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Summary. In this article, we formalize in Mizar [I] the notion of uniform
space introduced by André Weil using the concepts of entourages [2].

We present some results between uniform space and pseudo metric space. We
introduce the concepts of left-uniformity and right-uniformity of a topological

group.
Next, we define the concept of the partition topology. Following the Vlach’s
works [IT} [10], we define the semi-uniform space induced by a tolerance and the
uniform space induced by an equivalence relation.
Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform
space defined from the sets of the form ((X \ A) x (X' \ A))U(A x A) is presented.
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1. PRELIMINARIES

From now on X denotes a set, D denotes a partition of X, T denotes a non
empty topological group, and A denotes a subset of X.
Now we state the propositions:

(1) AxAUX\A) x(X\A)C(X\A)xXUXxA.
(2) {123} \ {1} = {2,3}.
(3) Suppose X ={1,2,3} and A = {1}. Then

(i) (2, 1) e (X\A) x XUX x A, and

(i) (2,1) ¢ Ax AU(X\ A) x (X\ A). o
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The theorem is a consequence of (2).
(4) Let us consider a subset A of X. Then (Ax AU(X\A)x(X\A4))" = Ax
AU(X\A) x (X \ A).
(5) Let us consider subsets Py, Py of D. If |y P; = J P, then P; = Ps.
(6) Let us consider a subset P of D. Then J(D\ P)=UD\UP.
(7) Let us consider an upper family S; of subsets of X, and an element S of
Sl. Then ﬂSl Q S.
(8) Let us consider an additive group G, and subsets A, B, C, D of G. If
ACBand CC D, then A+CC B+ D.
Let us consider an element e of T and a neighbourhood V' of 1. Now we
state the propositions:
(9) {e} -V is a neighbourhood of e.
(10) V -{e} is a neighbourhood of e.

(11) Let us consider a neighbourhood V of 17. Then V! is a neighbourhood
of 1T-

2. UNIFORM SPACE

A uniform space is an upper, N-closed uniform space structure satisfying
axiom U1, axiom U2, and axiom U3. From now on ) denotes a uniform space.
Now we state the propositions:
(12) @ is a quasi-uniform space.
(13) @ is a semi-uniform space.
Let X be a set and B be a family of subsets of X x X. We say that B satisfies
axiom UP2 if and only if
(Def. 1) for every element B; of B, there exists an element Bz of B such that
By C By~
Now we state the proposition:
(14) Let us consider an empty set X. Then every empty family of subsets

of X x X is quasi-basis and satisfies axiom UP1, axiom UP2, and axiom
UP3.

One can verify that there exists a uniform space which is strict.

Now we state the proposition:

(15) Let us consider a set X, and a family S; of subsets of X x X. Suppose

X = {0} and S; = {X x X}. Then (X, S1) is a uniform space.

Let us observe that there exists a strict uniform space which is non empty.

Now we state the proposition:



UNIFORM SPACE 217

(16) Let us consider a set X, and a family B of subsets of X x X. Suppose B
is quasi-basis and satisfies axiom UP1, axiom UP2, and axiom UP3. Then
there exists a strict uniform space @ such that

(i) the carrier of Q@ = X, and
(ii) the entourages @ = [B].

3. OPEN SET AND UNIFORM SPACE

Now we state the propositions:
(17) Let us consider a non empty uniform space @. Then

(i) the carrier of the topological space induced by @ = the carrier of @,
and

(ii) the topology of the topological space induced by @ = the open set
family of the FMTinduced by Q.

(18) Let us consider a non empty uniform space @, and a subset S of the FMT-
induced by @Q. Then S is open if and only if for every element x of ) such
that = € S holds S € Neighborhood x.

(19) Let us consider a non empty uniform space ). Then the open set family
of the FMTinduced by @ = the set of all O where O is an open subset of
the FMTinduced by Q.

Let us consider a non empty uniform space ) and a subset S of the FMTin-
duced by Q. Now we state the propositions:
(20) S is open if and only if S € the open set family of the FMTinduced by
Q.
(21) S € the open set family of the FMTinduced by @ if and only if for every
element z of @ such that x € S holds S € Neighborhood z.

