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Summary. In the article we formalized in the Mizar system [2] the Vieta
formula about the sum of roots of a polynomial anxn+an−1x

n−1+ · · ·+a1x+a0
defined over an algebraically closed field. The formula says that x1 + x2 + · · ·+
xn−1 + xn = −an−1

an
, where x1, x2, . . . , xn are (not necessarily distinct) roots of

the polynomial [12]. In the article the sum is denoted by SumRoots.
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Let F be a finite sequence and f be a function from domF into domF .
Observe that F · f is finite sequence-like.

Now we state the propositions:

(1) Let us consider objects a, b. Suppose a 6= b. Then

(i) CFS({a, b}) = 〈a, b〉, or

(ii) CFS({a, b}) = 〈b, a〉.

(2) Let us consider a finite set X. Then CFS(X) is an enumeration of X.

Let A be a set and X be a finite subset of A. Observe that CFS(X) is
A-valued.

Now we state the proposition:

(3) Let us consider a right zeroed, non empty additive loop structure L, and
an element a of L. Then 2 · a = a+ a.
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Let L be an almost left invertible multiplicative loop with zero structure.
Let us note that every element of L which is non zero is also left invertible.

Let L be an almost right invertible multiplicative loop with zero structure.
Observe that every element of L which is non zero is also right invertible.

Let L be an almost left cancelable multiplicative loop with zero structure. Let
us observe that every element of L which is non zero is also left mult-cancelable.

Let L be an almost right cancelable multiplicative loop with zero structure.
One can verify that every element of L which is non zero is also right mult-
cancelable.

Now we state the proposition:

(4) Let us consider a right unital, associative, non trivial double loop struc-
ture L, and elements a, b of L. Suppose b is left invertible and right mult-
cancelable and b · 1

b = 1
b · b. Then a·b

b = a.

Let L be a non degenerated zero-one structure, z0 be an element of L, and z1

be a non zero element of L. Note that 〈z0, z1〉 is non-zero and 〈z1, z0〉 is non-zero.
Let us consider a non trivial zero structure L and a polynomial p over L.

Now we state the propositions:

(5) If len p = 1, then there exists a non zero element a of L such that p = 〈a〉.
(6) If len p = 2, then there exists an element a of L and there exists a non

zero element b of L such that p = 〈a, b〉.
(7) If len p = 3, then there exist elements a, b of L and there exists a non

zero element c of L such that p = 〈a, b, c〉.
Now we state the propositions:

(8) Let us consider an add-associative, right zeroed, right complementable,
associative, commutative, left distributive, well unital, almost left in-
vertible, non empty double loop structure L, and elements a, b, x of L. If
b 6= 0L, then eval(〈a, b〉,−a

b ) = 0L.

(9) Let us consider a field L, elements a, x of L, and a non zero element
b of L. Then x is a root of 〈a, b〉 if and only if x = −a

b . The theorem is
a consequence of (4) and (8).

Let us consider a field L, an element a of L, and a non zero element b of L.
Now we state the propositions:

(10) Roots(〈a, b〉) = {−a
b}. The theorem is a consequence of (9).

(11) multiplicity(〈a, b〉,−a
b ) = 1. The theorem is a consequence of (9).

(12) BRoots(〈a, b〉) = ({−a
b}, 1) -bag. The theorem is a consequence of (10)

and (11).

(13) Let us consider a field L, elements a, c of L, and non zero elements b, d of
L. Then Roots(〈a, b〉 ∗ 〈c, d〉) = {−a

b ,−
c
d}. The theorem is a consequence
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of (10).

(14) Let us consider a field L, elements a, x of L, and a non zero element b of L.
If x 6= −a

b , then multiplicity(〈a, b〉, x) = 0. The theorem is a consequence
of (10).

Let us consider a field L, a non-zero polynomial p over L, an element a of
L, and a non zero element b of L. Now we state the propositions:

(15) Suppose −a
b /∈ Roots(p). Then Roots(〈a, b〉 ∗ p) = 1 + Roots(p). The

theorem is a consequence of (10).

(16) Suppose −a
b /∈ Roots(p). Then CFS(Roots(p))a 〈−a

b 〉 is an enumeration
of Roots(〈a, b〉 ∗ p). The theorem is a consequence of (10).

(17) Let us consider a field L, a non-zero polynomial p over L, an element a
of L, a non zero element b of L, and an enumeration E of Roots(〈a, b〉 ∗p).
Suppose E = CFS(Roots(p)) a 〈−a

b 〉. Then

(i) lenE = 1 + Roots(p), and

(ii) E(1 + Roots(p)) = −a
b , and

(iii) for every natural number n such that 1 ¬ n ¬ Roots(p) holds E(n) =
(CFS(Roots(p)))(n).

Let L be a non empty double loop structure, B be a bag of the carrier of
L, and E be a (the carrier of L)-valued finite sequence. The functor B(++)E
yielding a finite sequence of elements of L is defined by

(Def. 1) len it = lenE and for every natural number n such that 1 ¬ n ¬ len it
holds it(n) = (B · E)(n) · En.

Now we state the propositions:

(18) Let us consider an integral domain L, a non-zero polynomial p over
L, a bag B of the carrier of L, and an enumeration E of Roots(p). If
Roots(p) = ∅, then B(++)E = ∅.

(19) Let us consider a left zeroed, add-associative, non empty double loop
structure L, bags B1, B2 of the carrier of L, and a (the carrier of L)-valued
finite sequence E. Then B1 +B2(++)E = (B1(++)E) + (B2(++)E).

(20) Let us consider a left zeroed, add-associative, non empty double loop
structure L, a bag B of the carrier of L, and (the carrier of L)-valued finite
sequences E, F . Then B(++)E a F = (B(++)E) a (B(++)F ).

(21) Let us consider a left zeroed, add-associative, non empty double lo-
op structure L, bags B1, B2 of the carrier of L, and (the carrier of L)-
valued finite sequences E, F . Then B1 + B2(++)E a F = (B1(++)E) a

(B1(++)F ) + (B2(++)E)a (B2(++)F ). The theorem is a consequence of
(19) and (20).
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(22) Let us consider a field L, a non-zero polynomial p over L, an element
a of L, a non zero element b of L, an enumeration E of Roots(〈a, b〉 ∗ p),
and a permutation P of domE. Then (BRoots(〈a, b〉 ∗ p)(++)E) · P =
BRoots(〈a, b〉 ∗ p)(++)(E · P ).
Proof: Set q = 〈a, b〉. Set B = BRoots(q ∗ p). Reconsider P1 = P as
a permutation of dom(B(++)E). (B(++)E) ·P1 = B(++)(E ·P ) by [13,
(27)], [11, (29), (25)], [4, (13)]. �

Let us consider a field L, a non-zero polynomial p over L, an element a of
L, a non zero element b of L, and an enumeration E of Roots(〈a, b〉 ∗ p). Now
we state the propositions:

(23) Suppose−a
b /∈ Roots(p). Then suppose E = CFS(Roots(p))a〈−a

b 〉. Then
(CFS(Roots(〈a, b〉 ∗ p)))−1 ·E is a permutation of domE. The theorem is
a consequence of (15) and (10).

(24) Suppose−a
b /∈ Roots(p). Then suppose E = CFS(Roots(p))a〈−a

b 〉. Then∑
(BRoots(〈a, b〉∗p)(++)E) =

∑
(BRoots(〈a, b〉∗p)(++) CFS(Roots(〈a, b〉∗

p))).
Proof: Set q = 〈a, b〉. Set B = BRoots(q ∗p). Set D = CFS(Roots(q ∗p)).
Reconsider P = D−1 · E as a permutation of domE. E · E−1 ·D = D by
[4, (37)], [13, (27)], [4, (35), (12)]. (B(++)E) ·P−1 = B(++)(E ·P−1). �

(25)
∑

(BRoots(〈a, b〉)(++)E) = −a
b . The theorem is a consequence of (10),

(11), and (14).

Let L be an integral domain and p be a non-zero polynomial over L. The
functor SumRoots(p) yielding an element of L is defined by the term

(Def. 2)
∑

(BRoots(p)(++) CFS(Roots(p))).

Now we state the propositions:

(26) Let us consider an integral domain L, and a non-zero polynomial p over
L. If Roots(p) = ∅, then SumRoots(p) = 0L. The theorem is a consequence
of (2) and (18).

(27) Let us consider a field L, an element a of L, and a non zero element b of
L. Then SumRoots(〈a, b〉) = −a

b . The theorem is a consequence of (10),
(2), and (11).

(28) Let us consider a field L, a non-zero polynomial p over L, an element
a of L, and a non zero element b of L. Then SumRoots(〈a, b〉 ∗ p) =
−a
b + SumRoots(p). The theorem is a consequence of (16), (17), (24), (2),

(10), (11), (25), and (19).

(29) Let us consider a field L, elements a, c of L, and non zero elements
b, d of L. Then SumRoots(〈a, b〉 ∗ 〈c, d〉) = −a

b + − c
d . The theorem is

a consequence of (27) and (28).
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(30) Let us consider an algebraic closed field L, and non-zero polynomials
p, q over L. Suppose len p ­ 2. Then SumRoots(p ∗ q) = SumRoots(p) +
SumRoots(q).
Proof: Define P[natural number] ≡ for every non-zero polynomial f
over L such that $1 = len f holds SumRoots(f ∗ q) = SumRoots(f) +
SumRoots(q). P[2]. For every non trivial natural number k such that P[k]
holds P[k + 1] by [6, (29)], [1, (11)], [8, (17), (50)]. For every non trivial
natural number k, P[k] from [6, Sch. 2]. �

(31) Let us consider an algebraic closed integral domain L, a non-zero polyno-
mial p over L, and a finite sequence r of elements of L. Suppose r is one-to-
one and len r = len p−′1 and Roots(p) = rng r. Then

∑
r = SumRoots(p).

Proof: Set B = BRoots(p). Set s = supportB. Set L1 = len r 7→ 1.
Consider f being a finite sequence of elements of N such that degree(B) =∑
f and f = B · CFS(s). Reconsider E = CFS(s) as a finite sequence of

elements of L. For every natural number j such that j ∈ Seg len r holds
f(j) ­ L1(j) by [8, (52)], [4, (12)], [3, (57)]. For every natural number j
such that 1 ¬ j ¬ lenE holds (B(++)E)(j) = E(j) by [5, (83)], [3, (57)],
[9, (13)]. �

(32) Vieta’s formula about the sum of roots:
Let us consider an algebraic closed field L, and a non-zero polynomial p
over L. Suppose len p ­ 2. Then SumRoots(p) = −p(len p−′2)

p(len p−′1) .

Proof: Define P[natural number] ≡ for every non-zero polynomial p over
L such that $1 = len p holds SumRoots(p) = −p($1−′2)

p($1−′1) . P[2] by (6), [7,
(38)], (27). For every non trivial natural number k such that P[k] holds
P[k + 1] by [6, (29)], [1, (11)], [8, (17)], [10, (5)]. For every non trivial
natural number k, P[k] from [6, Sch. 2]. �
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Summary. In the article we present in the Mizar system [1], [8] the ca-
talogue of triangular norms and conorms, used especially in the theory of fuzzy
sets [13]. The name triangular emphasizes the fact that in the framework of
probabilistic metric spaces they generalize triangle inequality [2].

After defining corresponding Mizar mode using four attributes, we introduced
the following t-norms:

• minimum t-norm minnorm (Def. 6),

• product t-norm prodnorm (Def. 8),

• Łukasiewicz t-norm Lukasiewicz_norm (Def. 10),

• drastic t-norm drastic_norm (Def. 11),

• nilpotent minimum nilmin_norm (Def. 12),

• Hamacher product Hamacher_norm (Def. 13),

and corresponding t-conorms:

• maximum t-conorm maxnorm (Def. 7),

• probabilistic sum probsum_conorm (Def. 9),

• bounded sum BoundedSum_conorm (Def. 19),

• drastic t-conorm drastic_conorm (Def. 14),

• nilpotent maximum nilmax_conorm (Def. 18),

• Hamacher t-conorm Hamacher_conorm (Def. 17).

Their basic properties and duality are shown; we also proved the predicate of the
ordering of norms [10], [9]. It was proven formally that drastic-norm is the po-
intwise smallest t-norm and minnorm is the pointwise largest t-norm (maxnorm
is the pointwise smallest t-conorm and drastic-conorm is the pointwise largest
t-conorm).
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This work is a continuation of the development of fuzzy sets in Mizar [6]
started in [11] and [3]; it could be used to give a variety of more general operations
on fuzzy sets. Our formalization is much closer to the set theory used within the
Mizar Mathematical Library than the development of rough sets [4], the approach
which was chosen allows however for merging both theories [5], [7].

MSC: 03E72 94D05 03B35

Keywords: fuzzy set; triangular norm; triangular conorm; fuzzy logic

MML identifier: FUZNORM1, version: 8.1.06 5.43.1297

1. Preliminaries

One can verify that [0, 1] is non empty.
Let us consider elements a, b of [0, 1]. Now we state the propositions:

(1) min(a, b) ∈ [0, 1].

(2) max(a, b) ∈ [0, 1].

(3) a · b ∈ [0, 1].

(4) max(0, a+ b− 1) ∈ [0, 1].

(5) min(a+ b, 1) ∈ [0, 1].

(6) Let us consider elements a, b, c of [0, 1]. Then max(0,max(0, a+ b−1) +
c− 1) = max(0, a+ max(0, b+ c− 1)− 1).

(7) Let us consider an element a of [0, 1]. Then 1− a ∈ [0, 1].

Let us consider elements a, b of [0, 1]. Now we state the propositions:

(8) a+ b− (a · b) ∈ [0, 1]. The theorem is a consequence of (7) and (3).

(9) a·b
a+b−(a·b) ∈ [0, 1]. The theorem is a consequence of (3) and (8).

(10) If max(a, b) 6= 1, then a 6= 1 and b 6= 1.

(11) Let us consider elements x, y of [0, 1]. If x · y = x + y, then x = 0. The
theorem is a consequence of (7).

Let us consider elements a, b of [0, 1]. Now we state the propositions:

(12) max(a, b) = 1−min(1− a, 1− b).
(13) min(a+ b, 1) = 1−max(0, 1− a+ (1− b)− 1).

(14) a+b−(2·a·b)
1−(a·b) ∈ [0, 1]. The theorem is a consequence of (7) and (3).

Let f be a binary operation on [0, 1] and a, b be real numbers. Let us observe
that f(a, b) is real.

Now we state the propositions:

(15) Let us consider real numbers a, b, and a binary operation t on [0, 1].
Then t(a, b) ∈ [0, 1].

http://zbmath.org/classification/?q=cc:03E72
http://zbmath.org/classification/?q=cc:94D05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/fuznorm1.miz
http://ftp.mizar.org/
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(16) Let us consider a binary operation f on [0, 1], and real numbers a, b.
Then 1− f(1− a, 1− b) ∈ [0, 1]. The theorem is a consequence of (15) and
(7).

(17) Let us consider real numbers x, y, k. Suppose k ¬ 0. Then

(i) k ·min(x, y) = max(k · x, k · y), and

(ii) k ·max(x, y) = min(k · x, k · y).

2. Basic Example of a Triangular Norm and Conorm: min and max

Let A be a real-membered set and f be a binary operation on A. We say
that f is monotonic if and only if

(Def. 1) for every elements a, b, c, d of A such that a ¬ c and b ¬ d holds
f(a, b) ¬ f(c, d).

We say that f has 1-identity if and only if

(Def. 2) for every element a of A, f(a, 1) = a.

We say that f has 1-annihilating if and only if

(Def. 3) for every element a of A, f(a, 1) = 1.

We say that f has 0-identity if and only if

(Def. 4) for every element a of A, f(a, 0) = a.

We say that f has 0-annihilating if and only if

(Def. 5) for every element a of A, f(a, 0) = 0.

The scheme ExBinOp deals with a non empty, real-membered set A and
a binary functor F yielding a set and states that

(Sch. 1) There exists a binary operation f on A such that for every elements a,
b of A, f(a, b) = F(a, b)

provided

• for every elements a, b of A, F(a, b) ∈ A.

The functor minnorm yielding a binary operation on [0, 1] is defined by

(Def. 6) for every elements a, b of [0, 1], it(a, b) = min(a, b).

Observe that minnorm is commutative, associative, and monotonic and has
1-identity and there exists a binary operation on [0, 1] which is commutative,
associative, and monotonic and has 1-identity.

A t-norm is a commutative, associative, monotonic binary operation on
[0, 1] with 1-identity. The functor maxnorm yielding a binary operation on [0, 1]
is defined by
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(Def. 7) for every elements a, b of [0, 1], it(a, b) = max(a, b).

One can verify that maxnorm is commutative, associative, and monotonic
and has 0-identity and there exists a binary operation on [0, 1] which is commu-
tative, associative, and monotonic and has 0-identity.

A t-conorm is a commutative, associative, monotonic binary operation on
[0, 1] with 0-identity. Now we state the propositions:

(18) Let us consider a commutative, monotonic binary operation t on [0, 1]
with 1-identity, and an element a of [0, 1]. Then t(a, 0) = 0. The theorem
is a consequence of (15).

(19) Let us consider a commutative, monotonic binary operation t on [0, 1]
with 0-identity, and an element a of [0, 1]. Then t(a, 1) = 1. The theorem
is a consequence of (15).

Let us note that every commutative, monotonic binary operation on [0, 1]
with 1-identity has 0-annihilating and every commutative, monotonic binary
operation on [0, 1] with 0-identity has 1-annihilating.

3. Further Examples of Triangular Norms

The functor prodnorm yielding a binary operation on [0, 1] is defined by

(Def. 8) for every elements a, b of [0, 1], it(a, b) = a · b.
Let us observe that prodnorm is commutative, associative, and monotonic

and has 1-identity.
The functor probsum-conorm yielding a binary operation on [0, 1] is defined

by

(Def. 9) for every elements a, b of [0, 1], it(a, b) = a+ b− (a · b).
The functor Lukasiewicz-norm yielding a binary operation on [0, 1] is defined

by

(Def. 10) for every elements a, b of [0, 1], it(a, b) = max(0, a+ b− 1).

One can check that Lukasiewicz-norm is commutative, associative, and mo-
notonic and has 1-identity.

The functor drastic-norm yielding a binary operation on [0, 1] is defined by

(Def. 11) for every elements a, b of [0, 1], if max(a, b) = 1, then it(a, b) = min(a, b)
and if max(a, b) 6= 1, then it(a, b) = 0.

Now we state the proposition:

(20) Let us consider elements a, b of [0, 1]. Then

(i) if a = 1, then (drastic-norm)(a, b) = b, and

(ii) if b = 1, then (drastic-norm)(a, b) = a, and
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(iii) if a 6= 1 and b 6= 1, then (drastic-norm)(a, b) = 0.

Note that drastic-norm is commutative, associative, and monotonic and has
1-identity.

The functor nilmin-norm yielding a binary operation on [0, 1] is defined by

(Def. 12) for every elements a, b of [0, 1], if a+ b > 1, then it(a, b) = min(a, b) and
if a+ b ¬ 1, then it(a, b) = 0.

Observe that nilmin-norm is commutative, associative, and monotonic and
has 1-identity.

The functor Hamacher-norm yielding a binary operation on [0, 1] is defined
by

(Def. 13) for every elements a, b of [0, 1], it(a, b) = a·b
a+b−(a·b) .

One can verify that Hamacher-norm is commutative, associative, and mo-
notonic and has 1-identity.

4. Basic Triangular Conorms

The functor drastic-conorm yielding a binary operation on [0, 1] is defined
by

(Def. 14) for every elements a, b of [0, 1], if min(a, b) = 0, then it(a, b) = max(a, b)
and if min(a, b) 6= 0, then it(a, b) = 1.

