Let us consider a non zero, square element a of N, and a prime natural
number p. If p | a, then a+ p is not square.

(34) Let us consider a non zero, square element a of N, and a prime natural
number p. If a+ p is square, then p = 2 ·

√
a+ 1.

(35) Let us consider integers a, b, c. Suppose a and b are relatively prime.
Then gcd(c, a · b) = (gcd(c, a)) · (gcd(c, b)).

(36) Let us consider a prime natural number p. If a | pn, then there exists k
such that a = pk.

Let us consider non zero natural numbers a, b and a prime natural number
p. Now we state the propositions:

(37) If a+ b = p, then a and b are relatively prime.

(38) If an + bn = pn, then a and b are relatively prime.

(39) Let us consider non zero natural numbers a, b. If c ­ a + b, then ck+1 ·
(a+ b) > ak+2 + bk+2.
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(40) Let us consider natural numbers a, c, and a non zero natural number b.
If a · b < c < a · (b+ 1), then a - c and c - a.

(41) Let us consider real numbers a, b. Then a+ b = min(a, b) + max(a, b).

(42) Let us consider non negative real numbers a, b. Then

(i) max(an, bn) = (max(a, b))n, and

(ii) min(an, bn) = (min(a, b))n.

(43) Let us consider a prime natural number p. Suppose a ·b = pn. Then there
exist natural numbers k, l such that

(i) a = pk, and

(ii) b = pl, and

(iii) k + l = n.

(44) Let us consider non trivial natural numbers a, b. If a and b are relatively
prime, then a - b and b - a.

(45) Let us consider a non trivial natural number a, and a prime natural
number p. If p > a, then p - a and a - p. The theorem is a consequence of
(44).

(46) Let us consider a prime natural number p. Then

(i) gcd(a, p) = 1, or

(ii) gcd(a, p) = p.

(47) Let us consider a non trivial natural number a, and a prime natural
number p. If a | pn, then p | a. The theorem is a consequence of (46).

(48) Let us consider odd natural numbers a, b, and an even natural number
m. Then 2-count(am + bm) = 1.

(49) Let us consider a non zero natural number a. Then there exists an odd
natural number k such that a = 22-count(a) · k.

(50) Let us consider a non zero natural number b. Suppose a > b. Then there
exists a prime natural number p such that p-count(a) > p-count(b).
Proof: If for every prime natural number p, p-count(a) ¬ p-count(b),
then a ¬ b by [12, (20)], [1, (14)]. �

(51) Let us consider natural numbers a, b, c. Suppose a 6= 1 and b 6= 0 and
c 6= 0 and b > a-count(c). Then ab - c. The theorem is a consequence of
(11).

Let us consider a non zero integer b and an integer a. Now we state the
propositions:

(52) If |a| 6= 1, then a|a|-count(|b|) | b and a(|a|-count(|b|))+1 - b.
(53) If |a| 6= 1, then if an | b and an+1 - b, then n = |a|-count(|b|).
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(54) Let us consider a non zero natural number b, and a non trivial natural
number a. Then a | b if and only if a-count(gcd(a, b)) = 1.
Proof: If a | b, then a-count(gcd(a, b)) = 1 by [14, (3)], [6, (22)]. �

(55) Let us consider non zero natural numbers b, n, and a non trivial natural
number a. Then a-count(gcd(a, b)) = 1 if and only if an-count((gcd(a, b))n)
= 1. The theorem is a consequence of (15), (54), and (4).

(56) Let us consider a non zero natural number b, and a non trivial natural
number a. Then a-count(gcd(a, b)) = 0 if and only if a-count(gcd(a, b)) 6=
1. The theorem is a consequence of (54).

Let a, b be integers. The functor a-count(b) yielding a natural number is
defined by the term

(Def. 6) |a|-count(|b|).
Let a be an integer. Assume |a| 6= 1. Let b be a non zero integer. One can

check that the functor a-count(b) is defined by

(Def. 7) ait | b and ait+1 - b.
Now we state the propositions:

(57) Let us consider a prime natural number p, and non zero integers a, b.
Then p-count(a · b) = (p-count(a)) + (p-count(b)).

(58) Let us consider a non trivial natural number a, and a non zero natural
number b. Then aa-count(b) ¬ b.

(59) Let us consider a non trivial natural number a, and a non zero integer
b. Then an | b if and only if n ¬ a-count(b).
Proof: If an | b, then n ¬ a-count(b) by [8, (9)], [7, (89)], [1, (13)]. If
an - b, then a-count(b) < n by [8, (9)], [7, (89)]. �

(60) Let us consider a non trivial natural number a, a non zero integer b,
and a non zero natural number n. Then n · (a-count(b)) ¬ a-count(bn) <
n · ((a-count(b)) + 1). The theorem is a consequence of (4) and (59).

(61) Let us consider a non trivial natural number a, and non zero natural
numbers b, n. If b < a, then a-count(bn) < n. The theorem is a consequence
of (60).

(62) Let us consider a non trivial natural number a, and a non zero natural
number b. If b < an, then a-count(b) < n. The theorem is a consequence
of (59).

(63) Let us consider non zero natural numbers a, b, and a non trivial natural
number n. Then a+ b-count(an + bn) < n. The theorem is a consequence
of (62).

(64) Let us consider non zero natural numbers a, b. Then gcd(a, b) = 1 if and
only if for every non trivial natural number c, (c-count(a))·(c-count(b)) = 0.
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Proof: If gcd(a, b) = 1, then for every non trivial natural number c,
(c-count(a)) · (c-count(b)) = 0 by [6, (27)]. If for every prime natural
number c, (c-count(a)) · (c-count(b)) = 0, then gcd(a, b) = 1 by [6, (27)].
�

Let us consider a non zero, even natural number m and odd natural numbers
a, b. Now we state the propositions:

(65) If a 6= b, then 2-count(a2·m−b2·m) ­ (2-count(am−bm))+1. The theorem
is a consequence of (12), (23), and (59).

(66) If a 6= b, then 2-count(a2·m−b2·m) = (2-count(am−bm))+1. The theorem
is a consequence of (12), (57), and (48).

Let us consider a prime natural number p and integers a, b. Now we state
the propositions:

(67) If |a| 6= |b|, then p-count(a2 − b2) = (p-count(a− b)) + (p-count(a+ b)).

(68) If |a| 6= |b|, then p-count(a3 − b3) = (p-count(a− b)) + (p-count(a2 + a ·
b+ b2)). The theorem is a consequence of (24).

(69) Let us consider non zero natural numbers a, b. Then a
gcd(a,b) = lcm(a,b)

b .

Let us consider a non zero natural number b. Now we state the propositions:

(70) lcm(a, a · n + b) = ((a·nb ) + 1) · lcm(a, b). The theorem is a consequence
of (69).

(71) lcm(a, (n ·a+1) ·b) = (n ·a+1) · lcm(a, b). The theorem is a consequence
of (70).

(72) Let us consider a non trivial natural number a, and non zero natural
numbers n, b. Then a-count(b) ­ n · (an-count(b)). The theorem is a con-
sequence of (51).

Let us consider odd integers a, b. Now we state the propositions:

(73) 4 | a− b if and only if 4 - a+ b.

(74) 2-count(a2 + b2) = 1. The theorem is a consequence of (5) and (73).

(75) Let us consider a prime natural number p, and natural numbers a, b.
Suppose a 6= b. Then p-count(a+ b) ­ p-count(gcd(a, b)).

(76) Let us consider a non zero integer a, a non trivial natural number b, and
an integer c. If a = bb-count(a) · c, then b - c.

Let a be a non zero integer and b be a non trivial natural number. Let us
note that a

bb-count(a) is integer and a
22-count(a) is integer and a

22-count(a) is odd.
Now we state the proposition:

(77) Let us consider a non zero integer a, and a non trivial natural number
b. Then b-count(a) = 0 if and only if b - a.

Let a be an odd integer. Observe that 2-count(a) is zero.
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Observe that a
22-count(a) reduces to a.

Now we state the propositions:

(78) Let us consider a prime natural number a, a non zero integer b, and
a natural number c. Then a-count(bc) = c · (a-count(b)).

(79) Let us consider non zero natural numbers a, b, and an odd natural num-
ber n. Then an+2+bn+2

a+b = an+1 + bn+1 − a · b · (an+bn
a+b ). The theorem is

a consequence of (3).

(80) Let us consider odd integers a, b, and a natural number n.
Then 2-count(a2·n+1 − b2·n+1) = 2-count(a − b). The theorem is a conse-
quence of (13), (2), and (57).

(81) Let us consider odd integers a, b, and an odd natural number m. Then
2-count(am + bm) = 2-count(a+ b). The theorem is a consequence of (80).

(82) Let us consider odd natural numbers a, b. Suppose a 6= b. Then 1 =
min(2-count(a− b), 2-count(a+ b)).

Let us consider a non trivial natural number a and non zero integers b, c.
Now we state the propositions:

(83) If a-count(b) > a-count(c), then aa-count(c) | b and aa-count(b) - c.
(84) If aa-count(b) | c and aa-count(c) | b, then a-count(b) = a-count(c). The

theorem is a consequence of (83).

(85) Let us consider integers a, b, and natural numbers m, n. If an | b and
am - b, then m > n. The theorem is a consequence of (16).

Let us consider a non trivial natural number a and non zero integers b, c.
Now we state the propositions:

(86) If a-count(b) = a-count(c) and an | b, then an | c. The theorem is
a consequence of (85).

(87) a-count(b) = a-count(c) if and only if for every natural number n, an | b
iff an | c.
Proof: If a-count(b) 6= a-count(c), then there exists a natural number n
such that an | b and an - c or an | c and an - b by (83), [1, (13)], [7, (89)],
[8, (9)]. �

(88) Let us consider odd integers a, b. Suppose |a| 6= |b|. Then

(i) 2-count((a− b)2) 6= 2-count((a+ b)2), and

(ii) 2-count((a− b)2) 6= (2-count(a2))− b2.

The theorem is a consequence of (78), (73), and (87).