4. PSEUDO METRIC SPACE AND UNIFORM SPACE

Let M be a non empty metric structure and r be a positive real number.
The functor ent(M,r) yielding a subset of (the carrier of M) x (the carrier of
M) is defined by the term

(Def. 2)  {{(z, y), where z, y are elements of M : p(z,y) < r}.

Let M be a non empty, reflexive metric structure. Let us observe that
ent(M,r) is non empty.

Let M be a non empty metric structure. The functor ENT (M) yielding a non
empty family of subsets of (the carrier of M) x (the carrier of M) is defined by
the term
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(Def. 3) the set of all ent(M,r) where r is a positive real number.
The uniformity induced by M yielding a uniform space structure is defined
by the term
(Def. 4) (the carrier of M,[ENT(M)]).

Let M be a pseudo metric space. The uniformity induced by M yielding
a non empty, strict uniform space is defined by the term
(Def. 5) (the carrier of M,[ENT(M)]).
Let us consider a pseudo metric space M. Now we state the propositions:
(22) The open set family of the FMTinduced by the uniformity induced by
M = the open set family of M.
PROOF: Set X = the open set family of the FMTinduced by the uniformity
induced by M. Set Y = the open set family of M. X C Y by (18), (20), [5,
(11)]. Reconsider t; =t as a subset of M. For every element z of the uni-
formity induced by M such that = € ¢; holds t; € Neighborhood z by [5),
(11)]. O
(23) The topological space induced by the uniformity induced by M = M;p.
The theorem is a consequence of (22).

5. UNIFORM SPACE AND TOPOLOGICAL GROUP

Let G be a topological group and @) be a neighbourhood of 14. The functor
leftU(Q) yielding a subset of (the carrier of G) x (the carrier of G) is defined by
the term

(Def. 6) {{x, y), where x is an element of G, y is an element of G : x71 -y € Q}.

Let T be a non empty topological group. The functor SleftU(T") yielding
a non empty family of subsets of (the carrier of T') x (the carrier of T) is defined
by the term

(Def. 7) the set of all leftU(Q) where @ is a neighbourhood of 1.

The left-uniformity T yielding a non empty uniform space is defined by the

term
(Def. 8) (the carrier of T, [SleftU(T)]).

Let G be a topological group and @) be a neighbourhood of 14. The functor
rightU(Q) yielding a subset of (the carrier of G) x (the carrier of G) is defined
by the term

(Def. 9) {{x, y), where x is an element of G, y is an element of G : y-2~! € Q}.

Let T' be a non empty topological group. The functor SrightU(7T) yielding
a non empty family of subsets of (the carrier of T') x (the carrier of T) is defined
by the term
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(Def. 10) the set of all rightU(Q) where @ is a neighbourhood of 17.

The right-uniformity 7" yielding a non empty uniform space is defined by the
term

(Def. 11)  (the carrier of T, [SrightU(T')]).
Now we state the propositions:

(24) Let us consider a non empty, commutative topological group T, and
a neighbourhood @ of 17. Then leftU(Q) = rightU(Q).

(25) Let us consider a non empty, commutative topological group 7. Then
the left-uniformity T" = the right-uniformity 7". The theorem is a conse-
quence of (24).

Let G be a semi additive topological group and ) be a neighbourhood of
0¢- The functor leftU(Q) yielding a subset of (the carrier of G) x (the carrier
of G) is defined by the term

(Def. 12)  {(z, y), where x is an element of G, y is an element of G : —x+y € Q}.

Let T be a non empty semi additive topological group. The functor SleftU(T')
yielding a non empty family of subsets of (the carrier of T') x (the carrier of T")
is defined by the term

(Def. 13) the set of all leftU(Q) where @ is a neighbourhood of 07.

Let T be a non empty topological additive group. The left-uniformity T°
yielding a non empty uniform space is defined by the term

(Def. 14)  (the carrier of T, [SleftU(T)]).

Let G be a semi additive topological group and ) be a neighbourhood of
0¢c- The functor rightU(Q) yielding a subset of (the carrier of G) x (the carrier
of G) is defined by the term

(Def. 15)  {{(z, y), where x is an element of G, y is an element of G : y+ —z € Q}.

Let T be a non empty semi additive topological group. The functor SrightU(T")
yielding a non empty family of subsets of (the carrier of T') x (the carrier of T')
is defined by the term

(Def. 16) the set of all rightU(Q) where @ is a neighbourhood of 07.

