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Summary. In this article, we formalize in Mizar [14] the definition of
embedding of lattice and its properties. We formally define an inner product on
an embedded module. We also formalize properties of Gram matrix. We formally
prove that an inverse of Gram matrix for a rational lattice exists. Lattice of
Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász)
base reduction algorithm [16] and cryptographic systems with lattice [17].
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1. Inner Product of Embedded Module

Now we state the propositions:

(1) Let us consider a ring K, a left module V over K, a function L from
the carrier of V into the carrier of K, a subset A of V , and finite sequences
F , F1 of elements of the carrier of V . Suppose F is one-to-one and rngF =
A and F1 is one-to-one and rngF1 = A. Then

∑
(L · F ) =

∑
(L · F1).

Proof: Define G[object, object] ≡ {$2} = F−1({F1($1)}). For every object
x such that x ∈ domF there exists an object y such that y ∈ domF and
G[x, y] by [6, (74)]. Consider f being a function from domF into domF

such that for every object x such that x ∈ domF holds G[x, f(x)] from [7,
Sch. 1]. rng f = domF by [6, (59), (82)], [8, (18)]. f is one-to-one by [8,
(31)], [6, (91)], [8, (3)]. �
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(2) Let us consider a ring K, a left module V over K, and a finite subset
A of V . Then A is linearly independent if and only if for every linear
combination L of A such that there exists a finite sequence F of elements of
the carrier of V such that F is one-to-one and rngF = A and

∑
(L·F ) = 0V

holds the support of L = ∅.
Proof: For every linear combination L of A such that

∑
L = 0V holds

the support of L = ∅ by [22, (13)], [26, (13)], [24, (41)]. �

(3) Let us consider a ring K, a left module V over K, and a finite sequence
b of elements of V . Suppose b is one-to-one. Then rng b is linearly inde-
pendent if and only if for every finite sequence r of elements of K and
for every finite sequence r1 of elements of V such that len r = len b and
len r1 = len b and for every natural number i such that i ∈ dom r1 holds
r1(i) = ri · bi and

∑
r1 = 0V holds r = Seg len r 7−→ 0K .

Proof: For every linear combination L of rng b such that there exists
a finite sequence F of elements of the carrier of V such that F is one-to-
one and rngF = rng b and

∑
(L · F ) = 0V holds the support of L = ∅ by

[29, (27)], [23, (29)], [6, (13)], (1). �

(4) Let us consider a ring K, a left module V over K, and a finite subset
A of V . Then A is linearly independent if and only if there exists a finite
sequence b of elements of V such that b is one-to-one and rng b = A and
for every finite sequence r of elements of K and for every finite sequence
r1 of elements of V such that len r = len b and len r1 = len b and for every
natural number i such that i ∈ dom r1 holds r1(i) = ri · bi and

∑
r1 = 0V

holds r = Seg len r 7−→ 0K . The theorem is a consequence of (3).

Let V be a non trivial, free Z-module. Let us note that every basis of V is
non empty.

Let I1 be a Z-lattice. We say that I1 is rational if and only if

(Def. 1) for every vectors v, u of I1, 〈〈v, u〉〉 ∈ Q.

Let us note that there exists a Z-lattice which is non trivial, rational, and
positive definite.

Let L be a rational Z-lattice and v, u be vectors of L. Note that 〈〈v, u〉〉 is
rational and every integral Z-lattice is rational.

Let L be a Z-lattice. The functor ScProductEM(L) yielding a function from
(the carrier of Embedding(L))× (the carrier of Embedding(L)) into the carrier
of RF is defined by

(Def. 2) for every vectors v, u of L and for every vectors v1, u1 of Embedding(L)
such that v1 = (MorphsZQ(L))(v) and u1 = (MorphsZQ(L))(u) holds
it(v1, u1) = 〈〈v, u〉〉.

Now we state the proposition:
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(5) Let us consider a Z-lattice L. Then

(i) for every vector x of Embedding(L) such that for every vector y of
Embedding(L), (ScProductEM(L))(x, y) = 0 holds x = 0Embedding(L),
and

(ii) for every vectors x, y of Embedding(L), (ScProductEM(L))(x, y) =
(ScProductEM(L))(y, x), and

(iii) for every vectors x, y, z of Embedding(L) and for every element
a of ZR, (ScProductEM(L))(x + y, z) = (ScProductEM(L))(x, z) +
(ScProductEM(L))(y, z) and (ScProductEM(L))(a · x, y) =

a · (ScProductEM(L))(x, y).