(89) Let us consider a non trivial natural number b, and a non zero integer
a. Then b-count(a) 6= 0 if and only if b | a.
Proof: b-count(|a|) 6= 0 iff b | |a| by [6, (27)]. �
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(90) Let us consider a non trivial natural number b, and a non zero natural
number a. Then b-count(a) = 0 if and only if a mod b 6= 0. The theorem
is a consequence of (89).

(91) Let us consider a prime natural number p, and a non trivial natural
number a. Then a-count(p) ¬ 1.

(92) Let us consider non trivial natural numbers a, b, and a non zero natural
number c. Then a(a-count(b))·(b-count(c)) ¬ c. The theorem is a consequence
of (58).

(93) Let us consider a prime natural number p, a non trivial natural number
a, and a non zero natural number b. Then a-count(pb) ¬ b. The theorem
is a consequence of (89) and (59).

(94) Let us consider a prime natural number p, and a non trivial natural num-
ber a. Then (p-count(a))·(a-count(pn)) ¬ n. The theorem is a consequence
of (92).

(95) Let us consider non trivial natural numbers a, b, and a non zero natural
number c. Then (a-count(b)) · (b-count(c)) ¬ a-count(c). The theorem is
a consequence of (17).

(96) Let us consider a non zero natural number a, and an odd natural number
b. Then 2-count(a · b) = 2-count(a).

Let us consider a non trivial natural number a. Now we state the proposi-
tions:

(97) an+1 + an < an+2.

(98) (a+ 1)n + (a+ 1)n < (a+ 1)n+1.

(99) Let us consider a non trivial, odd natural number a. Then an+an < an+1.
The theorem is a consequence of (98).

(100) Let us consider a non trivial natural number p. If a - b, then (pa)c 6= pb.

(101) Let us consider non zero integers a, b, and a non zero natural number n.
Suppose there exists a prime natural number p such that n - p-count(a).
Then a 6= bn.

(102) Let us consider non zero integers a, b, and a non zero natural number
n. Suppose a = bn. Let us consider a prime natural number p. Then
n | p-count(a).

(103) Let us consider positive real numbers a, b, and a non trivial natural
number n. Then (a+ b)n > an + bn. The theorem is a consequence of (42)
and (41).

(104) Let us consider non zero integers a, b, and an odd, prime natural number
p. Suppose |a| 6= |b| and p - b. Then p-count(a2 − b2) = max(p-count(a −
b), p-count(a+ b)). The theorem is a consequence of (32), (77), and (57).
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(105) Let us consider a non trivial natural number a, and a non zero integer
b. Then a-count(an · b) = n+ (a-count(b)).
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Summary. In this article, the definitions and basic properties of Riemann-
Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the
preliminary definition. We proved also some properties of finite sequences of real
numbers. In Sec. 2, we defined variation. Using the definition, we also defined
bounded variation and total variation, and proved theorems about related pro-
perties.

In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the
article [5], we described the definitions. In the last section, we proved theorems
about linearity of Riemann-Stieltjes integral. Because there are two types of line-
arity in Riemann-Stieltjes integral, we proved linearity in two ways. We showed
the proof of theorems based on the description of the article [5]. These formali-
zations are based on [6], [4], [2], and [3].
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1. Properties of Real Finite Sequences

Let A be a subset of R and % be a real-valued function. The functor vol(A, %)
yielding a real number is defined by the term
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(Def. 1)

{
0, if A is empty,
%(supA)− %(inf A), otherwise.

Now we state the propositions:

(1) Let us consider a non empty, closed interval subset A of R, a partition
D of A, a function % from A into R, a non empty, closed interval subset
B of R, and a finite sequence v of elements of R. Suppose B ⊆ A and
lenD = len v and for every natural number i such that i ∈ dom v holds
v(i) = vol(B ∩ divset(D, i), %). Then

∑
v = vol(B, %).

(2) Let us consider natural numbers n, m, a function a from Seg n× Segm
into R, and finite sequences p, q of elements of R. Suppose dom p = Seg n
and for every natural number i such that i ∈ dom p there exists a finite
sequence r of elements of R such that dom r = Segm and p(i) =

∑
r

and for every natural number j such that j ∈ dom r holds r(j) = a(i, j)
and dom q = Segm and for every natural number j such that j ∈ dom q

there exists a finite sequence s of elements of R such that dom s = Seg n
and q(j) =

∑
s and for every natural number i such that i ∈ dom s holds

s(i) = a(i, j). Then
∑
p =
∑
q.

2. The Definitions of Bounded Variation

Let A be a non empty, closed interval subset of R, % be a real-valued function,
and t be a partition of A. A var-volume of % and t is a finite sequence of elements
of R and is defined by

(Def. 2) len it = len t and for every natural number k such that k ∈ dom t holds
it(k) = | vol(divset(t, k), %)|.

Now we state the propositions:

(3) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, a partition t of A, a var-volume F of % and t, and a natural
number k. If k ∈ domF , then 0 ¬ F (k).

(4) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, a partition t of A, and a var-volume F of % and t. Then
0 ¬
∑
F . The theorem is a consequence of (3).

Let A be a non empty, closed interval subset of R and % be a function from
A into R. We say that % is bounded-variation if and only if

(Def. 3) there exists a real number d such that 0 < d and for every partition t of
A and for every var-volume F of % and t,

∑
F ¬ d.

Assume % is bounded-variation. The functor TotalVD(%) yielding a real num-
ber is defined by
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(Def. 4) there exists a non empty subset V of R such that V is upper bounded and
V = {r, where r is a real number : there exists a partition t of A and
there exists a var-volume F of % and t such that r =

∑
F} and it =

supV .

Now we state the propositions:

(5) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and a partition T of A. Suppose % is bounded-variation.
Let us consider a var-volume F of % and T . Then

∑
F ¬ TotalVD(%).

(6) Let us consider a non empty, closed interval subset A of R, and a function
% from A into R. If % is bounded-variation, then 0 ¬ TotalVD(%). The
theorem is a consequence of (4).

3. The Definitions of Riemann-Stieltjes Integral

Let A be a non empty, closed interval subset of R, % be a function from A

into R, and u be a partial function from R to R. Assume % is bounded-variation
and domu = A. Let t be a partition of A.

A middle volume of %, u and t is a finite sequence of elements of R and is
defined by

(Def. 5) len it = len t and for every natural number k such that k ∈ dom t there
exists a real number r such that r ∈ rng(u� divset(t, k)) and it(k) = r ·
vol(divset(t, k), %).

Let T be a division sequence of A. A middle volume sequence of %, u and T
is a sequence of R∗ and is defined by

(Def. 6) for every element k of N, it(k) is a middle volume of %, u and T (k).

Let S be a middle volume sequence of %, u and T and k be a natural number.
One can check that the functor S(k) yields a middle volume of %, u and T (k).
From now on A denotes a non empty, closed interval subset of R, % denotes
a function from A into R, u denotes a partial function from R to R, T denotes
a division sequence of A, S denotes a middle volume sequence of %, u and T ,
and k denotes a natural number.

Let A be a non empty, closed interval subset of R, % be a function from A

into R, u be a partial function from R to R, T be a division sequence of A,
and S be a middle volume sequence of %, u and T . The functor middle-sum(S)
yielding a sequence of real numbers is defined by

(Def. 7) for every natural number i, it(i) =
∑

(S(i)).

We say that u is Riemann-Stieltjes integrable with % if and only if
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(Def. 8) there exists a real number I such that for every division sequence T

of A for every middle volume sequence S of %, u and T such that δT
is convergent and lim δT = 0 holds middle-sum(S) is convergent and
lim middle-sum(S) = I.

Assume % is bounded-variation and domu = A and u is Riemann-Stieltjes

integrable with %. The functor
∫
%

u(x)dx yielding a real number is defined by

(Def. 9) for every division sequence T of A and for every middle volume sequ-
ence S of %, u and T such that δT is convergent and lim δT = 0 holds
middle-sum(S) is convergent and lim middle-sum(S) = it .

4. Linearity of Riemann-Stieltjes Integral

Now we state the propositions:

(7) Let us consider a non empty, closed interval subset A of R, a real number
r, a function % from A into R, and partial functions u, w from R to R.
Suppose % is bounded-variation and domu = A and domw = A and
w = r · u and u is Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

w(x)dx = r ·
∫
%

u(x)dx.

(8) Let us consider a non empty, closed interval subset A of R, a function
% from A into R, and partial functions u, w from R to R. Suppose % is
bounded-variation and domu = A and domw = A and w = −u and u is
Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

w(x)dx = −
∫
%

u(x)dx.

The theorem is a consequence of (7).

Let us consider a non empty, closed interval subset A of R, a function %

from A into R, and partial functions u, v, w from R to R. Now we state the
propositions:

(9) Suppose % is bounded-variation and domu = A and dom v = A and
domw = A and w = u + v and u is Riemann-Stieltjes integrable with %

and v is Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and
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(ii)
∫
%

w(x)dx =
∫
%

u(x)dx+
∫
%

v(x)dx.

(10) Suppose % is bounded-variation and domu = A and dom v = A and
domw = A and w = u − v and u is Riemann-Stieltjes integrable with %

and v is Riemann-Stieltjes integrable with %. Then

(i) w is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

w(x)dx =
∫
%

u(x)dx−
∫
%

v(x)dx.

The theorem is a consequence of (8) and (9).

(11) Let us consider non empty, closed interval subsets A, B of R, a real
number r, and functions %, %1 from A into R. Suppose B ⊆ A and % = r·%1.
Then vol(B, %) = r · vol(B, %1).

(12) Let us consider a non empty, closed interval subset A of R, a real number
r, functions %, %1 from A into R, and a partial function u from R to R.
Suppose % is bounded-variation and %1 is bounded-variation and domu =
A and % = r · %1 and u is Riemann-Stieltjes integrable with %1. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx = r ·
∫
%1

u(x)dx.

The theorem is a consequence of (11).

(13) Let us consider a non empty, closed interval subset A of R, functions
%, %1 from A into R, and a partial function u from R to R. Suppose %
is bounded-variation and %1 is bounded-variation and domu = A and
% = −%1 and u is Riemann-Stieltjes integrable with %1. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx = −
∫
%1

u(x)dx.