Let T" be a non empty topological additive group. The right-uniformity 7'
yielding a non empty uniform space is defined by the term

(Def. 17)  (the carrier of T, [SrightU(T)]).
Now we state the propositions:

(26) Let us consider an Abelian semi additive topological group 7', and a ne-
ighbourhood @ of 07. Then leftU(Q) = rightU(Q).

(27) Let us consider a non empty topological additive group 7. Suppose T
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is Abelian. Then the left-uniformity 7" = the right-uniformity 7'. The the-
orem is a consequence of (26).

(28) The topology of the topological space induced by the left-uniformity
T = the topology of T'.
PROOF: Set X = the topology of FMT2TopSpace(the FMTinduced by
the left-uniformity 7). Set Y = the topology of T. X C Y by (9), [0, (7)].
Y C X by [8, 3)], B (6), 8 (6)]. O

(29) The topology of the topological space induced by the right-uniformity
T = the topology of T'.
PROOF: Set X = the topology of FMT2TopSpace(the FMTinduced by
the right-uniformity 7°). Set Y = the topology of T. X C Y by (10), [6]
(7). Y € X by [0 (3)], [, (6)], [8. (6)]. O

6. FuNcTION UNIFORMLY CONTINUOUS

Let @1, Q2 be uniform space structures and f be a function from (), into
Q2. We say that f is uniformly continuous if and only if
(Def. 18) for every element V' of the entourages @2, there exists an element @ of
the entourages @1 such that for every objects z, y such that (x, y) € Q
holds (f(z), f(y)) € V.

Let 1, Q2 be non empty uniform space structures satisfying axiom Ul.
One can check that there exists a function from ) into Q2 which is uniformly
continuous.

7. PARTITION TOPOLOGY

Now we state the propositions:
(30) the set of all |JP where P is a subset of D = UniCI(D).
(31) X € UniCl(D). The theorem is a consequence of (30).
(32) If D =0, then X is empty and UniCl(D) = {0}.
Let X be a set and D be a partition of X. Let us note that UniCl(D) is

N-closed and UniCl(D) is union-closed and every family of subsets of X which
is union-closed is also U-closed.

Let D be a partition of X. Let us note that UniCl(D) is closed for comple-
ment operator and UniCl(D) is U-closed and \-closed.
Now we state the proposition:

(33) UniCl(D) is a ring of sets. The theorem is a consequence of (30).
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Let us consider X and D. One can verify that UniCl(D) has the empty
element.
Let X be a set and D be a partition of X. Let us observe that UniCl(D) is
non empty.
Now we state the proposition:
(34) UniCl(D) is a field of subsets of X.
Let X be a set and D be a partition of X. Observe that UniCl(D) is o-
additive and UniCl(D) is o-multiplicative.
Now we state the proposition:
(35) UniCl(D) is a o-field of subsets of X.
Let X be a set and D be a partition of X. Observe that UniCl(D) is closed
for countable unions and closed for countable meets.
Now we state the proposition:
(36) Let us consider a non empty set €2, and a partition D of Q. Then
UniCl(D) is a Dynkin system of (2.
Let X be a set and D be a partition of X. The partition topology D yielding
a topological space is defined by the term
(Def. 19) (X, UniCl(D)).
Now we state the propositions:
(37) Every open subset of the partition topology D is closed.
(38) Every closed subset of the partition topology D is open.
(39) Let us consider a subset S of the partition topology D. Then S is open
if and only if S is closed.
Let X be a non empty set and D be a partition of X. Observe that the par-
tition topology D is non empty.
Let us consider a non empty set X and a partition D of X. Now we state
the propositions:
(40) LC(the partition topology D) = UniCl(D). The theorem is a consequ-
ence of (38) and (31).
(41) OpenClosedSet(the partition topology D) = the topology of the partition
topology D. The theorem is a consequence of (37).

8. UNIFORM SPACE AND PARTITION TOPOLOGY

In the sequel R denotes a binary relation on X.
Let X be a set and R be a binary relation on X. The functor p(R) yielding
a non empty family of subsets of X x X is defined by the term
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(Def. 20) {S, where S is a subset of X x X : R C S}.
Now we state the propositions:
(42)  [p(R)] = p(R).
(43) [{R}] = p(R).
(44) p(R) is upper and N-closed.