Proof: Set Z = Embedding(L). Set f = ScProductEM(L). For every
vector x of Z such that for every vector y of Z, f(x, y) = 0 holds x =
0Embedding(L) by [10, (22)], [7, (4)]. For every vectors x, y of Z, f(x, y) =
f(y, x) by [10, (22)]. For every vectors x, y, z of Z and for every element
a of ZR, f(x+ y, z) = f(x, z) + f(y, z) and f(a · x, y) = a · f(x, y) by [10,
(22), (19)]. �

Let L be a Z-lattice. The functor ScProductDM(L) yielding a function from
(the carrier of DivisibleMod(L))×(the carrier of DivisibleMod(L)) into the car-
rier of RF is defined by

(Def. 3) for every vectors v1, u1 of DivisibleMod(L) and for every vectors v, u of
Embedding(L) and for every elements a, b of ZR and for every elements a1,
b1 of RF such that a = a1 and b = b1 and a1 6= 0 and b1 6= 0 and v = a · v1

and u = b · u1 holds it(v1, u1) = a1
−1 · b1−1 · (ScProductEM(L))(v, u).

Let us consider a Z-lattice L. Now we state the propositions:

(6) (i) for every vector x of DivisibleMod(L) such that for every vec-
tor y of DivisibleMod(L), (ScProductDM(L))(x, y) = 0 holds x =
0DivisibleMod(L), and

(ii) for every vectors x, y of DivisibleMod(L), (ScProductDM(L))(x, y) =
(ScProductDM(L))(y, x), and

(iii) for every vectors x, y, z of DivisibleMod(L) and for every element
a of ZR, (ScProductDM(L))(x + y, z) = (ScProductDM(L))(x, z) +
(ScProductDM(L))(y, z) and (ScProductDM(L))(a · x, y) =

a · (ScProductDM(L))(x, y).
Proof: Set D = DivisibleMod(L). Set f = ScProductDM(L). For every
vector x of D such that for every vector y of D, f(x, y) = 0 holds x = 0D by
[10, (29)], [11, (24)], [15, (25)], (5). For every vectors x, y of D, f(x, y) =
f(y, x) by [10, (29)], (5). For every vectors x, y, z of D and for every
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element i of ZR, f(x+ y, z) = f(x, z) + f(y, z) and f(i · x, y) = i · f(x, y)
by [10, (29)], [11, (29), (28)], [18, (11)]. �

(7) ScProductEM(L) = ScProductDM(L) � rng MorphsZQ(L).
Proof: Reconsider s = ScProductDM(L) � rng MorphsZQ(L) as a func-
tion from rng MorphsZQ(L) × rng MorphsZQ(L) into the carrier of RF.
For every object x such that x ∈ rng MorphsZQ(L) × rng MorphsZQ(L)
holds (ScProductEM(L))(x) = s(x) by [11, (24)], [6, (49)], [8, (87)]. �

(8) Let us consider a Z-lattice L, vectors v1, v2 of DivisibleMod(L), and
vectors u1, u2 of Embedding(L). Suppose v1 = u1 and v2 = u2. Then
(ScProductEM(L))(u1, u2) = (ScProductDM(L))(v1, v2).

(9) Let us consider a Z-lattice L, an element r of FQ, and vectors v, u of
Embedding(r, L). Then (ScProductDM(L) � (the carrier of Embedding(r,
L)))(v, u) = (ScProductDM(L))(v, u).

(10) Let us consider a Z-lattice L, a non empty set A, an element z of A, a bi-
nary operation a1 on A, a function m1 from (the carrier of ZR) × A into
A, and a function s1 from A×A into the carrier of RF. Suppose A is a li-
nearly closed subset of DivisibleMod(L) and z = 0DivisibleMod(L) and a1 =
(the addition of DivisibleMod(L)) � A and m1 = (the left multiplication
of DivisibleMod(L))�((the carrier of ZR) × A). Then 〈〈A, a1, z,m1, s1〉〉 is
a submodule of DivisibleMod(L).