The theorem is a consequence of (12).

(14) Let us consider non empty, closed interval subsets A, B of R, and func-
tions %, %1, %2 from A into R. Suppose B ⊆ A and % = %1 + %2. Then
vol(B, %) = vol(B, %1) + vol(B, %2).

(15) Let us consider a non empty, closed interval subset A of R, functions
%, %1, %2 from A into R, and a partial function u from R to R. Suppose
% is bounded-variation and %1 is bounded-variation and %2 is bounded-
variation and domu = A and % = %1 + %2 and u is Riemann-Stieltjes
integrable with %1 and u is Riemann-Stieltjes integrable with %2. Then
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(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx =
∫
%1

u(x)dx+
∫
%2

u(x)dx.

The theorem is a consequence of (14).

(16) Let us consider non empty, closed interval subsets A, B of R, and func-
tions %, %1, %2 from A into R. Suppose B ⊆ A and % = %1 − %2. Then
vol(B, %) = vol(B, %1)− vol(B, %2). The theorem is a consequence of (14).

(17) Let us consider a non empty, closed interval subset A of R, functions
%, %1, %2 from A into R, and a partial function u from R to R. Suppose
% is bounded-variation and %1 is bounded-variation and %2 is bounded-
variation and domu = A and % = %1 − %2 and u is Riemann-Stieltjes
integrable with %1 and u is Riemann-Stieltjes integrable with %2. Then

(i) u is Riemann-Stieltjes integrable with %, and

(ii)
∫
%

u(x)dx =
∫
%1

u(x)dx−
∫
%2

u(x)dx.

The theorem is a consequence of (16).
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Summary. In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Wil-
liams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasi-
uniform space, semi-uniform space and locally uniform space.

We define the topology induced by a quasi-uniform space. Finally we for-
malize from the sets of the form ((X \ Ω) × X) ∪ (X × Ω), the Csaszar-Pervin
quasi-uniform space induced by a topological space.
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1. Preliminaries

From now on X denotes a set, A denotes a subset of X, and R, S denote
binary relations on X.

Now we state the propositions:

(1) (X \A)×X ∪X ×A ⊆ X ×X.

(2) (X \A)×X ∪X ×A = A×A ∪ (X \A)×X.
Proof: (X \A)×X ∪X ×A ⊆ A×A ∪ (X \A)×X by (1), [4, (87)]. �

(3) R·S = {〈〈x, y〉〉, where x, y are elements ofX : there exists an element z
of X such that 〈〈x, z〉〉 ∈ R and 〈〈z, y〉〉 ∈ S}.
Proof: R · S ⊆ {〈〈x, y〉〉, where x, y are elements of X : there exists
an element z of X such that 〈〈x, z〉〉 ∈ R and 〈〈z, y〉〉 ∈ S} by [4, (87)]. {〈〈x,
y〉〉, where x, y are elements ofX : there exists an element z ofX such that
〈〈x, z〉〉 ∈ R and 〈〈z, y〉〉 ∈ S} ⊆ R · S. �
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Let X be a set and B be a family of subsets of X. One can check that [B] is
non empty.

Let B be a family of subsets of X × X. Note that every element of B is
relation-like.

Let B be an element of B. We introduce the notation B [∼] as a synonym of
B`.

Let us observe that the functor B [∼] yields a subset of X ×X. Let B1, B2

be elements of B. We introduce the notation B1 ⊗B2 as a synonym of B1 ·B2.
One can verify that the functor B1 ⊗B2 yields a subset of X ×X. Now we

state the propositions:

(4) Let us consider a set X, and a family G of subsets of X. If G is upper,
then FinMeetCl(G) is upper.

(5) If R is symmetric in X, then R` is symmetric in X.

2. Uniform Space Structure

We consider uniform space structures which extend 1-sorted structures and
are systems

〈〈a carrier, entourages〉〉

where the carrier is a set, the entourages constitute a family of subsets of
(the carrier)× (the carrier).

Let U be a uniform space structure. We say that U is void if and only if

(Def. 1) the entourages of U is empty.

Let X be a set. The functor UniformSpace(X) yielding a strict uniform space
structure is defined by the term

(Def. 2) 〈〈X, ∅2X×X 〉〉.
The functors: the trivial uniform space and the non empty trivial uniform

space yielding strict uniform space structures are defined by terms

(Def. 3) 〈〈∅, 2∅×∅∗ 〉〉,
(Def. 4) there exists a family S1 of subsets of {∅} × {∅} such that S1 = {{∅} ×

{∅}} and the non empty trivial uniform space = 〈〈{∅}, S1〉〉,
respectively. Let X be an empty set. One can verify that UniformSpace(X) is
empty.

Let X be a non empty set. One can check that UniformSpace(X) is non
empty.

Let X be a set. Note that UniformSpace(X) is void and the trivial uniform
space is empty and non void and the non empty trivial uniform space is non
empty and non void and there exists a uniform space structure which is empty,
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strict, and void and there exists a uniform space structure which is empty, strict,
and non void and there exists a uniform space structure which is non empty,
strict, and void and there exists a uniform space structure which is non empty,
strict, and non void.

Let X be a set and S1 be a family of subsets of X ×X. The functor S1 [∼]
yielding a family of subsets of X ×X is defined by the term

(Def. 5) the set of all S [∼] where S is an element of S1.

Let U be a uniform space structure. The functor U [∼] yielding a uniform
space structure is defined by the term

(Def. 6) 〈〈the carrier of U, (the entourages of U) [∼] 〉〉.
Let U be a non empty uniform space structure. One can verify that U [∼] is

non empty.

3. Axioms

Let U be a uniform space structure. We say that U is upper if and only if

(Def. 7) the entourages of U is upper.

We say that U is ∩-closed if and only if

(Def. 8) the entourages of U is ∩-closed.

We say that U satisfies axiom U1 if and only if

(Def. 9) for every element S of the entourages of U , idα ⊆ S, where α is the carrier
of U .

We say that U satisfies axiom U2 if and only if

(Def. 10) for every element S of the entourages of U , S [∼] ∈ the entourages of U .

We say that U satisfies axiom U3 if and only if

(Def. 11) for every element S of the entourages of U , there exists an element W
of the entourages of U such that W ⊗W ⊆ S.

Let us consider a non void uniform space structure U . Now we state the
propositions:

(6) U satisfies axiom U1 if and only if for every element S of the entourages
of U , there exists a binary relation R on the carrier of U such that R = S

and R is reflexive in the carrier of U .

(7) U satisfies axiom U1 if and only if for every element S of the entourages
of U , there exists a total, reflexive binary relation R on the carrier of U
such that R = S. The theorem is a consequence of (6).

Note that every uniform space structure which is void does not satisfy also
axiom U2.

Now we state the proposition:
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(8) Let us consider a uniform space structure U . Suppose U satisfies axiom
U2. Let us consider an element S of the entourages of U , and elements x,
y of U . Suppose 〈〈x, y〉〉 ∈ S. Then 〈〈y, x〉〉 ∈

⋃
(the entourages of U).

Let us consider a non void uniform space structure U . Now we state the
propositions:

(9) Suppose for every element S of the entourages of U , there exists a binary
relation R on the carrier of U such that S = R and R is symmetric in
the carrier of U . Then U satisfies axiom U2. The theorem is a consequence
of (5).

(10) Suppose for every element S of the entourages of U , there exists a binary
relation R on the carrier of U such that S = R and R is symmetric. Then
U satisfies axiom U2. The theorem is a consequence of (9).

(11) If for every element S of the entourages of U , there exists a tolerance R
of the carrier of U such that S = R, then U satisfies axiom U1 and axiom
U2. The theorem is a consequence of (7) and (10).

Let X be an empty set. Observe that UniformSpace(X) is upper and ∩-
closed and satisfies axiom U1 and axiom U3 and does not satisfy axiom U2
and UniformSpace({∅}) is upper and ∩-closed and does not satisfy axiom U2
and the trivial uniform space is upper and ∩-closed and satisfies axiom U1,
axiom U2, and axiom U3 and the non empty trivial uniform space is upper and
∩-closed and satisfies axiom U1, axiom U2, and axiom U3.

There exists a uniform space structure which is strict, empty, non void,
upper, and ∩-closed and satisfies axiom U1, axiom U2, and axiom U3 and every
strict uniform space structure which is empty satisfies also axiom U1 and there
exists a uniform space structure which is strict, non empty, non void, upper,
and ∩-closed and satisfies axiom U1, axiom U2, and axiom U3.

Let S4 be a non empty uniform space structure satisfying axiom U1, x be
an element of S4, and V be an element of the entourages of S4. The functor
Nbh(V, x) yielding a non empty subset of S4 is defined by the term

(Def. 12) {y, where y is an element of S4 : 〈〈x, y〉〉 ∈ V }.

Now we state the proposition:

(12) Let us consider a non empty uniform space structure U satisfying axiom
U1, an element x of the carrier of U , and an element V of the entourages
of U . Then x ∈ Nbh(V, x).

Let U be a ∩-closed uniform space structure and V1, V2 be elements of
the entourages of U . One can check that the functor V1 ∩ V2 yields an element
of the entourages of U . Now we state the proposition:

(13) Let us consider a non empty, ∩-closed uniform space structure U satis-
fying axiom U1, an element x of U , and elements V , W of the entourages
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of U . Then Nbh(V, x) ∩Nbh(W,x) = Nbh(V ∩W,x).

Let U be a non empty uniform space structure satisfying axiom U1. Let us
observe that the entourages of U has non empty elements and the entourages
of U is non empty.

Let x be a point of U . The functor Neighborhoodx yielding a family of
subsets of U is defined by the term

(Def. 13) the set of all Nbh(V, x) where V is an element of the entourages of U .

