

Product Pre-Measure

Noboru Endou Gifu National College of Technology Gifu, Japan

Summary. In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ -measure because existence of σ -measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

MSC: 28A35 03B35

Keywords: product measure; pre-measure MML identifier: MEASUR10, version: 8.1.04 5.36.1267

1. Preliminaries

Now we state the proposition:

(1) Let us consider non empty sets A, A_1 , A_2 , B, B_1 , B_2 . Then $A_1 \times B_1$ misses $A_2 \times B_2$ and $A \times B = A_1 \times B_1 \cup A_2 \times B_2$ if and only if A_1 misses A_2 and $A = A_1 \cup A_2$ and $B = B_1$ and $B = B_2$ or B_1 misses B_2 and $B = B_1 \cup B_2$ and $A = A_1$ and $A = A_2$.

Let C, D be non empty sets, F be a sequence of D^C , and n be a natural number. One can check that the functor F(n) yields a function from C into D.

(2) Let us consider sets X, Y, A, B, and objects x, y. Suppose $x \in X$ and $y \in Y$. Then $\chi_{A,X}(x) \cdot \chi_{B,Y}(y) = \chi_{A \times B, X \times Y}(x, y)$.

Let A, B be sets. One can verify that $\chi_{A,B}$ is non-negative.

(3) Let us consider a non empty set X, a semialgebra S of sets of X, a premeasure P of S, an induced measure m of S and P, and an induced σ measure M of S and m. Then COM(M) is complete on $COM(\sigma(\text{the field generated by } S), M)$. The functor $\mathrm{Intervals}_{\mathbb{R}}$ yielding a semialgebra of sets of \mathbb{R} is defined by the term

(Def. 1) the set of all I where I is an interval.

Now we state the propositions:

- (4) Halflines \subseteq Intervals_{\mathbb{R}}.
- (5) Let us consider a subset I of \mathbb{R} . If I is an interval, then $I \in$ the Borel sets.
- (6) (i) $\sigma(\text{Intervals}_{\mathbb{R}}) = \text{the Borel sets, and}$

(ii) σ (the field generated by Intervals_R) = the Borel sets.

The theorem is a consequence of (4) and (5).

2. FAMILY OF SEMIALGEBRAS, FIELDS AND MEASURES

Now we state the propositions:

- (7) Let us consider sets X_1 , X_2 , a non empty family S_1 of subsets of X_1 , and a non empty family S_2 of subsets of X_2 . Then the set of all $a \times b$ where ais an element of S_1 , b is an element of S_2 is a non empty family of subsets of $X_1 \times X_2$.
- (8) Let us consider sets X, Y, a family M of subsets of X with the empty element, and a family N of subsets of Y with the empty element. Then the set of all $A \times B$ where A is an element of M, B is an element of N is a family of subsets of $X \times Y$ with the empty element. The theorem is a consequence of (7).
- (9) Let us consider a set X, and disjoint valued finite sequences O, T of elements of X. Suppose $\bigcup \operatorname{rng} O$ misses $\bigcup \operatorname{rng} T$. Then $O \cap T$ is a disjoint valued finite sequence of elements of X.
- (10) Let us consider sets X_1 , X_2 , a semiring S_1 of X_1 , and a semiring S_2 of X_2 . Then the set of all $A \times B$ where A is an element of S_1 , B is an element of S_2 is a semiring of $X_1 \times X_2$.
- (11) Let us consider sets X_1 , X_2 , a semialgebra S_1 of sets of X_1 , and a semialgebra S_2 of sets of X_2 . Then the set of all $A \times B$ where A is an element of S_1 , B is an element of S_2 is a semialgebra of sets of $X_1 \times X_2$. The theorem is a consequence of (10).
- (12) Let us consider sets X_1 , X_2 , a field O of subsets of X_1 , and a field T of subsets of X_2 . Then the set of all $A \times B$ where A is an element of O, B is an element of T is a semialgebra of sets of $X_1 \times X_2$. The theorem is a consequence of (11).

Let n be a non-zero natural number and X be a non-empty, n-element finite sequence.