5. Translating between Triangular Norms and Conorms

Let t be a binary operation on [0, 1]. The functor conorm t yielding a binary
operation on [0, 1] is defined by

(Def. 15) for every elements a, b of [0, 1], it(a, b) = 1− t(1− a, 1− b).
Let t be a t-norm. Let us observe that conorm t is monotonic, commutative,

and associative and has 0-identity.
Now we state the propositions:

(21) maxnorm = conorm minnorm.
Proof: For every elements a, b of [0, 1], (maxnorm)(a, b) = 1−(minnorm)
(1− a, 1− b) by (7), (17), [12, (42)]. �

(22) Let us consider a binary operation t on [0, 1]. Then conorm conorm t = t.
The theorem is a consequence of (7).
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6. The Ordering of Triangular Norms (and Conorms)

Let f1, f2 be binary operations on [0, 1]. We say that f1 ¬ f2 if and only if

(Def. 16) for every elements a, b of [0, 1], f1(a, b) ¬ f2(a, b).

Let us consider a t-norm t. Now we state the propositions:

(23) drastic-norm ¬ t. The theorem is a consequence of (20).

(24) t ¬ minnorm.

Now we state the proposition:

(25) Let us consider t-norms t1, t2. If t1 ¬ t2, then conorm t2 ¬ conorm t1.
The theorem is a consequence of (7).

7. Triangular Conorms Generated from t-Norms

The functor Hamacher-conorm yielding a binary operation on [0, 1] is defined
by

(Def. 17) for every elements a, b of [0, 1], if a = b = 1, then it(a, b) = 1 and if
a 6= 1 or b 6= 1, then it(a, b) = a+b−(2·a·b)

1−(a·b) .

Now we state the proposition:

(26) conorm Hamacher-norm = Hamacher-conorm. The theorem is a conse-
quence of (7).

Let us note that Hamacher-conorm is commutative, associative, and mono-
tonic and has 0-identity.

Now we state the propositions:

(27) conorm drastic-norm = drastic-conorm. The theorem is a consequence of
(7).

(28) conorm prodnorm = probsum-conorm. The theorem is a consequence of
(7).

One can check that probsum-conorm is commutative, associative, and mo-
notonic and has 0-identity.

The functor nilmax-conorm yielding a binary operation on [0, 1] is defined
by

(Def. 18) for every elements a, b of [0, 1], if a+ b < 1, then it(a, b) = max(a, b) and
if a+ b ­ 1, then it(a, b) = 1.

Now we state the proposition:

(29) conorm nilmin-norm = nilmax-conorm. The theorem is a consequence of
(7) and (12).
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Let us note that nilmax-conorm is commutative, associative, and monotonic
and has 0-identity.

The functor BoundedSum-conorm yielding a binary operation on [0, 1] is
defined by

(Def. 19) for every elements a, b of [0, 1], it(a, b) = min(a+ b, 1).

Now we state the proposition:

(30) conorm Lukasiewicz-norm = BoundedSum-conorm. The theorem is a con-
sequence of (7) and (13).

One can check that BoundedSum-conorm is commutative, associative, and
monotonic and has 0-identity.

Let us consider a t-conorm t. Now we state the propositions:

(31) maxnorm ¬ t.
(32) t ¬ drastic-conorm.
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Introduction to Stopping Time in Stochastic
Finance Theory

Peter Jaeger
Siegmund-Schacky-Str. 18a

80993 Munich, Germany

Summary. We start with the definition of stopping time according to [4],
p.283. We prove, that different definitions for stopping time can coincide. We give
examples of stopping time using constant-functions or functions defined with the
operator max or min (defined in [6], pp.37–38). Finally we give an example with
some given filtration. Stopping time is very important for stochastic finance. A
stopping time is the moment, where a certain event occurs ([7], p.372) and can
be used together with stochastic processes ([4], p.283). Look at the following
example: we install a function ST: {1,2,3,4} → {0, 1, 2} ∪ {+∞}, we define:

a. ST(1)=1, ST(2)=1, ST(3)=2, ST(4)=2.
b. The set {0,1,2} consists of time points: 0=now,1=tomorrow,2=the day

after tomorrow.
We can prove:
c. {w, where w is Element of Ω: ST.w=0}=∅ & {w, where w is Element of

Ω: ST.w=1}={1,2} & {w, where w is Element of Ω: ST.w=2}={3,4} and
ST is a stopping time.
We use a function Filt as Filtration of {0,1,2}, Σ where Filt(0)=Ωnow,

Filt(1)=Ωfut1 and Filt(2)=Ωfut2. From a.,b. and c. we know that:
d. {w, where w is Element of Ω: ST.w=0} in Ωnow and
{w, where w is Element of Ω: ST.w=1} in Ωfut1 and
{w, where w is Element of Ω: ST.w=2} in Ωfut2.
The sets in d. are events, which occur at the time points 0(=now), 1(=to-

morrow) or 2(=the day after tomorrow), see also [7], p.371. Suppose we have
ST(1)=+∞, then this means that for 1 the corresponding event never occurs.

As an interpretation for our installed functions consider the given adapted
stochastic process in the article [5].

ST(1)=1 means, that the given element 1 in {1,2,3,4} is stopped in 1 (=to-
morrow). That tells us, that we have to look at the value f2(1) which is equal to
80. The same argumentation can be applied for the element 2 in {1,2,3,4}.
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ST(3)=2 means, that the given element 3 in {1,2,3,4} is stopped in 2 (=the
day after tomorrow). That tells us, that we have to look at the value f3(3) which
is equal to 100.

ST(4)=2 means, that the given element 4 in {1,2,3,4} is stopped in 2 (=the
day after tomorrow). That tells us, that we have to look at the value f3(4) which
is equal to 120.

In the real world, these functions can be used for questions like: when does
the share price exceed a certain limit? (see [7], p.372).

MSC: 60G40 03B35

Keywords: stopping time; stochastic process

MML identifier: FINANCE4, version: 8.1.06 5.43.1297

1. Preliminaries

From now on Ω denotes a non empty set, Σ denotes a σ-field of subsets of
Ω, and T denotes a natural number.

Now we state the proposition:

(1) Let us consider a non empty set X, an object t, and a function f . Sup-
pose dom f = X. Then {w, where w is an element of X : f(w) = t} =
Coim(f, t).
Proof: Set A = {w, where w is an element of X : f(w) = t}. A ⊆
Coim(f, t) by [2, (1)]. Consider y being an object such that 〈〈x, y〉〉 ∈ f

and y ∈ {t}. �

Let I be an extended real-membered set. The functor I{+∞} yielding a subset
of R is defined by the term

(Def. 1) I ∪ {+∞}.
Let us note that I{+∞} is non empty.

2. Definition of Stopping Time

Let T be a natural number. The functor
⋃
t∈N:0¬t¬T {t} yielding a subset of

R is defined by the term

(Def. 2) {t, where t is an element of N : 0 ¬ t ¬ T}.

Let us note that
⋃
t∈N:0¬t¬T {t} is non empty.

The functor T{+∞} yielding a subset of R is defined by the term

(Def. 3)
⋃
t∈N:0¬t¬T {t} ∪ {+∞}.

http://zbmath.org/classification/?q=cc:60G40
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/finance4.miz
http://ftp.mizar.org/
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Let us note that T{+∞} is non empty.
In the sequel T1 denotes an element of T{+∞}, MF denotes a filtration of⋃

t∈N:0¬t¬T {t} and Σ, and k, k1, k2 denote functions from Ω into T{+∞}.
Let T be a natural number, F be a function, and R be a binary relation. We

say that R is StoppingTime(F,T ) if and only if

(Def. 4) for every element t of
⋃
t∈N:0¬t¬T {t}, Coim(R, t) ∈ F (t).

Let Ω be a non empty set, MF be a function, and k be a function from Ω
into T{+∞}. Let us observe that k is StoppingTime(MF,T ) if and only if the
condition (Def. 5) is satisfied.

(Def. 5) for every element t of
⋃
t∈N:0¬t¬T {t}, {w, where w is an element of Ω :

k(w) = t} ∈MF (t).

Now we state the proposition:

(2) k is StoppingTime(MF,T ) if and only if for every element t of⋃
t∈N:0¬t¬T {t}, {w, where w is an element of Ω : k(w) ¬ t} ∈MF (t).
Proof: If k is StoppingTime(MF,T ), then for every element t of⋃
t∈N:0¬t¬T {t}, {w, where w is an element of Ω : k(w) ¬ t} ∈MF (t) by [1,

(8), (12), (13)], [8, (21)]. For every element t of
⋃
t∈N:0¬t¬T {t}, {w, where

w is an element of Ω : k(w) = t} ∈ MF (t) by [1, (13)], [8, (22), (24)], [1,
(22)]. �

3. Examples of Stopping Times

Now we state the proposition:

(3) Ω 7−→ T1 is StoppingTime(MF,T ).
Proof: Set c = Ω 7−→ T1. For every element t of

⋃
t∈N:0¬t¬T {t}, {w, where

w is an element of Ω : c(w) = t} ∈MF (t) by [9, (7)], [8, (5), (4)]. �

Let us consider Ω, T , k1, and k2. The functor max(k1, k2) yielding a function
from Ω into R is defined by

(Def. 6) for every element w of Ω, it(w) = max(k1(w), k2(w)).

The functor min(k1, k2) yielding a function from Ω into R is defined by

(Def. 7) for every element w of Ω, it(w) = min(k1(w), k2(w)).

Now we state the propositions:

(4) Suppose k1 is StoppingTime(MF,T ) and k2 is StoppingTime(MF,T ).
Then there exists a function k3 from Ω into T{+∞} such that

(i) k3 = max(k1, k2), and

(ii) k3 is StoppingTime(MF,T ).
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Proof: Set k3 = max(k1, k2). k3 is a function from Ω into T{+∞} by [2,
(3)], [3, (2)]. k3 is StoppingTime(MF,T ) by (2), [8, (19)]. �

(5) Suppose k1 is StoppingTime(MF,T ) and k2 is StoppingTime(MF,T ).
Then there exists a function k3 from Ω into T{+∞} such that

(i) k3 = min(k1, k2), and

(ii) k3 is StoppingTime(MF,T ).

Proof: Set k3 = min(k1, k2). k3 is a function from Ω into T{+∞} by [2,
(3)], [3, (2)]. k3 is StoppingTime(MF,T ) by (2), [8, (3)]. �

Let t be an object. The special element of t{+∞} yielding an element of
2{+∞} is defined by the term

(Def. 8) IFIN(t, {1, 2}, 1, 2).

Now we state the proposition:

(6) Suppose Ω = {1, 2, 3, 4}. Let us consider a filtration MF of
⋃
t∈N:0¬t¬2{t}

and Σ. Suppose MF (0) = Ωnow and MF (1) = Ωfut1 and MF (2) = Ωfut2.
Then there exists a function S from Ω into 2{+∞} such that

(i) S is StoppingTime(MF,2), and

(ii) S(1) = 1, and

(iii) S(2) = 1, and

(iv) S(3) = 2, and

(v) S(4) = 2, and

(vi) {w, where w is an element of Ω : S(w) = 0} = ∅, and

(vii) {w, where w is an element of Ω : S(w) = 1} = {1, 2}, and

(viii) {w, where w is an element of Ω : S(w) = 2} = {3, 4}.
Proof: Define U(element of Ω) = the special element of $1{+∞}. Consider
f being a function from Ω into 2{+∞} such that for every element d of Ω,
f(d) = U(d) from [3, Sch. 4]. f(1) = 1 and f(2) = 1 and f(3) = 2 and
f(4) = 2. f is StoppingTime(MF,2) and {w, where w is an element of Ω :
f(w) = 0} = ∅ and {w, where w is an element of Ω : f(w) = 1} = {1, 2}
and {w, where w is an element of Ω : f(w) = 2} = {3, 4} by [1, (9)], [8,
(4)], [5, (24)]. �
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Summary. In this article we check, with the Mizar system [2], Pascal’s
theorem in the real projective plane (in projective geometry Pascal’s theorem is
also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a
special case of a degenerate conic of two lines.

For proving Pascal’s theorem, we use the techniques developed in the section
“Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine
proofs and three variations” [11]. We also follow some ideas from Harrison’s work.
With HOL Light, he has the proof of Pascal’s theorem2. For a lemma, we use
PROVER93 and OTT2MIZ by Josef Urban4 [12, 6, 7]. We note, that we don’t use
Skolem/Herbrand functions (see “Skolemization” in [1]).

MSC: 51E15 51N15 03B35

Keywords: Pascal’s theorem; real projective plane; Grassman-Plücker relation

MML identifier: PASCAL, version: 8.1.06 5.43.1297

1. Preliminaries

From now on n denotes a natural number, K denotes a field, a, b, c, d, e, f ,
g, h, i, a1, b1, c1, d1, e1, f1, g1, h1, i1 denote elements of K, M , N denote square
matrices over K of dimension 3, and p denotes a finite sequence of elements of
R.

Now we state the propositions:

(1) Let us consider points p, q, r of E3
T. Then

1https://en.wikipedia.org/wiki/Pascal’s_theorem
2https://github.com/jrh13/hol-light/tree/master/100/pascal.ml
3https://www.cs.unm.edu/~mccune/prover9/
4https://github.com/JUrban/ott2miz
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(i) 〈|p, q, r|〉 = 〈|r, p, q|〉, and

(ii) 〈|p, q, r|〉 = 〈|q, r, p|〉.
(2) Suppose 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉 = 〈〈a1, b1, c1〉, 〈d1, e1, f1〉, 〈g1, h1, i1〉〉.

Then

(i) a = a1, and

(ii) b = b1, and

(iii) c = c1, and

(iv) d = d1, and

(v) e = e1, and

(vi) f = f1, and

(vii) g = g1, and

(viii) h = h1, and

(ix) i = i1.

(3) There exists a and there exists b and there exists c and there exists d
and there exists e and there exists f and there exists g and there exists h
and there exists i such that M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉.

(4) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Then

(i) a = M1,1, and

(ii) b = M1,2, and

(iii) c = M1,3, and

(iv) d = M2,1, and

(v) e = M2,2, and

(vi) f = M2,3, and

(vii) g = M3,1, and

(viii) h = M3,2, and

(ix) i = M3,3.

(5) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Then MT = 〈〈a, d, g〉, 〈b, e, h〉,
〈c, f, i〉〉. The theorem is a consequence of (4) and (3).

(6) Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉 and M is symmetric. Then

(i) b = d, and

(ii) c = g, and

(iii) h = f .

The theorem is a consequence of (5) and (2).
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(7) Let us consider square matrices M , N over RF of dimension 3. If N is
symmetric, then MT ·N ·M is symmetric.

(8) Let us consider a square matrix M over RF of dimension 3, elements a,
b, c, d, e, f , g, h, i, x, y, z of RF, an element v of E3

T, a finite sequence
u10 of elements of RF, and a finite sequence p of elements of R1. Suppose
p = M · u10 and v = M2F(p) and M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉 and
u10 = 〈x, y, z〉. Then

(i) p = 〈〈a ·x+(b ·y)+(c ·z)〉, 〈d ·x+(e ·y)+(f ·z)〉, 〈g ·x+(h ·y)+(i ·z)〉〉,
and

(ii) v = 〈a ·x+ (b · y) + (c · z), d ·x+ (e · y) + (f · z), g ·x+ (h · y) + (i · z)〉.
(9) Let us consider a square matrix M over R of dimension 3, and elements

a, b, c, d, e, f , g, h, i, p1, p2, p3 of R. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉,
〈g, h, i〉〉 and p = 〈p1, p2, p3〉. Then M · p = 〈a · p1 + (b · p2) + (c · p3),
d · p1 + (e · p2) + (f · p3), g · p1 + (h · p2) + (i · p3)〉.

2. Conic in Real Projective Plane

Let a, b, c, d, e, f be real numbers and u be an element of E3
T. The functor

qfconic(a, b, c, d, e, f, u) yielding a real number is defined by the term

(Def. 1) a · u(1) · u(1) + (b · u(2) · u(2)) + (c · u(3) · u(3)) + (d · u(1) · u(2)) + (e ·
u(1) · u(3)) + (f · u(2) · u(3)).

The functor conic(a, b, c, d, e, f) yielding a subset of the projective space over
E3

T is defined by the term

(Def. 2) {P , where P is a point of the projective space over E3
T : for every ele-

ment u of E3
T such that u is not zero and P = the direction of u holds

qfconic(a, b, c, d, e, f, u) = 0}.

In the sequel a, b, c, d, e, f denote real numbers, u, u1, u2 denote non zero
elements of E3

T, and P denotes an element of the projective space over E3
T.

Now we state the propositions:

(10) Suppose the direction of u1 = the direction of u2 and
qfconic(a, b, c, d, e, f, u1) = 0. Then qfconic(a, b, c, d, e, f, u2) = 0.

(11) If P = the direction of u and qfconic(a, b, c, d, e, f, u) = 0, then P ∈
conic(a, b, c, d, e, f). The theorem is a consequence of (10).

Let a, b, c, d, e, f be real numbers. The functor symmetric3(a, b, c, d, e, f)
yielding a square matrix over RF of dimension 3 is defined by the term

(Def. 3) 〈〈a, d, e〉, 〈d, b, f〉, 〈e, f, c〉〉.
Now we state the propositions:
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(12) symmetric3(a, b, c, d, e, f) is symmetric. The theorem is a consequence of
(5).

(13) Let us consider real numbers a, b, c, d, e, f , a point u of E3
T, and

a square matrix M over R of dimension 3. Suppose p = u and M =
symmetric3(a, b, c, d, e, f).
Then SumAll QuadraticForm(p,M, p) = qfconic(a, b, c, 2 · d, 2 · e, 2 · f, u).

(14) Let us consider an invertible square matrix N over RF of dimension 3,
square matrices N1, M1, M2 over R of dimension 3, and real numbers a, b,
c, d, e, f . Suppose N1 = (RF → R)N and M1 = symmetric3(a, b, c, d2 ,

f
2 ,

e
2)

and M2 = (RF → R)((R → RF)N1
T)` ·M1 · (RF → R)((R → RF)N1)`.

Then (R→ RF)M2 is symmetric.
Proof: ((R → RF)N1

T)T = (R → RF)N1 by [3, (16)]. (R → RF)M2 is
symmetric by [3, (16)], (12), (7). �

(15) Let us consider real numbers a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6.
Suppose symmetric3(a1, a2, a3, a4, a5, a6) = symmetric3(b1, b2, b3, b4, b5, b6).
Then

(i) a1 = b1, and

(ii) a2 = b2, and

(iii) a3 = b3, and

(iv) a4 = b4, and

(v) a5 = b5, and

(vi) a6 = b6.

The theorem is a consequence of (2).

(16) Let us consider real numbers a, b, c, d, e, f , a point P of the projective
space over E3

T, and an invertible square matrix N over RF of dimension
3. Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0
and e = 0 and f = 0. Suppose that P ∈ conic(a, b, c, d, e, f). Let us
consider real numbers f5, f12, f19, f20, f21, f23, f22, square matrices M1,
M2 over R of dimension 3, and a square matrix N1 over R of dimension
3. Suppose M1 = symmetric3(a, b, c, d2 ,

e
2 ,

f
2 ) and N1 = (RF → R)N and

M2 = (RF → R)((R → RF)N1
T)` ·M1 · (RF → R)((R → RF)N1)` and

M2 = symmetric3(f5, f21, f23, f12, f19, f22). Then

(i) it is not true that f5 = 0 and f21 = 0 and f23 = 0 and f12 = 0 and
f22 = 0 and f19 = 0, and

(ii) (the homography of N)(P ) ∈ conic(f5, f21, f23, 2 · f12, 2 · f19, 2 · f22).

Proof: Consider Q being a point of the projective space over E3
T such

that P = Q and for every element u of E3
T such that u is not zero
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and Q = the direction of u holds qfconic(a, b, c, d, e, f, u) = 0. Reconsider
M = symmetric3(a, b, c, d2 ,

e
2 ,

f
2 ) as a square matrix over R of dimension

3. Consider u19, v3 being elements of E3
T, u17 being a finite sequence of

elements of RF, p11 being a finite sequence of elements of R1 such that
P = the direction of u19 and u19 is not zero and u19 = u17 and p11 = N ·u17

and v3 = M2F(p11) and v3 is not zero and (the homography of N)(P ) =
the direction of v3. Reconsider p10 = u19 as a finite sequence of elements of
R. SumAll QuadraticForm(p10,M, p10) = qfconic(a, b, c, 2· d2 , 2·

e
2 , 2·

f
2 , u19).

