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Summary. In this article we prove the Leibniz series for m which states
that
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The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Piis
item #26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk
at http://www.cs.ru.nl/F.Wiedijk/100/ .
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1. PRELIMINARIES

From now on 7, n, m denote natural numbers, r, s denote real numbers, and
A denotes a non empty, closed interval subset of R.
Now we state the proposition:
(1) rng((the function tan)[]-%,5[) = R.
PROOF: Set P = Z. Set I =]|—P, P[. R C rng((the function tan)[I) by [4,
(50)], [20; (30)], [ , (15)], [16} (1)]. O
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One can verify that the function arctan is total and the function arctan is
differentiable.
Now we state the propositions:
(2) (The function arctan)’(r) = H%
(3) Let us consider an open subset Z of R. Then

(i) the function arctan is differentiable on Z, and

(ii) for every r such that r € Z holds (the function arctan)},(r) = H%
The theorem is a consequence of (2).

Let us consider n. One can verify that (1" is continuous.
Now we state the propositions:

(4) (i) dom(ipe) =R, and

(ii) % is continuous, and
(i) (52 (r) = 2o
10
(5) (ﬁ)(x)dx =
0%+ 0

(tﬁe function arctan)(sup A) — (the function arctan)(inf A).
PROOF: Set Zy = Y. Set Zy = O?. Set f =
continuous. If r € R, then f(r) = 5 +1T2 by [13| (4 )} ( ) For every element
z of R such that x € dom(the function arctan)jp holds (the function
arctan)ig () = f(z). O

. []2n ; 1 " 1
(6) Z (V) (G @de = (-1 (G- sup A" ()

is

. 2:(n+1)
(f ")+ () (G ) @)

PROOF: Set I} = (—1)". Set iy = i+1. Set n; = n+1. Set Iy = (—1)". Set
Zy =0, Set Zy = (% Set Zo, = 02" Set f = I1-Zoy. Set g = I (7).
dom g = R. For every element z of R, (I3 - (Z(]Zi%z))( ) = (f +9g)(x) by
13, (6)], [I7, (36)], (4). f +g =11 - (;22;). 255 is continuous. O

2n 1
(7) Suppose A = [0,r] and r > 0. Then \/ W)( x)dx| < (

2 n+1
PROOF Set Zy = 0% Set Zo = 0%, Set N = 2-n. Set Z,, = OV. Set
f= Zo 7 f is continuous and dom f = R. Reconsider f; = f [ A as
a function from A into R. Reconsider Z; = Z,, | A as a function from A
into R. For every r such that r € A holds fi(r) < Zi(r) by [4, (49)], [17,

) .

2-n+1
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2. EULER TRANSFORMATION

Let a be a sequence of real numbers. The alternating series of a yielding
a sequence of real numbers is defined by
(Def. 1) it(i) = (—=1)" - a(i).
Now we state the proposition:

(8) Let us consider a sequence a of real numbers. Suppose a is non-negative
yielding, non-increasing, and convergent and lim a = 0. Then

(i) the alternating series of a is summable, and

(ii) for every n, (3> h_,(the alternating series of a)())xen(2-n) > > (the
alternating series of a) > (3_5_,(the alternating series of a)(a))cen(2-
n+1).

PROOF: Set A = the alternating series of a. Set P = (3_5_5 A(@))xen-
Define 7 [natural number,object] = $2 = P(2 - $1). Define S[natural
number, object] = $3 = P(2-$; 4+ 1). Consider T being a function from N
into R such that for every element x of N, 7 [z, T'(z)] from [5, Sch. 3].
Consider S being a function from N into R such that for every element x of
N, S[z, S(x)] from [5, Sch. 3]. For every natural number n, S(n) < S(n+1).
For every natural number n, T'(n) > T(n + 1). For every natural number
n, T(n) > S(n). For every natural number n, T'(n) > S(0) — 1 by [10, (6)].
For every natural number n, S(n) < T(0) + 1 by [10, (8)].

