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Summary. In this Mizar article, we complete the formalization of one of
the items from Abad and Abad’s challenge list of “Top 100 Theorems” about
Liouville numbers and the existence of transcendental numbers. It is item #18
from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http:
//www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph
Liouville in 1844 [15] as an example of an object which can be approximated
“quite closely” by a sequence of rational numbers. A real number x is a Liouville
number iff for every positive integer n, there exist integers p and q such that
q > 1 and

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1
qn
.

It is easy to show that all Liouville numbers are irrational. The definition and
basic notions are contained in [10], [1], and [12]. Liouvile constant, which is
defined formally in [12], is the first explicit transcendental (not algebraic) number,
another notable examples are e and π [5], [11], and [4]. Algebraic numbers were
formalized with the help of the Mizar system [13] very recently, by Yasushige
Watase in [23] and now we expand these techniques into the area of not only pure
algebraic domains (as fields, rings and formal polynomials), but also for more set-
theoretic fields. Finally we show that all Liouville numbers are transcendental,
based on Liouville’s theorem on Diophantine approximation.
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From now on m, n denote natural numbers, r denotes a real number, and c
denotes an element of CF.

Let f be a non empty, complex-valued function. One can check that |f | is
non empty. Now we state the propositions:

(1) If 2 ¬ m, then for every real number A, there exists a positive natural
number n such that A ¬ mn.

(2) Let us consider a positive real number A. Then there exists a positive
natural number n such that 1

2n ¬ A. The theorem is a consequence of (1).

Let us consider r and n. Observe that [r − n, r + n] is right-ended.
Let a, b be real numbers. One can verify that [a, b] is closed interval as

a subset of R and there exists an element of RF which is irrational.

(3) RF is a subring of CF.

(4) FQ is a subring of RF.

(5) ZR is a subring of RF.

Let us consider a ring R and a subring S of R. Now we state the propositions:

(6) Every element of S is an element of R.

(7) Every polynomial over S is a polynomial over R.

Let us consider a ring R, a subring S of R, a polynomial f over S, and
a polynomial g over R. Now we state the propositions:

(8) If f = g, then len f = len g.
Proof: the length of f is at most len g by [20, (8)]. For every natural
number m such that the length of f is at most m holds len g ¬ m. �

(9) If f = g, then LC f = LC g.

(10) Let us consider a non degenerated ring R, a subring S of R, a polynomial
f over S, and a monic polynomial g over R. If f = g, then f is monic.
The theorem is a consequence of (8).

Let R be a non degenerated ring. Let us note that every subring of R is non
degenerated and there exists a subring of R which is non degenerated.

Now we state the propositions:

(11) Let us consider a non degenerated ring R, a non degenerated subring S
of R, a monic polynomial f over S, and a polynomial g over R. If f = g,
then g is monic. The theorem is a consequence of (8).

(12) Let us consider a non degenerated ring R, a subring S of R, a polynomial
f over S, and a non-zero polynomial g over R. If f = g, then f is non-zero.
The theorem is a consequence of (8).

http://fm.mizar.org/miz/liouvil2.miz
http://ftp.mizar.org/
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(13) Let us consider a non degenerated ring R, a subring S of R, a non-zero
polynomial f over S, and a polynomial g over R. If f = g, then g is
non-zero. The theorem is a consequence of (8).

(14) Let us consider rings R, T , a subring S of R, a polynomial f over S,
and a polynomial g over R. Suppose f = g. Let us consider an element
a of R. Then ExtEval(f, a(∈ T )) = ExtEval(g, a(∈ T )). The theorem is
a consequence of (8).

(15) Let us consider a ring R, a subring S of R, a polynomial f over S,
an element r of R, and an element s of S. If r = s, then ExtEval(f, r) =
ExtEval(f, s). The theorem is a consequence of (6).

(16) Let us consider a ring R, a subring S of R, an element r of R, and
an element s of S. If r = s and s is integral over S, then r is integral over
R. The theorem is a consequence of (7), (8), (14), and (15).

(17) Let us consider a ring R, a subring S of R, an element r of R, an element
s of S, a polynomial f over R, and a polynomial g over S. If r = s and
f = g and r is a root of f , then s is a root of g.
Proof: Consider F being a finite sequence of elements of R such that
eval(f, r) =

∑
F and lenF = len f and for every element n of N such that

n ∈ domF holds F (n) = f(n −′ 1) · powerR(r, n −′ 1). For every element
n of N such that n ∈ domF holds F (n) = g(n −′ 1) · powerS(s, n −′ 1)
by (6), [23, (11)]. rngF ⊆ the carrier of S. Reconsider G = F as a finite
sequence of elements of S. lenG = len g.

∑
G is an element of R. �

(18) Every ring is a subring of R.