Consider a8, b8, c11, d4, e5, f24, g2, h2, i2 being elements of RF such that
N = 〈〈a8, b8, c11〉, 〈d4, e5, f24〉, 〈g2, h2, i2〉〉. Reconsider u10 = u17 as a fi-
nite sequence of elements of R. Reconsider N1 = (RF → R)N as a squ-
are matrix over R of dimension 3. Reconsider M2 = (RF → R)((R →
RF)N1

T)` ·M · (RF → R)((R → RF)N1)` as a square matrix over R of
dimension 3. ((R→ RF)N1

T)T = (R→ RF)N1 by [3, (16)]. (R→ RF)M2

is symmetric by [3, (16)], (12), (7). Consider m1, m2, m3, m4, m5, m6,
m7, m8, m9 being elements of RF such that M2 = 〈〈m1,m2,m3〉, 〈m4,

m5,m6〉, 〈m7,m8,m9〉〉. m2 = m4 and m3 = m7 and m8 = m6. Recon-
sider u3 = N1 · u10 as an element of E3

T. u3 is not zero by [5, (24)], [14,
(59), (86)]. Reconsider u2 = N1 · u10 as a non zero element of E3

T. Recon-
sider f5 = m1, f12 = m2, f19 = m3, f21 = m5, f22 = m6, f23 = m9

as a real number. qfconic(f5, f21, f23, 2 · f12, 2 · f19, 2 · f22, u2) = 0. It
is not true that f5 = 0 and f21 = 0 and f23 = 0 and 2 · f12 = 0
and 2 · f22 = 0 and 2 · f19 = 0. u2 = v3. For every real numbers u11,
u12, u13, u14, u15, u18, u16 and for every square matrices U1, U2 over
R of dimension 3 and for every square matrix U3 over R of dimension
3 such that U1 = symmetric3(a, b, c, d2 ,

e
2 ,

f
2 ) and U3 = (RF → R)N

and U2 = (RF → R)((R → RF)U3
T)` · U1 · (RF → R)((R → RF)U3)`

and U2 = symmetric3(u11, u15, u18, u12, u13, u16) holds it is not true that
u11 = 0 and u15 = 0 and u18 = 0 and u12 = 0 and u16 = 0 and u13 = 0.
(the homography of N)(P ) ∈ conic(u11, u15, u18, 2 · u12, 2 · u13, 2 · u16). �

(17) Let us consider real numbers a, b, c, d, e, f , points P1, P2, P3, P4, P5,
P6 of the projective space over E3

T, and an invertible square matrix N

over RF of dimension 3. Suppose it is not true that a = 0 and b = 0 and
c = 0 and d = 0 and e = 0 and f = 0. Suppose that P1, P2, P3, P4, P5,
P6 ∈ conic(a, b, c, d, e, f). Then there exist real numbers a2, b2, c2, d2, e2,
f2 such that

(i) it is not true that a2 = 0 and b2 = 0 and c2 = 0 and d2 = 0 and
e2 = 0 and f2 = 0, and

(ii) (the homography of N)(P1), (the homography of N)(P2),
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(the homography of N)(P3), (the homography of N)(P4),
(the homography of N)(P5), (the homography of N)(P6) ∈
conic(a2, b2, c2, d2, e2, f2).

The theorem is a consequence of (3), (14), (6), and (16).

From now on a, b, c, d, e, f , g, h, i denote elements of RF.
Now we state the proposition:

(18) (i) if qfconic(a, b, c, d, e, f, [1, 0, 0]) = 0, then a = 0, and

(ii) if qfconic(a, b, c, d, e, f, [0, 1, 0]) = 0, then b = 0, and

(iii) if qfconic(a, b, c, d, e, f, [0, 0, 1]) = 0, then c = 0, and

(iv) if qfconic(0, 0, 0, d, e, f, [1, 1, 1]) = 0, then d+ e+ f = 0.

3. Pascal’s Theorem

In the sequel M denotes a square matrix over RF of dimension 3, e1, e2, e3,
f1, f2, f3 denote elements of RF, M8, M14, M20, M21, M22, M19, M13, M10, M9,
M12, M16, M17, M11, M15, M18 denote square matrices over RF of dimension 3,
and r1, r2 denote real numbers.

Now we state the proposition:

(19) Suppose M9 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈e1, e2, e3〉〉 and M12 = 〈〈1, 0, 0〉, 〈0, 0,
1〉, 〈f1, f2, f3〉〉 and M16 = 〈〈0, 1, 0〉, 〈1, 1, 1〉, 〈f1, f2, f3〉〉 and M17 = 〈〈0, 0,
1〉, 〈1, 1, 1〉, 〈e1, e2, e3〉〉 andM10 = 〈〈1, 0, 0〉, 〈0, 1, 0〉, 〈f1, f2, f3〉〉 andM11 =
〈〈1, 0, 0〉, 〈0, 0, 1〉, 〈e1, e2, e3〉〉 and M15 = 〈〈0, 1, 0〉, 〈1, 1, 1〉, 〈e1, e2, e3〉〉 and
M18 = 〈〈0, 0, 1〉, 〈1, 1, 1〉, 〈f1, f2, f3〉〉 and (r1 6= 0 or r2 6= 0) and r1 ·e1 ·e2 +
(r2 ·e1 ·e3) = r1 +r2 ·e2 ·e3 and r1 ·f1 ·f2 +(r2 ·f1 ·f3) = r1 +r2 ·f2 ·f3. Then
DetM9 ·DetM12 ·DetM16 ·DetM17 = DetM10 ·DetM11 ·DetM15 ·DetM18.

In the sequel p1, p2, p3, p4, p5, p6 denote points of E3
T.

(20) Suppose M9 = 〈p1, p2, p5〉 and M12 = 〈p1, p3, p6〉 and M16 = 〈p2, p4, p6〉
and M17 = 〈p3, p4, p5〉 and M10 = 〈p1, p2, p6〉 and M11 = 〈p1, p3, p5〉 and
M15 = 〈p2, p4, p5〉 and M18 = 〈p3, p4, p6〉. Then

(i) DetM9 = 〈|p1, p2, p5|〉, and

(ii) DetM12 = 〈|p1, p3, p6|〉, and

(iii) DetM16 = 〈|p2, p4, p6|〉, and

(iv) DetM17 = 〈|p3, p4, p5|〉, and

(v) DetM10 = 〈|p1, p2, p6|〉, and

(vi) DetM11 = 〈|p1, p3, p5|〉, and

(vii) DetM15 = 〈|p2, p4, p5|〉, and
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(viii) DetM18 = 〈|p3, p4, p6|〉.

From now on p7, p8, p9 denote points of E3
T.

(21) Suppose 〈|p1, p5, p9|〉 = 0. Then 〈|p1, p5, p7|〉 · 〈|p2, p5, p9|〉 =
−(〈|p1, p2, p5|〉 · 〈|p5, p9, p7|〉). The theorem is a consequence of (1).

(22) Suppose 〈|p1, p6, p8|〉 = 0. Then 〈|p1, p2, p6|〉 · 〈|p3, p6, p8|〉 = 〈|p1, p3, p6|〉 ·
〈|p2, p6, p8|〉. The theorem is a consequence of (1).

(23) Suppose 〈|p2, p4, p9|〉 = 0. Then 〈|p2, p4, p5|〉 · 〈|p2, p9, p7|〉 =
−(〈|p2, p4, p7|〉 · 〈|p2, p5, p9|〉).

(24) Suppose 〈|p2, p6, p7|〉 = 0. Then 〈|p2, p4, p7|〉 · 〈|p2, p6, p8|〉 =
−(〈|p2, p4, p6|〉 · 〈|p2, p8, p7|〉).

(25) Suppose 〈|p3, p4, p8|〉 = 0. Then 〈|p3, p4, p6|〉 · 〈|p3, p5, p8|〉 = 〈|p3, p4, p5|〉 ·
〈|p3, p6, p8|〉.

(26) Suppose 〈|p3, p5, p7|〉 = 0. Then 〈|p1, p3, p5|〉 · 〈|p5, p8, p7|〉 =
−(〈|p1, p5, p7|〉 · 〈|p3, p5, p8|〉). The theorem is a consequence of (1).

(27) Let us consider non zero real numbers r125, r136, r246, r345, r126, r135,
r245, r346, r157, r259, r597, r368, r268, r297, r247, r287, r358, r587. Suppose
r125 · r136 · r246 · r345 = r126 · r135 · r245 · r346 and r157 · r259 = −(r125 · r597)
and r126 · r368 = r136 · r268 and r245 · r297 = −(r247 · r259) and r247 · r268 =
−(r246 · r287) and r346 · r358 = r345 · r368 and r135 · r587 = −(r157 · r358).
Then r287 · r597 = r297 · r587.

(28) Suppose p1 = 〈1, 0, 0〉 and p2 = 〈0, 1, 0〉 and p3 = 〈0, 0, 1〉 and p4 = 〈1, 1,
1〉 and p5 = 〈e1, e2, e3〉 and p6 = 〈f1, f2, f3〉 and qfconic(0, 0, 0, r1, r2,

−(r1 + r2), p5) = 0 and qfconic(0, 0, 0, r1, r2,−(r1 + r2), p6) = 0. Then

(i) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p1) = 0, and

(ii) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p2) = 0, and

(iii) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p3) = 0, and

(iv) qfconic(0, 0, 0, r1, r2,−(r1 + r2), p4) = 0, and

(v) r1 · e1 · e2 + (r2 · e1 · e3) = r1 + r2 · e2 · e3, and

(vi) r1 · f1 · f2 + (r2 · f1 · f3) = r1 + r2 · f2 · f3.

(29) Suppose p1 = 〈1, 0, 0〉 and p2 = 〈0, 1, 0〉 and p3 = 〈0, 0, 1〉 and p4 = 〈1,
1, 1〉 and p5 = 〈e1, e2, e3〉 and p6 = 〈f1, f2, f3〉 and 〈|p1, p2, p5|〉 6= 0
and 〈|p1, p3, p6|〉 6= 0 and 〈|p2, p4, p6|〉 6= 0 and 〈|p3, p4, p5|〉 6= 0 and
〈|p1, p2, p6|〉 6= 0 and 〈|p1, p3, p5|〉 6= 0 and 〈|p2, p4, p5|〉 6= 0 and 〈|p3, p4, p6|〉
6= 0 and 〈|p1, p5, p7|〉 6= 0 and 〈|p2, p5, p9|〉 6= 0 and 〈|p5, p9, p7|〉 6= 0
and 〈|p3, p6, p8|〉 6= 0 and 〈|p2, p6, p8|〉 6= 0 and 〈|p2, p9, p7|〉 6= 0 and
〈|p2, p4, p7|〉 6= 0 and 〈|p2, p8, p7|〉 6= 0 and 〈|p3, p5, p8|〉 6= 0 and 〈|p5, p8, p7|〉
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6= 0 and (r1 6= 0 or r2 6= 0) and qfconic(0, 0, 0, r1, r2,−(r1 + r2), p5) =
0 and qfconic(0, 0, 0, r1, r2,−(r1 + r2), p6) = 0 and 〈|p1, p5, p9|〉 = 0 and
〈|p1, p6, p8|〉 = 0 and 〈|p2, p4, p9|〉 = 0 and 〈|p2, p6, p7|〉 = 0 and 〈|p3, p4, p8|〉
= 0 and 〈|p3, p5, p7|〉 = 0. Then 〈|p2, p8, p7|〉 · 〈|p5, p9, p7|〉 = 〈|p2, p9, p7|〉 ·
〈|p5, p8, p7|〉. The theorem is a consequence of (20), (28), (19), (21), (22),
(23), (24), (25), (26), and (27).

(30) Suppose 〈|p2, p8, p7|〉 · 〈|p5, p9, p7|〉 = 〈|p2, p9, p7|〉 · 〈|p5, p8, p7|〉. Then
〈|p7, p2, p5|〉 · 〈|p7, p8, p9|〉 = 0. The theorem is a consequence of (1).

(31) Let us consider a projective space P10 defined in terms of collinearity,
and elements c1, c2, c3, c4, c5, c6, c7, c8, c9 of P10. Suppose c1, c2 and
c4 are not collinear and c1, c2 and c5 are not collinear and c1, c6 and
c4 are not collinear and c1, c6 and c5 are not collinear and c2, c6 and c4

are not collinear and c3, c4 and c2 are not collinear and c3, c4 and c6 are
not collinear and c3, c5 and c2 are not collinear and c3, c5 and c6 are not
collinear and c4, c5 and c2 are not collinear and c1, c4 and c7 are collinear
and c1, c5 and c8 are collinear and c2, c3 and c7 are collinear and c2, c5

and c9 are collinear and c6, c3 and c8 are collinear and c6, c4 and c9 are
collinear. Then

(i) c9, c2 and c4 are not collinear, and

(ii) c1, c4 and c9 are not collinear, and

(iii) c2, c3 and c9 are not collinear, and

(iv) c2, c4 and c7 are not collinear, and

(v) c2, c5 and c8 are not collinear, and

(vi) c2, c9 and c8 are not collinear, and

(vii) c2, c9 and c7 are not collinear, and

(viii) c6, c4 and c8 are not collinear, and

(ix) c6, c5 and c8 are not collinear, and

(x) c4, c9 and c8 are not collinear, and

(xi) c4, c9 and c7 are not collinear.

Proof: For every elements v102, v103, v100, v104 of P10, v100 = v104 or v104,
v100 and v102 are not collinear or v104, v100 and v103 are not collinear or
v102, v103 and v104 are collinear by [13, (5), (3)]. For every elements v102,
v104, v100, v103 of P10, v100 = v103 or v103, v100 and v102 are not collinear or
v103, v100 and v104 are not collinear or v102, v103 and v104 are collinear by
[13, (5), (3)]. For every elements v102, v103, v104, v101 of P10, v104 = v101 or
v101, v104 and v102 are not collinear or v101, v104 and v103 are not collinear
or v102, v103 and v104 are collinear by [13, (2), (3)]. For every elements v103,
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v104, v102, v101 of P10, v102 = v101 or v101, v102 and v103 are not collinear
or v101, v102 and v104 are not collinear or v102, v103 and v104 are collinear
by [13, (2), (3)]. For every elements v2, v101, v100 of P10, v101 = v100 or
v100, v101 and v2 are not collinear or v2, v101 and v100 are collinear by [13,
(2)]. �

In the sequel P1, P2, P3, P4, P5, P6, P7, P8, P9 denote points of the projective
space over E3

T and a, b, c, d, e, f denote real numbers.
Let P1, P2, P3, P4, P5, P6, P7, P8, P9 be points of the projective space over

E3
T. We say that P1, P2, P3, P4, P5, P6, P7, P8, P9 form the Pascal configuration

if and only if

(Def. 4) P1, P2 and P4 are not collinear and P1, P3 and P4 are not collinear and
P2, P3 and P4 are not collinear and P1, P2 and P5 are not collinear and
P1, P2 and P6 are not collinear and P1, P3 and P5 are not collinear and
P1, P3 and P6 are not collinear and P2, P4 and P5 are not collinear and
P2, P4 and P6 are not collinear and P3, P4 and P5 are not collinear and
P3, P4 and P6 are not collinear and P2, P3 and P5 are not collinear and
P2, P3 and P6 are not collinear and P4, P5 and P1 are not collinear and
P4, P6 and P1 are not collinear and P5, P6 and P1 are not collinear and
P5, P6 and P2 are not collinear and P1, P5 and P9 are collinear and P1, P6

and P8 are collinear and P2, P4 and P9 are collinear and P2, P6 and P7 are
collinear and P3, P4 and P8 are collinear and P3, P5 and P7 are collinear.

Now we state the propositions:

(32) Suppose P1, P2, P3, P4, P5, P6, P7, P8, P9 form the Pascal configuration.
Then

(i) P7, P2 and P5 are not collinear, and

(ii) P1, P5 and P7 are not collinear, and

(iii) P2, P4 and P7 are not collinear, and

(iv) P2, P5 and P9 are not collinear, and

(v) P2, P6 and P8 are not collinear, and

(vi) P2, P7 and P8 are not collinear, and

(vii) P2, P7 and P9 are not collinear, and

(viii) P3, P5 and P8 are not collinear, and

(ix) P3, P6 and P8 are not collinear, and

(x) P5, P7 and P8 are not collinear, and

(xi) P5, P7 and P9 are not collinear.

The theorem is a consequence of (31).
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(33) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0
and f = 0. Suppose that {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and
P1, P2 and P3 are not collinear and P1, P2 and P4 are not collinear and
P1, P3 and P4 are not collinear and P2, P3 and P4 are not collinear and
P7, P2 and P5 are not collinear and P1, P2 and P5 are not collinear and
P1, P2 and P6 are not collinear and P1, P3 and P5 are not collinear and
P1, P3 and P6 are not collinear and P1, P5 and P7 are not collinear and
P2, P4 and P5 are not collinear and P2, P4 and P6 are not collinear and
P2, P4 and P7 are not collinear and P2, P5 and P9 are not collinear and
P2, P6 and P8 are not collinear and P2, P7 and P8 are not collinear and
P2, P7 and P9 are not collinear and P3, P4 and P5 are not collinear and
P3, P4 and P6 are not collinear and P3, P5 and P8 are not collinear and
P3, P6 and P8 are not collinear and P5, P7 and P8 are not collinear and
P5, P7 and P9 are not collinear and P1, P5 and P9 are collinear and P1, P6

and P8 are collinear and P2, P4 and P9 are collinear and P2, P6 and P7 are
collinear and P3, P4 and P8 are collinear and P3, P5 and P7 are collinear.
Then P7, P8 and P9 are collinear.

Proof: Consider N being an invertible square matrix over RF of dimen-
sion 3 such that (the homography ofN)(P1) = Dir100 and (the homography
of N)(P2) = Dir010 and (the homography of N)(P3) = Dir001 and

(the homography of N)(P4) = Dir111. Consider u5 being a point of E3
T

such that u5 is not zero and (the homography of N)(P5) = the direction
of u5. Reconsider p51 = u5(1), p52 = u5(2), p53 = u5(3) as a real number.
Consider u6 being a point of E3

T such that u6 is not zero and (the homography
of N)(P6) = the direction of u6. Reconsider p61 = u6(1), p62 = u6(2),
p63 = u6(3) as a real number. Consider u7 being a point of E3

T such that
u7 is not zero and (the homography of N)(P7) = the direction of u7. Re-
consider p71 = u7(1), p72 = u7(2), p73 = u7(3) as a real number. Consider
u8 being a point of E3

T such that u8 is not zero and (the homography
of N)(P8) = the direction of u8. Reconsider p81 = u8(1), p82 = u8(2),
p83 = u8(3) as a real number. Consider u9 being a point of E3

T such that
u9 is not zero and (the homography of N)(P9) = the direction of u9. Re-
consider p91 = u9(1), p92 = u9(2), p93 = u9(3) as a real number. Consider
a2, b2, c2, d2, e2, f2 being real numbers such that it is not true that a2 = 0
and b2 = 0 and c2 = 0 and d2 = 0 and e2 = 0 and f2 = 0. (the homography
of N)(P1) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography of N)(P2) ∈
conic(a2, b2, c2, d2, e2, f2) and (the homography ofN)(P3) ∈ conic(a2, b2, c2,

d2, e2, f2) and (the homography of N)(P4) ∈ conic(a2, b2, c2, d2, e2, f2) and
(the homography ofN)(P5) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography
of N)(P6) ∈ conic(a2, b2, c2, d2, e2, f2). Consider P being a point of the pro-
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jective space over E3
T such that the direction of [1, 0, 0] = P and for every

element u of E3
T such that u is not zero and P = the direction of u holds

qfconic(a2, b2, c2, d2, e2, f2, u) = 0. qfconic(a2, b2, c2, d2, e2, f2, [1, 0, 0]) = 0
and qfconic(a2, b2, c2, d2, e2, f2, [0, 1, 0]) = 0 and qfconic(a2, b2, c2, d2, e2, f2,

[0, 0, 1]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [1, 1, 1]) = 0 and qfconic(a2, b2,

c2, d2, e2, f2, [p51, p52, p53]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [p61, p62, p63])
= 0 by [4, (10)], [8, (3)]. Reconsider a7 = a2, b7 = b2, c10 = c2, d3 = d2,
e4 = e2, f4 = f2 as an element of RF. a7 = 0 and b7 = 0 and c10 =
0. a7 = 0 and b7 = 0 and c10 = 0 and d3 + e4 + f4 = 0. Reconsider
p2 = 〈0, 1, 0〉, p5 = 〈p51, p52, p53〉, p7 = 〈p71, p72, p73〉, p8 = 〈p81, p82, p83〉,
p9 = 〈p91, p92, p93〉 as a point of E3

T. 〈|p7, p2, p5|〉 6= 0 by [3, (102)], [8, (3)],
[3, (43)], [4, (10)]. 〈|p2, p8, p7|〉 · 〈|p5, p9, p7|〉 = 〈|p2, p9, p7|〉 · 〈|p5, p8, p7|〉.
〈|p7, p2, p5|〉 · 〈|p7, p8, p9|〉 = 0. �

(34) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0
and f = 0. Suppose that {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and
P1, P2 and P3 are not collinear and P1, P2, P3, P4, P5, P6, P7, P8, P9 form
the Pascal configuration. Then P7, P8 and P9 are collinear. The theorem
is a consequence of (32) and (33).