(11) Let us consider a Z-lattice L, and vectors v, u of DivisibleMod(L). Then

(i) (ScProductDM(L))(−v, u) = −(ScProductDM(L))(v, u), and

(ii) (ScProductDM(L))(u,−v) = −(ScProductDM(L))(u, v).

The theorem is a consequence of (6).

(12) Let us consider a Z-lattice L, and vectors v, u, w of DivisibleMod(L).
Then (ScProductDM(L))(v, u+ w) = (ScProductDM(L))(v, u)+
(ScProductDM(L))(v, w). The theorem is a consequence of (6).

(13) Let us consider a Z-lattice L, vectors v, u of DivisibleMod(L), and an ele-
ment a of ZR. Then (ScProductDM(L))(v, a·u) = a·(ScProductDM(L))(v,
u). The theorem is a consequence of (6).

(14) Let us consider a Z-lattice L, and a vector v of DivisibleMod(L). Then

(i) (ScProductDM(L))(0DivisibleMod(L), v) = 0, and

(ii) (ScProductDM(L))(v, 0DivisibleMod(L)) = 0.

The theorem is a consequence of (6) and (11).

(15) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
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that u ∈ I holds (ScProductDM(L))(v, u) = 0. Let us consider a vector u
of DivisibleMod(L). Then (ScProductDM(L))(v, u) = 0.
Proof: Define P[natural number] ≡ for every finite subset I of Embedding
(L) such that I = $1 and I is linearly independent and for every vector u
of DivisibleMod(L) such that u ∈ I holds (ScProductDM(L))(v, u) =
0 for every vector w of DivisibleMod(L) such that w ∈ Lin(I) holds
(ScProductDM(L))(v, w) = 0. P[0] by [12, (67), (66)], (14). For every
natural number n such that P[n] holds P[n + 1] by [28, (41)], [2, (44)],
[1, (30)], [8, (31)]. For every natural number n, P[n] from [3, Sch. 2]. For
every vector w of DivisibleMod(L), (ScProductDM(L))(v, w) = 0 by [10,
(29)], (6). �

(16) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
that u ∈ I holds (ScProductDM(L))(v, u) = 0. Then v = 0DivisibleMod(L).
The theorem is a consequence of (15) and (6).

(17) Let us consider a ring R, a left module V over R, a vector v of V , and
an object u. Suppose u ∈ Lin({v}). Then there exists an element i of R
such that u = i · v.

(18) Let us consider a ring R, a left module V over R, and a vector v of V .
Then v ∈ Lin({v}).

(19) Let us consider a ring R, a left module V over R, a vector v of V , and
an element i of R. Then i · v ∈ Lin({v}).

2. Embedding of Lattice

Let L be a Z-lattice. The functor EMLat(L) yielding a strict Z-lattice is
defined by

(Def. 4) the carrier of it = rng MorphsZQ(L) and the zero of it = zeroCoset(L)
and the addition of it = addCoset(L) � rng MorphsZQ(L) and the left
multiplication of it = lmultCoset(L)�((the carrier of ZR)× rng MorphsZQ
(L)) and the scalar product of it = ScProductEM(L).

Let r be an element of FQ. The functor EMLat(r, L) yielding a strict Z-lattice
is defined by

(Def. 5) the carrier of it = r ·rng MorphsZQ(L) and the zero of it = zeroCoset(L)
and the addition of it = addCoset(L) � (r ·rng MorphsZQ(L)) and the left
multiplication of it = lmultCoset(L)�((the carrier of ZR)×(r·rng Morphs−
ZQ(L))) and the scalar product of it = ScProductDM(L) � (r·rng Morphs−
ZQ(L)).
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Let L be a non trivial Z-lattice. One can verify that EMLat(L) is non trivial.
Let r be a non zero element of FQ. One can verify that EMLat(r, L) is non

trivial. Let L be an integral Z-lattice. Observe that EMLat(L) is integral.
Now we state the propositions:

(20) Let us consider a Z-lattice L.
Then EMLat(L) is a submodule of DivisibleMod(L).

(21) Let us consider a Z-lattice L, and an element r of FQ. Then EMLat(r, L)
is a submodule of DivisibleMod(L).