Let us consider X and R. Observe that p(R) is quasi-basis.
Now we state the propositions:

(45) Let us consider a total, reflexive binary relation R on X. Then p(R)
satisfies axiom UP1.

(46) Let us consider a symmetric binary relation R on X. Then p(R) satisfies
axiom UP2.

(47) Let us consider a total, transitive binary relation R on X. Then p(R)
satisfies axiom UP3.

Let X be a set and R be a binary relation on X. The uniformity induced by
R yielding an upper, N-closed, strict uniform space structure is defined by the
term

(Def. 21) (X, p(R)).
Now we state the propositions:

(48) Let us consider a set X, and a total, reflexive binary relation R on X.
Then the uniformity induced by R satisfies axiom Ul. The theorem is
a consequence of (45).

(49) Let us consider a set X, and a symmetric binary relation R on X. Then
the uniformity induced by R satisfies axiom U2. The theorem is a conse-
quence of (46).

(50) Let us consider a set X, and a total, transitive binary relation R on
X. Then the uniformity induced by R satisfies axiom U3. The theorem is
a consequence of (47).

Let X be a set and R be a tolerance of X. Note that the uniformity induced
by R yields a strict semi-uniform space. Now we state the proposition:

(51) Let us consider a set X, and an equivalence relation R of X. Then
the uniformity induced by R is a uniform space.

Let X be a set and R be an equivalence relation of X. Observe that the uni-
formity induced by R yields a strict uniform space. Let X be a non empty set
and R be a tolerance of X. Let us note that the uniformity induced by R is non
empty and every non empty uniform space is topological.

Let Q be a non empty uniform space. The functor ®Q yielding a topological,
non empty uniform space structure satisfying axiom Ul is defined by the term
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(Def. 22) Q.
Now we state the proposition:

(52) Let us consider a non empty set X, and an equivalence relation R of

X. Then the topological space induced by @(the uniformity induced by

R) = the partition topology Classes R. The theorem is a consequence of
(30) and (18).

9. UNIFORMITY INDUCED BY A TOLERANCE OR BY AN EQUIVALENCE

Now we state the proposition:

(53) Let us consider an upper uniform space structure Q. Suppose ()(the ento-
urages ()) € the entourages ). Then there exists a binary relation R on
the carrier of @ such that

(i) N(the entourages Q) = R, and
(ii) the entourages @ = p(R).
PROOF: Reconsider R = [\(the entourages @) as a binary relation on
the carrier of Q. p(R) C the entourages Q. The entourages @ C p(R) by
7, (3)]. O
Let @ be a uniform space structure. The functor Uniformity2InternalRel(Q)
yielding a binary relation on the carrier of () is defined by the term
(Def. 23) ((the entourages Q).

The functor UniformSpaceStr2RelStr(Q) yielding a relational structure is
defined by the term

(Def. 24) (the carrier of @, Uniformity2InternalRel(Q)).

Let R; be a relational structure. The functor InternalRel2Uniformity(R;)
yielding a family of subsets of (the carrier of Ry) x (the carrier of R;) is defined
by the term

(Def. 25) {R, where R is a binary relation on the carrier of R; : the internal
relation of Ry C R}.

The functor RelStr2UniformSpaceStr(R;) yielding a strict uniform space
structure is defined by the term

(Def. 26) (the carrier of R, InternalRel2Uniformity(R;)).

The functor InternalRel2Element(R;) yielding an element of the entourages
RelStr2UniformSpaceStr(R;) is defined by the term

(Def. 27) the internal relation of Rj.
Now we state the propositions:
(54) Let us consider a binary relation R on X. Then (" p(R) = R.



224 ROLAND COGHETTO

(55) Let us consider a strict relational structure R;. Then UniformSpaceStr2—

RelStr(RelStr2UniformSpaceStr(R;)) = R;. The theorem is a consequence
of (54).

(56) Let us consider a uniform space structure (). Then

(i) the carrier of RelStr2UniformSpaceStr(UniformSpaceStr2RelStr(Q))

= the carrier of @), and

(ii) the entourages RelStr2UniformSpaceStr(UniformSpaceStr2RelStr
(Q)) = p(N(the entourages Q)).