A family of semialgebras of X is an n-element finite sequence and is defined by

(Def. 2) for every natural number i such that $i \in \text{Seg } n$ holds it(i) is a semialgebra of sets of X(i).

Let us observe that a family of semialgebras of X is a \cap -closed yielding family of semirings of X. Now we state the proposition:

(13) Let us consider a non zero natural number n, a non-empty, n-element finite sequence X, a family S of semialgebras of X, and a natural number i. If $i \in \text{Seg } n$, then $X(i) \in S(i)$.

Let us consider a non-empty, 1-element finite sequence X and a family S of semialgebras of X. Now we state the propositions:

- (14) the set of all $\prod \langle s \rangle$ where s is an element of S(1) is a semialgebra of sets of the set of all $\langle x \rangle$ where x is an element of X(1). The theorem is a consequence of (13).
- (15) SemiringProduct(S) is a semialgebra of sets of $\prod X$. The theorem is a consequence of (14).
- (16) Let us consider sets X_1 , X_2 , a semialgebra S_1 of sets of X_1 , and a semialgebra S_2 of sets of X_2 . Then the set of all $s_1 \times s_2$ where s_1 is an element of S_1 , s_2 is an element of S_2 is a semialgebra of sets of $X_1 \times X_2$.
- (17) Let us consider a non zero natural number n, a non-empty, n-element finite sequence X, and a family S of semialgebras of X. Then SemiringProduct (S) is a semialgebra of sets of $\prod X$.

PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv \text{for every non-empty, } \$_1$ element finite sequence X for every family S of semialgebras of X,

SemiringProduct(S) is a semialgebra of sets of $\prod X$. $\mathcal{P}[1]$. For every non zero natural number k, $\mathcal{P}[k]$ from [3, Sch. 10]. \Box

(18) Let us consider a non zero natural number n, a non-empty, n-element finite sequence X_8 , a non-empty, 1-element finite sequence X_1 , a family S_4 of semialgebras of X_8 , and a family S_1 of semialgebras of X_1 . Then SemiringProduct $(S_4 \cap S_1)$ is a semialgebra of sets of $\prod(X_8 \cap X_1)$. The theorem is a consequence of (17), (16), and (13).

Let n be a non-zero natural number and X be a non-empty, n-element finite sequence.

A family of fields of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number i such that $i \in \text{Seg } n$ holds it(i) is a field of subsets of X(i).

Let S be a family of fields of X and i be a natural number. Assume $i \in \text{Seg } n$. Observe that the functor S(i) yields a field of subsets of X(i).

Observe that a family of fields of X is a family of semialgebras of X.

Let us consider a non-empty, 1-element finite sequence X and a family S of fields of X. Now we state the propositions:

- (19) the set of all $\prod \langle s \rangle$ where s is an element of S(1) is a field of subsets of the set of all $\langle x \rangle$ where x is an element of X(1). The theorem is a consequence of (14).
- (20) SemiringProduct(S) is a field of subsets of $\prod X$. The theorem is a consequence of (19).

Let n be a non-zero natural number, X be a non-empty, n-element finite sequence, and S be a family of fields of X.

A family of measures of S is an n-element finite sequence and is defined by

(Def. 4) for every natural number i such that $i \in \text{Seg } n$ holds it(i) is a measure on S(i).

3. Product of Two Measures

Let X_1, X_2 be sets, S_1 be a field of subsets of X_1 , and S_2 be a field of subsets of X_2 . The functor MeasRect (S_1, S_2) yielding a semialgebra of sets of $X_1 \times X_2$ is defined by the term

- (Def. 5) the set of all $A \times B$ where A is an element of S_1 , B is an element of S_2 . Now we state the proposition:
 - (21) Let us consider a set X, and a field F of subsets of X. Then there exists a semialgebra S of sets of X such that
 - (i) F = S, and
 - (ii) F = the field generated by S.