Note that E3
T is up 3-dimensional.

(35) Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0
and f = 0. Suppose that {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and
P1, P2 and P3 are collinear and P1, P2, P3, P4, P5, P6, P7, P8, P9 form the
Pascal configuration. Then P7, P8 and P9 are collinear.
Proof: Consider N being an invertible square matrix over RF of dimen-
sion 3 such that (the homography ofN)(P1) = Dir100 and (the homography
of N)(P2) = Dir010 and (the homography of N)(P4) = Dir001 and
(the homography of N)(P5) = Dir111. Consider u3 being a point of E3

T
such that u3 is not zero and (the homography of N)(P3) = the direction
of u3. Reconsider p31 = u3(1), p32 = u3(2), p33 = u3(3) as a real number.
Consider u6 being a point of E3

T such that u6 is not zero and (the homography
of N)(P6) = the direction of u6. Reconsider p61 = u6(1), p62 = u6(2),
p63 = u6(3) as a real number. Consider a2, b2, c2, d2, e2, f2 being real
numbers such that it is not true that a2 = 0 and b2 = 0 and c2 = 0
and d2 = 0 and e2 = 0 and f2 = 0 and (the homography of N)(P1) ∈
conic(a2, b2, c2, d2, e2, f2) and (the homography ofN)(P2) ∈ conic(a2, b2, c2,

d2, e2, f2) and (the homography of N)(P3) ∈ conic(a2, b2, c2, d2, e2, f2) and
(the homography ofN)(P4) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography
of N)(P5) ∈ conic(a2, b2, c2, d2, e2, f2) and (the homography of N)(P6) ∈
conic(a2, b2, c2, d2, e2, f2). Consider P being a point of the projective spa-
ce over E3

T such that the direction of [1, 0, 0] = P and for every ele-
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ment u of E3
T such that u is not zero and P = the direction of u holds

qfconic(a2, b2, c2, d2, e2, f2, u) = 0. qfconic(a2, b2, c2, d2, e2, f2, [1, 0, 0]) = 0
and qfconic(a2, b2, c2, d2, e2, f2, [0, 1, 0]) = 0 and qfconic(a2, b2, c2, d2, e2, f2,

[0, 0, 1]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [1, 1, 1]) = 0 and qfconic(a2, b2,

c2, d2, e2, f2, [p31, p32, p33]) = 0 and qfconic(a2, b2, c2, d2, e2, f2, [p61, p62, p63])
= 0 by [4, (10)], [8, (3)]. Reconsider a7 = a2, b7 = b2, c10 = c2, d3 = d2,
e4 = e2, f4 = f2 as an element of RF. a7 = 0 and b7 = 0 and c10 = 0.
a7 = 0 and b7 = 0 and c10 = 0 and d3 + e4 + f4 = 0. Reconsider p1 = 〈1,
0, 0〉, p2 = 〈0, 1, 0〉, p3 = 〈p31, p32, p33〉 as a point of E3

T. 〈|p1, p2, p3|〉 = 0
by [3, (102)], [10, (23)], [9, (25)], [4, (10)]. p31 6= 0 and p32 6= 0 by [8, (2),
(8), (4)]. �

(36) Pascal’s theorem:
Suppose it is not true that a = 0 and b = 0 and c = 0 and d = 0 and e = 0
and f = 0. Suppose that {P1, P2, P3, P4, P5, P6} ⊆ conic(a, b, c, d, e, f) and
P1, P2, P3, P4, P5, P6, P7, P8, P9 form the Pascal configuration. Then P7,
P8 and P9 are collinear. The theorem is a consequence of (35) and (34).
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About Quotient Orders and Ordering
Sequences
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Johannes Gutenberg University
Mainz, Germany

Summary. In preparation for the formalization in Mizar [4] of lotteries
as given in [14], this article closes some gaps in the Mizar Mathematical Library
(MML) regarding relational structures. The quotient order is introduced by the
equivalence relation identifying two elements x, y of a preorder as equivalent if
x 6 y and y 6 x. This concept is known (see e.g. chapter 5 of [19]) and was first
introduced into the MML in [13] and that work is incorporated here. Furthermore
given a set A, partition D of A and a finite-support function f : A → R, a
function Σf : D → R,Σf (X) =

∑
x∈X f(x) can be defined as some kind of

natural “restriction” from f to D. The first main result of this article can then
be formulated as:

∑
x∈A

f(x) =
∑
X∈D

Σf (X)

(
=
∑
X∈D

∑
x∈X

f(x)

)

After that (weakly) ascending/descending finite sequences (based on [3]) are in-
troduced, in analogous notation to their infinite counterparts introduced in [18]
and [13].

The second main result is that any finite subset of any transitive connected
relational structure can be sorted as a ascending or descending finite sequence,
thus generalizing the results from [16], where finite sequence of real numbers were
sorted.

The third main result of the article is that any weakly ascending/weakly
descending finite sequence on elements of a preorder induces a weakly ascen-
ding/weakly descending finite sequence on the projection of these elements into
the quotient order. Furthermore, weakly ascending finite sequences can be inter-
preted as directed walks in a directed graph, when the set of edges is described
by ordered pairs of vertices, which is quite common (see e.g. [10]).
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Additionally, some auxiliary theorems are provided, e.g. two schemes to find
the smallest or the largest element in a finite subset of a connected transitive
relational structure with a given property and a lemma I found rather useful:
Given two finite one-to-one sequences s, t on a set X, such that rng t ⊆ rng s,
and a function f : X → R such that f is zero for every x ∈ rng s \ rng t, we have∑

f ◦ s =
∑

f ◦ t.

MSC: 06A05 03B35

Keywords: quotient order; ordered finite sequences

MML identifier: ORDERS 5, version: 8.1.06 5.43.1297

1. Preliminaries

Now we state the proposition:

(1) Let us consider sets A, B, and an object x. If A = B \ {x} and x ∈ B,
then B \A = {x}.

Let Y be a set and X be a subset of Y. One can verify that every binary
relation which is X-defined is also Y -defined.

Now we state the propositions:

(2) Let us consider a set X, and an object x. If x ∈ X and X = 1, then
{x} = X.

(3) Let us consider a set X, and a natural number k. Suppose X ⊆ Seg k.
Then rng SgmX ⊆ Seg k.

Let s be a finite sequence and N be a subset of dom s. Observe that s·SgmN

is finite sequence-like.
Let A be a set, B be a subset of A, C be a non empty set, f be a finite

sequence of elements of B, and g be a function from A into C. Let us observe
that g · f is finite sequence-like.

Let s be a finite sequence. Let us observe that s·idseq(len s) is finite sequence-
like.

One can verify that Rev(Rev(s)) reduces to s.
Let X be a set. Note that there exists a subset of X which is finite.
The scheme Finite2 deals with a set A and a subset B of A and a unary

predicate P and states that

(Sch. 1) P[A]

provided

• A is finite and

• P[B] and

http://zbmath.org/classification/?q=cc:06A05
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/orders_5.miz
http://ftp.mizar.org/
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• for every sets x, C such that x ∈ A \ B and B ⊆ C ⊆ A and P[C] holds
P[C ∪ {x}].

Let A be an empty set. One can check that every partition of A is empty
and there exists a partition of A which is empty.

Let S, T be 1-sorted structures, f be a function from S into T , and B be
a subset of S. Let us observe that the functor f◦B yields a subset of T . Now we
state the proposition:

(4) Let us consider a set X, an order R in X, a finite subset B of X, and
an object x. If B = {x}, then SgmX(R,B) = 〈x〉.
Proof: Set f = 〈x〉. For every natural numbers n, m such that n, m ∈
dom f and n < m holds fn 6= fm and 〈〈fn, fm〉〉 ∈ R by [3, (38), (2)]. �

Let us consider a finite sequence s of elements of R. Now we state the pro-
positions:

(5) If
∑
s 6= 0, then there exists a natural number i such that i ∈ dom s and

s(i) 6= 0.

(6) If s is non-negative yielding and there exists a natural number i such
that i ∈ dom s and s(i) 6= 0, then

∑
s > 0.

Proof: Consider i being a natural number such that i ∈ dom s and s(i) 6=
0. Set s1 = s. For every natural number j such that j ∈ dom s1 holds
0 ¬ s1(j) by [6, (3)]. There exists a natural number k such that k ∈ dom s1

and 0 < s1(k) by [6, (3)]. �

(7) If s is non-positive yielding and there exists a natural number i such
that i ∈ dom s and s(i) 6= 0, then

∑
s < 0.

Proof: Reconsider s1 = −s as a finite sequence of elements of R. There
exists a natural number i such that i ∈ dom s1 and s1(i) 6= 0 by [12, (58)].∑
s1 > 0. �

(8) Let us consider a set X, finite sequences s, t of elements of X, and
a function f from X into R. Suppose s is one-to-one and t is one-to-one
and rng t ⊆ rng s and for every element x of X such that x ∈ rng s \ rng t
holds f(x) = 0. Then

∑
(f · s) =

∑
(f · t).

Proof: Define P[set] ≡ there exists a finite sequence r of elements of X
such that r is one-to-one and rng t ⊆ rng r and rng r = $1 and

∑
(f · r) =∑

(f · t). Reconsider r1 = rng t as a subset of rng s. For every sets x, C
such that x ∈ rng s \ r1 and r1 ⊆ C ⊆ rng s and P[C] holds P[C ∪ {x}] by
[9, (40)], [3, (38), (31)], [9, (31)]. P[rng s] from Finite2. Consider r being
a finite sequence of elements of X such that r is one-to-one and rng t ⊆
rng r and rng r = rng s and

∑
(f · r) =

∑
(f · t). Define Q[object, object] ≡

r($1) = s($2). For every object i such that i ∈ dom r there exists an object
j such that j ∈ dom s and Q[i, j] by [6, (3)]. Consider p being a function
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from dom r into dom s such that for every object x such that x ∈ dom r

holds Q[x, p(x)] from [7, Sch. 1]. p is a permutation of dom r by [21, (63)].
For every object i, i ∈ dom r iff i ∈ dom p and p(i) ∈ dom s by [6, (3)].
For every object x, x ∈ dom(f · s) iff x ∈ dom s by [6, (11), (3)]. �

Let X be a set, f be a function, and g be a positive yielding function from
X into R. Let us observe that g · f is positive yielding.

Let g be a negative yielding function from X into R. Note that g · f is
negative yielding.

Let g be a non-positive yielding function from X into R. Let us observe that
g · f is non-positive yielding.

Let g be a non-negative yielding function from X into R. Note that g · f is
non-negative yielding.

Let s be a function. Note that the functor support s yields a subset of dom s.
Let X be a set. Let us observe that there exists a function from X into R which
is finite-support and non-negative yielding and there exists a function from X

into C which is non-negative yielding and finite-support.
Now we state the proposition:

(9) Let us consider a setA, and a function f fromA into C. Then support f =
support(−f).
Proof: For every object x, x ∈ support f iff x ∈ support(−f) by [15, (5),
(66)]. �

Let A be a set and f be a finite-support function from A into C. Observe
that −f is finite-support.

Let f be a finite-support function from A into R. One can verify that −f is
finite-support.

2. Orders

Let us consider a set X, a binary relation R, and a subset Y of X. Now we
state the propositions:

(10) If R is irreflexive in X, then R is irreflexive in Y.

(11) If R is symmetric in X, then R is symmetric in Y.

(12) If R is asymmetric in X, then R is asymmetric in Y.

Let A be a relational structure. We say that A is connected if and only if

(Def. 1) the internal relation of A is connected in the carrier of A.

We say that A is strongly connected if and only if

(Def. 2) the internal relation of A is strongly connected in the carrier of A.
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Let us note that there exists a relational structure which is non empty,
reflexive, transitive, antisymmetric, connected, strongly connected, strict, and
total and every relational structure which is strongly connected is also reflexive
and connected and every relational structure which is reflexive and connected
is also strongly connected and every relational structure which is empty is also
reflexive, antisymmetric, transitive, connected, and strongly connected.

Let A be a relational structure and a1, a2 be elements of A. We say that
a1 ≈ a2 if and only if

(Def. 3) a1 ¬ a2 ¬ a1.

Now we state the proposition:

(13) Let us consider a reflexive, non empty relational structure A, and an ele-
ment a of A. Then a ≈ a.

Let A be a reflexive, non empty relational structure and a1, a2 be elements
of A. One can verify that the predicate a1 ≈ a2 is reflexive.

Let A be a relational structure. We say that a1 � a2 if and only if

(Def. 4) a1 ¬ a2 and a2 6¬ a1.

Observe that the predicate is irreflexive.
We introduce the notation a2 � a1 as a synonym of a1 � a2.
Let A be a connected relational structure. One can verify that the predicate

a1 � a2 is asymmetric.
Now we state the propositions:

(14) Let us consider a non empty relational structure A, and elements a1, a2

of A. Suppose A is strongly connected. Then

(i) a1 � a2, or

(ii) a1 ≈ a2, or

(iii) a1 � a2.

(15) Let us consider a transitive relational structure A, and elements a1, a2,
a3 of A. Then

(i) if a1 � a2 and a2 ¬ a3, then a1 � a3, and

(ii) if a1 ¬ a2 and a2 � a3, then a1 � a3.

(16) Let us consider a non empty relational structure A, and elements a1, a2

of A. If A is strongly connected, then a1 ¬ a2 or a2 ¬ a1.

(17) Let us consider a non empty relational structure A, a subset B of A, and
elements a1, a2 of A. Suppose the internal relation of A is connected in B
and a1, a2 ∈ B and a1 6= a2. Then

(i) a1 ¬ a2, or

(ii) a2 ¬ a1.
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Let us consider a non empty relational structure A and elements a1, a2 of
A. Now we state the propositions:

(18) If A is connected and a1 6= a2, then a1 ¬ a2 or a2 ¬ a1.

(19) If A is strongly connected, then a1 = a2 or a1 < a2 or a2 < a1. The
theorem is a consequence of (16).

Let us consider a relational structure A and elements a1, a2 of A. Now we
state the propositions:

(20) If a1 ¬ a2, then a1, a2 ∈ the carrier of A.

(21) If a1 ¬ a2, then A is not empty.

(22) Let us consider a transitive relational structure A, and a finite subset B
of A. Suppose B is not empty and the internal relation of A is connected
in B. Then there exists an element x of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds x ¬ y.

Proof: Define P[set] ≡ if $1 is not empty, then there exists an element x
of A such that x ∈ $1 and for every element y of A such that y ∈ $1 and
x 6= y holds x ¬ y. For every sets z, C such that z ∈ B and C ⊆ B and
P[C] holds P[C ∪ {z}] by [9, (31)], (17), [9, (136)], [22, (3)]. P[B] from
[11, Sch. 2]. �

(23) Let us consider a connected, transitive relational structure A, and a finite
subset B of A. Suppose B is not empty. Then there exists an element x
of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds x ¬ y.

The theorem is a consequence of (22).

(24) Let us consider a transitive relational structure A, and a finite subset B
of A. Suppose B is not empty and the internal relation of A is connected
in B. Then there exists an element x of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds y ¬ x.

Proof: Define P[set] ≡ if $1 is not empty, then there exists an element x
of A such that x ∈ $1 and for every element y of A such that y ∈ $1 and
x 6= y holds y ¬ x. For every sets z, C such that z ∈ B and C ⊆ B and
P[C] holds P[C ∪ {z}] by [9, (31)], (17), [9, (136)], [22, (3)]. P[B] from
[11, Sch. 2]. �
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(25) Let us consider a connected, transitive relational structure A, and a finite
subset B of A. Suppose B is not empty. Then there exists an element x
of A such that

(i) x ∈ B, and

(ii) for every element y of A such that y ∈ B and x 6= y holds y ¬ x.

The theorem is a consequence of (24).

A preorder is a reflexive, transitive relational structure.
A linear preorder is a strongly connected, transitive relational structure.
An order is a reflexive, antisymmetric, transitive relational structure.
A linear order is a strongly connected, antisymmetric, transitive relational

structure. Let us observe that every preorder is quasi-ordered and there exists
a linear order which is empty.

Now we state the propositions:

(26) Let us consider a preorder A. Then the internal relation of A quasi-orders
the carrier of A.

(27) Let us consider an order A. Then the internal relation of A partially
orders the carrier of A.

(28) Let us consider a linear order A. Then the internal relation of A linearly
orders the carrier of A.

Let us consider a relational structure A. Now we state the propositions:

(29) If the internal relation of A quasi-orders the carrier of A, then A is
reflexive and transitive.

(30) If the internal relation of A partially orders the carrier of A, then A is
reflexive, transitive, and antisymmetric.

(31) If the internal relation of A linearly orders the carrier of A, then A is
reflexive, transitive, antisymmetric, and connected.

The scheme RelStrMin deals with a transitive, connected relational structure
A and a finite subset B of A and a unary predicate P and states that

(Sch. 2) There exists an element x of A such that x ∈ B and P[x] and for every
element y of A such that y ∈ B and y � x holds P[y]

provided

• there exists an element x of A such that x ∈ B and P[x].

The scheme RelStrMax deals with a transitive, connected relational structure
A and a finite subset B of A and a unary predicate P and states that

(Sch. 3) There exists an element x of A such that x ∈ B and P[x] and for every
element y of A such that y ∈ B and x � y holds P[y]
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provided

• there exists an element x of A such that x ∈ B and P[x].

3. Quotient Order

Let A be a set and D be a partition of A. The functor EqRelOf(D) yielding
an equivalence relation of A is defined by

(Def. 5) D = Classes it .
Let A be a preorder. The functor EqRelOf(A) yielding an equivalence rela-

tion of the carrier of A is defined by

(Def. 6) for every elements x, y of A, 〈〈x, y〉〉 ∈ it iff x ¬ y ¬ x.

Now we state the proposition:

(32) Let us consider a preorder A. Then EqRelOf(A) = EqRel(A).

Let A be an empty preorder. Let us note that EqRelOf(A) is empty.
Let A be a non empty preorder. Observe that EqRelOf(A) is non empty.
Now we state the proposition:

(33) Let us consider an order A. Then EqRelOf(A) = idα, where α is the car-
rier of A.

Let A be a preorder. The functor QuotientOrder(A) yielding a strict rela-
tional structure is defined by

(Def. 7) the carrier of it = Classes(EqRelOf(A)) and for every elements X, Y of
Classes(EqRelOf(A)), 〈〈X, Y 〉〉 ∈ the internal relation of it iff there exist
elements x, y of A such that X = [x]EqRelOf(A) and Y = [y]EqRelOf(A) and
x ¬ y.

