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Summary. While discussing the sum of consecutive powers as a result of
division of two binomials W.W. Sawyer [12] observes

“It is a curious fact that most algebra textbooks give our ast result
twice. It appears in two different chapters and usually there is no
mention in either of these that it also occurs in the other. The first
chapter, of course, is that on factors. The second is that on geome-
trical progressions. Geometrical progressions are involved in nearly
all financial questions involving compound interest – mortgages, an-
nuities, etc.”

It’s worth noticing that the first issue involves a simple arithmetical division of
99...9 by 9. While the above notion seems not have changed over the last 50 years,
it reflects only a special case of a broader class of problems involving two variables.
It seems strange, that while binomial formula is discussed and studied widely [7],
[8], little research is done on its counterpart with all coefficients equal to one,
which we will call here the subnomial. The study focuses on its basic properties
and applies it to some simple problems usually proven by induction [6].
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From now on a, b, i, j, k, l, m, n denote natural numbers.
Let a be a positive real number and n be a natural number. Let us note that

an is positive.
Let a be a non negative real number. One can check that an is non negative.
Let us observe that

√
a2 reduces to a.

Observe that there exists a complex which is real and there exists a complex
which is non real.
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Let a be a non real complex. One can verify that =(a) is non zero.
Let a be a real number. One can check that <(a) reduces to a.
Now we state the proposition:

(1) Let us consider a non zero real number a, and a complex a1. If a · a1 is
a real number, then a1 is a real number.

Note that every binary relation which is R-valued is also C-valued and every
binary relation which is Q-valued is also R-valued and every binary relation
which is Q-valued is also C-valued and every binary relation which is Z-valued
is also Q-valued and every binary relation which is Z-valued is also R-valued
and every binary relation which is Z-valued is also C-valued.

Every binary relation which is N-valued is also Z-valued and every binary
relation which is N-valued is also Q-valued and every binary relation which is
N-valued is also R-valued and every binary relation which is N-valued is also
C-valued and every binary relation which is real-valued is also R-valued and
every binary relation which is complex-valued is also C-valued.

Let a be an object. Observe that 1 · len〈a〉 reduces to 1.
Let f be a finite sequence. Let us note that (〈a〉 a f)(1) reduces to a and

(f a 〈a〉)(1 + len f) reduces to a.
Let x be a complex. Observe that

∑
〈x〉 reduces to x.

Let f , g be finite sequences. Let us note that (f a g)� dom f reduces to f
and (f a g)� len f reduces to f .

Now we state the proposition:

(2) Let us consider a finite sequence f . Then there exists a non empty set
D such that f is a finite sequence of elements of D.

Let f be a finite sequence. One can check that f(0) reduces to 0 and f� len f
reduces to f . Note that f�len f is empty.

Let n be a natural number. One can verify that Seg n reduces to n and Zn
reduces to n.

Note that len idSegn reduces to n and len idseq(n) reduces to n.
Let m, n be natural numbers. One can check that (idseq(m+n))(m) reduces

to m and (Rev(idseq(m+ (n+ 1))))(m+ 1) reduces to n+ 1.
Let a, b be natural numbers. The functors: min(a, b) and max(a, b) yield

natural numbers. Let f be a finite sequence and n be a natural number. One
can check that f�(len f +n) reduces to f and f� Seg max(len f, n) reduces to f .
One can verify that f�len f+n is empty and f�len f (n) is zero.

Let us consider an element n of N, a setD, and a finite sequence f of elements
of D. Now we state the propositions:

(3) If n ∈ dom f , then len(f�n) = n.

(4) If n ­ len f , then len(f�n) = len f .
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Let f be a finite sequence and n be a non zero natural number. One can
verify that f(len f + n) is zero.

Let f be a finite sequence of elements of R and i, j be natural numbers. One
can verify that (f�i)�(i+ j) reduces to f�i.

Let a be a natural number. Note that
∑

(a 7→ 0) reduces to 0. Note that∑
(a 7→ 0) is zero.