Let us note that Neighborhoodx is non empty.
Now we state the proposition:

(14) Let us consider a non empty uniform space structure S4 satisfying axiom
U1, an element x of the carrier of S4, and an element V of the entourages
of S4. Then

(i) Nbh(V, x) = V ◦{x}, and

(ii) Nbh(V, x) = rng(V �{x}), and

(iii) Nbh(V, x) = V ◦x, and

(iv) Nbh(V, x) = [x]V , and

(v) Nbh(V, x) = neighbourhood(x, V ).

Proof: Nbh(V, x) = V ◦{x} by [4, (87)]. �

Let U be a non empty uniform space structure satisfying axiom U1. The func-
tor NeighborhoodU yielding a function from the carrier of U into 22(the carrier of U)

is defined by

(Def. 14) for every element x of U , it(x) = Neighborhoodx.

We say that U is topological if and only if

(Def. 15) 〈the carrier of U,NeighborhoodU〉 is a topology from neighbourhoods.

4. Quasi-Uniform Space

A quasi-uniform space is an upper, ∩-closed uniform space structure satis-
fying axiom U1 and axiom U3. In the sequel Q denotes a quasi-uniform space.

Now we state the propositions:

(15) If the entourages of Q is empty, then the entourages of Q [∼] = {∅}.
(16) Suppose the entourages of Q [∼] = {∅} and the entourages of Q [∼] is

upper. Then the carrier of Q is empty.

Let Q be a non void quasi-uniform space. One can check that Q [∼] is upper
and ∩-closed and satisfies axiom U1 and axiom U3.

Let X be a set and B be a family of subsets of X×X. We say that B satisfies
axiom UP1 if and only if
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(Def. 16) for every element B of B, idX ⊆ B.

We say that B satisfies axiom UP3 if and only if

(Def. 17) for every element B1 of B, there exists an element B2 of B such that
B2 ⊗B2 ⊆ B1.

Now we state the propositions:

(17) Let us consider a non empty set X, and an empty family B of subsets of
X ×X. Then B does not satisfy axiom UP1.

(18) Let us consider a set X, and a family B of subsets of X ×X. Suppose
B is quasi-basis and satisfies axiom UP1 and axiom UP3. Then 〈〈X, [B]〉〉 is
a quasi-uniform space.

5. Semi-Uniform Space

A semi-uniform space is an upper, ∩-closed uniform space structure satisfy-
ing axiom U1 and axiom U2. From now on S4 denotes a semi-uniform space.

Let us observe that every semi-uniform space is non void.
Now we state the proposition:

(19) If S4 is empty, then ∅ ∈ the entourages of S4.

Let S4 be an empty semi-uniform space. One can verify that the entourages
of S4 has the empty element.

6. Locally Uniform Space

Let S4 be a non empty semi-uniform space. We say that S4 satisfies axiom
UL if and only if

(Def. 18) for every element S of the entourages of S4 and for every element x of
S4, there exists an element W of the entourages of S4 such that {y, where
y is an element of S4 : 〈〈x, y〉〉 ∈W ⊗W} ⊆ Nbh(S, x).

One can verify that every non empty semi-uniform space which satisfies
axiom U3 satisfies also axiom UL and there exists a non empty semi-uniform
space which satisfies axiom UL.

A locally uniform space is a non empty semi-uniform space satisfying axiom
UL. Now we state the propositions:

(20) Let us consider a non empty, upper uniform space structure U satisfying
axiom U1, and an element x of the carrier of U . Then Neighborhoodx is
upper.
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(21) Let us consider a non empty uniform space structure U satisfying axiom
U1, an element x of U , and an element V of the entourages of U . Then
x ∈ Nbh(V, x).

(22) Let us consider a non empty, ∩-closed uniform space structure U satis-
fying axiom U1, and an element x of U . Then Neighborhoodx is ∩-closed.
The theorem is a consequence of (13).

(23) Let us consider a non empty, upper, ∩-closed uniform space structure
U satisfying axiom U1, and an element x of U . Then Neighborhoodx is
a filter of the carrier of U . The theorem is a consequence of (22) and (20).

Let us observe that every locally uniform space is topological.

7. Topological Space Induced by a Uniform Space Structure

Let U be a topological, non empty uniform space structure satisfying axiom
U1. The FMT induced by U yielding a non empty, strict topology from neigh-
bourhoods is defined by the term

(Def. 19) 〈the carrier of U,NeighborhoodU〉.
The topological space induced by U yielding a topological space is defined

by the term

(Def. 20) FMT2TopSpace(the FMT induced by U).

8. The Quasi-Uniform Pervin Space Induced by a Topological
Space

Let X be a set and A be a subset of X. The functor qBlock(A) yielding
a subset of X ×X is defined by the term

(Def. 21) (X \A)×X ∪X ×A.

Now we state the proposition:

(24) (i) idX ⊆ qBlock(A), and

(ii) qBlock(A) · qBlock(A) ⊆ qBlock(A).
Proof: idX ⊆ qBlock(A) by [4, (96)]. �

Let T be a topological space. The functor qBlocks(T ) yielding a family of
subsets of (the carrier of T )× (the carrier of T ) is defined by the term

(Def. 22) the set of all qBlock(O) where O is an element of the topology of T .

Let T be a non empty topological space. One can check that qBlocks(T ) is
non empty.

Let T be a topological space. The functor FMCqBlocks(T ) yielding a family
of subsets of (the carrier of T )× (the carrier of T ) is defined by the term
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(Def. 23) FinMeetCl(qBlocks(T )).

Let X be a set. One can check that every non empty family of subsets of
X ×X which is ∩-closed is also quasi-basis.

In the sequel T denotes a topological space.
Let us consider T . One can check that FMCqBlocks(T ) is ∩-closed and

FMCqBlocks(T ) is quasi-basis and FMCqBlocks(T ) satisfies axiom UP1 and
FMCqBlocks(T ) satisfies axiom UP3.

Let T be a topological space. The Pervin quasi-uniformity of T yielding
a strict quasi-uniform space is defined by the term

(Def. 24) 〈〈the carrier of T, [FMCqBlocks(T )]〉〉.
Now we state the propositions:

(25) Let us consider a non empty topological space T , and an element V
of the entourages of the Pervin quasi-uniformity of T . Then there exists
an element b of FinMeetCl(qBlocks(T )) such that b ⊆ V .

(26) Let us consider a non empty topological space T , and a subset V of
(the carrier of T ) × (the carrier of T ). Suppose there exists an element
b of FinMeetCl(qBlocks(T )) such that b ⊆ V . Then V is an element of
the entourages of the Pervin quasi-uniformity of T .

(27) qBlocks(T ) ⊆ the entourages of the Pervin quasi-uniformity of T .

Let us consider a non void quasi-uniform space Q. Now we state the propo-
sitions:

(28) (The carrier of Q)× (the carrier of Q) ∈ the entourages of Q.

(29) Suppose the carrier of T = the carrier ofQ and qBlocks(T ) ⊆ the entoura-
ges of Q. Then the entourages of the Pervin quasi-uniformity of T ⊆
the entourages of Q.
Proof: The entourages of the Pervin quasi-uniformity of T ⊆ the entoura-
ges of Q by (28), [1, (1)]. �

Let T be a non empty topological space. One can check that the Pervin
quasi-uniformity of T is non empty and the Pervin quasi-uniformity of T is
topological.

Now we state the propositions:

(30) Let us consider a non empty topological space T , an element x of qBlocks
(T ), and an element y of the Pervin quasi-uniformity of T . Then {z, where
z is an element of the Pervin quasi-uniformity of T : 〈〈y, z〉〉 ∈ x} ∈ the to-
pology of T .

(31) Let us consider a non empty topological space T , an element x of the car-
rier of the Pervin quasi-uniformity of T , and an element b of FinMeetCl
(qBlocks(T )). Then {y, where y is an element of T : 〈〈x, y〉〉 ∈ b} ∈ the to-
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pology of T . The theorem is a consequence of (30).

(32) Let us consider a non empty, strict quasi-uniform space U , a non empty,
strict formal topological space F , and an element x of F . Suppose F =
〈the carrier of U,NeighborhoodU〉. Then there exists an element y of U
such that

(i) x = y, and

(ii) UF (x) = Neighborhood y.

(33) Let us consider a non empty topological space T . Then the open set
family of the FMT induced by the Pervin quasi-uniformity of T = the topo-
logy of T .
Proof: The open set family of the FMT induced by the Pervin quasi-uni-
formity of T ⊆ the topology of T by (32), [5, (18)], (31), [12, (25)].
The topology of T ⊆ the open set family of the FMT induced by the Pervin
quasi-uniformity of T by (32), [10, (4)], [5, (18)], [4, (87)]. �

(34) Let us consider a non empty, strict topological space T . Then the topologi-
cal space induced by the Pervin quasi-uniformity of T = T . The theorem
is a consequence of (33).

Acknowledgement: The author wants to express his gratitude to the ano-
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Summary. In this article, we formalize in Mizar [1] the notion of uniform
space introduced by André Weil using the concepts of entourages [2].

We present some results between uniform space and pseudo metric space. We
introduce the concepts of left-uniformity and right-uniformity of a topological
group.

Next, we define the concept of the partition topology. Following the Vlach’s
works [11, 10], we define the semi-uniform space induced by a tolerance and the
uniform space induced by an equivalence relation.

Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform
space defined from the sets of the form ((X \A)× (X \A))∪ (A×A) is presented.
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1. Preliminaries

From now on X denotes a set, D denotes a partition of X, T denotes a non
empty topological group, and A denotes a subset of X.

Now we state the propositions:

(1) A×A ∪ (X \A)× (X \A) ⊆ (X \A)×X ∪X ×A.

(2) {1, 2, 3} \ {1} = {2, 3}.
(3) Suppose X = {1, 2, 3} and A = {1}. Then

(i) 〈〈2, 1〉〉 ∈ (X \A)×X ∪X ×A, and

(ii) 〈〈2, 1〉〉 /∈ A×A ∪ (X \A)× (X \A).
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The theorem is a consequence of (2).

(4) Let us consider a subset A of X. Then (A×A∪(X \A)×(X \A))` = A×
A ∪ (X \A)× (X \A).

(5) Let us consider subsets P1, P2 of D. If
⋃
P1 =

⋃
P2, then P1 = P2.