Let A be an empty preorder. Observe that QuotientOrder(A) is empty.
Now we state the proposition:

(34) Let us consider a non empty preorder A, and an element x of A. Then
[x]EqRelOf(A) ∈ the carrier of QuotientOrder(A).

Let A be a non empty preorder. One can verify that QuotientOrder(A) is
non empty.

Now we state the proposition:

(35) Let us consider a preorder A. Then the internal relation
of QuotientOrder(A) = ¬EA. The theorem is a consequence of (32).

Let A be a preorder. Observe that QuotientOrder(A) is reflexive, total, an-
tisymmetric, and transitive.

Let A be a linear preorder. Let us note that QuotientOrder(A) is connected
and strongly connected.
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Let A be a preorder. The functor the projection onto A yielding a function
from A into QuotientOrder(A) is defined by

(Def. 8) for every element x of A, it(x) = [x]EqRelOf(A).

Let A be an empty preorder. One can check that the projection onto A is
empty.

Let A be a non empty preorder. Note that the projection onto A is non
empty.

Now we state the propositions:

(36) Let us consider a non empty preorder A, and elements x, y of A. Suppose
x ¬ y. Then (the projection onto A)(x) ¬ (the projection onto A)(y).

(37) Let us consider a preorder A, and elements x, y of A. Suppose x ≈
y. Then (the projection onto A)(x) = (the projection onto A)(y). The
theorem is a consequence of (20).

Let A be a preorder and R be an equivalence relation of the carrier of A.
We say that R is EqRelOf-like if and only if

(Def. 9) R = EqRelOf(A).

Let us note that EqRelOf(A) is EqRelOf-like and there exists an equivalence
relation of the carrier of A which is EqRelOf-like.

Let R be an EqRelOf-like equivalence relation of the carrier of A and x

be an element of A. One can check that the functor [x]R yields an element of
QuotientOrder(A). Now we state the propositions:

(38) Let us consider a preorder A. Then the carrier of QuotientOrder(A) is
a partition of the carrier of A.

(39) Let us consider a non empty preorder A, and a non empty partition D

of the carrier of A. Suppose D = the carrier of QuotientOrder(A). Then
the projection onto A = the projection onto D.
Proof: For every object x such that x ∈ dom(the projection onto A)
holds (the projection onto A)(x) = (the projection onto D)(x) by [17,
(23)]. �

Let A be a set and D be a partition of A.
The functor PreorderFromPartition(D) yielding a strict relational structure

is defined by the term

(Def. 10) 〈A,EqRelOf(D)〉.
Let A be a non empty set. Let us observe that PreorderFromPartition(D) is

non empty.
Let A be a set. One can verify that PreorderFromPartition(D) is reflexive

and transitive and PreorderFromPartition(D) is symmetric.
Let us consider a set A and a partitionD of A. Now we state the propositions:
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(40) EqRelOf(D) = EqRelOf(PreorderFromPartition(D)).
Proof: For every elements x, y of A such that 〈〈x, y〉〉 ∈ EqRelOf(D) holds
〈〈x, y〉〉 ∈ EqRelOf(PreorderFromPartition(D)) by [17, (6)]. For every ele-
ments x, y of A such that 〈〈x, y〉〉 ∈ EqRelOf(PreorderFromPartition(D))
holds 〈〈x, y〉〉 ∈ EqRelOf(D). �

(41) D = Classes(EqRelOf(PreorderFromPartition(D))). The theorem is a con-
sequence of (40).

(42) D = the carrier of QuotientOrder(PreorderFromPartition(D)). The the-
orem is a consequence of (41).

Let A be a set, D be a partition of A, X be an element of D, and f be
a function. The functor eqSupport(f,X) yielding a subset of A is defined by the
term

(Def. 11) support f ∩X.

Let A be a preorder and X be an element of QuotientOrder(A). The functor
eqSupport(f,X) yielding a subset of A is defined by

(Def. 12) there exists a partition D of the carrier of A and there exists an element
Y of D such that D = the carrier of QuotientOrder(A) and Y = X and
it = eqSupport(f, Y ).

Observe that the functor eqSupport(f,X) is defined by the term

(Def. 13) support f ∩X.

Let A be a set, D be a partition of A, f be a finite-support function, and X
be an element of D. One can verify that eqSupport(f,X) is finite.

Let A be a preorder and X be an element of QuotientOrder(A). Let us note
that eqSupport(f,X) is finite.

Let A be an order, X be an element of the carrier of QuotientOrder(A), and
f be a finite-support function from A into R. Observe that eqSupport(f,X) is
trivial.

Now we state the propositions:

(43) Let us consider a set A, a partition D of A, an element X of D, and
a function f from A into R. Then eqSupport(f,X) = eqSupport(−f,X).
The theorem is a consequence of (9).

(44) Let us consider a preorder A, an element X of QuotientOrder(A), and
a function f from A into R. Then eqSupport(f,X) = eqSupport(−f,X).
The theorem is a consequence of (43).

Let A be a set, D be a partition of A, and f be a finite-support function
from A into R. The functor ΣDf yielding a function from D into R is defined
by
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(Def. 14) for every element X of D such that X ∈ D holds it(X) =
∑

(f ·
CFS(eqSupport(f,X))).

Let A be a preorder.
The functor Σ≈f yielding a function from QuotientOrder(A) into R is defined

by

(Def. 15) there exists a partition D of the carrier of A such that D = the carrier
of QuotientOrder(A) and it = ΣDf .

One can verify that the functor Σ≈f is defined by

(Def. 16) for every element X of QuotientOrder(A) such that X ∈ the carrier of
QuotientOrder(A) holds it(X) =

∑
(f · CFS(eqSupport(f,X))).

Now we state the propositions:

(45) Let us consider a set A, a partition D of A, and a finite-support function
f from A into R. Then ΣD(−f) = −ΣDf .
Proof: For every object X such that X ∈ dom(ΣD(−f)) holds
(ΣD(−f))(X) = (−ΣDf)(X) by (43), [1, (83)], [7, (2)], [6, (11)]. �

(46) Let us consider a preorder A, and a finite-support function f from A

into R. Then Σ≈−f = −Σ≈f . The theorem is a consequence of (38) and
(45).

Let A be a preorder and f be a non-negative yielding, finite-support function
from A into R. Observe that Σ≈f is non-negative yielding.

Let A be a set and D be a partition of A. Let us note that ΣDf is non-
negative yielding.

Now we state the propositions:

(47) Let us consider a set A, a partition D of A, and a finite-support function
f from A into R. If f is non-positive yielding, then ΣDf is non-positive
yielding. The theorem is a consequence of (45).

(48) Let us consider a preorder A, and a finite-support function f from A into
R. Suppose f is non-positive yielding. Then Σ≈f is non-positive yielding.
The theorem is a consequence of (38) and (47).

(49) Let us consider a preorder A, a finite-support function f from A into R,
and an element x of A. Suppose for every element y of A such that x ≈ y
holds x = y. Then (Σ≈f · (the projection onto A))(x) = f(x).

(50) Let us consider an order A, and a finite-support function f from A into
R. Then Σ≈f · (the projection onto A) = f .
Proof: Set F = Σ≈f · (the projection onto A). For every object x such
that x ∈ dom f holds f(x) = F (x) by [22, (2)], (49). �

(51) Let us consider an order A, and finite-support functions f1, f2 from A

into R. If Σ≈f1 = Σ≈f2, then f1 = f2. The theorem is a consequence of
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(50).

(52) Let us consider a preorder A, and a finite-support function f from A

into R. Then support(Σ≈f) ⊆ (the projection onto A)◦(support f).
Proof: For every object X such that X ∈ support(Σ≈f) holds X ∈
(the projection onto A)◦(support f) by [5, (24), (32)], (5), [6, (11), (13),
(3)]. �

(53) Let us consider a non empty set A, a non empty partition D of A,
and a finite-support function f from A into R. Then support(ΣDf) ⊆
(the projection ontoD)◦(support f). The theorem is a consequence of (42),
(39), and (52).

(54) Let us consider a preorder A, and a finite-support function f from A

into R. Suppose f is non-negative yielding. Then (the projection onto
A)◦(support f) = support(Σ≈f).
Proof:
For every object X such that X ∈ (the projection onto A)◦(support f)
holds X ∈ support(Σ≈f) by [7, (36)], [5, (24), (32)], [17, (20)]. �

(55) Let us consider a non empty set A, a non empty partition D of A,
and a finite-support function f from A into R. Suppose f is non-negative
yielding. Then (the projection onto D)◦(support f) = support(ΣDf). The
theorem is a consequence of (42), (39), and (54).

(56) Let us consider a preorder A, and a finite-support function f from A

into R. Suppose f is non-positive yielding. Then (the projection onto
A)◦(support f) = support(Σ≈f). The theorem is a consequence of (9),
(54), and (46).

(57) Let us consider a non empty set A, a non empty partition D of A,
and a finite-support function f from A into R. Suppose f is non-positive
yielding. Then (the projection onto D)◦(support f) = support(ΣDf). The
theorem is a consequence of (42), (39), and (56).

Let A be a preorder and f be a finite-support function from A into R.
Observe that Σ≈f is finite-support.

Let A be a set and D be a partition of A. Let us note that ΣDf is finite-
support.

Let us consider a non empty set A, a non empty partition D of A, a finite-
support function f from A into R, a one-to-one finite sequence s1 of elements
of A, and a one-to-one finite sequence s2 of elements of D. Now we state the
propositions:

(58) Suppose rng s2 = (the projection onto D)◦(rng s1) and for every ele-
ment X of D such that X ∈ rng s2 holds eqSupport(f,X) ⊆ rng s1. Then∑

(ΣDf · s2) =
∑

(f · s1).
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Proof: Define P[natural number] ≡ for every one-to-one finite sequence
t1 of elements of A for every one-to-one finite sequence t2 of elements of D
such that rng t2 = (the projection onto D)◦(rng t1) and for every element
X of D such that X ∈ rng t2 holds eqSupport(f,X) ⊆ rng t1 holds if
len t2 = $1, then

∑
(ΣDf · t2) =

∑
(f · t1). P[0]. For every natural number

j such that P[j] holds P[j + 1] by [5, (19)], [3, (38)], [20, (91)], [9, (48)].
For every natural number i, P[i] from [2, Sch. 2]. �

(59) If rng s1 = support f and rng s2 = support(ΣDf), then
∑

(ΣDf · s2) =∑
(f · s1). The theorem is a consequence of (58), (53), and (8).

Now we state the proposition:

(60) Let us consider a preorder A, a finite-support function f from A into R,
a one-to-one finite sequence s1 of elements of A, and a one-to-one finite
sequence s2 of elements of QuotientOrder(A). Suppose rng s1 = support f
and rng s2 = support(Σ≈f). Then

∑
(Σ≈f · s2) =

∑
(f · s1). The theorem

is a consequence of (59).

4. Ordering Finite Sequences

Let A be a relational structure and s be a finite sequence of elements of A.
We say that s is weakly ascending if and only if

(Def. 17) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sn ¬ sm.

We say that s is ascending if and only if

(Def. 18) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sn � sm.

Let us observe that every finite sequence of elements of A which is ascending
is also weakly ascending.

Let A be an antisymmetric relational structure and s be a finite sequence of
elements of A. Observe that s is ascending if and only if the condition (Def. 19)
is satisfied.

(Def. 19) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sn < sm.

Let A be a relational structure. We say that s is weakly descending if and
only if

(Def. 20) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sm ¬ sn.

We say that s is descending if and only if
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(Def. 21) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sm � sn.

One can verify that every finite sequence of elements of A which is descending
is also weakly descending.

Let A be an antisymmetric relational structure and s be a finite sequence of
elements of A. Let us observe that s is descending if and only if the condition
(Def. 22) is satisfied.

(Def. 22) for every natural numbers n, m such that n, m ∈ dom s and n < m holds
sm < sn.

Note that every finite sequence of elements of A which is one-to-one and
weakly ascending is also ascending and every finite sequence of elements of A
which is one-to-one and weakly descending is also descending and every finite
sequence of elements of A which is weakly ascending and weakly descending is
also constant.

Let A be a reflexive relational structure. Note that every finite sequence of
elements of A which is constant is also weakly ascending and weakly descending.

Let A be a relational structure. Note that ε(the carrier of A) is ascending, we-
akly ascending, descending, and weakly descending and there exists a finite
sequence of elements of A which is empty, ascending, weakly ascending, descen-
ding, and weakly descending.

Let A be a non empty relational structure and x be an element of A. Let
us observe that 〈x〉 is ascending, weakly ascending, descending, and weakly
descending as a finite sequence of elements of A and there exists a finite sequence
of elements of A which is non empty, one-to-one, ascending, weakly ascending,
descending, and weakly descending.

Let A be a relational structure and s be a finite sequence of elements of A.
We say that s is asc-ordering if and only if

(Def. 23) s is one-to-one and weakly ascending.

We say that s is desc-ordering if and only if

(Def. 24) s is one-to-one and weakly descending.

Let us note that every finite sequence of elements of A which is asc-ordering
is also one-to-one and weakly ascending and every finite sequence of elements of
A which is one-to-one and weakly ascending is also asc-ordering and every finite
sequence of elements of A which is desc-ordering is also one-to-one and weakly
descending and every finite sequence of elements of A which is one-to-one and
weakly descending is also desc-ordering and every finite sequence of elements of
A which is ascending is also asc-ordering and every finite sequence of elements
of A which is descending is also desc-ordering.
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Let B be a subset of A and s be a finite sequence of elements of A. We say
that s is B-asc-ordering if and only if

(Def. 25) s is asc-ordering and rng s = B.

We say that s is B-desc-ordering if and only if

(Def. 26) s is desc-ordering and rng s = B.

Let us observe that every finite sequence of elements of A which is B-asc-
ordering is also asc-ordering and every finite sequence of elements of A which is
B-desc-ordering is also desc-ordering.

Let B be an empty subset of A. Let us note that every finite sequence of
elements of A which is B-asc-ordering is also empty and every finite sequence
of elements of A which is B-desc-ordering is also empty.

Let us consider a relational structure A and a finite sequence s of elements
of A. Now we state the propositions:

(61) s is weakly ascending if and only if Rev(s) is weakly descending.

(62) s is ascending if and only if Rev(s) is descending.

Let us consider a relational structure A, a subsetB of A, and a finite sequence
s of elements of A. Now we state the propositions:

(63) s is B-asc-ordering if and only if Rev(s) is B-desc-ordering. The theorem
is a consequence of (61).

(64) If s is B-asc-ordering or B-desc-ordering, then B is finite.

Let A be an antisymmetric relational structure. One can check that every
finite sequence of elements of A which is asc-ordering is also ascending and every
finite sequence of elements of A which is desc-ordering is also descending.

Let us consider an antisymmetric relational structure A, a subset B of A,
and finite sequences s1, s2 of elements of A. Now we state the propositions:

(65) If s1 is B-asc-ordering and s2 is B-asc-ordering, then s1 = s2.
Proof: Define P[natural number] ≡ if $1 ∈ dom s1 and $1 ∈ dom s2,
then s1$1 = s2$1 . For every natural number k such that for every natural
number n such that n < k holds P[n] holds P[k] by [5, (10)], [22, (2)]. For
every natural number k, P[k] from [2, Sch. 4]. For every natural number
k such that k ∈ dom s1 holds s1(k) = s2(k). �

(66) If s1 is B-desc-ordering and s2 is B-desc-ordering, then s1 = s2. The
theorem is a consequence of (63) and (65).

(67) Let us consider a linear order A, a finite subset B of A, and a finite
sequence s of elements of A. Then s is B-asc-ordering if and only if s =
SgmX((the internal relation of A), B).
Proof: If s is B-asc-ordering, then s = SgmX((the internal relation of
A), B) by [8, (4)]. The internal relation of A linearly orders B. For every
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natural numbers n, m such that n, m ∈ dom s and n < m holds sn < sm.
�

Let A be a linear order and B be a finite subset of A.
Observe that SgmX((the internal relation of A), B) is B-asc-ordering.
Let us consider a relational structure A, subsets B, C of A, and a finite

sequence s of elements of A. Now we state the propositions:

(68) If s is B-asc-ordering and C ⊆ B, then there exists a finite sequence s2

of elements of A such that s2 is C-asc-ordering.
Proof: Set s2 = s·Sgm(s−1(C)). Consider n being a natural number such
that dom s = Seg n. For every object x, x ∈ rng s2 iff x ∈ C by [6, (11),
(3), (12)]. For every natural numbers n, m such that n, m ∈ dom s2 and
n < m holds s2n ¬ s2m by [3, (6)], [6, (11)], [3, (1)], [6, (12)]. �

(69) If s is B-desc-ordering and C ⊆ B, then there exists a finite sequen-
ce s2 of elements of A such that s2 is C-desc-ordering. The theorem is
a consequence of (63) and (68).

(70) Let us consider a relational structure A, a subset B of A, a finite sequence
s of elements of A, and an element x of A. Suppose B = {x} and s = 〈x〉.
Then s is B-asc-ordering and B-desc-ordering.
Proof: For every natural numbers n, m such that n, m ∈ dom s and
n < m holds sn ¬ sm ¬ sn by [3, (38), (2)]. �

Let us consider a relational structure A, a subsetB of A, and a finite sequence
s of elements of A. Now we state the propositions:

(71) If s is B-asc-ordering, then the internal relation of A is connected in B.
Proof: For every objects x, y such that x, y ∈ B and x 6= y holds 〈〈x,
y〉〉 ∈ the internal relation of A or 〈〈y, x〉〉 ∈ the internal relation of A by [5,
(10)]. �

(72) If s is B-desc-ordering, then the internal relation of A is connected in B.
The theorem is a consequence of (63) and (71).

Let us consider a transitive relational structure A, subsets B, C of A, a fi-
nite sequence s1 of elements of A, and an element x of A. Now we state the
propositions:

(73) Suppose s1 is C-asc-ordering and x /∈ C and B = C ∪ {x} and for every
element y of A such that y ∈ C holds x ¬ y. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = 〈x〉 a s1, and

(ii) s2 is B-asc-ordering.

Proof: Set s3 = 〈x〉. Set s2 = s3
a s1. For every natural numbers n, m

such that n, m ∈ dom s2 and n < m holds s2n ¬ s2m by [3, (25), (38),
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(2)]. �

(74) Suppose s1 is C-asc-ordering and x /∈ C and B = C ∪ {x} and for every
element y of A such that y ∈ C holds y ¬ x. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = s1
a 〈x〉, and

(ii) s2 is B-asc-ordering.

Proof: Set s3 = 〈x〉. Set s2 = s1
a s3. For every natural numbers n, m

such that n, m ∈ dom s2 and n < m holds s2n ¬ s2m by [3, (25), (1), (2)],
[2, (13)]. �

(75) Suppose s1 is C-desc-ordering and x /∈ C and B = C ∪{x} and for every
element y of A such that y ∈ C holds x ¬ y. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = s1
a 〈x〉, and

(ii) s2 is B-desc-ordering.

The theorem is a consequence of (63) and (73).

(76) Suppose s1 is C-desc-ordering and x /∈ C and B = C ∪{x} and for every
element y of A such that y ∈ C holds y ¬ x. Then there exists a finite
sequence s2 of elements of A such that

(i) s2 = 〈x〉 a s1, and

(ii) s2 is B-desc-ordering.

The theorem is a consequence of (63) and (74).

Let us consider a transitive relational structure A and a finite subset B of
A. Now we state the propositions:

(77) If the internal relation of A is connected in B, then there exists a finite
sequence s of elements of A such that s is B-asc-ordering.
Proof: Define P[natural number] ≡ for every subset C of A such that
C ⊆ B and C = $1 there exists a finite sequence s of elements of A such
that s is C-asc-ordering. P[0]. For every natural number k such that P[k]
holds P[k + 1] by (2), [3, (74)], (70), (22). For every natural number k,
P[k] from [2, Sch. 2]. �

(78) If the internal relation of A is connected in B, then there exists a finite
sequence s of elements of A such that s is B-desc-ordering. The theorem
is a consequence of (77) and (63).