Let b be an object. One can verify that len(a 7→ b) reduces to a.
Let a be a non zero natural number. Observe that a 7→ b is non empty and

a 7→ b is constant.
Let us observe that the value of a 7→ b reduces to b.
Let f be a constant finite sequence. Let us observe that Rev(f) reduces to

f .
Let a be a natural number, b be a non zero natural number, and x be

an object. One can check that ((a+b) 7→ x)(b) reduces to x. Let us observe that
(a 7→ x)(a+ b) is zero.

Let a be an object and n be a natural number. Observe that Rev(n 7→ a)
reduces to n 7→ a.

Note that
( n
0·1
)

reduces to 1 and
( n
n·1
)

reduces to 1.
Let f be a non-negative yielding finite sequence of elements of R and i be

a natural number. One can check that f(i) is non negative and every finite
sequence which is empty is also non-positive yielding.

Let f be a non-positive yielding finite sequence of elements of R and i be
a natural number. Note that f(i) is non positive.

Let f be a non-negative yielding finite sequence of elements of R and i, j be
natural numbers. One can check that (f�j)(i) is non negative and f�j(i) is non
negative.

Let f be an empty, real-valued finite sequence. One can verify that
∏
f is

non negative.
Let f be a non-negative yielding finite sequence of elements of R. One can

verify that
∑
f is non negative and

∏
f is non negative.

Let f be a non-positive yielding finite sequence of elements of R. Let us note
that

∑
f is non positive.

Let a be an object and f be a non-negative yielding finite sequence of ele-
ments of R. One can check that f(a) is non negative.

Let f be a non-positive yielding finite sequence of elements of R. One can
verify that f(a) is non positive.

Let D be a set and f , g be D-valued finite sequences. Let us note that f a g
is D-valued.

Let f be a finite sequence of elements of R and n be a natural number. One
can verify that (f�n)�n is empty and f�max(len f,n) is empty.
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Let D be a set. One can verify that there exists a finite sequence of elements
of D which is empty and every finite sequence of elements of D which is empty
is also non-negative yielding and every finite sequence which is non-negative
yielding and Z-valued is also N-valued and every finite sequence of elements of
Z which is non-negative yielding is also N-valued.

Let f be a C-valued finite sequence. Note that f + 0 reduces to f and f − 0
reduces to f .

Let x be an object. One can check that 〈x〉(1) reduces to x.
Now we state the propositions:

(5) Let us consider a finite sequence f . Then every permutation of dom f is
a permutation of dom Rev(f).

(6) Rev(idseq(n)) is a permutation of Seg n.

Let us consider a finite sequence f . Now we state the propositions:

(7) idseq(len f) is a permutation of dom f .

(8) Rev(idseq(len f)) is a permutation of dom Rev(f). The theorem is a con-
sequence of (6).

(9) Let us consider a function f , and a permutation h of dom f . Then dom(f ·
h) = dom f .

Let f be a finite sequence and h be a permutation of dom f . Observe that
f · h is finite sequence-like and f · h is (dom f)-defined.

Let us consider a finite sequence f . Now we state the propositions:

(10) f = Rev(f) · Rev(idseq(len f)).
Proof: Reconsider P = Rev(idseq(len f)) as a permutation of dom Rev(f).
Reconsider g = Rev(f) · P as a finite sequence. For every object x such
that x ∈ dom f holds f(x) = g(x) by [13, (25)], [1, (21)], [3, (57)], [4, (12)].
�

(11) f and Rev(f) are fiberwise equipotent. The theorem is a consequence of
(10) and (8).

(12) Let us consider a non empty set D, and a D-valued finite sequence r.
Suppose len r = i+ j. Then there exist D-valued finite sequences p, q such
that

(i) len p = i, and

(ii) len q = j, and

(iii) r = p a q.

(13) Let us consider a non-negative yielding finite sequence f of elements of
R. Then

∑
f ­

∑
(f�j).