Let X_1 , X_2 be sets, S_1 be a field of subsets of X_1 , S_2 be a field of subsets of X_2 , m_1 be a measure on S_1 , and m_2 be a measure on S_2 . The functor ProdpreMeas (m_1, m_2) yielding a non-negative, zeroed function from MeasRect (S_1, S_2) into $\overline{\mathbb{R}}$ is defined by

(Def. 6) for every element C of MeasRect (S_1, S_2) , there exists an element A of S_1 and there exists an element B of S_2 such that $C = A \times B$ and $it(C) = m_1(A) \cdot m_2(B)$.

Now we state the propositions:

(22) Let us consider sets X_1 , X_2 , a field S_1 of subsets of X_1 , a field S_2 of subsets of X_2 , a measure m_1 on S_1 , a measure m_2 on S_2 , and sets A, B.

Suppose $A \in S_1$ and $B \in S_2$. Then $(ProdpreMeas(m_1, m_2))(A \times B) = m_1(A) \cdot m_2(B)$.

(23) Let us consider sets X_1 , X_2 , a non empty family S_1 of subsets of X_1 , a non empty family S_2 of subsets of X_2 , a non empty family S of subsets of $X_1 \times X_2$, and a finite sequence H of elements of S. Suppose S =the set of all $A \times B$ where A is an element of S_1 , B is an element of S_2 . Then there exists a finite sequence F of elements of S_1 and there exists a finite sequence G of elements of S_2 such that len H = len F and len H =len G and for every natural number k such that $k \in \text{dom } H$ and $H(k) \neq \emptyset$ holds $H(k) = F(k) \times G(k)$.

PROOF: For every natural number k such that $k \in \text{dom } H$ there exists an element A of S_1 and there exists an element B of S_2 such that $H(k) = A \times B$. Define $\mathcal{P}[\text{natural number, set}] \equiv$ there exists an element B of S_2 such that $H(\$_1) = \$_2 \times B$. Consider F being a finite sequence of elements of S_1 such that dom F = Seg len H and for every natural number k such that $k \in \text{Seg len } H$ holds $\mathcal{P}[k, F(k)]$ from [4, Sch. 5]. Define $\mathcal{Q}[\text{natural}$ number, set] \equiv there exists an element A of S_1 such that $H(\$_1) = A \times \$_2$. For every natural number k such that $k \in \text{Seg len } H$ there exists an element B of S_2 such that $\mathcal{Q}[k, B]$. Consider G being a finite sequence of elements of S_2 such that dom G = Seg len H and for every natural number k such that $k \in \text{Seg len } H$ holds $\mathcal{Q}[k, G(k)]$ from [4, Sch. 5]. \Box

- (24) Let us consider a set X, a non empty, semi-diff-closed, \cap -closed family S of subsets of X, and elements E_1 , E_2 of S. Then there exist disjoint valued finite sequences O, T, F of elements of S such that
 - (i) $\bigcup \operatorname{rng} O = E_1 \setminus E_2$, and
 - (ii) $\bigcup \operatorname{rng} T = E_2 \setminus E_1$, and
 - (iii) $\bigcup \operatorname{rng} F = E_1 \cap E_2$, and
 - (iv) $(O \cap T) \cap F$ is a disjoint valued finite sequence of elements of S.

The theorem is a consequence of (9).

- (25) Let us consider sets X_1 , X_2 , a field S_1 of subsets of X_1 , a field S_2 of subsets of X_2 , a measure m_1 on S_1 , a measure m_2 on S_2 , and elements E_1 , E_2 of MeasRect (S_1, S_2) . Suppose E_1 misses E_2 and $E_1 \cup E_2 \in$ MeasRect (S_1, S_2) . Then $(\operatorname{ProdpreMeas}(m_1, m_2))(E_1 \cup E_2) =$ $(\operatorname{ProdpreMeas}(m_1, m_2))(E_1) + (\operatorname{ProdpreMeas}(m_1, m_2))(E_2)$. The theorem is a consequence of (1) and (22).
- (26) Let us consider a non empty set X, a non empty family S of subsets of X, a function f from \mathbb{N} into S, and a sequence F of partial functions from X into $\overline{\mathbb{R}}$. Suppose f is disjoint valued and for every natural number

 $n, F(n) = \chi_{f(n),X}$. Let us consider an object x. Suppose $x \in X$. Then $\chi_{\bigcup f,X}(x) = (\lim(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}})(x).$

(27) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and a real number r. Suppose dom $f \in S$ and $0 \leq r$ and for every object x such that $x \in \text{dom } f$ holds f(x) = r. Then $\int f \, dM = r \cdot M(\text{dom } f)$.

Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, a partial function f from X to $\overline{\mathbb{R}}$, and an element A of S. Now we state the propositions:

- (28) Suppose there exists an element E of S such that E = dom f and f is measurable on E and for every object x such that $x \in \text{dom } f \setminus A$ holds f(x) = 0 and f is non-negative. Then $\int f \, \mathrm{d}M = \int f \restriction A \, \mathrm{d}M$. The theorem is a consequence of (27).
- (29) If f is integrable on M and for every object x such that $x \in \text{dom } f \setminus A$ holds f(x) = 0, then $\int f \, dM = \int f \upharpoonright A \, dM$. The theorem is a consequence of (27).
- (30) Let us consider non empty sets X_1, X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_2 on S_2 , a function D from \mathbb{N} into S_1 , a function E from \mathbb{N} into S_2 , an element A of S_1 , an element B of S_2 , a sequence F of partial functions from X_2 into $\overline{\mathbb{R}}$, a sequence R of \mathbb{R}^{X_1} , and an element x of X_1 . Suppose for every natural number $n, R(n) = \chi_{D(n),X_1}$ and for every natural number $n, F(n) = R(n)(x) \cdot \chi_{E(n),X_2}$ and for every natural number $n, E(n) \subseteq B$. Then there exists a sequence I of extended reals such that
 - (i) for every natural number $n, I(n) = M_2(E(n)) \cdot \chi_{D(n),X_1}(x)$, and
 - (ii) I is summable, and
 - (iii) $\int \lim_{\alpha = 0} F(\alpha) |_{\kappa \in \mathbb{N}} dM_2 = \sum I.$

PROOF: For every natural number n, dom $(F(n)) = X_2$. Reconsider $S_3 = X_2$ as an element of S_2 . For every natural number n and for every set y such that $y \in E(n)$ holds F(n)(y) = 0 or F(n)(y) = 1 by [10, (3)], [18, (1)], [12, (39)]. For every natural number n and for every set y such that $y \notin E(n)$ holds F(n)(y) = 0. For every natural number n, F(n) is non-negative and F(n) is measurable on B by [8, (51)], [17, (37)], [18, (29)]. For every element y of X_2 such that $y \in B$ holds F # y is summable by [8, (51), (39)], [19, (16)], [29, (37)].

Consider I being a sequence of extended reals such that for every natural number n, $I(n) = \int F(n) \upharpoonright B \, dM_2$ and I is summable and $\int \lim_{\alpha \to 0} F(\alpha)_{\alpha \in \mathbb{N}} \upharpoonright B \, dM_2 = \sum I$. For every natural number n, $I(n) = \sum I$.

 $M_2(E(n)) \cdot \chi_{D(n),X_1}(x)$ by [28, (61)], [10, (47), (49)], [18, (29)]. For every natural number n, F(n) is measurable on S_3 by [18, (29)], [17, (37)]. For every natural number n, F(n) is without $-\infty$. For every element y of X_2 such that $y \in S_3$ holds $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} # y$ is convergent by [19, (38)]. For every object y such that $y \in \text{dom} \lim(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \setminus B$ holds $(\lim(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}})(y) = 0$ by [19, (43)], [16, (52)]. For every object y such that $y \in \text{dom} \lim(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}})(y) \ge 0$ by [19, (36)], [8, (51)], [19, (10), (38)]. \Box

(31) Let us consider a non empty set X, a σ -field S of subsets of X, an element A of S, and an extended real number p. Then $X \mapsto p$ is measurable on A. PROOF: For every real number $r, A \cap \text{GTE-dom}(X \mapsto p, r) \in S$ by [26, (7)], [7, (7)]. \Box

Let A, X be sets. The functor $\overline{\chi}_{A,X}$ yielding a function from X into $\overline{\mathbb{R}}$ is defined by

(Def. 7) for every object x such that $x \in X$ holds if $x \in A$, then $it(x) = +\infty$ and if $x \notin A$, then it(x) = 0.