(22) Let us consider a Z-lattice L, a non zero element r of FQ, elements m,
n of ZR, elements m, n1 of Z, and a vector v of EMLat(r, L). Suppose
m = m and n = n1 and r = m

n1
and n1 6= 0. Then there exists a vector

x of EMLat(L) such that n · v = m · x. The theorem is a consequence of
(20) and (21).

(23) Let us consider a Z-lattice L, an element r of FQ, vectors v, u of EMLat(r,
L), and vectors x, y of EMLat(L). If v = x and u = y, then 〈〈v, u〉〉 = 〈〈x, y〉〉.
The theorem is a consequence of (9) and (7).

(24) Let us consider an integral Z-lattice L, a non zero element r of FQ,
a rational number a, and vectors v, u of EMLat(r, L). Suppose r = a.
Then a−1 ·a−1 · 〈〈v, u〉〉 ∈ Z. The theorem is a consequence of (22) and (23).

Let L be a positive definite Z-lattice. One can verify that EMLat(L) is
positive definite.

Let r be a non zero element of FQ. Let us observe that EMLat(r, L) is positive
definite.

Now we state the proposition:

(25) Let us consider a positive definite Z-lattice L, and a vector v of Divisible−
Mod(L). Then (ScProductDM(L))(v, v) = 0 if and only if v = 0DivisibleMod(L).
The theorem is a consequence of (6) and (7).

Let us consider a positive definite Z-lattice L and a non empty structure of
Z-lattice Z over ZR. Now we state the propositions:

(26) Suppose Z is a submodule of DivisibleMod(L) and the scalar product
of Z = ScProductDM(L) � (the carrier of Z). Then Z is Z-lattice-like.
Proof: For every vectors x, y of Z, (the scalar product of Z)(x, y) =
(ScProductDM(L))(x, y) by [6, (49)]. Z is Z-lattice-like by [11, (25), (26)],
(25), (6). �

(27) Suppose Z is a finitely generated submodule of DivisibleMod(L) and
the scalar product of Z = ScProductDM(L) � (the carrier of Z). Then Z

is a Z-lattice.

(28) Let us consider a Z-lattice L.
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Then the vector space structure of EMLat(L) = Embedding(L).

(29) Let us consider Z-modules L, E. Suppose the vector space structure of
L = the vector space structure of E. Then L is a submodule of E.

(30) Let us consider Z-modules E, L, a subset I of L, a subset J of E, and
a linear combinationK of J . Suppose I = J and the vector space structure
of L = the vector space structure of E. Then K is a linear combination of
I.

Let us consider Z-modules E, L, a linear combination K of E, and a linear
combination H of L. Now we state the propositions:

(31) Suppose K = H and the vector space structure of L = the vector space
structure of E. Then the support of K = the support of H.

(32) Suppose K = H and the vector space structure of L = the vector space
structure of E. Then

∑
K =

∑
H. The theorem is a consequence of (29).

Let us consider Z-modules L, E, a subset I of L, and a subset J of E. Now
we state the propositions:

(33) Suppose the vector space structure of L = the vector space structure of
E and I = J . Then I is linearly independent if and only if J is linearly
independent. The theorem is a consequence of (30) and (32).

(34) Suppose the vector space structure of L = the vector space structure
of E and I = J . Then Lin(I) = Lin(J). The theorem is a consequence of
(29).

(35) Let us consider free Z-modules L, E, a subset I of L, and a subset J of
E. Suppose the vector space structure of L = the vector space structure
of E and I = J . Then I is a basis of L if and only if J is a basis of E. The
theorem is a consequence of (33) and (34).

(36) Let us consider finite rank, free Z-modules L, E. Suppose the vector
space structure of L = the vector space structure of E. Then rankL =
rankE. The theorem is a consequence of (35).

Let us consider a Z-lattice L and a subset I of L. Now we state the propo-
sitions:

(37) I is a basis of L if and only if (MorphsZQ(L))◦I is a basis of Embedding(L).

(38) I is a basis of L if and only if (MorphsZQ(L))◦I is a basis of EMLat(L).
The theorem is a consequence of (37), (28), and (35).

(39) Let us consider a Z-lattice L, and a finite sequence b of elements of L.
Then b is an ordered basis of L if and only if MorphsZQ(L) ·b is an ordered
basis of Embedding(L). The theorem is a consequence of (37).