(14) Let us consider a C-valued finite sequence f , and complexes x1, x2. Then
(f + x1) + x2 = f + (x1 + x2).
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Let f be a C-valued finite sequence and x be a complex. One can check that
f + x− x reduces to f and f − x+ x reduces to f .

Let x, y be real numbers. One can check that max(min(x, y),max(x, y))
reduces to max(x, y) and min(min(x, y),max(x, y)) reduces to min(x, y).

Let z be a non negative real number. Let us observe that min(min(x, y), y+z)
reduces to min(x, y) and max(max(x, y), y − z) reduces to max(x, y).

Let f be a finite sequence and i, j be natural numbers. Observe that (f�i)�(i+
j) reduces to f�i.

Let f be a non-negative yielding finite sequence of elements of R and n be
a natural number. One can check that f�n is non-negative yielding and f�n is
non-negative yielding.

Let f be a finite sequence of elements of R. Note that f − min f is non-
negative yielding and f −max f is non-positive yielding.

Let f be a finite sequence. Let us note that Rev(f) is (len f)-element.
Let D be a non empty set and f be a D-valued finite sequence. Note that

Rev(f) is D-valued.
Let a be a complex and f be a complex-valued finite sequence. Let us note

that a · f is (len f)-element.
Let a, b be real numbers and n be a natural number.
Note that len〈

(n+1−1
0

)
a0bn+1−1, . . . ,

(n+1−1
n+1−1

)
an+1−1b0〉 reduces to n+ 1.

Let us note that 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 is (n+ 1)-element.

Let us note that len〈
(n+1−1

0

)
, . . . ,

(n+1−1
n+1−1

)
〉 reduces to n + 1. One can verify

that 〈
(n

0

)
, . . . ,

(n
n

)
〉 is non-negative yielding and 〈

(n
0

)
, . . . ,

(n
n

)
〉 is (n+ 1)-element.

Let n be a non zero natural number. Let us note that 〈
(n

0

)
, . . . ,

(n
n

)
〉(2) reduces

to n and 〈
(n

0

)
, . . . ,

(n
n

)
〉(n) reduces to n.

Now we state the propositions:

(15) Let us consider complex-valued functions f1, f2, f3. Then (f1 · f2) · f3 =
f1 · (f2 · f3).

(16) Let us consider finite sequences f , g of elements of C, and an object i.
Then (f · g)(i) = f(i) · g(i).

Let us consider real numbers x, y. Now we state the propositions:

(17) max(x, y)−min(x, y) = |x− y|.
(18) (i) min(x, y) ·max(x, y) = x · y, and

(ii) min(x, y) + max(x, y) = x+ y.

Let us consider a non-negative yielding finite sequence f of elements of R.
Now we state the propositions:

(19)
∑
f ­

∑
(f�j).

(20) If i ­ j, then
∑

(f�i) ­
∑

(f�j). The theorem is a consequence of (19).
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(21)
∑
f ­ f(n).

(22) Let us consider finite sequences f , g, h of elements of C. Suppose domh =
dom f ∩ dom g. Then lenh = min(len f, len g).

Let us consider finite sequences f , g of elements of C. Now we state the
propositions:

(23) len(f + g) = min(len f, len g). The theorem is a consequence of (22).

(24) len(f · g) = min(len f, len g). The theorem is a consequence of (22).

(25) len(f − g) = min(len f, len g). The theorem is a consequence of (23).

(26) Let us consider non-negative yielding finite sequences f , g of elements
of R. Then (f · g)(n) ¬

∑
f · g(n). The theorem is a consequence of (21).

(27) Let us consider a real number r, and a non zero natural number n. Then
there exists a finite sequence f of elements of R such that

(i) len f = n, and

(ii)
∑
f = r.

