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Summary. Rough sets, developed by Zdzisław Pawlak [12], are an impor-
tant tool to describe the state of incomplete or partially unknown information.
In this article, which is essentially the continuation of [8], we try to give the
characterization of approximation operators in terms of ordinary properties of
underlying relations (some of them, as serial and mediate relations, were not
available in the Mizar Mathematical Library [11]). Here we drop the classical
equivalence- and tolerance-based models of rough sets trying to formalize some
parts of [18].

The main aim of this Mizar article is to provide a formal counterpart for the
rest of the paper of William Zhu [18]. In order to do this, we recall also Theorem 3
from Y.Y. Yao’s paper [17]. The first part of our formalization (covering first se-
ven pages) is contained in [8]. Now we start from page 5003, sec. 3.4. [18]. We
formalized almost all numbered items (definitions, propositions, theorems, and
corollaries), with the exception of Proposition 7, where we stated our theorem
only in terms of singletons. We provided more thorough discussion of the pro-
perty positive alliance and its connection with seriality and reflexivity (and also
transitivity). Examples were not covered as a rule as we tried to construct a mo-
re general mechanism of finding appropriate models for approximation spaces in
Mizar providing more automatization than it is now [10].

Of course, we can see some more general applications of some registrations
of clusters, essentially not dealing with the notion of an approximation: the no-
tions of an alliance binary relation were not defined in the Mizar Mathematical
Library before, and we should think about other properties which are also absent
but needed in the context of rough approximations [9], [5]. Via theory merging,
using mechanisms described in [6] and [7], such elementary constructions can be
extended to other frameworks.
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1. Preliminaries

From now on X, a, b, c, x, y, z, t denote sets and R denotes a binary relation.
Let X be a non empty set. Let us note that 2X is closed under directed

unions.
The scheme FinSubIndA1 deals with a non empty, finite set X and a unary

predicate P and states that

(Sch. 1) For every subset B of X , P[B]

provided

• P[∅X ] and

• for every subset B′ of X and for every element b of X such that P[B′] and
b /∈ B′ holds P[B′ ∪ {b}].

The scheme FinSubIndA2 deals with a non empty, finite set X and a unary
predicate P and states that

(Sch. 2) For every non empty subset B of X , P[B]

provided

• for every element x of X , P[{x}] and

• for every non empty subsets B1, B2 of X such that P[B1] and P[B2] holds
P[B1 ∪B2].

Let us consider a function f and sets a, y. Now we state the propositions:

(1) Suppose dom f is subset-closed and closed under directed unions and f

is preserving directed unions. Then if a ∈ dom f and y ∈ f(a), then there
exists a set b such that b is finite and b ⊆ a and y ∈ f(b).
Proof: Reconsider C = dom f as a closed under directed unions, subset-
closed set. Reconsider A = {b, where b is a subset of a : b is finite} as
a set. A is ∪-directed by [3, (76)], [4, (7)].

⋃
A = a by [3, (31)]. A ⊆ C.

Consider B being a set such that y ∈ B and B ∈ f◦A. Consider b being
an object such that b ∈ dom f and b ∈ A and B = f(b). �

http://zbmath.org/classification/?q=cc:03E70
http://zbmath.org/classification/?q=cc:03E99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/roughs_3.miz
http://ftp.mizar.org/
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(2) Suppose dom f is subset-closed and f is preserving arbitrary unions and
dom f is closed under directed unions. Then if a ∈ dom f and y ∈ f(a),
then there exists a set x such that x ∈ a and y ∈ f({x}).
Proof: Consider b being a set such that b is finite and b ⊆ a and y ∈
f(b). Reconsider A = the set of all {x} where x is an element of b as a set.
A ⊆ dom f . b ⊆

⋃
A by [3, (74), (31)]. Consider Y being a set such that

y ∈ Y and Y ∈ f◦A. Consider X being an object such that X ∈ dom f

and X ∈ A and Y = f(X). Consider x being an element of b such that
X = {x}. �

2. On the Union and the Intersection of Two Relational
Structures

Let R1, R2 be relational structures. The functor Union(R1, R2) yielding
a strict relational structure is defined by

(Def. 1) the carrier of it = (the carrier ofR1)∪(the carrier ofR2) and the internal
relation of it = (the internal relation of R1)∪(the internal relation of R2).