(40) Let us consider a Z-lattice L, a finite rank, free Z-module E, a finite
sequence I of elements of L, and a finite sequence J of elements of E.
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Suppose the vector space structure of L = the vector space structure of E
and I = J . Then I is an ordered basis of L if and only if J is an ordered
basis of E. The theorem is a consequence of (35).

(41) Let us consider a Z-lattice L, and a finite sequence b of elements of L.
Then b is an ordered basis of L if and only if MorphsZQ(L) ·b is an ordered
basis of EMLat(L). The theorem is a consequence of (39), (28), and (40).

(42) Let us consider a Z-lattice L. Then rankL = rank EMLat(L). The the-
orem is a consequence of (28) and (36).

(43) Let us consider a Z-lattice L, and an object x. Then x is a vector of
EMLat(L) if and only if x is a vector of Embedding(L). The theorem is
a consequence of (28).

Let L be a rational Z-lattice and v, u be vectors of EMLat(L). One can
check that (ScProductEM(L))(v, u) is rational.

Let v, u be vectors of DivisibleMod(L).
One can verify that (ScProductDM(L))(v, u) is rational.

3. Properties of Gram Matrix

Let V be a vector space structure over ZR and f be an R-form of V and V .
We say that f is symmetric if and only if

(Def. 6) for every vectors v, w of V , f(v, w) = f(w, v).

Let V be a non empty vector space structure over ZR. Let us observe that
NulFrForm(V, V ) is symmetric and there exists an R-form of V and V which is
symmetric and there exists an R-bilinear form of V and V which is symmetric.

Let L be a Z-lattice. Let us observe that InnerProductL is symmetric.
Let V be a finite rank, free Z-module, f be a symmetric R-bilinear form of

V and V , and b be an ordered basis of V . Let us note that GramMatrix(f, b) is
symmetric.

Now we state the propositions:

(44) Let us consider a rational Z-lattice L, and vectors v, u of DivisibleMod(L).
Then (ScProductDM(L))(v, u) ∈ FQ.

(45) Let us consider a rational Z-lattice L, and an ordered basis b of L. Then
GramMatrix(b) is a square matrix over FQ of dimension dim(L).
Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
GramMatrix(b) holds (GramMatrix(b))i,j ∈ the carrier of FQ by [8, (87)].
�

(46) Let us consider a finite sequence F of elements of RF, and a finite sequ-
ence G of elements of FQ. If F = G, then

∑
F =

∑
G.
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Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of RF for every finite sequence G of elements of FQ such that
lenF = $1 and F = G holds

∑
F =

∑
G. P[0] by [24, (43)]. For eve-

ry natural number n such that P[n] holds P[n+ 1] by [4, (4)], [6, (3)], [4,
(59)], [3, (11)]. For every natural number n, P[n] from [3, Sch. 2]. �

(47) Let us consider a natural number i, an element j of RF, and an element
k of FQ. Suppose j = k. Then powerRF(−1RF , i) · j = powerFQ(−1FQ , i) · k.
Proof: Define P[natural number] ≡ powerRF(−1RF , $1)·j = powerFQ(−1FQ ,

$1) · k. P[0]. For every natural number n such that P[n] holds P[n + 1].
For every natural number n, P[n] from [3, Sch. 2]. �

(48) Let us consider a finite sequence F of elements of RF. Suppose for every
natural number i such that i ∈ domF holds F (i) ∈ FQ. Then

∑
F ∈ FQ.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of RF such that lenF = $1 and for every natural number i such
that i ∈ domF holds F (i) ∈ FQ holds

∑
F ∈ FQ. P[0] by [24, (43)]. For

every natural number n such that P[n] holds P[n+ 1] by [4, (4)], [6, (3)],
[4, (59)], [3, (11)]. For every natural number n, P[n] from [3, Sch. 2]. �

(49) Let us consider a natural number i. Then powerRF(−1RF , i) ∈ FQ. The
theorem is a consequence of (47).

(50) Let us consider natural numbers n, i, j, k, m, a square matrix M

over RF of dimension n + 1, and a square matrix L over FQ of dimen-
sion n + 1. Suppose 0 < n and M = L and 〈〈i, j〉〉 ∈ the indices of M
and 〈〈k, m〉〉 ∈ the indices of Delete(M, i, j). Then (Delete(M, i, j))k,m =
(Delete(L, i, j))k,m.