Let us consider a finite sequence f of elements of C and a complex x. Now
we state the propositions:

(28) f + x = f + len f 7→ x.
Proof: Reconsider g = len f 7→ x as a finite sequence of elements of C.
len(f + g) = min(len f, len(len f 7→ x)). For every natural number i such
that i ∈ dom(f + x) holds (f + x)(i) = (f + g)(i) by [13, (25)], [1, (21)],
[13, (29)]. �

(29)
∑

(f + x) =
∑
f + x · len f . The theorem is a consequence of (28).

(30) Let us consider a complex-valued finite sequence f , and a complex x.
Then

∑
(f − x) =

∑
f − x · len f . The theorem is a consequence of (29).

(31) Let us consider a finite sequence f of elements of R, and a non-negative
yielding finite sequence g of elements of R. If for every natural number x,
f(x) ­ g(x), then f is non-negative yielding.

(32) Let us consider finite sequences f , g of elements of R. If for every natural
number x, f(x) ­ g(x), then

∑
f ­

∑
g.

(33) Let us consider a finite sequence f of elements of C.
Then

∑
(f�(1 qua natural number)) = f((1 qua natural number)).

(34) Let us consider a finite sequence f of elements of C, and a natural number
n. Then

∑
(f�n�1) = f(n+ 1). The theorem is a consequence of (33).

(35) Let us consider a finite sequence f , and natural numbers a, b. Then
(f�a)�b = f�a+b. The theorem is a consequence of (2).

Let us consider a finite sequence f of elements of C. Now we state the
propositions:
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(36) f = ((f�i)a (f�i�(1 qua natural number)))af�i+1. The theorem is a con-
sequence of (35).

(37)
∑
f =

∑
(f�i)+f(i+1)+

∑
f�i+1. The theorem is a consequence of (35)

and (34).

(38) Let us consider a finite sequence f , and a non zero natural number i.
Then f(n+ i) = f�n(i). The theorem is a consequence of (2).

(39) Let us consider finite sequences f , g of elements of R. Suppose for every
natural number x, f(x) ­ g(x) and there exists i such that f(i + 1) >
g(i+ 1). Then

∑
f >

∑
g.

Proof: Consider i being a natural number such that f(i+ 1) > g(i+ 1).∑
f =

∑
(f�i) + f(i + 1) +

∑
f�i+1.

∑
g =

∑
(g�i) + g(i + 1) +

∑
g�i+1.

For every natural number x, (f�i)(x) ­ (g�i)(x) and f�i+1(x) ­ g�i+1(x)
by [13, (112)], [3, (17)], [13, (25)], (38).

∑
(f�i) ­

∑
(g�i) and

∑
f�i+1 ­∑

g�i+1. �

(40) Let us consider non-negative yielding finite sequences f , g of elements of
R. Then

∑
f ·
∑
g ­

∑
(f · g). The theorem is a consequence of (26) and

(32).

(41) Let us consider a complex a, and a complex-valued finite sequence f .
Then len f 7→ a · f = a · f .
Proof: For every object x such that x ∈ dom(len f 7→ a·f) holds (len f 7→
a · f)(x) = (a · f)(x) by [13, (25)], [1, (10)]. �

(42) Let us consider complexes a, b. Then a · 〈b〉 = 〈a · b〉.
Proof: For every object x such that x ∈ Seg 1 holds 〈a · b〉(x) = a · 〈b〉(x)
by [2, (2)]. �

Let us consider a complex a and complex-valued finite sequences f , g. Now
we state the propositions:

(43) a · (f a g) = (a · f) a (a · g).
Proof: For every object x such that x ∈ dom(a · (f a g)) holds (a · (f a
g))(x) = ((a · f) a (a · g))(x) by [2, (25)]. �

(44) If g = Rev(f), then Rev(a · f) = a · g.
Proof: Set h = a · f . Set h1 = a · g. Set h2 = Rev(h). For every object
x such that x ∈ domh1 holds h1(x) = h2(x) by [13, (25)], [1, (21)], [13,
(29)]. �

Let a, b be real numbers and n be a natural number.
The functor (a, b) Subnomialn yielding a finite sequence of elements of R is

defined by the term

(Def. 1) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉/〈

(n
0

)
, . . . ,

(n
n

)
〉.

