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Summary. In this article we prove the Leibniz series for π which states
that

π

4
=
∞∑
n=0

(−1)n

2 · n+ 1
.

The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Pi is
item #26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk
at http://www.cs.ru.nl/F.Wiedijk/100/ .
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1. Preliminaries

From now on i, n, m denote natural numbers, r, s denote real numbers, and
A denotes a non empty, closed interval subset of R.

Now we state the proposition:

(1) rng((the function tan)�]−π
2 ,

π
2 [) = R.

Proof: Set P = π
2 . Set I = ]−P , P [. R ⊆ rng((the function tan)�I) by [4,

(50)], [20, (30)], [14, (15)], [16, (1)]. �

1This work has been financed by the resources of the Polish National Science Centre granted
by decision no. DEC-2012/07/N/ST6/02147.

c© 2016 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)275

http://www.degruyter.com/view/j/forma
http://www.cs.ru.nl/F.Wiedijk/100/
http://zbmath.org/classification/?q=cc:40G99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/leibniz1.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


276 karol pąk

One can verify that the function arctan is total and the function arctan is
differentiable.

Now we state the propositions:

(2) (The function arctan)′(r) = 1
1+r2 .

(3) Let us consider an open subset Z of R. Then

(i) the function arctan is differentiable on Z, and

(ii) for every r such that r ∈ Z holds (the function arctan)′�Z(r) = 1
1+r2 .

The theorem is a consequence of (2).

Let us consider n. One can verify that �n is continuous.
Now we state the propositions:

(4) (i) dom( �n
�0+�2 ) = R, and

(ii) �n
�0+�2 is continuous, and

(iii) ( �n
�0+�2 )(r) = rn

1+r2 .

(5)
∫
A

(
�0

�0 + �2 )(x)dx =

(the function arctan)(supA)− (the function arctan)(inf A).
Proof: Set Z0 = �0. Set Z2 = �2. Set f = Z0

Z0+Z2
. dom f = R. f is

continuous. If r ∈ R, then f(r) = 1
1+r2 by [13, (4)], (4). For every element

x of R such that x ∈ dom(the function arctan)′�R holds (the function
arctan)′�R(x) = f(x). �

(6)
∫
A

((−1)i · ( �2·n

�0 + �2 ))(x)dx = (−1)i·(( 1
2 · n+ 1

)·(supA)2·n+1−(
1

2 · n+ 1
)·

(inf A)2·n+1) +
∫
A

((−1)i+1 · ( �2·(n+1)

�0 + �2 ))(x)dx.

Proof: Set I1 = (−1)i. Set i1 = i+1. Set n1 = n+1. Set I2 = (−1)i1 . Set
Z0 = �0. Set Z2 = �2. Set Z2n = �2·n. Set f = I1·Z2n. Set g = I2·( �2·n1

Z0+Z2
).

dom g = R. For every element x of R, (I1 · ( Z2n
Z0+Z2

))(x) = (f + g)(x) by

[13, (6)], [17, (36)], (4). f + g = I1 · ( Z2n
Z0+Z2

). �2·n1
Z0+Z2

is continuous. �

(7) Suppose A = [0, r] and r ­ 0. Then |
∫
A

(
�2·n

�0 + �2 )(x)dx| ¬ (
1

2 · n+ 1
) ·

r2·n+1.
Proof: Set Z0 = �0. Set Z2 = �2. Set N = 2 · n. Set Zn = �N . Set
f = Zn

Z0+Z2
. f is continuous and dom f = R. Reconsider f1 = f � A as

a function from A into R. Reconsider Z1 = Zn � A as a function from A

into R. For every r such that r ∈ A holds f1(r) ¬ Z1(r) by [4, (49)], [17,
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(36)], [18, (3)], (4). For every object x such that x ∈ R holds f(x) = |f |(x)
by [13, (8)], (4). �

2. Euler Transformation

Let a be a sequence of real numbers. The alternating series of a yielding
a sequence of real numbers is defined by

(Def. 1) it(i) = (−1)i · a(i).

Now we state the proposition:

(8) Let us consider a sequence a of real numbers. Suppose a is non-negative
yielding, non-increasing, and convergent and lim a = 0. Then

(i) the alternating series of a is summable, and

(ii) for every n, (
∑κ
α=0(the alternating series of a)(α))κ∈N(2 ·n) ­

∑
(the

alternating series of a) ­ (
∑κ
α=0(the alternating series of a)(α))κ∈N(2·

n+ 1).

Proof: Set A = the alternating series of a. Set P = (
∑κ
α=0A(α))κ∈N.