(51) Let us consider natural numbers n, i, j, k, m, and a square matrix M

over RF of dimension n + 1. Suppose 0 < n and M is a square matrix
over FQ of dimension n + 1 and 〈〈i, j〉〉 ∈ the indices of M and 〈〈k, m〉〉 ∈
the indices of Delete(M, i, j). Then (Delete(M, i, j))k,m is an element of
FQ. The theorem is a consequence of (50).

(52) Let us consider natural numbers n, i, j, a square matrix M over RF of
dimension n+1, and a square matrix L over FQ of dimension n+1. Suppose
0 < n and M = L and 〈〈i, j〉〉 ∈ the indices of M . Then Delete(M, i, j) =
Delete(L, i, j). The theorem is a consequence of (50).

(53) Let us consider natural numbers n, i, j, and a square matrix M over
RF of dimension n+ 1. Suppose 0 < n and M is a square matrix over FQ
of dimension n + 1 and 〈〈i, j〉〉 ∈ the indices of M . Then Delete(M, i, j) is
a square matrix over FQ of dimension n. The theorem is a consequence of
(52).

(54) Let us consider a natural number n, a square matrix M over RF of
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dimension n, and a square matrix H over FQ of dimension n. If M = H,
then DetM = DetH.
Proof: Define P[natural number] ≡ for every square matrix M over RF

of dimension $1 for every square matrix H over FQ of dimension $1 such
that M = H holds DetM = DetH. P[0] by [21, (41)]. For every natural
number n such that P[n] holds P[n + 1] by [3, (14)], [20, (27)], [8, (87)],
[13, (1)]. For every natural number n, P[n] from [3, Sch. 2]. �

(55) Let us consider a natural number n, and a square matrix M over RF of
dimension n. Suppose M is a square matrix over FQ of dimension n. Then
DetM ∈ FQ.
Proof: Define P[natural number] ≡ for every square matrix M over RF

of dimension $1 such that M is a square matrix over FQ of dimension $1

holds DetM ∈ FQ. P[0] by [21, (41)]. For every natural number n such
that P[n] holds P[n + 1] by [3, (14)], [20, (27)], [8, (87)], [13, (41)]. For
every natural number n, P[n] from [3, Sch. 2]. �

(56) Let us consider natural numbers n, i, j, and a square matrix M over RF

of dimension n + 1. Suppose M is a square matrix over FQ of dimension
n+ 1 and 〈〈i, j〉〉 ∈ the indices of M . Then Cofactor(M, i, j) ∈ FQ.
Proof: Reconsider D1 = Delete(M, i, j) as a square matrix over RF of
dimension n. DetD1 ∈ FQ by (53), (55), [21, (41)]. powerRF(−1RF , i+j) ∈
FQ. �

(57) Let us consider a rational Z-lattice L, and an ordered basis b of L. Then
Det GramMatrix(b) ∈ FQ. The theorem is a consequence of (45) and (55).

(58) Let us consider a positive definite Z-lattice L, a basis I of L, and vectors
v, w of L. Suppose for every vector u of L such that u ∈ I holds 〈〈u, v〉〉 =
〈〈u,w〉〉. Let us consider a vector u of L. Then 〈〈u, v〉〉 = 〈〈u,w〉〉.
Proof: Define P[natural number] ≡ for every vector u of L for every
finite subset J of L such that J ⊆ I and J = $1 and u ∈ Lin(J) holds
〈〈u, v〉〉 = 〈〈u,w〉〉. P[0] by [27, (9)], [25, (35)], [9, (12)]. For every natural
number n such that P[n] holds P[n + 1] by [28, (41)], [2, (44)], [1, (30)],
[27, (7)]. For every natural number n, P[n] from [3, Sch. 2]. �

(59) Let us consider a positive definite Z-lattice L, an ordered basis b of L,
and vectors v, w of L. Suppose for every natural number n such that
n ∈ dom b holds 〈〈bn, v〉〉 = 〈〈bn, w〉〉. Then v = w.
Proof: Reconsider I = rng b as a basis of L. For every vector u of L such
that u ∈ I holds 〈〈u, v〉〉 = 〈〈u,w〉〉 by [5, (10)]. 〈〈v − w, v〉〉 = 〈〈v − w,w〉〉. �

(60) Let us consider a natural number n, and a square matrix M over FQ of
dimension n. Suppose M is without repeated line. Then DetM 6= 0FQ if
and only if lines(M) is linearly independent.
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(61) Let us consider a positive definite Z-lattice L, a basis I of L, and vectors
v, w of L. Suppose for every vector u of L such that u ∈ I holds 〈〈v, u〉〉 =
〈〈w, u〉〉. Let us consider a vector u of L. Then 〈〈v, u〉〉 = 〈〈w, u〉〉. The theorem
is a consequence of (58).