Now we state the proposition:
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(45) Let us consider real numbers a, b, and a natural number n. Then

(i) len〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = len〈

(n
0

)
, . . . ,

(n
n

)
〉, and

(ii) len((a, b) Subnomialn) = len〈
(n

0

)
, . . . ,

(n
n

)
〉, and

(iii) len〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = len((a, b) Subnomialn), and

(iv) dom〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = dom〈

(n
0

)
, . . . ,

(n
n

)
〉, and

(v) dom((a, b) Subnomialn) = dom〈
(n

0

)
, . . . ,

(n
n

)
〉, and

(vi) dom〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = dom((a, b) Subnomialn).

Let a, b be real numbers and n be a natural number.
Note that len((a, b) Subnomial(n + 1 − 1)) reduces to n + 1. Observe that

(a, b) Subnomialn is (n+ 1)-element.
Let a, b be integers and n, m be natural numbers.
Observe that 〈

(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉(m) is integer.

Let n be a natural number. One can check that 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 is

Z-valued. Now we state the proposition:

(46) Let us consider integers a, b, and a natural number k. Suppose k ∈
dom〈

(n
0

)
, . . . ,

(n
n

)
〉. Then 〈

(n
0

)
, . . . ,

(n
n

)
〉(k) | 〈

(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉(k).

Let l, k be natural numbers. Note that
(l+k
k

)
is positive.

Let l be a natural number and k be a non zero natural number. One can
check that

( l
l+k

)
is zero and 〈

( l
0

)
, . . . ,

(l
l

)
〉(l + k + 1) is zero.

Let k be a natural number. Observe that 〈
(l+k

0

)
, . . . ,

(l+k
l+k

)
〉(k+ 1) is positive.

Now we state the proposition:

(47) Let us consider natural numbers k, l. Suppose k ∈ dom〈
( l
0

)
, . . . ,

(l
l

)
〉.

Then 〈
( l
0

)
, . . . ,

(l
l

)
〉(k) is not zero.

Let a, b be integers and m, n be natural numbers. One can check that
((a, b) Subnomialn)(m) is integer.

Let n be a natural number. Note that (a, b) Subnomialn is Z-valued.
Let a, b be real numbers. One can verify that the functor (a, b) Subnomialn

yields a finite sequence of elements of R and is defined by

(Def. 2) len it = n+ 1 and for every natural numbers i, l, m such that i ∈ dom it
and m = i− 1 and l = n−m holds it(i) = al · bm.

Let a, b be positive real numbers and k, l be natural numbers. Note that
((a, b) Subnomial(k + l))(k + 1) is positive.

Let n be a natural number. Let us note that
∑

((a, b) Subnomialn) is positive.
Let k be a natural number and n be a non zero natural number. One can

verify that 〈
(n

0

)
000n, . . . ,

(n
n

)
0n00〉(k) is zero and ((0, 0) Subnomialn)(k) is zero

and 〈
(n

0

)
000n, . . . ,

(n
n

)
0n00〉 is empty yielding and (0, 0) Subnomialn is empty

yielding.
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Let f be an empty yielding finite sequence of elements of C. Let us observe
that

∑
f is zero.

Let n be a natural number. One can check that 〈
(n

0

)
, . . . ,

(n
n

)
〉(1) reduces to

1 and 〈
(n

0

)
, . . . ,

(n
n

)
〉(n+ 1) reduces to 1.

Now we state the proposition:

(48) Let us consider real numbers a, b, and a natural number n. Then

(i) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(1) = ((a, b) Subnomialn)(1), and

(ii) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(n+ 1) = ((a, b) Subnomialn)(n+ 1).