Define T [natural number, object] ≡ $2 = P (2 · $1). Define S[natural
number, object] ≡ $2 = P (2 · $1 + 1). Consider T being a function from N
into R such that for every element x of N, T [x, T (x)] from [5, Sch. 3].
Consider S being a function from N into R such that for every element x of
N, S[x, S(x)] from [5, Sch. 3]. For every natural number n, S(n) ¬ S(n+1).
For every natural number n, T (n) ­ T (n+ 1). For every natural number
n, T (n) ­ S(n). For every natural number n, T (n) > S(0)−1 by [10, (6)].
For every natural number n, S(n) < T (0) + 1 by [10, (8)].
Define D(natural number) = 2 · $1 + 1. Consider D being a function from
N into N such that for every element x of N, D(x) = D(x) from [5, Sch. 8].
Reconsider D1 = D as a many sorted set indexed by N. For every natural
number n, D(n) < D(n + 1) by [2, (13)]. Reconsider a2 = a · D1 as
a sequence of real numbers.
For every object x such that x ∈ N holds a2(x) = (T − S)(x) by [4,
(12)]. For every real number p such that 0 < p there exists a natural
number n such that for every natural number m such that n ¬ m holds
|P (m)− limT | < p by [19, (9)]. �
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3. Main Theorem

Let us consider r. The Leibniz series of r yielding a sequence of real numbers
is defined by

(Def. 2) it(n) = (−1)n·r2·n+1
2·n+1 .

The Leibniz series yielding a sequence of real numbers is defined by the term

(Def. 3) the Leibniz series of 1.

Now we state the propositions:

(9) Suppose r ∈ [−1, 1]. Then

(i) |the Leibniz series of r| is non-negative yielding, non-increasing, and
convergent, and

(ii) lim|the Leibniz series of r| = 0.

Proof: Set r1 = the Leibniz series of r. Set A = |r1|. A(n) = |r|2·n+1
2·n+1 by

[15, (1)], [3, (67), (65)]. A(n) ­ A(n + 1) by [3, (46)], [15, (1)], [13, (6)],

[2, (13)]. Set C = {0}n∈N. Define F(natural number) =
1
2

$1+ 12
. Consider f

being a sequence of real numbers such that f(n) = F(n) from [11, Sch. 1].
C(n) ¬ A(n) ¬ f(n) by [11, (57)], [3, (46)], [13, (11)], [2, (11)]. �

(10) (i) if r ­ 0, then the alternating series of |the Leibniz series of r| =
the Leibniz series of r, and

(ii) if r < 0, then (−1) · (the alternating series of |the Leibniz series of
r|) = the Leibniz series of r.

Proof: Set r1 = the Leibniz series of r. Set A = |r1|. Set a1 = the alterna-

ting series of A. a1(n) = (−1)n · ( |r|
2·n+1

2·n+1 ) by [15, (1)], [3, (67), (65)]. If
r ­ 0, then a1 = r1. �

(11) If r ∈ [−1, 1], then the Leibniz series of r is summable. The theorem is
a consequence of (9), (8), and (10).

(12) SupposeA = [0, r] and r ­ 0. Then (the function arctan)(r) = (
∑κ
α=0(the

Leibniz series of r)(α))κ∈N(n) +
∫
A

((−1)n+1 · ( �2·(n+1)

�0 + �2 ))(x)dx.

Proof: Set Z0 = �0. Set Z2 = �2. Set r1 = the Leibniz series of r. Define
P[natural number] ≡ (the function arctan)(r) = (

∑κ
α=0 r1(α))κ∈N($1) +∫

A

((−1)$1+1 · (�2·($1+1)

Z0 + Z2
))(x)dx. P[0] by (5), [14, (43)], [13, (4)], [9, (21)].

If P[i], then P[i+ 1] by [13, (11)], [2, (11)], (6). P[i] from [2, Sch. 2]. �

(13) If 0 ¬ r ¬ 1, then (the function arctan)(r) =
∑

(the Leibniz series of r).
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Proof: Set r1 = the Leibniz series of r. Set P = (
∑κ
α=0 r1(α))κ∈N. Set

A = (the function arctan)(r). Define I(natural number) = �2·$1
�0+�2 . P is

convergent. For every s such that 0 < s there exists n such that for every
m such that n ¬ m holds |P (m)−A| < s by [12, (3)], (4), [7, (11), (10)].
�

(14) Leibniz Series for π:
π
4 =
∑

(the Leibniz series).

(15) (
∑κ
α=0(the Leibniz series)(α))κ∈N(2 · n + 1) ¬

∑
(the Leibniz series) ¬

(
∑κ
α=0(the Leibniz series)(α))κ∈N(2 · n). The theorem is a consequence of

(9), (10), and (8).

(16) (i) (
∑κ
α=0(the Leibniz series)(α))κ∈N(1) = 2

3 , and

(ii) if n is odd, then (
∑κ
α=0(the Leibniz series)(α))κ∈N(n+2) = (

∑κ
α=0(the

Leibniz series)(α))κ∈N(n) + 2
4·n2+16·n+15 .

(17) π Approximation:
313
100 < π < 315

100 . The theorem is a consequence of (16), (14), and (15).
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