Let us consider a connected, transitive relational structure A and a finite
subset B of A. Now we state the propositions:

(79) There exists a finite sequence s of elements of A such that s is B-asc-
ordering. The theorem is a consequence of (77).



138 sebastian koch

(80) There exists a finite sequence s of elements of A such that s is B-desc-
ordering. The theorem is a consequence of (79) and (63).

Let A be a connected, transitive relational structure and B be a finite subset
of A. Note that there exists a finite sequence of elements of A which is B-asc-
ordering and there exists a finite sequence of elements of A which is B-desc-
ordering.

Now we state the proposition:

(81) Let us consider a preorder A, and a subset B of A. Suppose the in-
ternal relation of A is connected in B. Then the internal relation of
QuotientOrder(A) is connected in (the projection onto A)◦B. The the-
orem is a consequence of (36).

Let us consider a preorder A, a subset B of A, and a finite sequence s1 of
elements of A. Now we state the propositions:

(82) Suppose s1 is B-asc-ordering. Then there exists a finite sequence s2 of
elements of QuotientOrder(A) such that s2 is ((the projection onto A)◦B)-
asc-ordering. The theorem is a consequence of (71), (81), and (77).

(83) Suppose s1 is B-desc-ordering. Then there exists a finite sequence s2

of elements of QuotientOrder(A) such that s2 is ((the projection onto
A)◦B)-desc-ordering. The theorem is a consequence of (63) and (82).
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1. Preliminaries

From now on X denotes a set, k, m, n denote natural numbers, i denotes
an integer, a, b, c, d, e, g, p, r, x, y denote real numbers, and z denotes a complex.

Now we state the proposition:

(1) If 0 < a, then there exists m such that 0 < a ·m+ b.

Let f be a real-valued finite sequence. Let us consider n. Observe that f�n
is R-valued.

Let f be a complex-valued finite sequence. Let us observe that f2 is (len f)-
element and f−1 is (len f)-element.

Let c be a complex. Note that c+ f is (len f)-element.
Now we state the propositions:

(2) Let us consider complexes c, z. Then c+ 〈z〉 = 〈c+ z〉.
(3) Let us consider complex-valued finite sequences f , g, and a complex c.

Then c+ f a g = (c+ f) a (c+ g).
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(4) Let us consider a complex-valued finite sequence f , and a complex c.
Then

∑
(c+ f) = c · len f +

∑
f .

Proof: Define P[complex-valued finite sequence] ≡
∑

(c+$1) = c·len $1+∑
$1. For every finite sequence p of elements of C and for every element x

of C such that P[p] holds P[p a 〈x〉] by [3, (39), (22)], (2), [17, (32)]. For
every finite sequence p of elements of C, P[p] from [5, Sch. 2]. �

2. Limits of Sequences an+b
cn+d

Let a, b, c, d be complexes. The functor Rat-Exp-Seq(a, b, c, d) yielding
a complex sequence is defined by

(Def. 1) it(n) = Polynom(a,b,n)
Polynom(c,d,n) .

Let us consider a, b, c, and d. The functor rseq(a, b, c, d) yielding a sequence
of real numbers is defined by the term

(Def. 2) <(Rat-Exp-Seq(a, b, c, d)).

Now we state the propositions:

(5) (rseq(a, b, c, d))(n) = a·n+b
c·n+d .

(6) (rseq(0, b, 0, d))(n) = b
d . The theorem is a consequence of (5).

Let us consider a and b. Let us note that rseq(a, b, 0, 0) is constant.
Let us consider d. One can verify that rseq(0, b, 0, d) is constant.
Now we state the propositions:

(7) (i) rseq(0, b, c, d) = b · rseq(0, 1, c, d), and

(ii) rseq(0, b, c, d) = (−b) · rseq(0, 1,−c,−d).
The theorem is a consequence of (5).

(8) (i) rseq(a, 0, c, d) = a · rseq(1, 0, c, d), and

(ii) rseq(a, 0, c, d) = (−a) · rseq(1, 0,−c,−d).
The theorem is a consequence of (5).

Let us consider b, c, and d. Let us observe that rseq(0, b, c, d) is convergent.
Now we state the propositions:

(9) lim rseq(0, b, 0, d) = b
d . The theorem is a consequence of (6).

(10) Let us consider a non zero real number c. Then lim rseq(0, b, c, d) = 0.
The theorem is a consequence of (5).

Let c be a non zero real number. Let us consider a, b, and d. Note that
rseq(a, b, c, d) is convergent.

Let a, d be positive real numbers and b be a real number. Let us observe
that rseq(a, b, 0, d) is non upper bounded.
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Let a, d be negative real numbers. Let us consider b. One can check that
rseq(a, b, 0, d) is non upper bounded.

Let a be a positive real number and d be a negative real number. Note that
rseq(a, b, 0, d) is non lower bounded.

Let a be a negative real number and d be a positive real number. Let us
note that rseq(a, b, 0, d) is non lower bounded.

Let a, d be non zero real numbers. One can check that rseq(a, b, 0, d) is non
bounded and rseq(a, b, 0, d) is non convergent.

Now we state the propositions:

(11) Let us consider a non zero real number c. Then lim rseq(a, b, c, d) = a
c .

The theorem is a consequence of (5) and (10).

(12) Let us consider a non zero real number a. Then lim rseq(a, b, a, d) = 1.
The theorem is a consequence of (11).

3. Trigonometry

Now we state the propositions:

(13) sin(π · i) = 0.

(14) cos(π2 + (π · i)) = 0.

(15) (i) tan r = (cot r)−1, and

(ii) cot r = (tan r)−1.

(16) dom(the function tan) =
⋃

the set of all ]−π
2 + (π · i), π2 + (π · i)[ where

i is an integer.
Proof: Set S = the set of all ]−π

2 +(π ·i), π2 +(π ·i)[ where i is an integer.
Set T = dom(the function tan). T ⊆

⋃
S by (14), [24, (29)]. For every set

X such that X ∈ S holds X ⊆ T by [16, (11)], [8, (9)], [21, (1)], [16, (13)].
�

Observe that dom(the function tan) is open as a subset of R.
Now we state the propositions:

(17) If 0 ¬ r, then (the function sin)(r) ¬ r.
Proof: Reconsider A = [0, r] as a non empty, closed interval subset of R.
Reconsider c = (the function cos) � A as a function from A into R. c�A is
bounded and c is integrable by [11, (11), (10)]. integral c = (the function
sin)(r) by [11, (19)], [22, (24)], [26, (30)]. Set Z0 = �0. Reconsider Z3 =
Z0 � A as a function from A into R. Z3�A is bounded and Z3 is integrable
by [11, (11), (10)]. integralZ3 = r by [14, (21)], [19, (35)], [11, (19)], [22,
(30)]. For every r such that r ∈ A holds c(r) ¬ Z3(r) by [6, (49)], [19,
(34)], [13, (6)]. �
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(18) If 0 ¬ r < π
2 , then r ¬ (the function tan)(r).

Proof: Reconsider A = [0, r] as a non empty, closed interval subset of R.
Set Z0 = �0. Reconsider Z3 = Z0 � A as a function from A into R. Z3�A
is bounded and Z3 is integrable by [11, (11), (10)]. integralZ3 = r by [14,
(21)], [19, (35)], [11, (19)], [22, (30)]. Set T = dom(the function tan). Set
c2 = (the function cos) · (the function cos). Set c3 = c2�T . Set Z1 = Z0

c3
.

c3
−1({0}) = ∅ by [6, (47)]. Reconsider Z2 = Z1 � A as a function from A

into R. Z1�A is continuous and Z2�A is bounded and Z2 is integrable by
[20, (24)], [11, (11), (10)]. For every real number s such that s ∈ T holds
Z1(s) = 1

(the function cos)(s)2 and (the function cos)(s) 6= 0 by [19, (34)], [6,
(47)]. integralZ2 = (the function tan)(r) by [12, (19)], [18, (59)], [15, (41)].
For every r such that r ∈ A holds Z3(r) ¬ Z2(r) by [6, (49)], [19, (34)],
[16, (11)], [13, (6)]. �

4. Some Special Functions and Sequences

Let f be a real-valued function. The functors: cot f and cosec f yielding
functions are defined by conditions

(Def. 3) dom cot f = dom f and for every object x such that x ∈ dom f holds
cot f(x) = cot(f(x)),

(Def. 4) dom cosec f = dom f and for every object x such that x ∈ dom f holds
cosec f(x) = cosec(f(x)),

respectively. Note that cot f is R-valued and cosec f is R-valued.
Let f be a real-valued finite sequence. Let us observe that cot f is finite

sequence-like and cosec f is finite sequence-like.
Let us consider a real-valued finite sequence f . Now we state the proposi-

tions:

(19) len cot f = len f .

(20) len cosec f = len f .

Let f be a real-valued finite sequence. Note that cot f is (len f)-element and
cosec f is (len f)-element.

Let us consider m. The functor x-r-seq(m) yielding a finite sequence is defi-
ned by the term

(Def. 5) π
2·m+1 · idseq(m).

Now we state the propositions:

(21) (i) len x-r-seq(m) = m, and

(ii) for every k such that 1 ¬ k ¬ m holds (x-r-seq(m))(k) = k·π
2·m+1 .

(22) rng x-r-seq(m) ⊆ ]0, π2 [. The theorem is a consequence of (21).
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Let us consider m. Let us note that x-r-seq(m) is R-valued.
Now we state the proposition:

(23) If 1 ¬ k ¬ m, then 0 < (x-r-seq(m))(k) < π
2 . The theorem is a consequ-

ence of (22) and (21).

Note that x-r-seq(0) is empty.

(24) If 1 ¬ k ¬ m, then 2
k·π +(x-r-seq(m))−1(k) = (x-r-seq(m+1))−1(k). The

theorem is a consequence of (21).

(25) If 1 ¬ k ¬ m, then 2 ·m + 1 · (x-r-seq(m))(k) = k · π. The theorem is
a consequence of (21).

(26) 2cosec x-r-seq(m) = 1 + 2cot x-r-seq(m). The theorem is a consequence
of (21) and (23).

(27) x-r-seq(n) is one-to-one. The theorem is a consequence of (21).

(28) 2cot x-r-seq(n) is one-to-one.
Proof: Set f = x-r-seq(n). f is one-to-one. 0 < f(x1) < π

2 and 0 <

f(x2) < π
2 and π

2 < π. cot(f(x1)) = cot(f(x2)) by [23, (40)]. f(x1) = f(x2)
by [15, (2)], [25, (57)], [6, (47)], [15, (10)]. �

(29)
∑

(2cot x-r-seq(m)) ¬
∑

(2x-r-seq(m))−1. The theorem is a consequence
of (21), (19), (15), (23), (16), and (18).

(30)
∑

(2x-r-seq(m))−1 ¬
∑

(2cosec x-r-seq(m)). The theorem is a consequen-
ce of (21), (20), (23), and (17).

The functors: Basel-seq, Basel-seq1, and Basel-seq2 yielding sequences of real
numbers are defined by terms

(Def. 6) rseq(0, 1, 1, 0) · rseq(0, 1, 1, 0),

(Def. 7) (π
2

6 · rseq(2, 0, 2, 1)) · rseq(2,−1, 2, 1),

(Def. 8) (π
2

6 · rseq(2, 0, 2, 1)) · rseq(2, 2, 2, 1),

respectively. Now we state the propositions:

(31) (Basel-seq)(n) = 1
n2

.

(32) (Basel-seq1)(n) = π2

6 ·
2·n

2·n+1 ·
2·n−1
2·n+1 . The theorem is a consequence of (5).

(33) (Basel-seq2)(n) = π2

6 ·
2·n

2·n+1 ·
2·n+2
2·n+1 . The theorem is a consequence of (5).

Let us observe that Basel-seq is convergent and Basel-seq1 is convergent and
Basel-seq2 is convergent.

(34) lim Basel-seq1 = π2

6 = lim Basel-seq2.

(35)
∑

(2x-r-seq(m))−1 = (2·m+1)2

π2
·
∑m
κ=0 Basel-seq(κ).

Proof: Set a = π2. Set b = (2 · m + 1)2. Set B = Basel-seq. Set S =
Shift(B�Zm+1, 1). Set M = x-r-seq(m). Set G = (2M)−1. Set F = 〈0〉aG.
B(0) = 1

02 . F = b
a · S by [9, (3)], [2, (11)], [10, (47)], (31). �



146 artur korniłowicz and karol pąk

References

[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg
New York, 2004.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):
55–65, 1990.

[7] Augustin Louis Cauchy. Cours d’analyse de l’Ecole royale polytechnique. de l’Imprimerie
royale, 1821.

[8] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of
complex numbers. Formalized Mathematics, 11(3):275–280, 2003.

[9] Wenpai Chang, Hiroshi Yamazaki, and Yatsuka Nakamura. The inner product and con-
jugate of finite sequences of complex numbers. Formalized Mathematics, 13(3):367–373,
2005.

[10] Noboru Endou. Double series and sums. Formalized Mathematics, 22(1):57–68, 2014.
doi:10.2478/forma-2014-0006.

[11] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for
partial functions from R to R and integrability for continuous functions. Formalized
Mathematics, 9(2):281–284, 2001.

[12] Adam Grabowski and Yatsuka Nakamura. Some properties of real maps. Formalized
Mathematics, 6(4):455–459, 1997.

[13] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and
arccos. Formalized Mathematics, 13(1):73–79, 2005.

[14] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized
Mathematics, 1(4):703–709, 1990.

[15] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized
Mathematics, 16(2):147–158, 2008. doi:10.2478/v10037-008-0021-3.

[16] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9
(3):455–460, 2001.

[17] Keiichi Miyajima and Takahiro Kato. The sum and product of finite sequences of complex
numbers. Formalized Mathematics, 18(2):107–111, 2010. doi:10.2478/v10037-010-0014-x.

[18] Cuiying Peng, Fuguo Ge, and Xiquan Liang. Several integrability formulas of special
functions. Formalized Mathematics, 15(4):189–198, 2007. doi:10.2478/v10037-007-0023-
6.

[19] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–
130, 1991.

[20] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathe-
matics, 1(4):787–791, 1990.

[21] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[22] Yasunari Shidama, Noboru Endou, and Katsumi Wasaki. Riemann indefinite in-
tegral of functions of real variable. Formalized Mathematics, 15(2):59–63, 2007.
doi:10.2478/v10037-007-0007-6.

[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://fm.mizar.org/1990-1/pdf1-3/finseq_2.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/2003-11/pdf11-3/complex2.pdf
http://fm.mizar.org/2003-11/pdf11-3/complex2.pdf
http://fm.mizar.org/2005-13/pdf13-3/complsp2.pdf
http://fm.mizar.org/2005-13/pdf13-3/complsp2.pdf
http://dx.doi.org/10.2478/forma-2014-0006
http://fm.mizar.org/2001-9/pdf9-2/integra5.pdf
http://fm.mizar.org/2001-9/pdf9-2/integra5.pdf
http://fm.mizar.org/1997-6/pdf6-4/jordan5a.pdf
http://fm.mizar.org/2005-13/pdf13-1/sin_cos6.pdf
http://fm.mizar.org/2005-13/pdf13-1/sin_cos6.pdf
http://fm.mizar.org/1990-1/pdf1-4/rfunct_1.pdf
http://dx.doi.org/10.2478/v10037-008-0021-3
http://fm.mizar.org/2001-9/pdf9-3/comptrig.pdf
http://dx.doi.org/10.2478/v10037-010-0014-x
http://dx.doi.org/10.2478/v10037-007-0023-6
http://dx.doi.org/10.2478/v10037-007-0023-6
http://fm.mizar.org/1991-2/pdf2-1/prepower.pdf
http://fm.mizar.org/1990-1/pdf1-4/fcont_1.pdf
http://fm.mizar.org/1997-6/pdf6-3/abian.pdf
http://dx.doi.org/10.2478/v10037-007-0007-6
http://fm.mizar.org/1990-1/pdf1-3/square_1.pdf


Basel problem – preliminaries 147

[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.
[26] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle

ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received June 27, 2017

The English version of this volume of Formalized Mathematics was financed
under agreement 548/P-DUN/2016 with the funds from the Polish Minister
of Science and Higher Education for the dissemination of science.

http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://fm.mizar.org/1998-7/pdf7-2/sin_cos.pdf
http://fm.mizar.org/1998-7/pdf7-2/sin_cos.pdf




FORMALIZED MATHEMATICS

Vol. 25, No. 2, Pages 149–155, 2017
DOI: 10.1515/forma-2017-0014 degruyter.com/view/j/forma

Basel Problem1

Karol Pąk
Institute of Informatics
University of Białystok

Poland

Artur Korniłowicz
Institute of Informatics
University of Białystok

Poland

Summary. A rigorous elementary proof of the Basel problem [6, 1]

Σ∞n=1
1
n2

=
π2

6

is formalized in the Mizar system [3]. This theorem is item #14 from the “Forma-
lizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.
nl/F.Wiedijk/100/ .
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1. Preliminaries

From now on k, m, n denote natural numbers, R denotes a commutative
ring, p, q denote polynomials over R, and z0, z1 denote elements of R.

Let L be a right zeroed, non empty double loop structure. Let us consider
n. Let us note that n · 0L reduces to 0L.

Now we state the proposition:

(1) Let us consider a complex z, and an element e of CF. If z = e, then
n · z = n · e.

Let e be an element of CF and z be a complex. Let us consider n. We identify
n · z with n · e. Now we state the propositions:
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(2) Let us consider a complex-valued finite sequence Z, and a finite sequence
E of elements of CF. If E = Z, then

∑
Z =

∑
E.

Proof: Consider f being a sequence of CF such that
∑
E = f(lenE) and

f(0) = 0CF and for every natural number j and for every element v of CF

such that j < lenE and v = E(j + 1) holds f(j + 1) = f(j) + v. Define
P[natural number] ≡ if $1 ¬ lenZ, then

∑
(Z�$1) = f($1). If P[n], then

P[n+ 1] by [2, (11)], [15, (25)], [5, (10)], [2, (13)]. P[n] from [2, Sch. 2]. �

(3) (1CF)n = 1CF .

(4) Let us consider a left zeroed, right zeroed, non empty additive loop
structure L, and elements z0, z1 of L. Then 〈z0, z1〉 = 〈z0〉+ 〈0L, z1〉.

(5) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and elements a, b, c, d
of L. Then 〈a, b〉 ∗ 〈c, d〉 = 〈a · c, a · d+ (b · c), b · d〉.

(6) Let us consider an Abelian, add-associative, right zeroed, right comple-
mentable, well unital, commutative, distributive, non empty double loop
structure L. Then 〈0L, 0L, 1L〉 = 〈0L, 1L〉2. The theorem is a consequence
of (5).