Let us consider real numbers a, b. Now we state the propositions:

(49) (a, b) Subnomial(n+ 1) = a · ((a, b) Subnomialn) a 〈bn+1〉.
Proof: For every natural number k such that 1 ¬ k ¬ len((a, b) Subnomial
(n + 1)) holds ((a, b) Subnomial(n + 1))(k) = (a · ((a, b) Subnomialn) a

〈bn+1〉)(k) by [13, (25)], [1, (21)], [10, (6)], [5, (16)]. �

(50) (a, b) Subnomial(n+ 1) = 〈an+1〉 a (b · ((a, b) Subnomialn)).
Proof: For every natural number k such that 1 ¬ k ¬ len((a, b) Subnomial
(n+1)) holds ((a, b) Subnomial(n+1))(k) = (〈an+1〉a (b ·((a, b) Subnomial
n)))(k) by [1, (13), (21)], [13, (25)], [10, (2), (6)]. �

(51) Let us consider real numbers a, b, and a natural number n. Then an+1−
bn+1 = (a − b) ·

∑
((a, b) Subnomialn). The theorem is a consequence of

(49) and (50).

(52) Let us consider a real number a, and a non zero natural number n. Then
an =

∑
((a, 0) Subnomialn). The theorem is a consequence of (51).

(53) Let us consider a real number a, and a natural number n. Then an+1 =∑
((a, 1) Subnomialn) · (a− 1) + 1. The theorem is a consequence of (51).

(54) Let us consider real numbers a, b, c, d, a natural number n, and an object
x. Suppose x ∈ dom((a · b, c · d) Subnomialn). Then ((a · b, c · d) Subnomial
n)(x) = ((a, d) Subnomialn)(x) · ((b, c) Subnomialn)(x).

(55) Let us consider real numbers a, b, c, d, and a natural number n. Then
(a · b, c · d) Subnomialn = ((a, d) Subnomialn) · ((b, c) Subnomialn). The
theorem is a consequence of (54).

Let us consider real numbers a, b and a natural number n. Now we state the
propositions:

(56) (a, b) Subnomialn = ((a, 1) Subnomialn) · ((1, b) Subnomialn). The the-
orem is a consequence of (55).

(57) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = 〈

(n
0

)
, . . . ,

(n
n

)
〉 · ((a, b) Subnomialn).

Proof: dom〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = dom〈

(n
0

)
, . . . ,

(n
n

)
〉. For every object c

such that c ∈ dom〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 holds 〈

(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉(c) =

〈
(n

0

)
, . . . ,

(n
n

)
〉(c) · ((a, b) Subnomialn)(c) by [13, (25)], [1, (10)]. �
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(58) (i) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = 〈

(n
0

)
a01n, . . . ,

(n
n

)
an10〉·((1, b) Subnomialn),

and

(ii) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 = ((a, 1) Subnomialn) · 〈

(n
0

)
10bn, . . . ,

(n
n

)
1nb0〉.

The theorem is a consequence of (57), (56), and (15).

(59) Let us consider real numbers a, b, c, d, and a natural number n. Then
〈
(n

0

)
a · b0c · dn, . . . ,

(n
n

)
a · bnc · d0〉 = (〈

(n
0

)
, . . . ,

(n
n

)
〉 · ((a, c) Subnomialn)) ·

((b, d) Subnomialn). The theorem is a consequence of (57) and (55).

(60) Let us consider a real number a, and natural numbers n, i. Suppose
i ∈ dom((a, a) Subnomialn). Then ((a, a) Subnomialn)(i) = an.

Let us consider a natural number n and a real number a. Now we state the
propositions:

(61) (a, a) Subnomialn = (n+ 1) 7→ an.
Proof: For every natural number j, ((a, a) Subnomialn)(j) = ((n+ 1) 7→
an)(j) by [13, (25)], (60), [1, (10)]. �

(62)
∏

((a, a) Subnomialn) = an·(n+1). The theorem is a consequence of (61).

(63) Let us consider a natural number n, and n-element, complex-valued finite
sequences f , g. Then

∏
(f · g) =

∏
f ·
∏
g.