Define D(natural number) = 2-$; + 1. Consider D being a function from
N into N such that for every element x of N, D(x) = D(x) from [3], Sch. 8§].
Reconsider D; = D as a many sorted set indexed by N. For every natural
number n, D(n) < D(n + 1) by [2, (13)]. Reconsider ag = a - D; as
a sequence of real numbers.

For every object x such that x € N holds az(z) = (T — S)(z) by [4,
(12)]. For every real number p such that 0 < p there exists a natural
number n such that for every natural number m such that n < m holds
|P(m) —limT| < p by [19, (9)]. O
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3. MAIN THEOREM

Let us consider 7. The Leibniz series of r yielding a sequence of real numbers
is defined by
. _1)p2mtl
(Def. 2) it(n) = S0
The Leibniz series yielding a sequence of real numbers is defined by the term
(Def. 3) the Leibniz series of 1.
Now we state the propositions:
(9) Suppose r € [—1,1]. Then
(i) |the Leibniz series of r| is non-negative yielding, non-increasing, and
convergent, and
(ii) lim|the Leibniz series of r| = 0.

2:n+1

PROOF: Set r; = the Leibniz series of r. Set A = |r1]. A(n) = ‘g' + by
15, V)], B, (67), (65)]. A(n) > A(n +1) by [3, (46)], [13, (1)], [I3 ( ),
[2, (13)]. Set C' = {0}nen. Define F(natural number) = $1+1
being a sequence of real numbers such that f(n) = F(n) from [II], Sch. 1].
C(n) < A(n) < f(n) by [I1L, (57)], 13, (46)], [13, (11)], [2, (11)]. O
(10) (i) if r > 0, then the alternating series of |the Leibniz series of r| =
the Leibniz series of r, and

(ii) if » < 0, then (—1) - (the alternating series of |the Leibniz series of
r|) = the Leibniz series of r.
PROOF: Set r; = the Leibniz series of r. Set A = |r1]. Set a; = the alterna-
ting series of A. a;(n) = (—1)" - (‘Q‘H+1 ) by [15, (1)], [3, (67), (65)]. If
r >0, then aq = r1. O
(11) If r € [-1,1], then the Leibniz series of r is summable. The theorem is
a consequence of (9), (8), and (10).

(12) Suppose A = [0, 7'] and r > 0. Then (the function arctan)(r) = (> h_(the

DQ (n+1)
Leibniz series of 7)(«))xen(n +/ n“ DO n D2))( x)dz.

PROOF: Set Zy = Y. Set Z5 = D2. Set 1 = the Leibniz series of r. Define
Plnatural number| = (the function arctan)(r) = (X5 _71(a))ken($1) +
DQ-($1+1) )
[ () @de. PIO] by (3), [0, (43)], 13 (1), [ (20)
4 Zo+ Zo
If P[i], then P[i + 1] by [13], (11)], [2, (11)], (6). P[é] from [2, Sch. 2]. O
(13) If 0 < r <1, then (the function arctan)(r) = Y (the Leibniz series of r).
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PROOF: Set r; = the Leibniz series of 7. Set P = (35_r1(@))xen. Set

A = (the function arctan)(r). Define Z(natural number) = %. P is

convergent. For every s such that 0 < s there exists n such that for every
m such that n < m holds |[P(m) — A| < s by [12, (3)], (4), [7, (11), (10)].
0

(14) LEIBNIZ SERIES FOR T
7 = >_(the Leibniz series).

(15)  (>&_o(the Leibniz series)(a))xen(2 - n 4+ 1) < Y (the Leibniz series) <
(38 _(the Leibniz series)(a))xen(2 - n). The theorem is a consequence of
(9), (10), and (8).

(16) (i) (X f_o(the Leibniz series)(a))ren(1) = 2, and
(ii) if nisodd, then (3 & _,(the Leibniz series)(a))sen(n+2) = (>oa_(the

Leibniz Series)(a))neN(n) + m
(17) 7m APPROXIMATION:

313 < 7w < 313 The theorem is a consequence of (16), (14), and (15).
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