(7) Let us consider a right zeroed, add-associative, right complementable,
right distributive, non empty double loop structure L, an element z of L,
and a polynomial p over L. Then (p ∗ 〈z〉)(n) = p(n) · z.
Proof: Set Z = 〈z〉. Consider r being a finite sequence of elements of
the carrier of L such that len r = n+1 and (p∗〈z〉)(n) =

∑
r and for every

element k of N such that k ∈ dom r holds r(k) = p(k−′ 1) ·Z(n+ 1−′ k).
Set l = len r. For every element k of N such that k ∈ dom r and k 6= l

holds rk = 0L by [15, (25)], [2, (14)], [11, (32)]. �

(8) Let us consider an Abelian, add-associative, right zeroed, right com-
plementable, well unital, associative, commutative, distributive, non
empty double loop structure L, and an element x of L. Then 〈x〉n = 〈xn〉.
Proof: Set X = 〈x〉. Define P[natural number] ≡ X$1 = 〈x$1〉. P[0] by
[13, (8)], [2, (14)], [11, (32)], [9, (30)]. For every n such that P[n] holds
P[n+ 1] by [11, (19)], [2, (14)], [11, (32)], [13, (8)]. For every n, P[n] from
[2, Sch. 2]. �

(9) (i) 〈z0, z1〉0(0) = 1R, and

(ii) if n > 0, then 〈0R, z1〉n(n) = z1
n, and

(iii) if k 6= n, then 〈0R, z1〉n(k) = 0R.
Proof: Set P = 〈0R, z1〉. Define P[natural number] ≡ if $1 > 0, then
P $1($1) = z1

$1 and for every k such that k 6= $1 holds P $1(k) = 0R. P[0]
by [11, (15)], [9, (30)]. For every natural number i such that P[i] holds
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P[i+ 1] by [11, (19), (16), (38)], [13, (8)]. For every natural number i, P[i]
from [2, Sch. 2]. �

(10) (i) 〈0R, 0R,1R〉n(2 · n) = 1R, and

(ii) for every k such that k 6= 2 · n holds 〈0R, 0R,1R〉n(k) = 0R.
Proof: Set x1 = 〈0R,1R〉. Set x2 = 〈0R, 0R,1R〉. Define P[natural
number] ≡ x2

$1 = x1
2·$1 . If P[k], then P[k + 1] by (6), [11, (17), (19)], [9,

(33)]. P[k] from [2, Sch. 2]. Define Q[natural number] ≡ (1R)$1 = 1R. If
Q[k], then Q[k + 1]. Q[k] from [2, Sch. 2]. �

(11) Let us consider an integral domain L, and a non-zero polynomial p over

L. Then Roots(p) < len p.
Proof: Define P[natural number] ≡ for every non-zero polynomial p over

L such that len p = $1 holds Roots(p) < len p. For every natural number
n such that n ­ 1 and P[n] holds P[n+1] by [12, (47)], [10, (3)], [12, (50),
(23), (48)]. For every natural number n such that n ­ 1 holds P[n] from
[2, Sch. 8]. �

Let L be an add-associative, right zeroed, right complementable, distri-
butive, non empty double loop structure and a be a polynomial over L. The
functor @a yielding an element of PolyRing(L) is defined by the term

(Def. 1) a.

Let n be a natural number. The functor n · a yielding a polynomial over L
is defined by the term

(Def. 2) n · @a.

Now we state the propositions:

(12) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and a polynomial a over
L. Then (n · a)(k) = n · a(k).

(13) 〈z0, z1〉n(k) =
(n
k

)
· (z1

k · z0
n−′k).

Proof: Set Z0 = 〈z0〉. Set Z1 = 〈0R, z1〉. Set C =
(n
k

)
· (z1

k · z0
n−′k). Set

P2 = PolyRing(R). 〈z0, z1〉 = Z0 +Z1. Consider F being a finite sequence
of elements of PolyRing(R) such that 〈z0, z1〉n =

∑
F and lenF = n + 1

and for every natural number k such that k ¬ n holds F (k + 1) =
(n
k

)
·

Z1
k ∗ Z0

n−′k. For every natural number i such that i ¬ n and for every
polynomial F1 over R such that F1 = F (i+1) holds if k 6= i, then F1(k) =
0R and if k = i, then F1(k) = C by (12), (8), (7), (9). Consider f being
a sequence of the carrier of P2 such that

∑
F = f(lenF ) and f(0) = 0P2

and for every natural number j and for every element v of P2 such that
j < lenF and v = F (j+1) holds f(j+1) = f(j)+v. For every polynomial
p over R such that p = f(0) holds p(k) = 0R by [14, (7)]. �
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2. Imaginary Complex Numbers

Let z be a complex. We say that z is imaginary if and only if

(Def. 3) <(z) = 0.

Note that i is imaginary and every complex which is real and imaginary is
also zero and every complex which is zero is also imaginary.

Let z1, z2 be imaginary complexes. One can verify that z1 · z2 is real and
z1 + z2 is imaginary.

Let z be an imaginary complex and r be a real complex. Note that z · r
is imaginary and 0CF is real and imaginary and there exists an element of CF

which is real and imaginary.
Let z be a real element of CF and n be a natural number. Observe that n · z

is real.
Let z be an imaginary element of CF. Observe that n · z is imaginary.
Let z be an imaginary complex and n be an even natural number. Let us

observe that powerCF(z, n) is real.
Let n be an odd natural number. One can check that powerCF(z, n) is ima-

ginary as a complex.
Let r be a real element of CF and n be a natural number. Let us note that

powerCF(r, n) is real and every element of CF which is zero is also imaginary
and real.

Let p be a sequence of CF. We say that p is imaginary if and only if

(Def. 4) for every natural number i, p(i) is imaginary.

Let i1 be an imaginary element of CF. One can check that 〈i1〉 is imaginary.
Let i2 be an imaginary element of CF. Observe that 〈i1, i2〉 is imaginary and

there exists a polynomial over CF which is imaginary.
Now we state the propositions:

(14) Let us consider an imaginary polynomial I over CF, and a real element
r of CF. Then eval(I, r) is imaginary.
Proof: Consider H being a finite sequence of elements of CF such that
eval(I, r) =

∑
H and lenH = len I and for every element n of N such that

n ∈ domH holds H(n) = I(n−′ 1) · powerCF(r, n−′ 1). Consider h being
a sequence of the carrier of CF such that

∑
H = h(lenH) and h(0) = 0CF

and for every natural number j and for every element v of CF such that
j < lenH and v = H(j + 1) holds h(j + 1) = h(j) + v. Define P[natural
number] ≡ if $1 ¬ lenH, then h($1) is imaginary. If P[n], then P[n + 1]
by [2, (11)], [15, (25)], [2, (13)]. P[n] from [2, Sch. 2]. �

(15) Let us consider a real polynomial R over CF, and a real element r of CF.
Then eval(R, r) is real.



Basel problem 153

Proof: Consider H being a finite sequence of elements of CF such that
eval(I, r) =

∑
H and lenH = len I and for every element n of N such that

n ∈ domH holds H(n) = I(n−′ 1) · powerCF(r, n−′ 1). Consider h being
a sequence of the carrier of CF such that

∑
H = h(lenH) and h(0) = 0CF

and for every natural number j and for every element v of CF such that
j < lenH and v = H(j + 1) holds h(j + 1) = h(j) + v. Define P[natural
number] ≡ if $1 ¬ lenH, then h($1) is real. If P[n], then P[n + 1] by [2,
(11)], [15, (25)], [2, (13)]. P[n] from [2, Sch. 2]. �

Let us consider an imaginary element i3 of CF and a real element r of CF.

(16) If n is even, then the even part of 〈i3, r〉n is real and the odd part of
〈i3, r〉n is imaginary. The theorem is a consequence of (13).

(17) If n is odd, then the even part of 〈i3, r〉n is imaginary and the odd part
of 〈i3, r〉n is real. The theorem is a consequence of (13).

(18) Let us consider a non empty zero structure L, and a polynomial p over
L. Suppose len(the even part of p) 6= 0. Then len(the even part of p) is
odd.
Proof: Set E = the even part of p. Consider n such that 2 · n = lenE.
Reconsider n1 = n − 1 as a natural number. The length of E is at most
n+ n1 by [2, (13)]. �

3. Main Facts

Let L be a non empty set, p be a sequence of L, and m be a natural number.
The functor sievem(p) yielding a sequence of L is defined by

(Def. 5) for every natural number i, it(i) = p(m · i).
Let L be a non empty zero structure, p be a finite-Support sequence of L, and

m be a non zero natural number. Let us observe that sievem(p) is finite-Support.
Now we state the propositions:

(19) Let us consider a non empty zero structure L, and a sequence p of L.
Then sieve(2·k)(p) = sieve(2·k)(the even part of p).

(20) Let us consider a non empty zero structure L, and a polynomial p over L.
Suppose len(the even part of p) is odd. Then 2·len sieve2(p) = len(the even
part of p) + 1.
Proof: Set E = the even part of p. Set C = sieve2(E). Consider n such
that lenE = 2 ·n+ 1. Set n1 = n+ 1. The length of C is at most n1 by [2,
(13)]. For every natural number m such that the length of C is at most m
holds n1 ¬ m by [2, (13)]. C = sieve2(p). �
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(21) Let us consider a non empty zero structure L, and a polynomial p over
L. Suppose len(the even part of p) = 0. Let us consider a non zero natural
number n. Then len sieve(2·n)(p) = 0.

(22) Let us consider a field L, and a polynomial p over L. Then the even
part of p = (sieve2(p))[〈0L, 0L,1L〉]. The theorem is a consequence of (10),
(18), (20), and (21).

(23) (sieve2(〈iCF , 1CF〉2·n+1))(n) =
(2·n+1

1

)
· iCF . The theorem is a consequence

of (3) and (13).

(24) Suppose n ­ 1. Then (sieve2(〈iCF , 1CF〉2·n+1))(n − 1) =
(2·n+1

3

)
· −iCF .

The theorem is a consequence of (3) and (13).

(25) len sieve2(〈iCF , 1CF〉2·n+1) = n+ 1.
Proof: Set P1 = 〈iCF , 1CF〉

2·n+1. The length of sieve2(P1) is at most n+1.
For every m such that the length of sieve2(P1) is at most m holds n+1 ¬ m
by [2, (13)], (23). �

Let n be a natural number. Let us note that sieve2(〈iCF , 1CF〉2·n+1) is non-
zero.

(26) rng(2cot x-r-seq(n)) ⊆ Roots(sieve2(〈iCF , 1CF〉2·n+1)).
Proof: Set f = x-r-seq(n). Set f1 = 2cot f . Set P1 = 〈iCF , 1CF〉

2·n+1. Con-
sider x being an object such that x ∈ dom f1 and f1(x) = y. Reconsider
c = cot(f(x)) as an element of CF. Set N = 2 · n+ 1. (cot(f(x)) + i)N is
real by [7, (21)], [15, (29), (25)], [7, (23)]. eval(the even part of P1, c) = 0
by [8, (74)], [4, (6)], [8, (8)], (17). Set X2 = 〈0CF , 0CF ,1CF〉. The even part
of P1 = (sieve2(P1))[X2]. �

(27) Roots(sieve2(〈iCF , 1CF〉2·n+1)) = rng(2cot x-r-seq(n)).
The theorem is a consequence of (26), (11), and (25).

(28)
∑

(2cot x-r-seq(m)) = 2·m·(2·m−1)
6 . The theorem is a consequence of (25),

(27), (23), (24), and (2).

(29)
∑

(2cosec x-r-seq(m)) = 2·m·(2·m+2)
6 . The theorem is a consequence of

(28).

(30) (Basel-seq1)(m) ¬
∑m
κ=0 Basel-seq(κ). The theorem is a consequence of

(28).

(31)
∑m
κ=0 Basel-seq(κ) ¬ (Basel-seq2)(m). The theorem is a consequence of

(29).

(32) Basel problem:∑
Basel-seq = π2

6 . The theorem is a consequence of (30) and (31).

Note that (
∑κ
α=0(Basel-seq)(α))κ∈N is non summable as a sequence of real

numbers.
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Summary. In this article, we formalize in Mizar [5] the definition of dual
lattice and their properties. We formally prove that a set of all dual vectors in a
rational lattice has the construction of a lattice. We show that a dual basis can
be calculated by elements of an inverse of the Gram Matrix. We also formalize
a summation of inner products and their properties. Lattice of Z-module is ne-
cessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction
algorithm and cryptographic systems with lattice [20], [10] and [19].
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1. Summation of Inner Products

Now we state the proposition:

(1) Let us consider a rational Z-lattice L, and a Z-lattice L1. Suppose
L1 is a submodule of DivisibleMod(L) and the scalar product of L1 =
ScProductDM(L) � (the carrier of L1). Then L1 is rational.
Proof: For every vectors v, u of L1, 〈〈v, u〉〉 ∈ Q by [14, (25)], [7, (49)]. �

Let L be a rational Z-lattice. Observe that EMLat(L) is rational.
Let r be an element of FQ. Let us note that EMLat(r, L) is rational.
Let L be a Z-lattice, F be a finite sequence of elements of L, f be a function

from L into ZR, and v be a vector of L. The functor ScFS(v, f, F ) yielding
a finite sequence of elements of RF is defined by
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(Def. 1) len it = lenF and for every natural number i such that i ∈ dom it holds
it(i) = 〈〈v, f(Fi) · Fi〉〉.

Now we state the propositions:

(2) Let us consider a Z-lattice L, a function f from L into ZR, a finite
sequence F of elements of L, vectors v, u of L, and a natural number i.
Suppose i ∈ domF and u = F (i). Then (ScFS(v, f, F ))(i) = 〈〈v, f(u) · u〉〉.

(3) Let us consider a Z-lattice L, a function f from L into ZR, and vectors
v, u of L. Then ScFS(v, f, 〈u〉) = 〈〈〈v, f(u) · u〉〉〉.

(4) Let us consider a Z-lattice L, a function f from L into ZR, finite sequen-
ces F , G of elements of L, and a vector v of L. Then ScFS(v, f, F a G) =
ScFS(v, f, F ) a ScFS(v, f,G).

Let L be a Z-lattice, l be a linear combination of L, and v be a vector of L.
The functor SumSc(v, l) yielding an element of RF is defined by

(Def. 2) there exists a finite sequence F of elements of L such that F is one-to-one
and rngF = the support of l and it =

∑
ScFS(v, l, F ).

Now we state the propositions:

(5) Let us consider a Z-lattice L, and a vector v of L. Then SumSc(v,0LCL) =
0RF .

(6) Let us consider a Z-lattice L, a vector v of L, and a linear combination
l of ∅α. Then SumSc(v, l) = 0RF , where α is the carrier of L. The theorem
is a consequence of (5).

(7) Let us consider a Z-lattice L, a vector v of L, and a linear combination l
of L. Suppose the support of l = ∅. Then SumSc(v, l) = 0RF . The theorem
is a consequence of (5).

(8) Let us consider a Z-lattice L, vectors v, u of L, and a linear combination
l of {u}. Then SumSc(v, l) = 〈〈v, l(u) · u〉〉. The theorem is a consequence
of (5) and (3).

(9) Let us consider a Z-lattice L, a vector v of L, and linear combinations
l1, l2 of L. Then SumSc(v, l1 + l2) = SumSc(v, l1) + SumSc(v, l2).
Proof: SetA = ((the support of l1+l2)∪(the support of l1))∪(the support
of l2). Set C1 = A \ (the support of l1). Consider p being a finite sequence
such that rng p = C1 and p is one-to-one. Set C3 = A \ (the support of
l1+l2). Consider r being a finite sequence such that rng r = C3 and r is one-
to-one. Set C2 = A\(the support of l2). Consider q being a finite sequence
such that rng q = C2 and q is one-to-one. Consider F being a finite sequen-
ce of elements of L such that F is one-to-one and rngF = the support of
l1+l2 and SumSc(w, l1+l2) =

∑
ScFS(w, l1+l2, F ). Set F1 = F ar. Consi-

der G being a finite sequence of elements of L such that G is one-to-one and
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rngG = the support of l1 and SumSc(w, l1) =
∑

ScFS(w, l1, G). Set G3 =
Ga p. rngF misses rng r. rngG misses rng p. Define F(natural number) =
F1 ← (G3($1)). Consider P being a finite sequence such that lenP = lenF1

and for every natural number k such that k ∈ domP holds P (k) =
F(k) from [4, Sch. 2]. rngP ⊆ domF1 by [22, (29)], [23, (8)]. domF1 ⊆
rngP by [7, (33)], [27, (28), (36)], [7, (39)]. Set g = ScFS(w, l1, G3).
Set f = ScFS(w, l1 + l2, F1). Consider H being a finite sequence of ele-
ments of L such that H is one-to-one and rngH = the support of l2 and∑

ScFS(w, l2, H) = SumSc(w, l2). Set H1 = H a q. rngH misses rng q.
Define F(natural number) = H1 ← (G3($1)). Consider R being a finite
sequence such that lenR = lenH1 and for every natural number k such
that k ∈ domR holds R(k) = F(k) from [4, Sch. 2]. rngR ⊆ domH1 by
[22, (29)], [23, (8)]. domH1 ⊆ rngR by [7, (33)], [27, (28), (36)], [7, (39)].
Set h = ScFS(w, l2, H1).

∑
h =

∑
(ScFS(w, l2, H) a ScFS(w, l2, q)).

∑
g =∑

(ScFS(w, l1, G)a ScFS(w, l1, p)). Reconsider H2 = h ·R as a finite sequ-
ence of elements of RF.

∑
f =

∑
(ScFS(w, l1 + l2, F )a ScFS(w, l1 + l2, r)).

Define F(natural number) = g$1 + H2$1 . Consider I being a finite sequ-
ence such that len I = lenG3 and for every natural number k such that
k ∈ dom I holds I(k) = F(k) from [4, Sch. 2]. rng I ⊆ the carrier of RF.
�

(10) Let us consider a Z-lattice L, a linear combination l of L, and a vector
v of L. Then 〈〈v,

∑
l〉〉 = SumSc(v, l).

Proof: Define P[natural number] ≡ for every Z-lattice L for every linear
combination l of L for every vector v of L such that the support of l = $1

holds 〈〈v,
∑
l〉〉 = SumSc(v, l). P[0] by [24, (19)], [11, (12)], (7). For every

natural number n such that P[n] holds P[n+ 1] by [2, (44)], [9, (31)], [2,
(42)], [24, (7)]. For every natural number n, P[n] from [3, Sch. 2]. �

Let L be a Z-lattice, F be a finite sequence of elements of DivisibleMod(L), f
be a function from DivisibleMod(L) into ZR, and v be a vector of DivisibleMod(L).
The functor ScFS(v, f, F ) yielding a finite sequence of elements of RF is defined
by

(Def. 3) len it = lenF and for every natural number i such that i ∈ dom it holds
it(i) = (ScProductDM(L))(v, f(Fi) · Fi).

Now we state the propositions:

(11) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
ZR, a finite sequence F of elements of DivisibleMod(L), vectors v, u of
DivisibleMod(L), and a natural number i. Suppose i ∈ domF and u =
F (i). Then (ScFS(v, f, F ))(i) = (ScProductDM(L))(v, f(u) · u).

(12) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
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ZR, and vectors v, u of DivisibleMod(L).
Then ScFS(v, f, 〈u〉) = 〈(ScProductDM(L))(v, f(u) · u)〉.

(13) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
ZR, finite sequences F , G of elements of DivisibleMod(L), and a vector v of
DivisibleMod(L). Then ScFS(v, f, F aG) = ScFS(v, f, F ) a ScFS(v, f,G).

Let L be a Z-lattice, l be a linear combination of DivisibleMod(L), and v

be a vector of DivisibleMod(L). The functor SumSc(v, l) yielding an element of
RF is defined by

(Def. 4) there exists a finite sequence F of elements of DivisibleMod(L) such that
F is one-to-one and rngF = the support of l and it =

∑
ScFS(v, l, F ).

Now we state the propositions:

(14) Let us consider a Z-lattice L, and a vector v of DivisibleMod(L). Then
SumSc(v,0LCDivisibleMod(L)) = 0RF .

(15) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a linear
combination l of ∅α. Then SumSc(v, l) = 0RF , where α is the carrier of
DivisibleMod(L). The theorem is a consequence of (14).

(16) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a linear
combination l of DivisibleMod(L). Suppose the support of l = ∅. Then
SumSc(v, l) = 0RF . The theorem is a consequence of (14).

(17) Let us consider a Z-lattice L, vectors v, u of DivisibleMod(L), and a line-
ar combination l of {u}. Then SumSc(v, l) = (ScProductDM(L))(v, l(u) ·
u). The theorem is a consequence of (14) and (12).