(64) Let us consider real numbers a, b, and a natural number n.
Then (a, b) Subnomialn = Rev((b, a) Subnomialn).
Proof: dom((a, b) Subnomialn) = dom〈

(n
0

)
, . . . ,

(n
n

)
〉 and

dom((b, a) Subnomialn) = dom〈
(n

0

)
, . . . ,

(n
n

)
〉. For every object i such that

i ∈ dom((a, b) Subnomialn) holds ((a, b) Subnomialn)(i) =
(Rev((b, a) Subnomialn))(i) by [13, (26)], [3, (57), (59), (58)]. �

Let n be a natural number and i be a natural number. One can check that
((1, 1) Subnomial(n+ i))(i+ 1) reduces to 1.

Let i be a non zero natural number. Observe that ((1,−1) Subnomial(2 · i+
n))(2 · i) reduces to −1.

Let i be an odd natural number. Let us observe that ((1,−1) Subnomial(n+
i))(i) reduces to 1.

Let a be a real number.
One can check that n 7→ a is constant and (a, a) Subnomialn is constant.
Let a, b be non negative real numbers and n, k be natural numbers. One can

check that 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(k) is non negative and ((a, b) Subnomialn)(k)

is non negative.
Now we state the propositions:

(65) Let us consider a real number a, and a natural number n.
Then

∑
((a, a) Subnomialn) = (n+ 1) · an. The theorem is a consequence

of (60).
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(66) Let us consider a real number a, and an even natural number n. Then∑
((a,−a) Subnomialn) = an. The theorem is a consequence of (65) and

(51).

Let n be an even natural number. Note that
∑

((1,−1) Subnomialn) reduces
to 1.

Let a be a real number and n be an odd natural number. One can verify
that

∑
((a,−a) Subnomialn) is zero.

Let n be a natural number. Let us observe that
∑

((1, 1) Subnomial(n+1−1))
reduces to n+ 1.

One can verify that
∑
〈
(n

0

)
, . . . ,

(n
n

)
〉 is non zero.

Let a, b be non negative real numbers. Observe that (a, b) Subnomialn is
non-negative yielding and 〈

(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉 is non-negative yielding and∑

((a, b) Subnomialn) is non negative and
∑
〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉 is non nega-

tive.
Let us consider real numbers a, b. Now we state the propositions:

(67) (a, b) Subnomialn and (b, a) Subnomialn are fiberwise equipotent. The
theorem is a consequence of (11) and (64).

(68)
∏

((a, b) Subnomialn) =
∏

((b, a) Subnomialn).

(69) Let us consider a non negative real number a.

Then
∏

((a, 1) Subnomialn) = a(
n+1
2 ). The theorem is a consequence of

(62), (55), (63), and (67).

(70) n! · k! ¬ (n+ k)!.

(71)
(n+k
k

)
= 1 if and only if n = 0 or k = 0.

Proof: If n 6= 0 and k 6= 0, then
(n+k
k

)
6= 1 by [1, (14)], [10, (22)]. �

(72) n! · k! = (n+ k)! if and only if n = 0 or k = 0. The theorem is a conse-
quence of (71).

Let n, k be non zero natural numbers. One can check that (n+ k)!− n! · k!
is positive. Now we state the propositions:

(73) Let us consider a real number a. Then
∑

((a, a) Subnomialn) =∑
((1, 1) Subnomialn) ·

∑
〈
(n

0

)
a00n, . . . ,

(n
n

)
an00〉. The theorem is a conse-

quence of (65).

(74) Let us consider real numbers a, b, c. Then
∑
〈
(n

0

)
a + b0cn, . . . ,

(n
n

)
a +

bnc0〉 =
∑
〈
(n

0

)
a0b+ cn, . . . ,

(n
n

)
anb+ c0〉.

(75) 〈
(n

0

)
, . . . ,

(n
n

)
〉(i+ 1) =

(n
i

)
.

(76)
(2·n
n

)
= (2·n)!
n!2

.