(6) Let us consider a subset P of D. Then
⋃

(D \ P ) =
⋃
D \
⋃
P .

(7) Let us consider an upper family S1 of subsets of X, and an element S of
S1. Then

⋂
S1 ⊆ S.

(8) Let us consider an additive group G, and subsets A, B, C, D of G. If
A ⊆ B and C ⊆ D, then A+ C ⊆ B +D.

Let us consider an element e of T and a neighbourhood V of 1T . Now we
state the propositions:

(9) {e} · V is a neighbourhood of e.

(10) V · {e} is a neighbourhood of e.

(11) Let us consider a neighbourhood V of 1T . Then V −1 is a neighbourhood
of 1T .

2. Uniform Space

A uniform space is an upper, ∩-closed uniform space structure satisfying
axiom U1, axiom U2, and axiom U3. From now on Q denotes a uniform space.

Now we state the propositions:

(12) Q is a quasi-uniform space.

(13) Q is a semi-uniform space.

Let X be a set and B be a family of subsets of X×X. We say that B satisfies
axiom UP2 if and only if

(Def. 1) for every element B1 of B, there exists an element B2 of B such that
B2 ⊆ B1

`.

Now we state the proposition:

(14) Let us consider an empty set X. Then every empty family of subsets
of X ×X is quasi-basis and satisfies axiom UP1, axiom UP2, and axiom
UP3.

One can verify that there exists a uniform space which is strict.
Now we state the proposition:

(15) Let us consider a set X, and a family S1 of subsets of X ×X. Suppose
X = {∅} and S1 = {X ×X}. Then 〈〈X,S1〉〉 is a uniform space.

Let us observe that there exists a strict uniform space which is non empty.
Now we state the proposition:
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(16) Let us consider a set X, and a family B of subsets of X ×X. Suppose B
is quasi-basis and satisfies axiom UP1, axiom UP2, and axiom UP3. Then
there exists a strict uniform space Q such that

(i) the carrier of Q = X, and

(ii) the entourages Q = [B].

3. Open Set and Uniform Space

Now we state the propositions:

(17) Let us consider a non empty uniform space Q. Then

(i) the carrier of the topological space induced by Q = the carrier of Q,
and

(ii) the topology of the topological space induced by Q = the open set
family of the FMTinduced by Q.

(18) Let us consider a non empty uniform spaceQ, and a subset S of the FMT-
induced by Q. Then S is open if and only if for every element x of Q such
that x ∈ S holds S ∈ Neighborhoodx.

(19) Let us consider a non empty uniform space Q. Then the open set family
of the FMTinduced by Q = the set of all O where O is an open subset of
the FMTinduced by Q.

Let us consider a non empty uniform space Q and a subset S of the FMTin-
duced by Q. Now we state the propositions:

(20) S is open if and only if S ∈ the open set family of the FMTinduced by
Q.

(21) S ∈ the open set family of the FMTinduced by Q if and only if for every
element x of Q such that x ∈ S holds S ∈ Neighborhoodx.

4. Pseudo Metric Space and Uniform Space

Let M be a non empty metric structure and r be a positive real number.
The functor ent(M, r) yielding a subset of (the carrier of M) × (the carrier of
M) is defined by the term

(Def. 2) {〈〈x, y〉〉, where x, y are elements of M : ρ(x, y) ¬ r}.

Let M be a non empty, reflexive metric structure. Let us observe that
ent(M, r) is non empty.

Let M be a non empty metric structure. The functor ENT(M) yielding a non
empty family of subsets of (the carrier of M)× (the carrier of M) is defined by
the term
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(Def. 3) the set of all ent(M, r) where r is a positive real number.

The uniformity induced by M yielding a uniform space structure is defined
by the term

(Def. 4) 〈〈the carrier of M, [ENT(M)]〉〉.
Let M be a pseudo metric space. The uniformity induced by M yielding

a non empty, strict uniform space is defined by the term

(Def. 5) 〈〈the carrier of M, [ENT(M)]〉〉.
Let us consider a pseudo metric space M . Now we state the propositions:

(22) The open set family of the FMTinduced by the uniformity induced by
M = the open set family of M .
Proof: SetX = the open set family of the FMTinduced by the uniformity
induced by M . Set Y = the open set family of M . X ⊆ Y by (18), (20), [5,
(11)]. Reconsider t1 = t as a subset of M . For every element x of the uni-
formity induced by M such that x ∈ t1 holds t1 ∈ Neighborhoodx by [5,
(11)]. �

(23) The topological space induced by the uniformity induced by M = Mtop.
The theorem is a consequence of (22).

5. Uniform Space and Topological Group

Let G be a topological group and Q be a neighbourhood of 1G. The functor
leftU(Q) yielding a subset of (the carrier of G)× (the carrier of G) is defined by
the term

(Def. 6) {〈〈x, y〉〉, where x is an element of G, y is an element of G : x−1 · y ∈ Q}.

Let T be a non empty topological group. The functor SleftU(T ) yielding
a non empty family of subsets of (the carrier of T )× (the carrier of T ) is defined
by the term

(Def. 7) the set of all leftU(Q) where Q is a neighbourhood of 1T .

The left-uniformity T yielding a non empty uniform space is defined by the
term

(Def. 8) 〈〈the carrier of T, [SleftU(T )]〉〉.
Let G be a topological group and Q be a neighbourhood of 1G. The functor

rightU(Q) yielding a subset of (the carrier of G)× (the carrier of G) is defined
by the term

(Def. 9) {〈〈x, y〉〉, where x is an element of G, y is an element of G : y · x−1 ∈ Q}.

Let T be a non empty topological group. The functor SrightU(T ) yielding
a non empty family of subsets of (the carrier of T )× (the carrier of T ) is defined
by the term
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(Def. 10) the set of all rightU(Q) where Q is a neighbourhood of 1T .

The right-uniformity T yielding a non empty uniform space is defined by the
term

(Def. 11) 〈〈the carrier of T, [SrightU(T )]〉〉.
Now we state the propositions:

(24) Let us consider a non empty, commutative topological group T , and
a neighbourhood Q of 1T . Then leftU(Q) = rightU(Q).

(25) Let us consider a non empty, commutative topological group T . Then
the left-uniformity T = the right-uniformity T . The theorem is a conse-
quence of (24).

Let G be a semi additive topological group and Q be a neighbourhood of
0G. The functor leftU(Q) yielding a subset of (the carrier of G) × (the carrier
of G) is defined by the term

(Def. 12) {〈〈x, y〉〉, where x is an element of G, y is an element of G : −x+ y ∈ Q}.

Let T be a non empty semi additive topological group. The functor SleftU(T )
yielding a non empty family of subsets of (the carrier of T )× (the carrier of T )
is defined by the term

(Def. 13) the set of all leftU(Q) where Q is a neighbourhood of 0T .

Let T be a non empty topological additive group. The left-uniformity T

yielding a non empty uniform space is defined by the term

(Def. 14) 〈〈the carrier of T, [SleftU(T )]〉〉.
Let G be a semi additive topological group and Q be a neighbourhood of

0G. The functor rightU(Q) yielding a subset of (the carrier of G)× (the carrier
of G) is defined by the term

(Def. 15) {〈〈x, y〉〉, where x is an element of G, y is an element of G : y+−x ∈ Q}.

Let T be a non empty semi additive topological group. The functor SrightU(T )
yielding a non empty family of subsets of (the carrier of T )× (the carrier of T )
is defined by the term

(Def. 16) the set of all rightU(Q) where Q is a neighbourhood of 0T .

Let T be a non empty topological additive group. The right-uniformity T

yielding a non empty uniform space is defined by the term

(Def. 17) 〈〈the carrier of T, [SrightU(T )]〉〉.
Now we state the propositions:

(26) Let us consider an Abelian semi additive topological group T , and a ne-
ighbourhood Q of 0T . Then leftU(Q) = rightU(Q).

(27) Let us consider a non empty topological additive group T . Suppose T



220 roland coghetto

is Abelian. Then the left-uniformity T = the right-uniformity T . The the-
orem is a consequence of (26).

(28) The topology of the topological space induced by the left-uniformity
T = the topology of T .
Proof: Set X = the topology of FMT2TopSpace(the FMTinduced by
the left-uniformity T ). Set Y = the topology of T . X ⊆ Y by (9), [6, (7)].
Y ⊆ X by [9, (3)], [6, (6)], [8, (6)]. �

(29) The topology of the topological space induced by the right-uniformity
T = the topology of T .
Proof: Set X = the topology of FMT2TopSpace(the FMTinduced by
the right-uniformity T ). Set Y = the topology of T . X ⊆ Y by (10), [6,
(7)]. Y ⊆ X by [9, (3)], [6, (6)], [8, (6)]. �

6. Function Uniformly Continuous

Let Q1, Q2 be uniform space structures and f be a function from Q1 into
Q2. We say that f is uniformly continuous if and only if

(Def. 18) for every element V of the entourages Q2, there exists an element Q of
the entourages Q1 such that for every objects x, y such that 〈〈x, y〉〉 ∈ Q
holds 〈〈f(x), f(y)〉〉 ∈ V .

Let Q1, Q2 be non empty uniform space structures satisfying axiom U1.
One can check that there exists a function from Q1 into Q2 which is uniformly
continuous.

7. Partition Topology

Now we state the propositions:

(30) the set of all
⋃
P where P is a subset of D = UniCl(D).

(31) X ∈ UniCl(D). The theorem is a consequence of (30).

(32) If D = ∅, then X is empty and UniCl(D) = {∅}.
Let X be a set and D be a partition of X. Let us note that UniCl(D) is

∩-closed and UniCl(D) is union-closed and every family of subsets of X which
is union-closed is also ∪-closed.

Let D be a partition of X. Let us note that UniCl(D) is closed for comple-
ment operator and UniCl(D) is ∪-closed and \-closed.

Now we state the proposition:

(33) UniCl(D) is a ring of sets. The theorem is a consequence of (30).
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Let us consider X and D. One can verify that UniCl(D) has the empty
element.