(18) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and li-
near combinations l1, l2 of DivisibleMod(L). Then SumSc(v, l1 + l2) =
SumSc(v, l1) + SumSc(v, l2).
Proof: SetA = ((the support of l1+l2)∪(the support of l1))∪(the support
of l2). Set C1 = A \ (the support of l1). Consider p being a finite sequence
such that rng p = C1 and p is one-to-one. Set C3 = A \ (the support of
l1 + l2). Consider r being a finite sequence such that rng r = C3 and r is
one-to-one. Set C2 = A \ (the support of l2). Consider q being a finite se-
quence such that rng q = C2 and q is one-to-one. Consider F being a finite
sequence of elements of DivisibleMod(L) such that F is one-to-one and
rngF = the support of l1 + l2 and SumSc(w, l1 + l2) =

∑
ScFS(w, l1 +

l2, F ). Set F1 = F a r. Consider G being a finite sequence of elements of
DivisibleMod(L) such that G is one-to-one and rngG = the support of
l1 and SumSc(w, l1) =

∑
ScFS(w, l1, G). Set G3 = G a p. rngF misses

rng r. rngG misses rng p. Define F(natural number) = F1 ← (G3($1)).
Consider P being a finite sequence such that lenP = lenF1 and for
every natural number k such that k ∈ domP holds P (k) = F(k) from
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[4, Sch. 2]. rngP ⊆ domF1 by [22, (29)], [23, (8)]. domF1 ⊆ rngP by
[7, (33)], [27, (28), (36)], [7, (39)]. Set g = ScFS(w, l1, G3). Set f =
ScFS(w, l1 + l2, F1). Consider H being a finite sequence of elements of
DivisibleMod(L) such that H is one-to-one and rngH = the support of l2
and

∑
ScFS(w, l2, H) = SumSc(w, l2). Set H1 = Ha q. rngH misses rng q.

Define F(natural number) = H1 ← (G3($1)). Consider R being a finite
sequence such that lenR = lenH1 and for every natural number k such
that k ∈ domR holds R(k) = F(k) from [4, Sch. 2]. rngR ⊆ domH1 by
[22, (29)], [23, (8)]. domH1 ⊆ rngR by [7, (33)], [27, (28), (36)], [7, (39)].
Set h = ScFS(w, l2, H1).

∑
h =

∑
(ScFS(w, l2, H) a ScFS(w, l2, q)).

∑
g =∑

(ScFS(w, l1, G)a ScFS(w, l1, p)). Reconsider H2 = h ·R as a finite sequ-
ence of elements of RF.

∑
f =

∑
(ScFS(w, l1 + l2, F )a ScFS(w, l1 + l2, r)).

Define F(natural number) = g$1 + H2$1 . Consider I being a finite sequ-
ence such that len I = lenG3 and for every natural number k such that
k ∈ dom I holds I(k) = F(k) from [4, Sch. 2]. rng I ⊆ the carrier of RF.
�

(19) Let us consider a Z-lattice L, a linear combination l of DivisibleMod(L),
and a vector v of DivisibleMod(L). Then (ScProductDM(L))(v,

∑
l) =

SumSc(v, l).
Proof: Define P[natural number] ≡ for every Z-lattice L for every line-
ar combination l of DivisibleMod(L) for every vector v of DivisibleMod(L)
such that the support of l = $1 holds (ScProductDM(L))(v,

∑
l) = SumSc

(v, l). P[0] by [24, (19)], [12, (14)], (16). For every natural number n such
that P[n] holds P[n+ 1] by [2, (44)], [9, (31)], [2, (42)], [24, (7)]. For every
natural number n, P[n] from [3, Sch. 2]. �

(20) Let us consider a natural number n, a square matrix M over RF of
dimension n, and a square matrix H over FQ of dimension n. Suppose
M = H and M is invertible. Then

(i) H is invertible, and

(ii) M` = H`.

Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
M` holds M`i,j = H`i,j by [9, (87)], [12, (52), (54), (47)]. �

(21) Let us consider a natural number n, and a square matrix M over RF

of dimension n. Suppose M is square matrix over FQ of dimension n and
invertible. Then M` is a square matrix over FQ of dimension n. The
theorem is a consequence of (20).

(22) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then (GramMatrix(b))` is a square matrix over
FQ of dimension dim(L). The theorem is a consequence of (21).
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(23) Let us consider a finite subset X of Q. Then there exists an element a
of Z such that

(i) a 6= 0, and

(ii) for every element r of Q such that r ∈ X holds a · r ∈ Z.

Proof: Define P[natural number] ≡ for every finite subset X of Q such
that X = $1 there exists an element a of Z such that a 6= 0 and for every
element r of Q such that r ∈ X holds a · r ∈ Z. P[0]. For every natural
number n such that P[n] holds P[n + 1] by [26, (41)], [2, (44)], [1, (30)],
[17, (1)]. For every natural number n, P[n] from [3, Sch. 2]. �

(24) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then there exists an element a of RF such that

(i) a is an element of ZR, and

(ii) a 6= 0, and

(iii) a·(GramMatrix(b))` is a square matrix over ZR of dimension dim(L).

Proof: Set G = (GramMatrix(b))`. For every natural numbers i, j
such that 〈〈i, j〉〉 ∈ the indices of G holds Gi,j ∈ the carrier of FQ by
[9, (87)], [7, (3)]. Define F(natural number,natural number) = G$1,$2 .
Set D3 = {F(u, v), where u is an element of N, v is an element of N : u ∈
Seg lenG and v ∈ Seg widthG}.D3 is finite from [21, Sch. 22]. {Gi,j , where
i, j are natural numbers : 〈〈i, j〉〉 ∈ the indices of G} ⊆ D3 by [9, (87)].
{Gi,j , where i, j are natural numbers : 〈〈i, j〉〉 ∈ the indices ofG} ⊆ the car-
rier of FQ. Reconsider X = {Gi,j , where i, j are natural numbers : 〈〈i,
j〉〉 ∈ the indices of G} as a finite subset of FQ. Consider a being an element
of Z such that a 6= 0 and for every element r of Q such that r ∈ X holds
a · r ∈ Z. For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
a ·G holds (a ·G)i,j ∈ the carrier of ZR. �

(25) Let us consider a non trivial, rational, positive definite Z-lattice L,
an ordered basis b of EMLat(L), and a natural number i. Suppose i ∈
dom b. Then there exists a vector v of DivisibleMod(L) such that

(i) (ScProductDM(L))(bi, v) = 1, and

(ii) for every natural number j such that i 6= j and j ∈ dom b holds
(ScProductDM(L))(bj , v) = 0.

Proof: Consider a being an element of RF such that a is an element
of ZR and a 6= 0 and a · (GramMatrix(b))` is a square matrix over ZR

of dimension dim(L). For every natural number j such that i 6= j and
j ∈ dom b holds Line(a · (GramMatrix(b))`, i) · (GramMatrix(b))�,j =
0 by [9, (87)]. Reconsider I = rng b as a basis of EMLat(L). Define
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P[object, object] ≡ if $1 ∈ I, then for every natural number n such
that n = b−1($1) and n ∈ dom b holds $2 = (a · (GramMatrix(b))`)i,n
and if $1 /∈ I, then $2 = 0ZR . For every element x of EMLat(L), the-
re exists an element y of ZR such that P[x, y] by [7, (32)], [9, (87)],
[16, (1)]. Consider l being a function from EMLat(L) into ZR such that
for every element x of EMLat(L), P[x, l(x)] from [8, Sch. 3]. Recon-
sider a2 = a as an element of ZR. For every natural number k such
that 1 ¬ k ¬ len ScFS(bi, l, b) holds (Line(a · (GramMatrix(b))`, i) •
(GramMatrix(b))�,i)(k) = (ScFS(bi, l, b))(k) by [22, (25)], [7, (3), (34)],
[6, (72)]. The support of l ⊆ rng b. For every natural number j such
that i 6= j and j ∈ dom b holds 〈〈bj ,

∑
l〉〉 = 0 by [6, (72)], [22, (25)],

[7, (3), (34)]. Consider u being a vector of DivisibleMod(L) such that
a2 · u =

∑
l. For every natural number j such that i 6= j and j ∈ dom b

holds (ScProductDM(L))(bj , u) = 0 by [14, (24)], [12, (13), (8)]. �

2. Dual Lattice

Let L be a Z-lattice.
A dual of L is a vector of DivisibleMod(L) and is defined by

(Def. 5) for every vector v of DivisibleMod(L) such that v ∈ Embedding(L) holds
(ScProductDM(L))(it , v) ∈ ZR.

Now we state the propositions:

(26) Let us consider a Z-lattice L. Then 0DivisibleMod(L) is a dual of L.

(27) Let us consider a Z-lattice L, and duals v, u of L. Then v + u is a dual
of L.
Proof: For every vector x of DivisibleMod(L) such that x ∈ Embedding(L)
holds (ScProductDM(L))(v + u, x) ∈ ZR by [12, (6)]. �

(28) Let us consider a Z-lattice L, a dual v of L, and an element a of ZR.
Then a · v is a dual of L.
Proof: For every vector x of DivisibleMod(L) such that x ∈ Embedding(L)
holds (ScProductDM(L))(a · v, x) ∈ ZR by [12, (6)]. �

Let L be a Z-lattice. The functor DualSet(L) yielding a non empty subset
of DivisibleMod(L) is defined by the term

(Def. 6) the set of all v where v is a dual of L.

Note that DualSet(L) is linearly closed.
The functor DualLatMod(L) yielding a strict, non empty structure of Z-

lattice over ZR is defined by
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(Def. 7) the carrier of it = DualSet(L) and the addition of it = (the addition of
DivisibleMod(L)) � DualSet(L) and the zero of it = 0DivisibleMod(L) and
the left multiplication of it = (the left multiplication of DivisibleMod(L))�
((the carrier of ZR)×DualSet(L)) and the scalar product of it =
ScProductDM(L)�(DualSet(L)×DualSet(L)).

Now we state the propositions:

(29) Let us consider a Z-lattice L. Then DualLatMod(L) is a submodule of
DivisibleMod(L).

(30) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
that u ∈ I holds (ScProductDM(L))(v, u) ∈ ZR. Then v is a dual of L.
Proof: Define P[natural number] ≡ for every finite subset I of Embedding
(L) such that I = $1 and I is linearly independent and for every vector
u of DivisibleMod(L) such that u ∈ I holds (ScProductDM(L))(v, u) ∈
ZR for every vector w of DivisibleMod(L) such that w ∈ Lin(I) holds
(ScProductDM(L))(v, w) ∈ ZR. P[0] by [15, (67), (66)], [12, (6)]. For every
natural number n such that P[n] holds P[n+ 1] by [26, (41)], [2, (44)], [1,
(30)], [9, (31)]. For every natural number n, P[n] from [3, Sch. 2]. �

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
The functor DualBasis(I) yielding a subset of DivisibleMod(L) is defined by

(Def. 8) for every vector v of DivisibleMod(L), v ∈ it iff there exists a vec-
tor u of EMLat(L) such that u ∈ I and (ScProductDM(L))(u, v) = 1
and for every vector w of EMLat(L) such that w ∈ I and u 6= w holds
(ScProductDM(L))(w, v) = 0.

The functor B2DB(I) yielding a function from I into DualBasis(I) is defined
by

(Def. 9) dom it = I and rng it = DualBasis(I) and for every vector v of EMLat(L)
such that v ∈ I holds (ScProductDM(L))(v, it(v)) = 1 and for every vector
w of EMLat(L) such that w ∈ I and v 6= w holds
(ScProductDM(L))(w, it(v)) = 0.

Observe that B2DB(I) is onto and one-to-one.
Now we state the proposition:

(31) Let us consider a rational, positive definite Z-lattice L, and a basis I of

EMLat(L). Then I = DualBasis(I).

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
Note that DualBasis(I) is finite.

Let L be a non trivial, rational, positive definite Z-lattice.
Note that DualBasis(I) is non empty.
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Now we state the propositions:

(32) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), a vector v of DivisibleMod(L), and a linear combination l of
DualBasis(I). If v ∈ I, then (ScProductDM(L))(v,

∑
l) = l((B2DB(I))(v)).

The theorem is a consequence of (19), (17), and (18).

(33) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), and a vector v of DivisibleMod(L). If v is a dual of L, then
v ∈ Lin(DualBasis(I)).
Proof: Set f = (B2DB(I))−1. Define P[object, object] ≡ if $1 ∈ DualBasis
(I), then $2 = (ScProductDM(L))(f($1), v) and if $1 /∈ DualBasis(I), then
$2 = 0ZR . For every object x such that x ∈ the carrier of DivisibleMod(L)
there exists an object y such that y ∈ the carrier of ZR and P[x, y]
by [7, (33), (3)], [13, (24)], [14, (25)]. Consider l being a function from
DivisibleMod(L) into the carrier of ZR such that for every object x such
that x ∈ the carrier of DivisibleMod(L) holds P[x, l(x)] from [8, Sch. 1].
The support of l ⊆ DualBasis(I) by [24, (2)]. Consider b being a fini-
te sequence such that rng b = I and b is one-to-one. For every natu-
ral number n such that n ∈ dom b holds (ScProductDM(L))(bn, v) =
(ScProductDM(L))(bn,

∑
l) by [12, (20)], [14, (25)], [7, (3)], [18, (14)].

�

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
Let us note that DualBasis(I) is linearly independent.

The functor DualLat(L) yielding a strict Z-lattice is defined by

(Def. 10) the carrier of it = DualSet(L) and 0it = 0DivisibleMod(L) and the addition
of it = (the addition of DivisibleMod(L)) � (the carrier of it) and the left
multiplication of it = (the left multiplication of DivisibleMod(L))�((the
carrier of ZR)× (the carrier of it)) and the scalar product of it =
ScProductDM(L) � (the carrier of it).

Now we state the propositions:

(34) Let us consider a rational, positive definite Z-lattice L, and a vector v
of DivisibleMod(L). Then v ∈ DualLat(L) if and only if v is a dual of L.

(35) Let us consider a rational, positive definite Z-lattice L. Then DualLat(L)
is a submodule of DivisibleMod(L).

Let us consider a Z-lattice L. Now we state the propositions:

(36) Every basis of EMLat(L) is a basis of Embedding(L).

(37) Every basis of Embedding(L) is a basis of EMLat(L).

(38) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), and a vector v of DivisibleMod(L). If v ∈ DualBasis(I), then
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v is a dual of L.
Proof: Consider u being a vector of EMLat(L) such that u ∈ I and
(ScProductDM(L))(u, v) = 1 and for every vector w of EMLat(L) such
that w ∈ I and u 6= w holds (ScProductDM(L))(w, v) = 0. Reconsider
J = I as a basis of Embedding(L). For every vector w of DivisibleMod(L)
such that w ∈ J holds (ScProductDM(L))(v, w) ∈ ZR by [12, (6)]. �

(39) Let us consider a rational, positive definite Z-lattice L, and a basis I of
EMLat(L). Then DualBasis(I) is a basis of DualLat(L).
Proof: Reconsider D = DualLat(L) as a submodule of DivisibleMod(L).
For every vector v of DivisibleMod(L) such that v ∈ DualBasis(I) holds
v ∈ the carrier of DualLat(L). For every vector v of DivisibleMod(L) such
that v ∈ the vector space structure of D holds v ∈ Lin(DualBasis(I)). For
every vector v of DivisibleMod(L) such that v ∈ Lin(DualBasis(I)) holds
v ∈ the vector space structure of D by [25, (7)], (36), (32), [7, (3)]. �

(40) Let us consider a rational, positive definite Z-lattice L, an ordered ba-
sis b of EMLat(L), and a basis I of EMLat(L). Suppose I = rng b. Then
B2DB(I) · b is an ordered basis of DualLat(L). The theorem is a consequ-
ence of (39).

(41) Let us consider a positive definite, finite rank, free Z-lattice L, an or-
dered basis b of L, and an ordered basis e of EMLat(L). Suppose e =
MorphsZQ(L) · b. Then GramMatrix(InnerProductL, b) = GramMatrix
(InnerProduct EMLat(L), e).
Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
GramMatrix(InnerProductL, b) holds (GramMatrix(InnerProductL, b))i,j
= (GramMatrix(InnerProduct EMLat(L), e))i,j by [9, (87)], [7, (13)]. �

(42) Let us consider a positive definite, finite rank, free Z-lattice L. Then
GramDet(InnerProductL) = GramDet(InnerProduct EMLat(L)). The the-
orem is a consequence of (41).

(43) Let us consider a rational, positive definite Z-lattice L. Then rankL =
rank DualLat(L). The theorem is a consequence of (39) and (31).

(44) Let us consider an integral, positive definite Z-lattice L. Then EMLat(L)
is a Z-sublattice of DualLat(L).
Proof: DualLat(L) is a submodule of DivisibleMod(L). For every vector
v of DivisibleMod(L) such that v ∈ EMLat(L) holds v ∈ DualLat(L) by
(36), [12, (28), (8)], (30). �

(45) Let us consider a Z-lattice L, and an ordered basis b of L. Suppose
GramMatrix(InnerProductL, b) is a square matrix over ZR of dimension
dim(L). Then L is integral.
Proof: Set I = rng b. For every vectors v, u of L such that v, u ∈ I holds
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〈〈v, u〉〉 ∈ Z by [6, (10)], [16, (49)], [9, (87)], [16, (1)]. �

(46) Let us consider a Z-lattice L, a finite subset I of L, and a vector u of L.
Suppose for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Q. Let us
consider a vector v of L. If v ∈ Lin(I), then 〈〈v, u〉〉 ∈ Q.
Proof: Define P[natural number] ≡ for every finite subset I of L such
that I = $1 and for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Q
for every vector v of L such that v ∈ Lin(I) holds 〈〈v, u〉〉 ∈ Q. P[0] by [15,
(67)], [11, (12)]. For every natural number n such that P[n] holds P[n+1]
by [9, (40)], [15, (72)], [2, (44)], [9, (31)]. For every natural number n, P[n]
from [3, Sch. 2]. �

(47) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Q. Let us consider
vectors v, u of L. Then 〈〈v, u〉〉 ∈ Q.
Proof: Define P[natural number] ≡ for every finite subset I of L such
that I = $1 and for every vectors v, u of L such that v, u ∈ I holds
〈〈v, u〉〉 ∈ Q for every vectors v, u of L such that v, u ∈ Lin(I) holds
〈〈v, u〉〉 ∈ Q. P[0] by [15, (67)], [11, (12)]. For every natural number n such
that P[n] holds P[n + 1] by [9, (40)], [15, (72)], [2, (44)], [9, (31)]. For
every natural number n, P[n] from [3, Sch. 2]. �

(48) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Q. Then L is rational.
The theorem is a consequence of (47).

(49) Let us consider a Z-lattice L, and an ordered basis b of L. Suppose
GramMatrix(InnerProductL, b) is a square matrix over FQ of dimension
dim(L). Then L is rational.
Proof: Set I = rng b. For every vectors v, u of L such that v, u ∈ I holds
〈〈v, u〉〉 ∈ Q by [6, (10)], [16, (49)], [9, (87)], [16, (1)]. �

Let L be a rational, positive definite Z-lattice. One can check that DualLat(L)
is rational.

Now we state the propositions:

(50) Let us consider a rational Z-lattice L, a Z-lattice L1, and an orde-
red basis b of L1. Suppose L1 is a submodule of DivisibleMod(L) and
the scalar product of L1 = ScProductDM(L) � (the carrier of L1). Then
GramMatrix(InnerProductL1, b) is a square matrix over FQ of dimension
dim(L1). The theorem is a consequence of (1).

(51) Let us consider a rational, positive definite Z-lattice L, and an ordered
basis b of DualLat(L). Then GramMatrix(InnerProduct DualLat(L), b) is
a square matrix over FQ of dimension dim(L). The theorem is a consequ-
ence of (35), (43), and (50).
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(52) Let us consider a positive definite Z-lattice L, and a Z-lattice L1. Suppose
L1 is a submodule of DivisibleMod(L) and the scalar product of L1 =
ScProductDM(L) � (the carrier of L1). Then L1 is positive definite.

Proof: For every vector v of L1 such that v 6= 0L1 holds ‖v‖ > 0 by [14,
(25)], [7, (49)], [13, (29)], [12, (13), (6), (8)]. �

Let L be a rational, positive definite Z-lattice. Note that DualLat(L) is
positive definite.

Let L be a non trivial, rational, positive definite Z-lattice. Let us note that
DualLat(L) is non trivial.
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