(57) Let us consider a family S; of subsets of X x X, and a binary relation
Ron X.If S; = p(R), then S; C p(N S1)-

(58) Let us consider an upper family S; of subsets of X x X. If S € 5y,
then p(NS1) C 5.

(59) Let us consider an upper family S; of subsets of X x X, and a binary
relation R on X. Suppose R € S; and S; = p(R) and () S1 € S1. Then
p(N51) = 5.

(60) Let us consider an upper uniform space structure ). Suppose there exists
a binary relation R on the carrier of @) such that the entourages @ = p(R)

and ((the entourages @}) € the entourages ). Then the entourages Q) =
p(N(the entourages @)). The theorem is a consequence of (57) and (58).

(61) Let us consider an upper uniform space structure ), and a binary re-
lation R on the carrier of Q. Suppose the entourages @ = p(R) and
(N(the entourages Q) € the entourages Q.

Then the entourages @ = p(((the entourages Q)).

Let us consider a tolerance R of X. Now we state the propositions:

(62) (i) the uniformity induced by R is a semi-uniform space, and
(ii) the entourages the uniformity induced by R = p(R), and

(iii) MN(the entourages the uniformity induced by R) = R.

(63) RelStr2UniformSpaceStr(UniformSpaceStr2RelStr(the uniformity indu-
ced by R)) = the uniformity induced by R. The theorem is a consequence
of (54).

(64) Let us consider an equivalence relation R of X . Then RelStr2UniformSpa—
ceStr(UniformSpaceStr2RelStr(the uniformity induced by R)) = the unifor-
mity induced by R. The theorem is a consequence of (54).
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10. UNIFORM PERVIN SPACE

Let X be a set, S1 be a family of subsets of X, and A be an element of S;.
The functor Block(A) yielding a subset of X x X is defined by the term

(Def. 28) (X \A)x (X\A)UAXx A.
From now on S; denotes a family of subsets of X and A denotes an element
of Sl.
Now we state the propositions:
(65) If A =0, then Block(A) = X x X.
(66) Suppose X is not empty. Then Block(A) = {(z, y), where z,y are ele-
ments of X :z € Aiff y € A}.
PRrROOF: Set S = {(z, y), where x,y are elements of X : v € A iff y € A}.
Block(A) C S by [3, (87)]. S C Block(A) by [3l, (87)]. O
(67) (i) idx C Block(A), and
(ii) Block(A) - Block(A) C Block(A).
Let X be a set and S; be a family of subsets of X. The functor Blocks(.S})
yielding a family of subsets of X x X is defined by the term
(Def. 29) the set of all Block(A) where A is an element of 5.
Let us observe that Blocks(S7) is non empty.

The functor FMCBlocks(S}) yielding a family of subsets of X x X is defined
by the term

(Def. 30) FinMeetCl(Blocks(S1)).
Now we state the propositions:
(68) FMCBlocks(S7) is N-closed.
(69) FMCBlocks(S7) is quasi-basis. The theorem is a consequence of (68).
(70) FMCBlocks(S) satisfies axiom UP1.
(71)

Let us consider an element A of S7, and a binary relation R on X. If
R = Block(A), then R~ = Block(A). The theorem is a consequence of
(65) and (4).

(72) Let us consider a binary relation R on X. Suppose R is an element of
Blocks(S7). Then R~ is an element of Blocks(S7). The theorem is a con-
sequence of (71).

Let us consider a non empty family Y of subsets of X x X. Now we state
the propositions:

(73) If Y C Blocks(S1), then Y [~] = Y. The theorem is a consequence of
(71).
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(74) IfY C Blocks(S1), then (NY)” =Y [~]. The theorem is a consequence
of (73) and (71).

(75) If Y C Blocks(S1), then NY = (NY)~. The theorem is a consequence
of (73) and (74).

(76) FMCBlocks(S7) satisfies axiom UP2. The theorem is a consequence of
(73) and (75).

(77) FMCBlocks(S7) satisfies axiom UP3. The theorem is a consequence of
(67).

Let X be a set and S be a family of subsets of X. The Pervin uniform space
of S yielding a strict uniform space is defined by the term

(Def. 31) (X, [FMCBlocks(S1)]).
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