Let X be a set and D be a partition of X. Let us observe that UniCl(D) is
non empty.

Now we state the proposition:

(34) UniCl(D) is a field of subsets of X.

Let X be a set and D be a partition of X. Observe that UniCl(D) is σ-
additive and UniCl(D) is σ-multiplicative.

Now we state the proposition:

(35) UniCl(D) is a σ-field of subsets of X.

Let X be a set and D be a partition of X. Observe that UniCl(D) is closed
for countable unions and closed for countable meets.

Now we state the proposition:

(36) Let us consider a non empty set Ω, and a partition D of Ω. Then
UniCl(D) is a Dynkin system of Ω.

Let X be a set and D be a partition of X. The partition topology D yielding
a topological space is defined by the term

(Def. 19) 〈X,UniCl(D)〉.
Now we state the propositions:

(37) Every open subset of the partition topology D is closed.

(38) Every closed subset of the partition topology D is open.

(39) Let us consider a subset S of the partition topology D. Then S is open
if and only if S is closed.

Let X be a non empty set and D be a partition of X. Observe that the par-
tition topology D is non empty.

Let us consider a non empty set X and a partition D of X. Now we state
the propositions:

(40) LC(the partition topology D) = UniCl(D). The theorem is a consequ-
ence of (38) and (31).

(41) OpenClosedSet(the partition topologyD) = the topology of the partition
topology D. The theorem is a consequence of (37).

8. Uniform Space and Partition Topology

In the sequel R denotes a binary relation on X.
Let X be a set and R be a binary relation on X. The functor ρ(R) yielding

a non empty family of subsets of X ×X is defined by the term
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(Def. 20) {S, where S is a subset of X ×X : R ⊆ S}.

Now we state the propositions:

(42) [ρ(R)] = ρ(R).

(43) [{R}] = ρ(R).

(44) ρ(R) is upper and ∩-closed.

Let us consider X and R. Observe that ρ(R) is quasi-basis.
Now we state the propositions:

(45) Let us consider a total, reflexive binary relation R on X. Then ρ(R)
satisfies axiom UP1.

(46) Let us consider a symmetric binary relation R on X. Then ρ(R) satisfies
axiom UP2.

(47) Let us consider a total, transitive binary relation R on X. Then ρ(R)
satisfies axiom UP3.

Let X be a set and R be a binary relation on X. The uniformity induced by
R yielding an upper, ∩-closed, strict uniform space structure is defined by the
term

(Def. 21) 〈〈X, ρ(R)〉〉.
Now we state the propositions:

(48) Let us consider a set X, and a total, reflexive binary relation R on X.
Then the uniformity induced by R satisfies axiom U1. The theorem is
a consequence of (45).

(49) Let us consider a set X, and a symmetric binary relation R on X. Then
the uniformity induced by R satisfies axiom U2. The theorem is a conse-
quence of (46).

(50) Let us consider a set X, and a total, transitive binary relation R on
X. Then the uniformity induced by R satisfies axiom U3. The theorem is
a consequence of (47).

Let X be a set and R be a tolerance of X. Note that the uniformity induced
by R yields a strict semi-uniform space. Now we state the proposition:

(51) Let us consider a set X, and an equivalence relation R of X. Then
the uniformity induced by R is a uniform space.

Let X be a set and R be an equivalence relation of X. Observe that the uni-
formity induced by R yields a strict uniform space. Let X be a non empty set
and R be a tolerance of X. Let us note that the uniformity induced by R is non
empty and every non empty uniform space is topological.

Let Q be a non empty uniform space. The functor @Q yielding a topological,
non empty uniform space structure satisfying axiom U1 is defined by the term
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(Def. 22) Q.

Now we state the proposition:

(52) Let us consider a non empty set X, and an equivalence relation R of
X. Then the topological space induced by @(the uniformity induced by
R) = the partition topology ClassesR. The theorem is a consequence of
(30) and (18).

9. Uniformity Induced by a Tolerance or by an Equivalence

Now we state the proposition:

(53) Let us consider an upper uniform space structureQ. Suppose
⋂

(the ento-
urages Q) ∈ the entourages Q. Then there exists a binary relation R on
the carrier of Q such that

(i)
⋂

(the entourages Q) = R, and

(ii) the entourages Q = ρ(R).

Proof: Reconsider R =
⋂

(the entourages Q) as a binary relation on
the carrier of Q. ρ(R) ⊆ the entourages Q. The entourages Q ⊆ ρ(R) by
[7, (3)]. �

Let Q be a uniform space structure. The functor Uniformity2InternalRel(Q)
yielding a binary relation on the carrier of Q is defined by the term

(Def. 23)
⋂

(the entourages Q).

The functor UniformSpaceStr2RelStr(Q) yielding a relational structure is
defined by the term

(Def. 24) 〈the carrier of Q,Uniformity2InternalRel(Q)〉.
Let R1 be a relational structure. The functor InternalRel2Uniformity(R1)

yielding a family of subsets of (the carrier of R1)× (the carrier of R1) is defined
by the term

(Def. 25) {R, where R is a binary relation on the carrier of R1 : the internal
relation of R1 ⊆ R}.

The functor RelStr2UniformSpaceStr(R1) yielding a strict uniform space
structure is defined by the term

(Def. 26) 〈〈the carrier of R1, InternalRel2Uniformity(R1)〉〉.
The functor InternalRel2Element(R1) yielding an element of the entourages

RelStr2UniformSpaceStr(R1) is defined by the term

(Def. 27) the internal relation of R1.

Now we state the propositions:

(54) Let us consider a binary relation R on X. Then
⋂
ρ(R) = R.
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(55) Let us consider a strict relational structureR1. Then UniformSpaceStr2−
RelStr(RelStr2UniformSpaceStr(R1)) = R1. The theorem is a consequence
of (54).

(56) Let us consider a uniform space structure Q. Then

(i) the carrier of RelStr2UniformSpaceStr(UniformSpaceStr2RelStr(Q))

= the carrier of Q, and

(ii) the entourages RelStr2UniformSpaceStr(UniformSpaceStr2RelStr

(Q)) = ρ(
⋂

(the entourages Q)).

(57) Let us consider a family S1 of subsets of X ×X, and a binary relation
R on X. If S1 = ρ(R), then S1 ⊆ ρ(

⋂
S1).

(58) Let us consider an upper family S1 of subsets of X × X. If
⋂
S1 ∈ S1,

then ρ(
⋂
S1) ⊆ S1.

(59) Let us consider an upper family S1 of subsets of X × X, and a binary
relation R on X. Suppose R ∈ S1 and S1 = ρ(R) and

⋂
S1 ∈ S1. Then

ρ(
⋂
S1) = S1.

(60) Let us consider an upper uniform space structure Q. Suppose there exists
a binary relation R on the carrier of Q such that the entourages Q = ρ(R)
and
⋂

(the entourages Q) ∈ the entourages Q. Then the entourages Q =
ρ(
⋂

(the entourages Q)). The theorem is a consequence of (57) and (58).

(61) Let us consider an upper uniform space structure Q, and a binary re-
lation R on the carrier of Q. Suppose the entourages Q = ρ(R) and⋂

(the entourages Q) ∈ the entourages Q.
Then the entourages Q = ρ(

⋂
(the entourages Q)).

Let us consider a tolerance R of X. Now we state the propositions:

(62) (i) the uniformity induced by R is a semi-uniform space, and

(ii) the entourages the uniformity induced by R = ρ(R), and

(iii)
⋂

(the entourages the uniformity induced by R) = R.

(63) RelStr2UniformSpaceStr(UniformSpaceStr2RelStr(the uniformity indu-
ced by R)) = the uniformity induced by R. The theorem is a consequence
of (54).

(64) Let us consider an equivalence relationR ofX. Then RelStr2UniformSpa−
ceStr(UniformSpaceStr2RelStr(the uniformity induced byR)) = the unifor-
mity induced by R. The theorem is a consequence of (54).



Uniform space 225

10. Uniform Pervin Space

Let X be a set, S1 be a family of subsets of X, and A be an element of S1.
The functor Block(A) yielding a subset of X ×X is defined by the term

(Def. 28) (X \A)× (X \A) ∪A×A.

From now on S1 denotes a family of subsets of X and A denotes an element
of S1.

Now we state the propositions:

(65) If A = ∅, then Block(A) = X ×X.

(66) Suppose X is not empty. Then Block(A) = {〈〈x, y〉〉, where x, y are ele-
ments of X : x ∈ A iff y ∈ A}.
Proof: Set S = {〈〈x, y〉〉, where x, y are elements of X : x ∈ A iff y ∈ A}.
Block(A) ⊆ S by [3, (87)]. S ⊆ Block(A) by [3, (87)]. �

(67) (i) idX ⊆ Block(A), and

(ii) Block(A) · Block(A) ⊆ Block(A).

Let X be a set and S1 be a family of subsets of X. The functor Blocks(S1)
yielding a family of subsets of X ×X is defined by the term

(Def. 29) the set of all Block(A) where A is an element of S1.

Let us observe that Blocks(S1) is non empty.
The functor FMCBlocks(S1) yielding a family of subsets of X×X is defined

by the term

(Def. 30) FinMeetCl(Blocks(S1)).

Now we state the propositions:

(68) FMCBlocks(S1) is ∩-closed.

(69) FMCBlocks(S1) is quasi-basis. The theorem is a consequence of (68).

(70) FMCBlocks(S1) satisfies axiom UP1.

(71) Let us consider an element A of S1, and a binary relation R on X. If
R = Block(A), then R` = Block(A). The theorem is a consequence of
(65) and (4).

(72) Let us consider a binary relation R on X. Suppose R is an element of
Blocks(S1). Then R` is an element of Blocks(S1). The theorem is a con-
sequence of (71).

Let us consider a non empty family Y of subsets of X × X. Now we state
the propositions:

(73) If Y ⊆ Blocks(S1), then Y [∼] = Y. The theorem is a consequence of
(71).
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(74) If Y ⊆ Blocks(S1), then (
⋂
Y )` =

⋂
Y [∼]. The theorem is a consequence

of (73) and (71).