One can check that 0.CF is Z-valued and 1.CF is Z-valued.
Let L be a non degenerated, non empty double loop structure. One can check

that every polynomial over L which is monic is also non-zero and there exists
a polynomial over CF which is monic and Z-valued and there exists a polynomial
over CF which is monic and Q-valued and there exists a polynomial over CF

which is monic and R-valued.
Now we state the propositions:

(19) Every Z-valued polynomial over CF is a polynomial over ZR.

(20) Every Q-valued polynomial over CF is a polynomial over FQ.

(21) Every R-valued polynomial over CF is a polynomial over RF.

Let L be a non empty zero structure. Let us note that every polynomial over
L which is non-zero is also non zero and every polynomial over L which is zero
is also non non-zero. Now we state the propositions:

(22) Let us consider an integer i, and a Z-valued finite sequence f . If i ∈ rng f ,
then i |

∏
f .
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Proof: Define P[finite sequence of elements of Z] ≡ for every integer a
such that a ∈ rng $1 holds a |

∏
$1. For every finite sequence p of elements

of Z and for every element n of Z such that P[p] holds P[p a 〈n〉] by [3,
(31)], [8, (96)], [14, (2)], [3, (39)]. For every finite sequence p of elements
of Z, P[p] from [6, Sch. 2]. �

(23) There exists a non-zero, Z-valued polynomial f over CF such that c is a
root of f if and only if there exists a monic, Q-valued polynomial f over
CF such that c is a root of f .
Proof: If there exists a non-zero, Z-valued polynomial f over CF such
that c is a root of f , then there exists a monic, Q-valued polynomial f over
CF such that c is a root of f by [18, (5)], [16, (6)], [19, (59)]. Reconsider l =
len f as an element of N. Define F(element of N) = (den(f($1)))(∈ CF).
Consider d being a polynomial over CF such that len d ¬ l and for every
element n of N such that n < l holds d(n) = F(n) from [17, Sch. 2]. Define
G(natural number) = d($1 −′ 1). Consider d2 being a finite sequence such
that len d2 = len d and for every natural number k such that k ∈ dom d2
holds d2(k) = G(k) from [3, Sch. 2]. rng d2 ⊆ Z by [22, (25)]. Reconsider
d3 = d2 as a finite sequence of elements of CF. Reconsider d1 =

∏
d2 as

an element of CF. For every natural number i such that i ∈ dom d3 holds
d3(i) 6= 0CF by [22, (25)]. Consider d4 being a finite sequence of elements
of C such that d4 = d2 and

∏
d2 = ·C~ d4. rng(d1 · f) ⊆ Z by [20, (8)], [2,

(12), (13)], [22, (25)]. �

(24) c is algebraic if and only if there exists a monic, Q-valued polynomial f
over CF such that c is a root of f . The theorem is a consequence of (7),
(8), (14), and (20).

(25) c is algebraic if and only if there exists a non-zero, Z-valued polynomial
f over CF such that c is a root of f . The theorem is a consequence of (24)
and (23).

(26) c is algebraic integer if and only if there exists a monic, Z-valued poly-
nomial f over CF such that c is a root of f . The theorem is a consequence
of (7), (8), (14), and (19).

Let us observe that every complex which is algebraic integer is also algebraic
and every complex which is transcendental is also non algebraic integer.

(27) Liouville’s theorem on diophantine approximation:
Let us consider a non-zero, Z-valued polynomial f over RF, and an irratio-
nal element a of RF. Suppose a is a root of f . Then there exists a positive
real number A such that for every integer p for every positive natural
number q, |a− pq | >

A
qlen f

.
Proof: Set n = len f . Set X = [a − 1, a + 1]. Set E = Eval(f). Set
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F = E ‘| �X. Set M1 = sup rng |F |. Set M = M1 + 1. Consider Y being
an object such that Y ∈ rng |F |. Consider A being an object such that
A ∈ dom |F | and |F |(A) = Y. Set R1 = Roots f \ {a}. Define F(real
number) = |a−$1|. Set D = {F(b), where b is an element of RF : b ∈ R1}.
D is finite from [21, Sch. 21]. D ⊆ R. Set M2 = {1, 1

M } ∪ D. For every
real number x such that x ∈ M2 holds x > 0 by [9, (56)]. Consider A
being a real number such that 0 < A and A < infM2. Set q1 = qn.
Reconsider q2 = q1 as an element of RF. Reconsider p1 = p

q as an element
of RF. Consider E1 being a finite sequence of elements of the carrier of RF

such that E(pq ) =
∑
E1 and lenE1 = len f and for every element n of N

such that n ∈ domE1 holds E1(n) = f(n −′ 1) · powerRF(p1, n −′ 1). Set
G = q2 · E1. rngG ⊆ Z by [3, (1)], [2, (10)], [7, (3)], [24, (50)]. �

Main Result: All Liouville numbers are transcendental.
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