One can check that the functor is commutative. The functor Meet(R1, R2) yiel-
ding a strict relational structure is defined by

(Def. 2) the carrier of it = (the carrier ofR1)∩(the carrier ofR2) and the internal
relation of it = (the internal relation of R1)∩(the internal relation of R2).

Note that the functor is commutative.
Let R1 be a relational structure and R2 be a non empty relational structure.

Let us observe that Union(R1, R2) is non empty.

3. Ordinary Properties of Maps

Let A be a set. Let us note that there exists a function from 2A into 2A

which preserves ∩ and ∪.
Let f be a function from 2A into 2A preserves ∩. Observe that Flip f prese-

rves ∪.
Let f be a function from 2A into 2A preserves ∪. Note that Flip f preserves

∩.
Now we state the proposition:

(3) Let us consider a non empty set A, and functions f , g from 2A into 2A.
Suppose f ⊆̇ g. Then Flip g ⊆̇ Flip f .
Proof: Set f1 = Flip f . Set g = Flip g. For every set x such that x ∈ dom g

holds g(x) ⊆ f1(x) by [15, (12)]. �
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One can verify that there exists a relational structure which is non empty,
mediate, and transitive.

Let R be a total, mediate relational structure. One can verify that the in-
ternal relation of R is mediate.

Let us consider relational structures L1, L2. Now we state the propositions:

(4) Suppose the relational structure of L1 = the relational structure of L2
and L1 is mediate. Then L2 is mediate.

(5) Suppose the relational structure of L1 = the relational structure of L2
and L1 is serial. Then L2 is serial.

Now we state the propositions:

(6) Let us consider a non empty set A, and functions L, U from 2A into 2A.
Suppose U = FlipL and for every subset X of A, L(X) ⊆ L(L(X)). Let
us consider a subset X of A. Then U(U(X)) ⊆ U(X).

(7) Let us consider a non empty relational structure R, and elements a, b of
R. Suppose 〈〈a, b〉〉 ∈ the internal relation of R. Then a ∈ UAp({b}).

Let us consider a non empty relational structure R and subsets A, B of R.
Now we state the propositions:

(8) (UAp(R))(A ∪B) = (UAp(R))(A) ∪ (UAp(R))(B).

(9) (LAp(R))(A ∩B) = (LAp(R))(A) ∩ (LAp(R))(B).

(10) Let us consider a non empty relational structure R. Then (UAp(R))(∅) =
∅.

Let us consider non empty relational structures R1, R2, a subset X of R1,
and a subset Y of R2.

Let us assume that the relational structure of R1 = the relational structure
of R2 and X = Y. Now we state the propositions:

(11) UAp(X) = UAp(Y ).

(12) LAp(X) = LAp(Y ).

4. On the Relational Structure Generated by Rough
Approximation

Let R be a non empty relational structure and H be a function from
2(the carrier of R) into 2(the carrier of R). The functor GeneratedRelation(R,H)

yielding a binary relation on the carrier of R is defined by

(Def. 3) for every elements x, y of R, 〈〈x, y〉〉 ∈ it iff x ∈ H({y}).
The functor GeneratedRelStrH yielding a relational structure is defined by

the term
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(Def. 4) 〈the carrier of R,GeneratedRelation(R,H)〉.
Let us note that GeneratedRelStrH is non empty.
Now we state the proposition:

(13) Let us consider a finite, non empty relational structure R, and a func-
tion H from 2α into 2α. Suppose H(∅) = ∅ and H preserves ∪. Then
UAp(GeneratedRelStrH) = H, where α is the carrier of R.
Proof: For every subset A of domH such that

⋃
A ∈ domH holds

H(
⋃
A) =

⋃
(H◦A) by [3, (2)], [14, (14)], [3, (25)], [1, (59)]. Set H1 =

UAp(GeneratedRelStrH). For every subset X of R, H1(X) = H(X) by
[8, (7)], [13, (9)], [3, (31)], (2). �

5. Construction Revisited: Yao’s [17] Theorem 3

Now we state the proposition:

(14) Let us consider a finite, non empty set A, and functions L, H from 2A

into 2A. Suppose L = FlipH. Then H(∅) = ∅ and for every subsets X,
Y of A, H(X ∪ Y ) = H(X) ∪ H(Y ) if and only if there exists a non
empty, finite relational structure R such that the carrier of R = A and
LAp(R) = L and UAp(R) = H and for every elements x, y of R, 〈〈x,
y〉〉 ∈ the internal relation of R iff x ∈ H({y}).
Proof: If H(∅) = ∅ and for every subsets X, Y of A, H(X ∪ Y ) =
H(X) ∪ H(Y ), then there exists a non empty, finite relational structure
R such that the carrier of R = A and LAp(R) = L and UAp(R) = H

and for every elements x, y of R, 〈〈x, y〉〉 ∈ the internal relation of R iff
x ∈ H({y}) by [3, (31)], [2, (5)], [3, (50), (48), (116)]. �

6. Transitive Binary Relations

Let us consider a non empty, transitive relational structure R and a subset
X of R. Now we state the propositions:

(15) LAp(X) ⊆ LAp(LAp(X)).
Proof: Consider y being an element of R such that y = x and [y]α ⊆
X, where α is the internal relation of R. [y]α ⊆ LAp(X), where α is
the internal relation of R by [16, (169)]. �

(16) UAp(UAp(X)) ⊆ UAp(X).

(17) Let us consider a finite, non empty set A, and a function L from 2A into
2A. Suppose L(A) = A and for every subset X of A, L(X) ⊆ L(L(X))
and for every subsets X, Y of A, L(X ∩ Y ) = L(X) ∩ L(Y ). Then there
exists a non empty, finite, transitive relational structure R such that
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(i) the carrier of R = A, and

(ii) L = LAp(R).

Proof: Set H = FlipL. Consider R being a non empty, finite relational
structure such that the carrier of R = A and LAp(R) = L and UAp(R) =
H and for every elements x, y of R, 〈〈x, y〉〉 ∈ the internal relation of R iff
x ∈ H({y}). For every objects x, y, z such that x, y, z ∈ the carrier of R
and 〈〈x, y〉〉, 〈〈y, z〉〉 ∈ the internal relation of R holds 〈〈x, z〉〉 ∈ the internal
relation of R by [3, (31)], [2, (5)], (6). �

(18) Let us consider a non empty, finite set A, and a function U from 2A into
2A. Suppose U(∅) = ∅ and for every subset X of A, U(U(X)) ⊆ U(X)
and for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ). Then there
exists a non empty, finite, transitive relational structure R such that

(i) the carrier of R = A, and

(ii) U = UAp(R).

The theorem is a consequence of (17).

7. Mediate and Transitive Binary Relations

Let us consider a non empty, mediate, transitive relational structure R and
a subset X of R. Now we state the propositions:

(19) LAp(X) = LAp(LAp(X)). The theorem is a consequence of (15).

(20) UAp(X) = UAp(UAp(X)). The theorem is a consequence of (16).

(21) Let us consider a non empty, finite set A, and a function L from 2A into
2A. Suppose L(A) = A and for every subset X of A, L(X) = L(L(X)) and
for every subsets X, Y of A, L(X ∩ Y ) = L(X)∩L(Y ). Then there exists
a non empty, mediate, finite, transitive relational structure R such that

(i) the carrier of R = A, and

(ii) L = LAp(R).

The theorem is a consequence of (17), (13), and (4).