(75) If Y ⊆ Blocks(S1), then
⋂
Y = (

⋂
Y )`. The theorem is a consequence

of (73) and (74).

(76) FMCBlocks(S1) satisfies axiom UP2. The theorem is a consequence of
(73) and (75).

(77) FMCBlocks(S1) satisfies axiom UP3. The theorem is a consequence of
(67).

Let X be a set and S1 be a family of subsets of X. The Pervin uniform space
of S1 yielding a strict uniform space is defined by the term

(Def. 31) 〈〈X, [FMCBlocks(S1)]〉〉.
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(Def. 1) for every object p such that p ∈ X holds p is a polynomial over L.

Let X be a 1-sorted structure. We say that X is L-polynomial membered if
and only if

(Def. 2) the carrier of X is L-polynomial membered.

Let us note that there exists a set which is non empty and L-polynomial
membered and there exists a 1-sorted structure which is non empty and L-
polynomial membered.

Let X be a non empty, L-polynomial membered 1-sorted structure. One can
check that the carrier of X is L-polynomial membered.

Let L be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure. Let us observe that Polynom-Ring(L)
is L-polynomial membered.

Let L be a non empty zero structure and X be a non empty, L-polynomial
membered set.

Observe that an element of X is a polynomial over L. Let R be a ring. One
can verify that there exists an element of the carrier of Polynom-Ring(R) which
is zero and there exists an element of Polynom-Ring(R) which is zero and there
exists a polynomial over R which is zero.

Let R be a non degenerated ring. Let us note that there exists an element of
the carrier of Polynom-Ring(R) which is non zero and there exists an element
of Polynom-Ring(R) which is non zero.

Let L be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and p, q be polynomials over L. We say
that p | q if and only if

(Def. 3) there exist elements a, b of Polynom-Ring(L) such that a = p and b = q

and a | b.
Now we state the proposition:

(1) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and polynomials p, q
over L. Then p | q if and only if there exists a polynomial r over L such
that p ∗ r = q.

Let us consider a field F and polynomials p, q over F . Now we state the
propositions:

(2) If deg p < deg q, then p mod q = p.

(3) p mod q = 0. F if and only if q | p. The theorem is a consequence of (1).

(4) p = (p div q) ∗ q + (p mod q).

Let us consider a field F , polynomials p, r over F , and a non zero polynomial
q over F . Now we state the propositions:



Some algebraic properties of polynomial rings 229

(5) (i) p+ r div q = (p div q) + (r div q), and

(ii) p+ r mod q = (p mod q) + (r mod q).
The theorem is a consequence of (4).

(6) p∗r mod q = (p mod q)∗(r mod q) mod q. The theorem is a consequence
of (4), (5), (3), and (1).

Now we state the propositions:

(7) Let us consider a field F , polynomials r, q, u over F , and a non zero
polynomial p over F . Then (r ∗ q mod p) ∗ u mod p = (r ∗ q) ∗ u mod p.
The theorem is a consequence of (5), (3), and (1).

(8) Let us consider an add-associative, right zeroed, right complementable,
left distributive, non empty double loop structure L, and a sequence p of
L. Then 0L · p = 0. L.

(9) Let us consider a left unital, non empty double loop structure L, and
a sequence p of L. Then 1L · p = p.

(10) Let us consider an add-associative, right zeroed, right complementable,
right unital, distributive, associative, commutative, non empty double
loop structure L, sequences p, q of L, and an element a of L. Then a · (p ∗
q) = p ∗ (a · q).

(11) Let us consider an associative, non empty multiplicative magma L, a se-
quence p of L, and elements a, b of L. Then (a · b) · p = a · (b · p).

(12) Let us consider an add-associative, right zeroed, right complementable,
left distributive, left unital, non empty double loop structure L, and
a sequence p of L. Then 1. L ∗ p = p.

Let L be an add-associative, right zeroed, right complementable, well
unital, distributive, non empty double loop structure. Let us observe that
Polynom-Ring(L) is well unital.

2. Constant Polynomials

Let R be an add-associative, right zeroed, right complementable, distribu-
tive, non empty double loop structure and x be an element of the carrier of
Polynom-Ring(R). We say that x is constant if and only if

(Def. 4) deg x ¬ 0.

Let R be a non degenerated ring. Observe that there exists an element of
Polynom-Ring(R) which is non zero and constant and there exists an element
of the carrier of Polynom-Ring(R) which is non zero and constant.
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Let R be an integral domain. Let us observe that there exists an element of
Polynom-Ring(R) which is non constant and there exists an element of the car-
rier of Polynom-Ring(R) which is non constant.

Let L be a non empty zero structure and a be an element of L. The functor
a�L yielding a sequence of L is defined by the term

(Def. 5) 0. L+· (0, a).

Note that a�L is finite-Support and a�L is constant.

Let a be a non zero element of L. Let us note that a�L is non zero and there
exists a polynomial over L which is non zero and constant.

Now we state the propositions:

(13) Let us consider a non empty zero structure L. Then 0L�L = 0. L.

(14) Let us consider a non empty multiplicative loop with zero structure L.
Then 1L�L = 1. L.

Let L be a non empty zero structure. Observe that 0L�L is zero.

Let L be a non degenerated multiplicative loop with zero structure. Let us
note that 1L�L is non zero.

Now we state the propositions:

(15) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and an element p of
the carrier of Polynom-Ring(L). Then p is non zero and constant if and
only if deg p = 0.

(16) Let us consider an add-associative, right zeroed, right complementable,
right distributive, right unital, non empty double loop structure L, and
an element a of L. Then a�L = a · 1. L.

Let us consider a ring R and elements a, b of R. Now we state the proposi-
tions:

(17) a�R+ b�R = (a+ b)�R.

(18) (a�R) ∗ (b�R) = a · b�R.

(19) a�R = b�R if and only if a = b.

(20) Let us consider a ringR, and an element p of the carrier of Polynom-Ring-

(R). Then p is constant if and only if there exists an element a of R such
that p = a�R.

(21) Let us consider a ring R, and an element a of R. Then deg(a�R) = 0 if
and only if a 6= 0R. The theorem is a consequence of (19).
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3. Monic Polynomials

Let L be a non empty double loop structure and p be a polynomial over L.
We introduce the notation p is monic as a synonym of p is normalized.

Let L be an add-associative, right zeroed, right complementable, distribu-
tive, non degenerated double loop structure. Let us observe that 1. L is monic
and 0. L is non monic and there exists a polynomial over L which is monic and
there exists a polynomial over L which is non monic and there exists an element
of the carrier of Polynom-Ring(L) which is monic and there exists an element
of the carrier of Polynom-Ring(L) which is non monic.

Let L be a well unital, non degenerated double loop structure and x be
an element of L. One can verify that rpoly(1, x) is monic.

Let L be a field and p be an element of the carrier of Polynom-Ring(L). Let
us observe that the functor NormPolynomial p yields an element of the carrier
of Polynom-Ring(L). Let F be a field and p be a non zero polynomial over F .
Observe that NormPolynomial p is monic.

Let L be a field and p be a non zero element of the carrier of Polynom-Ring(L).
Observe that NormPolynomial p is monic.

Now we state the proposition:

(22) Let us consider a field F . Then NormPolynomial 0. F = 0. F .

Let us consider a field F and a non zero element p of the carrier of Polynom-
Ring(F ). Now we state the propositions:

(23) NormPolynomial p = (LC p)−1 · p.
(24) p is monic if and only if NormPolynomial p = p. The theorem is a con-

sequence of (23) and (9).

Let us consider a field F and elements p, q of the carrier of Polynom-Ring(F ).
Now we state the propositions:

(25) q | p if and only if NormPolynomial q | p. The theorem is a consequence
of (22), (1), (9), (11), (10), and (23).

(26) q | p if and only if q | NormPolynomial p. The theorem is a consequence
of (22), (1), (23), (10), (9), and (11).

Let us consider a field F and an element p of the carrier of Polynom-Ring(F ).
Now we state the propositions:

(27) NormPolynomial p is associated to p. The theorem is a consequence of
(1), (26), and (25).

(28) NormPolynomial p is irreducible if and only if p is irreducible. The the-
orem is a consequence of (27).

Now we state the propositions:



232 christoph schwarzweller et al.

(29) Let us consider an integral domain R, and elements p, q of the carrier of
Polynom-Ring(R). If p is associated to q, then deg p = deg q.

(30) Let us consider an integral domain R, and monic elements p, q of the car-
rier of Polynom-Ring(R). Then p is associated to q if and only if p = q.
The theorem is a consequence of (29), (20), (16), (10), and (12).

4. The Canonical Homomorphism from R into R[X]

Let R be a ring. The canonical homomorphism of R into quotient field
yielding a function from R into Polynom-Ring(R) is defined by

(Def. 6) for every element x of R, it(x) = x�R.

Note that the canonical homomorphism of R into quotient field is additive,
multiplicative, and unity-preserving and the canonical homomorphism of R into
quotient field is monomorphic and Polynom-Ring(R) is R-homomorphic and
R-monomorphic.

Now we state the proposition:

(31) Let us consider a ring R. Then char(Polynom-Ring(R)) = char(R).

Let R be a non degenerated ring. Let us note that Polynom-Ring(R) is
infinite and every ring with characteristic 0 is infinite.

Now we state the proposition:

(32) Let us consider a ring R. If char(R) = 0, then R is infinite.

Let n be a non trivial natural number.
One can verify that Polynom-Ring(Z /n) is infinite. Now we state the pro-

position:

(33) Let us consider a non trivial natural number n.
Then char(Polynom-Ring(Z /n)) 6= 0.

Let n be a non trivial natural number. Observe that there exists a ring which
is infinite and has characteristic n.

5. Units and Irreducible Polynomials

Let us note that there exists an integral domain which is non almost left
invertible.

Let R be a non almost left invertible integral domain. One can verify that
there exists a non-unit ofR which is non zero and ZR is non almost left invertible.

Let R be an integral domain. Observe that Polynom-Ring(R) is non almost
left invertible.