(77) 〈
(2·n+1

0

)
, . . . ,

(2·n+1
2·n+1

)
〉(n+ 1) = 〈

(2·n+1
0

)
, . . . ,

(2·n+1
2·n+1

)
〉(n+ 2). The theorem

is a consequence of (75).
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(78) Let us consider a non zero integer a.
If 1 ¬ k ¬ n, then a | ((a, b) Subnomialn)(k).

(79) Let us consider integers a, b. Then a · b | 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(i) −

((a, b) Subnomialn)(i). The theorem is a consequence of (45).

(80) Let us consider a Z-valued finite sequence f , and an integer a. Suppose
for every natural number n such that n ∈ dom f holds a | f(n). Then
a |
∑
f .

Proof: Reconsider f1 = f as a finite sequence of elements of R. Reconsider
k = min f1 as an integer. Reconsider f2 = f as a finite sequence of elements
of C. Reconsider g = f2−k as a finite sequence of elements of Z. Reconsider
l = |a| as a natural number. a | k by [11, (12)]. If m ∈ dom g, then l | g(m)
by [11, (10)], [9, (4), (13)].

∑
(g + k) =

∑
g + k · len g. �

(81) Let us consider integers a, b. Then a · b · (a − b) | (a − b) · (a+ b)n −
(an+1 − bn+1). The theorem is a consequence of (79), (80), and (51).

Let us consider non negative real numbers a, b.

(82) 〈
(n

0

)
a0bn, . . . ,

(n
n

)
anb0〉(i) ­ ((a, b) Subnomialn)(i). The theorem is a con-

sequence of (47) and (57).

(83) (a+ b)n ­
∑

((a, b) Subnomialn). The theorem is a consequence of (82)
and (32).

Let us consider non negative real numbers a, b and a non zero natural number
n. Now we state the propositions:

(84) an + bn ¬
∑

((a, b) Subnomialn). The theorem is a consequence of (48).

(85) a · (a+ 2 · b)n + bn+1 ­ (a+ b)n+1.

(86) a · (a+ b)n + (a+ b) · bn ¬ (a+ b)n+1.

Let us consider positive real numbers a, b and a non zero natural number n.
Now we state the propositions:

(87)
∑

((a, b) Subnomial(n+1)) <
∑
〈
(n+1

0

)
a0bn+1, . . . ,

(n+1
n+1

)
an+1b0〉. The the-

orem is a consequence of (82), (57), and (39).

(88)
∑

((a + b, 0) Subnomial(n + 1)) >
∑

((a, b) Subnomial(n + 1)). The the-
orem is a consequence of (51) and (87).

(89) Let us consider real numbers a, b, and natural numbers n, i. Then
((a, b) Subnomialn)(i) ¬ ((|a|, |b|) Subnomialn)(i). The theorem is a con-
sequence of (45).

(90) Let us consider a real number a, a natural number n, and an odd natural
number i. Then ((a,−a) Subnomial(n + i))(i) = an+i. The theorem is
a consequence of (54) and (60).

(91) Let us consider a real number a, a natural number n, and a non zero
natural number i. Then ((a,−a) Subnomial(n+2 · i))(2 · i) = −an+2·i. The
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theorem is a consequence of (54) and (60).

Let us consider real numbers a, b and a natural number n. Now we state the
propositions:

(92) (a, b) Subnomial(n+ 1) = 〈an+1〉 a (b · ((a, b) Subnomialn)).
Proof: dom((a, b) Subnomial(n+1)) = dom(〈an+1〉a (b ·((a, b) Subnomial
n))) by [13, (29)], [2, (22)]. For every object i such that i ∈ dom((a, b) Subno-
mial(n+1)) holds ((a, b) Subnomial(n+1))(i) = (〈an+1〉a(b·((a, b) Subnomial
n)))(i) by [13, (25)], [1, (10), (13)], [2, (65)]. �

(93) (a, b) Subnomial(n+ 2) = (〈an+2〉a (a · b · ((a, b) Subnomialn)))a 〈bn+2〉.
The theorem is a consequence of (92), (44), (64), (43), and (42).
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