Now we state the proposition:

(32) Let us consider a non empty set X, a σ -field S of subsets of X, and elements A, B of S. Then $\overline{\chi}_{A,X}$ is measurable on B.

Let X, A be sets. Let us observe that $\overline{\chi}_{A,X}$ is non-negative.

- (33) Let us consider a non empty set X, a σ -field S of subsets of X, a σ -measure M on S, and an element A of S. Then
 - (i) if $M(A) \neq 0$, then $\int \overline{\chi}_{A,X} \, \mathrm{d}M = +\infty$, and
 - (ii) if M(A) = 0, then $\int \overline{\chi}_{A,X} \, \mathrm{d}M = 0$.

PROOF: Reconsider $X_3 = X$ as an element of S. Reconsider $X_2 = X_3 \setminus A$ as an element of S. Reconsider $F = \overline{\chi}_{A,X} \upharpoonright A$ as a partial function from X to $\overline{\mathbb{R}}$. Reconsider $O = \overline{\chi}_{A,X} \upharpoonright X_2$ as a partial function from X to $\overline{\mathbb{R}}$. Reconsider $T = \overline{\chi}_{A,X} \upharpoonright (X_2 \cup A)$ as a partial function from X to $\overline{\mathbb{R}}$. $\int F \, \mathrm{d}M = 0$. O is measurable on X_2 . For every element x of X such that $x \in \mathrm{dom}(\overline{\chi}_{A,X} \upharpoonright X_2)$ holds $(\overline{\chi}_{A,X} \upharpoonright X_2)(x) = 0$ by [10, (47)]. $\int T \, \mathrm{d}M = \int O \, \mathrm{d}M + 0$. \Box

(34) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and a disjoint valued function K from \mathbb{N} into MeasRect (S_1, S_2) . Suppose $\bigcup K \in \text{MeasRect}(S_1, S_2)$. Then $(\text{ProdpreMeas}(M_1, M_2))(\bigcup K) = \overline{\sum}(\text{ProdpreMeas}(M_1, M_2) \cdot K)$.

PROOF: Consider A being an element of S_1 , B being an element of S_2 such that $\bigcup K = A \times B$. Consider P being an element of S_1 , Q being an element of S_2 such that $\bigcup K = P \times Q$ and $(\operatorname{ProdpreMeas}(M_1, M_2))(\bigcup K) = M_1(P)$.

 $M_2(Q)$. Define $\mathcal{F}(\text{object}) = \chi_{K(\$_1), X_1 \times X_2}$. Consider X_6 being a sequence of partial functions from $X_1 \times X_2$ into \mathbb{R} such that for every natural number $n, X_6(n) = \mathcal{F}(n)$ from [24, Sch. 1]. Define $\mathcal{P}[\text{natural number, object}] \equiv$ $\$_2 = \pi_1(K(\$_1))$. For every element i of \mathbb{N} , there exists an element A of S_1 such that $\mathcal{P}[i, A]$ by [2, (9)], [7, (7)]. Consider D being a function from \mathbb{N} into S_1 such that for every element i of $\mathbb{N}, \mathcal{P}[i, D(i)]$ from [11, Sch. 3]. Define $\mathcal{Q}[\text{natural number, object}] \equiv \$_2 = \pi_2(K(\$_1))$. For every element iof \mathbb{N} , there exists an element B of S_2 such that $\mathcal{Q}[i, B]$ by [2, (9)], [7, (7)].