(22) Let us consider a non empty, finite set A, and a function U from 2A into
2A. Suppose U(∅) = ∅ and for every subset X of A, U(U(X)) = U(X) and
for every subsets X, Y of A, U(X ∪Y ) = U(X)∪U(Y ). Then there exists
a non empty, mediate, finite, transitive relational structure R such that

(i) the carrier of R = A, and

(ii) U = UAp(R).
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Proof: Consider R being a non empty, finite, transitive relational struc-
ture such that the carrier of R = A and U = UAp(R). For every objects x,
y such that x, y ∈ the carrier of R holds if 〈〈x, y〉〉 ∈ the internal relation
of R, then there exists an object z such that z ∈ the carrier of R and 〈〈x,
z〉〉, 〈〈z, y〉〉 ∈ the internal relation of R by [3, (31)], [16, (169)], [8, (5)]. �

8. Alliance Binary Relations

Let X be a set and R be a binary relation on X. We say that R is a positive
alliance in X if and only if

(Def. 5) for every objects x, y such that x, y ∈ X and 〈〈x, y〉〉 /∈ R there exists
an object z such that z ∈ X and 〈〈x, z〉〉 ∈ R and 〈〈z, y〉〉 /∈ R.

We say that R is a negative alliance in X if and only if

(Def. 6) for every objects x, y such that x, y ∈ X holds if there exists an object
z such that z ∈ X and 〈〈x, z〉〉 ∈ R and 〈〈z, y〉〉 /∈ R, then 〈〈x, y〉〉 /∈ R.

We say that R is an alliance in X if and only if

(Def. 7) R is a negative alliance in X and R is a positive alliance in X.

Let R be a non empty relational structure. We say that R is positive alliance
if and only if

(Def. 8) the internal relation of R is a positive alliance in the carrier of R.

We say that R is negative alliance if and only if

(Def. 9) the internal relation of R is a negative alliance in the carrier of R.

We say that R is alliance if and only if

(Def. 10) the internal relation of R is an alliance in the carrier of R.

Let us observe that every non empty relational structure which is reflexive is
also positive alliance and every non empty relational structure which is discrete
is also negative alliance.

There exists a non empty relational structure which is positive alliance and
negative alliance and every non empty relational structure which is alliance
is also positive alliance and negative alliance and every non empty relational
structure which is positive alliance and negative alliance is also alliance.

Every non empty relational structure which is positive alliance is also serial
and every non empty relational structure which is transitive and serial is also
positive alliance.

Let us consider non empty relational structures L1, L2. Now we state the
propositions:

(23) Suppose the relational structure of L1 = the relational structure of L2
and L1 is negative alliance. Then L2 is negative alliance.
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(24) Suppose the relational structure of L1 = the relational structure of L2
and L1 is positive alliance. Then L2 is positive alliance.

(25) Suppose the relational structure of L1 = the relational structure of L2
and L1 is alliance. Then L2 is alliance.

9. Preparation for Translation of Proposition 10 (7H’)

Let R be a non empty relational structure. We say that R is satisfying (7H’)
if and only if

(Def. 11) for every subset X of R, (UAp(X))c ⊆ UAp((UAp(X))c).

We say that R is satisfying (7L’) if and only if

(Def. 12) for every subset X of R, LAp((LAp(X))c) ⊆ (LAp(X))c.

Let us consider a finite, non empty relational structure R. Now we state the
propositions:

(26) If R is satisfying (7L’), then R is satisfying (7H’).
Proof: For every subset X of R, (UAp(X))c ⊆ UAp((UAp(X))c) by [8,
(8)], [15, (12)], [8, (9)]. �

(27) If R is satisfying (7H’), then R is serial.
Proof: Set U = UAp(R). For every subsets X, Y of R, U(X ∪ Y ) =
U(X) ∪ U(Y ) by [8, (13)]. Consider S being a non empty, finite, serial
relational structure such that the carrier of S = the carrier of R and U =
UAp(S). �

(28) If R is satisfying (7L’), then R is serial.

Let us observe that every finite, non empty relational structure which is
satisfying (7H’) is also serial.

Now we state the proposition:

(29) Let us consider a non empty relational structure R. Suppose for every
subset X of R, UAp((UAp(X))c) ⊆ (UAp(X))c. Let us consider a subset
X of R. Then (LAp(X))c ⊆ LAp((LAp(X))c).

Let us consider a non empty set A, functions L, U from 2A into 2A, and
a subset X of A. Now we state the propositions:

(30) Suppose U = FlipL and for every subset X of A, L(X)c ⊆ L(L(X)c).
Then U(U(X)c) ⊆ U(X)c.

(31) Suppose U = FlipL and for every subset X of A, U(U(X)c) ⊆ U(X)c.
Then L(X)c ⊆ L(L(X)c).