Now we state the propositions:
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(34) Let us consider an integral domain R. Then R is a field if and only if for
every non-unit a of R, a = 0R.

(35) Let us consider an integral domain R, and an element a of R. Then a�R
is a unit of Polynom-Ring(R) if and only if a is a unit of R. The theorem
is a consequence of (1), (20), (18), and (19).

(36) Let us consider an integral domain F , and an element p of the carrier
of Polynom-Ring(F ). If p is a unit of Polynom-Ring(F ), then deg p = 0.
The theorem is a consequence of (1).

(37) Let us consider a field F , and an element p of the carrier of Polynom-Ring
(F ). Then p is a unit of Polynom-Ring(F ) if and only if deg p = 0. The
theorem is a consequence of (1), (20), and (18).

(38) Let us consider an integral domain R, and an element p of the carrier
of Polynom-Ring(R). Suppose p is a unit of Polynom-Ring(R). Then p is
non zero and constant. The theorem is a consequence of (36) and (15).

(39) Let us consider a field F , and an element p of the carrier of Polynom-Ring
(F ). Then p is a unit of Polynom-Ring(F ) if and only if p is non zero and
constant. The theorem is a consequence of (37) and (15).

Let R be an integral domain. One can check that every element of Polynom-
Ring(R) which is non constant is also non zero and non unital.
Let F be an integral domain. Let us observe that every element of the carrier

of Polynom-Ring(F ) which is non constant is also non zero and non unital.
Let F be a field. Observe that every element of Polynom-Ring(F ) which

is non zero and constant is also unital and every element of Polynom-Ring(F )
which is unital is also non zero and constant and every element of the carrier
of Polynom-Ring(F ) which is non zero and constant is also unital and every
element of the carrier of Polynom-Ring(F ) which is unital is also non zero and
constant.

Now we state the propositions:

(40) Let us consider an integral domain R, and an element p of the carrier
of Polynom-Ring(R). Suppose there exists an element q of the carrier
of Polynom-Ring(R) such that q | p and 1 ¬ deg q < deg p. Then p is
reducible. The theorem is a consequence of (36).

(41) Let us consider a field F , and an element p of the carrier of Polynom-Ring
(F ). Then p is reducible if and only if p = 0. F or p is a unit of Polynom-Ring
(F ) or there exists an element q of the carrier of Polynom-Ring(F ) such
that q | p and 1 ¬ deg q < deg p. The theorem is a consequence of (1),
(37), and (40).

(42) Let us consider an integral domain R, and a monic element p of the car-
rier of Polynom-Ring(R). If deg p = 1, then p is irreducible. The theorem
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is a consequence of (36), (20), (16), (10), (12), and (35).

(43) There exists a non monic element p of the carrier of Polynom-Ring(ZR)
such that

(i) deg p = 1, and

(ii) p is reducible.

The theorem is a consequence of (16), (10), (12), (15), (35), and (36).

(44) Let us consider a field F , and an element p of the carrier of Polynom-Ring
(F ). If deg p = 1, then p is irreducible. The theorem is a consequence of
(36), (20), (21), and (35).

(45) Let us consider an algebraic closed field F , and an element p of the carrier
of Polynom-Ring(F ). Then p is irreducible if and only if deg p = 1. The
theorem is a consequence of (36) and (44).

(46) Let us consider a field F . Then F is algebraic closed if and only if for
every monic element p of the carrier of Polynom-Ring(F ), p is irreducible
iff deg p = 1. The theorem is a consequence of (37), (41), (28), and (45).

Let R be an integral domain. Note that there exists an element of Polynom-
Ring(R) which is irreducible and there exists an element of the carrier of

Polynom-Ring(R) which is irreducible.
Let R be a ring. Let us observe that there exists an element of Polynom-Ring
(R) which is reducible and there exists an element of the carrier of Polynom-
Ring(R) which is reducible. Let R be an integral domain.
Note that IRR(Polynom-Ring(R)) is non empty.
Let F be a field. Observe that every element of Polynom-Ring(F ) which is

constant is also reducible and every element of the carrier of Polynom-Ring(F )
which is constant is also reducible and every element of Polynom-Ring(F )
which is irreducible is also non constant and every element of the carrier of
Polynom-Ring(F ) which is irreducible is also non constant.

6. The Field F [X]/<p>

Let F be a field and p be an element of the carrier of Polynom-Ring(F ).
Let us note that Polynom-Ring(F )

{p}–ideal is Abelian, add-associative, right zeroed, right
complementable, commutative, associative, well unital, and distributive.

Let p be an irreducible element of the carrier of Polynom-Ring(F ). Observe
that Polynom-Ring(F )

{p}–ideal is non degenerated and almost left invertible.
Let p be a polynomial over F . The functor PolyMultMod(p) yielding a binary

operation on Polynom-Ring(F ) is defined by

(Def. 7) for every polynomials r, q over F , it(r, q) = r ∗ q mod p.
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Let p be a non constant element of the carrier of Polynom-Ring(F ). The
functor Polynom-Ring(p) yielding a strict double loop structure is defined by

(Def. 8) the carrier of it = {q, where q is a polynomial over F : deg q < deg p}
and the addition of it = (the addition of Polynom-Ring(F )) � (the carrier
of it) and the multiplication of it = PolyMultMod(p) � (the carrier of it)
and the one of it = 1. F and the zero of it = 0. F .

Observe that Polynom-Ring(p) is non degenerated and Polynom-Ring(p) is
Abelian, add-associative, right zeroed, and right complementable and Polynom-

Ring(p) is associative, well unital, and distributive.
The functor PolyMod(p) yielding a function from Polynom-Ring(F ) into

Polynom-Ring(p) is defined by

(Def. 9) for every polynomial q over F , it(q) = q mod p.

Observe that PolyMod(p) is additive, multiplicative, and unity-preserving
and Polynom-Ring(p) is (Polynom-Ring(F ))-homomorphic and PolyMod(p) is
onto.

Let us consider a field F and a non constant element p of the carrier of
Polynom-Ring(F ). Now we state the propositions:

(47) ker PolyMod(p) = {p}–ideal. The theorem is a consequence of (1) and
(3).

(48) Polynom-Ring(F )
{p}–ideal and Polynom-Ring(p) are isomorphic. The theorem is

a consequence of (47).

Let F be a field and p be a non constant element of the carrier of Polynom-Ring
(F ). Observe that Polynom-Ring(p) is commutative.
Let p be an irreducible element of the carrier of Polynom-Ring(F ). Observe

that Polynom-Ring(p) is almost left invertible.

7. Polynomial GCDs

Let L be a non empty multiplicative magma, x, y be elements of L, and z

be an element of L. We say that z is x,y-GCD if and only if

(Def. 10) z | x and z | y and for every element r of L such that r | x and r | y
holds r | z.

Let L be a GCD domain. Note that there exists an element of L which is
x,y-GCD.

A GCD of x and y is an x,y-GCD element of L. Now we state the proposition:

(49) Let us consider a GCD domain L, elements x, y of L, and GCDs u, v of
x and y. Then u is associated to v.
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Let L be a GCD domain and x, y be elements of L. One can verify that
every element of L which is x,y-GCD is also y,x-GCD.

Let F be a field and p, q be elements of the carrier of Polynom-Ring(F ).
The functor gcd(p, q) yielding an element of the carrier of Polynom-Ring(F ) is
defined by

(Def. 11) (i) it = 0. F , if p = 0. F and q = 0. F ,

(ii) it is GCD of p and q and monic, otherwise.

One can check that the functor gcd(p, q) is commutative.
Let p, q be elements of Polynom-Ring(F ). Let us note that the functor

gcd(p, q) is commutative.
Let p, q be elements of the carrier of Polynom-Ring(F ). Let us observe that

gcd(p, q) is p,q-GCD.
Let p, q be elements of Polynom-Ring(F ). Observe that gcd(p, q) is p,q-GCD.
Let p be an element of the carrier of Polynom-Ring(F ) and q be a non zero

element of the carrier of Polynom-Ring(F ). Note that gcd(p, q) is non zero and
monic.

Let p be an element of Polynom-Ring(F ) and q be a non zero element of
Polynom-Ring(F ). Let us observe that gcd(p, q) is non zero and monic.

Let p, q be zero elements of the carrier of Polynom-Ring(F ). Let us note
that gcd(p, q) is zero.

Let p, q be zero elements of Polynom-Ring(F ). One can verify that gcd(p, q)
is zero.

Now we state the propositions:

(50) Let us consider a field F , and elements p, q of the carrier of Polynom-Ring
(F ). Then

(i) gcd(p, q) | p, and

(ii) gcd(p, q) | q, and

(iii) for every element r of the carrier of Polynom-Ring(F ) such that r | p
and r | q holds r | gcd(p, q).

(51) Let us consider a field F , and elements p, q of Polynom-Ring(F ). Then

(i) gcd(p, q) | p, and

(ii) gcd(p, q) | q, and

(iii) for every element r of Polynom-Ring(F ) such that r | p and r | q
holds r | gcd(p, q).

Let F be a field and p, q be polynomials over F . The functor gcd(p, q)
yielding a polynomial over F is defined by
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(Def. 12) there exist elements a, b of Polynom-Ring(F ) such that a = p and b = q

and it = gcd(a, b).

Observe that the functor gcd(p, q) is commutative.
Let p be a polynomial over F and q be a non zero polynomial over F . Let

us note that gcd(p, q) is non zero and monic.
Let p, q be zero polynomials over F . One can verify that gcd(p, q) is zero.
Now we state the propositions:

(52) Let us consider a field F , and polynomials p, q over F . Then

(i) gcd(p, q) | p, and

(ii) gcd(p, q) | q, and

(iii) for every polynomial r over F such that r | p and r | q holds r |
gcd(p, q).

The theorem is a consequence of (1).

(53) Let us consider a field F , a polynomial p over F , a non zero polynomial
q over F , and a monic polynomial s over F . Then s = gcd(p, q) if and only
if s | p and s | q and for every polynomial r over F such that r | p and
r | q holds r | s. The theorem is a consequence of (52).
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