Consider E being a function from N into S_2 such that for every element *i* of \mathbb{N} , $\mathcal{Q}[i, E(i)]$ from [11, Sch. 3]. Define $\mathcal{O}(\text{object}) = \chi_{D(\$_1), X_1}$. Consider X_7 being a sequence of partial functions from X_1 into $\overline{\mathbb{R}}$ such that for every natural number $n, X_7(n) = \mathcal{O}(n)$ from [24, Sch. 1]. Define $\mathcal{T}(\text{object}) = \chi_{E(\$_1), X_2}$. Consider X_4 being a sequence of partial functions from X_2 into $\overline{\mathbb{R}}$ such that for every natural number $n, X_4(n) = \mathcal{T}(n)$ from [24, Sch. 1]. For every natural number n and for every objects x, y such that $x \in X_1$ and $y \in X_2$ holds $X_6(n)(x,y) = X_7(n)(x) \cdot X_4(n)(y)$ by [14, (87)], [2, (9)], (2). (ProdpreMeas (M_1, M_2)) $(\bigcup K) = M_1(A) \cdot M_2(B)$ by $[14, M_2)$ (110)]. Reconsider $C_1 = \chi_{A \times B, X_1 \times X_2}$ as a function from $X_1 \times X_2$ into $\overline{\mathbb{R}}$. For every element x of X_1 , $M_2(B) \cdot \chi_{A,X_1}(x) = \int \operatorname{curry}(C_1, x) dM_2$ by (2), [13, (5)], [19, (14)], [23, (4)]. For every object n such that $n \in \mathbb{N}$ holds $X_7(n) \in \mathbb{R}^{X_1}$ by [12, (39)]. Reconsider $R_1 = X_7$ as a sequence of \mathbb{R}^{X_1} . For every natural number $n, D(n) \subseteq A$ and $E(n) \subseteq B$ by [2, (10)], [1, (1)].For every element x of X_1 , there exists a sequence X_5 of partial functions from X_2 into \mathbb{R} and there exists a sequence I of extended reals such that for every natural number $n, X_5(n) = R_1(n)(x) \cdot \chi_{E(n),X_2}$ and for every natural number $n, I(n) = M_2(E(n)) \cdot \chi_{D(n),X_1}(x)$ and I is summable and $\int \lim_{\alpha \to 0} \sum_{\alpha = 0}^{\kappa} X_5(\alpha) |_{\kappa \in \mathbb{N}} dM_2 = \sum I \text{ by } [13, (45)], (30).$

Reconsider $L_1 = \lim(\sum_{\alpha=0}^{\kappa} X_6(\alpha))_{\kappa\in\mathbb{N}}$ as a function from $X_1 \times X_2$ into $\overline{\mathbb{R}}$. For every element x of X_1 and for every element y of X_2 , $(\operatorname{curry}(C_1, x))(y) = (\operatorname{curry}(L_1, x))(y)$. For every element x of X_1 , $\operatorname{curry}(C_1, x) = (\operatorname{curry}(L_1, x))(y)$. For every element x of X_1 , $\operatorname{curry}(C_1, x) = \int \operatorname{curry}(L_1, x)$. For every element x of X_1 , $M_2(B) \cdot \chi_{A,X_1}(x) = \int \operatorname{curry}(L_1, x) \, dM_2$. For every element x of X_1 , there exists a sequence I of extended reals such that for every natural number n, $I(n) = M_2(E(n)) \cdot \chi_{D(n),X_1}(x)$ and $M_2(B) \cdot \chi_{A,X_1}(x) = \sum I$ by [8, (51)], [19, (38), (29), (30)]. Define $\mathcal{R}[$ natural number, object] \equiv if $M_2(E(\$_1)) = +\infty$, then $\$_2 = \overline{\chi}_{D(\$_1),X_1}$ and if $M_2(E(\$_1)) \neq +\infty$, then there exists a real number m_2 such that $m_2 = M_2(E(\$_1))$ and $\$_2 = m_2 \cdot \chi_{D(\$_1),X_1}$. For every element n of \mathbb{N} , there exists an element y of $X_1 \to \overline{\mathbb{R}}$ such that $\mathcal{R}[n, y]$ by [13, (45)], [8, (51)]. Consider F_1 being a function from \mathbb{N} into $X_1 \to \overline{\mathbb{R}}$ such that for every element n of \mathbb{N} , $\mathcal{R}[n, F_1(n)]$ from [11, Sch. 3]. For every natural number

n, dom $(F_1(n)) = X_1$. For every natural number n, $F_1(n)$ is non-negative by [8, (51)]. For every natural numbers n, m, dom $(F_1(n)) = \text{dom}(F_1(m))$.