(32) Suppose U = FlipL and for every subset X of A, L(L(X)c) ⊆ L(X)c.
Then U(X)c ⊆ U(U(X)c).
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10. Translation Continued

Now we state the propositions:

(33) Let us consider a finite, positive alliance, non empty relational structure
R, and an element x of R. Then (UAp(R))({x})c ⊆ (UAp(R))
((UAp(R))({x})c). The theorem is a consequence of (10), (8), and (13).

(34) Let us consider a non empty, finite set A, and a function U from 2A into
2A. Suppose U(∅) = ∅ and for every subset X of A, U(X)c ⊆ U(U(X)c)
and for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ). Then there
exists a positive alliance, finite, non empty relational structure R such
that

(i) the carrier of R = A, and

(ii) U = UAp(R).

Proof: Consider R being a non empty, finite relational structure such
that the carrier of R = A and LAp(R) = FlipU and UAp(R) = U and for
every elements x, y of R, 〈〈x, y〉〉 ∈ the internal relation of R iff x ∈ U({y}).
Set X = the carrier of R. Set I = the internal relation of R. For every
objects x, y such that x, y ∈ X and 〈〈x, y〉〉 /∈ I there exists an object z
such that z ∈ X and 〈〈x, z〉〉 ∈ I and 〈〈z, y〉〉 /∈ I by [8, (7)], [16, (169)]. �

(35) Let us consider a non empty, finite set A, and a function L from 2A into
2A. Suppose L(A) = A and for every subset X of A, L(L(X)c) ⊆ L(X)c

and for every subsets X, Y of A, L(X ∩ Y ) = L(X) ∩ L(Y ). Then there
exists a positive alliance, finite, non empty relational structure R such
that

(i) the carrier of R = A, and

(ii) L = LAp(R).

The theorem is a consequence of (32) and (34).

(36) Let us consider a finite, negative alliance, non empty relational struc-
ture R, and an element x of R. Then (UAp(R))((UAp(R))({x})c) ⊆
(UAp(R))({x})c. The theorem is a consequence of (10), (8), and (13).

Let us consider a finite, negative alliance, non empty relational structure R
and a subset X of R. Now we state the propositions:

(37) UAp((UAp(X))c) ⊆ (UAp(X))c.
Proof: Define P[subset of R] ≡ UAp((UAp($1))c) ⊆ (UAp($1))c. For
every subset B of R and for every element b of R such that P[B] and
b /∈ B holds P[B ∪ {b}] by [8, (13)], (36). For every subset B of R, P[B]
from FinSubIndA1. �
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(38) (LAp(X))c ⊆ LAp((LAp(X))c). The theorem is a consequence of (37)
and (29).

(39) Let us consider a non empty, finite set A, and a function U from 2A into
2A. Suppose U(∅) = ∅ and for every subset X of A, U(U(X)c) ⊆ U(X)c

and for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ). Then there
exists a negative alliance, finite, non empty relational structure R such
that

(i) the carrier of R = A, and

(ii) U = UAp(R).

Proof: Consider R being a non empty, finite relational structure such
that the carrier of R = A and LAp(R) = FlipU and UAp(R) = U and for
every elements x, y of R, 〈〈x, y〉〉 ∈ the internal relation of R iff x ∈ U({y}).
Set X = the carrier of R. Set I = the internal relation of R. For every
objects x, y such that x, y ∈ X holds if there exists an object z such that
z ∈ X and 〈〈x, z〉〉 ∈ I and 〈〈z, y〉〉 /∈ I, then 〈〈x, y〉〉 /∈ I by [16, (169)]. �

(40) Let us consider a non empty, finite set A, and a function L from 2A into
2A. Suppose L(A) = A and for every subset X of A, L(X)c ⊆ L(L(X)c)
and for every subsets X, Y of A, L(X ∩ Y ) = L(X) ∩ L(Y ). Then there
exists a negative alliance, finite, non empty relational structure R such
that

(i) the carrier of R = A, and

(ii) L = LAp(R).

The theorem is a consequence of (30) and (39).