Reconsider $X_3 = X_1$ as an element of S_1 . For every natural number n, $F_1(n)$ is non-negative and $F_1(n)$ is measurable on A and $F_1(n)$ is measurable on X_3 by (32), [18, (29)], [17, (37)]. For every element x of X_1 such that $x \in A$ holds $F_1 \# x$ is summable by [8, (51), (39)], [20, (2)]. Consider J being a sequence of extended reals such that for every natural number $n, J(n) = \int F_1(n) A dM_1$ and J is summable and $\int \lim_{\alpha = 0} F_1(\alpha) |_{\kappa \in \mathbb{N}} |A| dM_1 = \sum J$. For every natural number n, J(n) = $\int F_1(n) dM_1$. Reconsider $X_3 = X_1$ as an element of S_1 . For every element $n \text{ of } \mathbb{N}, J(n) = (\text{ProdpreMeas}(M_1, M_2) \cdot K)(n) \text{ by } (33), [8, (51)], [18, (29)],$ [16, (86), (88)]. For every element x of X_1 , $(\lim(\sum_{\alpha=0}^{\kappa} F_1(\alpha))_{\kappa\in\mathbb{N}})(x) \ge 0$ by [19, (38)], [29, (37), (23)], [8, (51)]. For every natural number $n, F_1(n)$ is measurable on X_3 and $F_1(n)$ is without $-\infty$. For every object x such that $x \in \operatorname{dom} \lim(\sum_{\alpha=0}^{\kappa} F_1(\alpha))_{\kappa \in \mathbb{N}} \setminus A$ holds $(\lim(\sum_{\alpha=0}^{\kappa} F_1(\alpha))_{\kappa \in \mathbb{N}})(x) = 0$ by [19, (30), (32)], [16, (52)]. $\int \lim(\sum_{\alpha=0}^{\kappa} F_1(\alpha))_{\kappa \in \mathbb{N}} dM_1 =$ $\int \lim \left(\sum_{\alpha=0}^{\kappa} F_1(\alpha) \right)_{\kappa \in \mathbb{N}} \restriction A \, \mathrm{d}M_1. \int \lim \left(\sum_{\alpha=0}^{\kappa} F_1(\alpha) \right)_{\kappa \in \mathbb{N}} \mathrm{d}M_1 = M_1(A) \cdot M_2(B)$ by [11, (63)], [19, (30), (32)], [8, (51)].

(35) Let us consider a without $-\infty$ finite sequence f of elements of \mathbb{R} , and a without $-\infty$ sequence s of extended reals. Suppose for every object nsuch that $n \in \text{dom } f$ holds f(n) = s(n).

Then
$$\sum f + s(0) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (\operatorname{len} f).$$

PROOF: Consider F being a sequence of \mathbb{R} such that $\sum f = F(\operatorname{len} f)$ and F(0) = 0 and for every natural number i such that $i < \operatorname{len} f$ holds F(i+1) = F(i) + f(i+1). Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leq \operatorname{len} f$, then $F(\$_1) + s(0) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}(\$_1)$ and $F(\$_1) \neq -\infty$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (11)], [27, (25)], [16, (10)], [3, (13)]. For every natural number $k, \mathcal{P}[k]$ from [3, Sch. 2]. \Box

- (36) Let us consider a non-negative finite sequence f of elements of \mathbb{R} , and a sequence s of extended reals. Suppose for every object n such that $n \in$ dom f holds f(n) = s(n) and for every element n of \mathbb{N} such that $n \notin$ dom fholds s(n) = 0. Then
 - (i) $\sum f = \sum s$, and
 - (ii) $\sum f = \overline{\sum} s$.

PROOF: For every object n such that $n \in \text{dom } s$ holds $0 \leq s(n)$ by [8, (51)]. $\sum f + s(0) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (\text{len } f)$. Define $\mathcal{P}[\text{natural number}] \equiv (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} (\text{len } f) = ((\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}} \uparrow \text{len } f)(\$_1)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [27, (25)]. For every natural number k, $\mathcal{P}[k]$ from [3, Sch. 2]. \Box

(37) Let us consider non empty sets X_1, X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and a disjoint valued finite sequence F of elements of MeasRect (S_1, S_2) . Suppose $\bigcup F \in \text{MeasRect}(S_1, S_2)$. Then $(\text{ProdpreMeas}(M_1, M_2))(\bigcup F) = \sum (\text{ProdpreMeas}(M_1, M_2) \cdot F)$.

PROOF: Set $S = \text{MeasRect}(S_1, S_2)$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{if } \$_1 \in \text{dom } F$, then $\$_2 = F(\$_1)$ and if $\$_1 \notin \text{dom } F$, then $\$_2 = \emptyset$. For every element n of \mathbb{N} , there exists an element y of S such that $\mathcal{P}[n, y]$ by [10, (3)]. Consider G being a function from \mathbb{N} into S such that for every element n of \mathbb{N} , $\mathcal{P}[n, G(n)]$ from [11, Sch. 3]. For every object x such that $x \notin \text{dom } F$ holds $G(x) = \emptyset$. For every objects x, y such that $x \neq y$ holds G(x) misses G(y). (ProdpreMeas $(M_1, M_2))(\bigcup F) = \sum (\text{ProdpreMeas}(M_1, M_2) \cdot G)$. For every object n such that $n \in \text{dom}(\text{ProdpreMeas}(M_1, M_2) \cdot F)$ holds (ProdpreMeas $(M_1, M_2) \cdot F)(n) = (\text{ProdpreMeas}(M_1, M_2) \cdot G)(n)$ by [10, (11), (12), (13)]. For every element n of \mathbb{N} such that $n \notin \text{dom}(\text{ProdpreMeas}(M_1, M_2) \cdot F)$ holds (ProdpreMeas $(M_1, M_2) \cdot G)(n) = 0$ by [10, (3), (11), (13)]. \Box

(38) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , and a σ -measure M_2 on S_2 . Then ProdpreMeas (M_1, M_2) is a pre-measure of MeasRect (S_1, S_2) . The theorem is a consequence of (37) and (34).

Let X_1 , X_2 be non empty sets, S_1 be a σ -field of subsets of X_1 , S_2 be a σ -field of subsets of X_2 , M_1 be a σ -measure on S_1 , and M_2 be a σ -measure on S_2 . Let us observe that the functor ProdpreMeas (M_1, M_2) yields a pre-measure of MeasRect (S_1, S_2) .

References

- Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008. doi:10.2478/v10037-008-0027-x.
- [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537–541, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [6] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc.
- [7] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.

- [8] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [9] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. *Measure theory*, volume 1. Springer, 2007.
- [10] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [12] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [15] Noboru Endou. Construction of measure from semialgebra of sets. Formalized Mathematics, 23(4):309–323, 2015. doi:10.1515/forma-2015-0025.
- [16] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53–70, 2006. doi:10.2478/v10037-006-0008-x.
- [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495–500, 2001.
- [18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. *Formalized Mathematics*, 9(3):525–529, 2001.
- [19] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. *Formalized Mathematics*, 16(2):167–175, 2008. doi:10.2478/v10037-008-0023-1.
- [20] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157–162, 2009. doi:10.2478/v10037-009-0018-6.
- [21] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.
- [22] P. R. Halmos. *Measure Theory*. Springer-Verlag, 1974.
- [23] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [24] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992.
- [25] M.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.
- [26] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [29] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. *Formalized Mathematics*, 15(4):231–236, 2007. doi:10.2478/v10037-007-0026-3.

Received December 31, 2015