(41) Let us consider a non empty, finite set A, and a function U from 2A into
2A. Suppose U(∅) = ∅ and for every subset X of A, U(U(X)c) = U(X)c

and for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ). Then there
exists an alliance, finite, non empty relational structure R such that

(i) the carrier of R = A, and

(ii) U = UAp(R).

The theorem is a consequence of (39), (34), (24), and (23).

(42) Let us consider a non empty, finite set A, and a function L from 2A into
2A. Suppose L(A) = A and for every subset X of A, L(X)c = L(L(X)c)
and for every subsets X, Y of A, L(X ∩ Y ) = L(X) ∩ L(Y ). Then there
exists an alliance, finite, non empty relational structure R such that

(i) the carrier of R = A, and

(ii) L = LAp(R).
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Proof: Set U = FlipL. For every subset X of A, U(U(X)c) = U(X)c

by (30), [8, (23)], (31). Consider R being an alliance, finite, non empty
relational structure such that the carrier of R = A and U = UAp(R). �

11. On the Uniqueness of Binary Relations to Generate Rough
Sets

Let us consider non empty relational structures R1, R2, R, a subset X of R,
a subset X1 of R1, and a subset X2 of R2.

Let us assume that R = Union(R1, R2) and X = X1 and X = X2 and
the carrier of R1 = the carrier of R2. Now we state the propositions:

(43) UAp(X) = UAp(X1) ∪UAp(X2).
Proof: UAp(X) ⊆ UAp(X1) ∪ UAp(X2) by [16, (169)]. UAp(X1) ∪
UAp(X2) ⊆ UAp(X) by [16, (169)]. �

(44) LAp(X) = LAp(X1) ∩ LAp(X2).
Proof: LAp(X) ⊆ LAp(X1)∩LAp(X2) by [16, (169)]. LAp(X1)∩LAp(X2)
⊆ LAp(X) by [16, (169)]. �

Let us consider non empty relational structures R1, R2.
Let us assume that the carrier of R1 = the carrier of R2 and the internal

relation of R1 ⊆ the internal relation of R2. Now we state the propositions:

(45) UAp(R1) ⊆̇ UAp(R2).
Proof: For every set x such that x ∈ dom UAp(R1) holds (UAp(R1))(x) ⊆
(UAp(R2))(x) by [16, (124)]. �

(46) LAp(R2) ⊆̇ LAp(R1).
Proof: For every set x such that x ∈ dom LAp(R2) holds (LAp(R2))(x) ⊆
(LAp(R1))(x) by [16, (124)]. �

Let us consider non empty relational structures R1, R2, R, a subset X of R,
a subset X1 of R1, and a subset X2 of R2.

Let us assume that R = Meet(R1, R2) and X = X1 and X = X2 and
the carrier of R1 = the carrier of R2. Now we state the propositions:

(47) UAp(X) ⊆ UAp(X1)∩UAp(X2). The theorem is a consequence of (45).

(48) LAp(X1) ∪ LAp(X2) ⊆ LAp(X). The theorem is a consequence of (46).

Let us consider non empty relational structures R1, R2. Now we state the
propositions:

(49) Suppose the carrier of R1 = the carrier of R2 and UAp(R1) ⊆̇ UAp(R2).
Then the internal relation of R1 ⊆ the internal relation of R2.

(50) Suppose the carrier of R1 = the carrier of R2 and UAp(R1) = UAp(R2).
Then the internal relation of R1 = the internal relation of R2.
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(51) Suppose the carrier ofR1 = the carrier ofR2. Then UAp(R1) = UAp(R2)
if and only if the internal relation of R1 = the internal relation of R2.

(52) Suppose the carrier of R1 = the carrier of R2 and LAp(R1) ⊆̇ LAp(R2).
Then the internal relation of R2 ⊆ the internal relation of R1.

(53) Suppose the carrier of R1 = the carrier of R2 and LAp(R1) = LAp(R2).
Then the internal relation of R2 = the internal relation of R1.

(54) Suppose the carrier ofR1 = the carrier ofR2. Then LAp(R1) = LAp(R2)
if and only if the internal relation of R1 = the internal relation of R2. The
theorem is a consequence of (53) and (12).
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