(62) Let us consider a positive definite Z-lattice L, an ordered basis b of L, and
vectors v, w of L. Suppose for every natural number n such that n ∈ dom b

holds 〈〈v, bn〉〉 = 〈〈w, bn〉〉. Then v = w. The theorem is a consequence of (59).

Let us consider a positive definite Z-lattice L, an ordered basis b of EMLat(L),
and vectors v, w of DivisibleMod(L). Now we state the propositions:

(63) If for every natural number n such that n ∈ dom b holds
(ScProductDM(L))(bn, v) = (ScProductDM(L))(bn, w), then v = w.
Proof: Consider i being an element of ZR such that i 6= 0 and i · v ∈
Embedding(L). Consider j being an element of ZR such that j 6= 0 and
j · w ∈ Embedding(L). Reconsider i1 = i · v as a vector of EMLat(L).
Reconsider j1 = j ·w as a vector of EMLat(L). EMLat(L) is a submodule
of DivisibleMod(L). For every natural number n such that n ∈ dom b holds
〈〈bn, j · i1〉〉 = 〈〈bn, i · j1〉〉 by [11, (24)], (6), (8). j · i1 = i · j1. �

(64) If for every natural number n such that n ∈ dom b holds
(ScProductDM(L))(v, bn) = (ScProductDM(L))(w, bn), then v = w.
Proof: For every natural number n such that n ∈ dom b holds
(ScProductDM(L))(bn, v) = (ScProductDM(L))(bn, w) by (20), [11, (24)],
(6). �

(65) Let us consider a non trivial, rational, positive definite Z-lattice L,
an element v of L, a finite sequence b of elements of L, and a finite sequence
s of elements of FQ. Suppose len b = len s and for every natural number n
such that n ∈ dom s holds s(n) = 〈〈bn, v〉〉. Then 〈〈

∑
b, v〉〉 =

∑
s.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of L for every finite sequence F1 of elements of FQ such that
lenF = $1 and lenF = lenF1 and for every natural number i such that
i ∈ domF1 holds F1(i) = 〈〈Fi, v〉〉 holds 〈〈

∑
F, v〉〉 =

∑
F1. P[0] by [24, (43)],

[9, (12)]. For every natural number n such that P[n] holds P[n+ 1] by [4,
(4)], [6, (3)], [4, (59)], [3, (11)]. For every natural number n, P[n] from [3,
Sch. 2]. �

(66) Let us consider a natural number n, and a finite sequence r of elements
of FQ. Suppose len r = n. Then there exists an integer K and there exists
a finite sequence K2 of elements of ZR such that K 6= 0 and lenK2 = n

and for every natural number i such that i ∈ domK2 holds K2(i) = K ·ri.
Proof: Consider K being an integer such that K 6= 0 and for every
natural number i such that i ∈ Seg n holds K · ri ∈ Z. Define Q[natural
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number, object] ≡ $2 = K · r$1 . For every natural number i such that
i ∈ Seg n there exists an element x of the carrier of ZR such that Q[i, x].
Consider K2 being a finite sequence of elements of the carrier of ZR such
that domK2 = Seg n and for every natural number k such that k ∈ Seg n
holds Q[k,K2(k)] from [4, Sch. 5]. �

(67) Let us consider natural numbers i, j, a field K, elements a, a1 of K,
and an element R of the i-dimension vector space over K. If j ∈ Seg i and
a1 = R(j), then (a ·R)(j) = a · a1.

(68) Let us consider natural numbers i, j, a field K, elements a1, b2 of K, and
elements A, B of the i-dimension vector space over K. Suppose j ∈ Seg i
and a1 = A(j) and b2 = B(j). Then (A+B)(j) = a1 + b2.

(69) Let us consider a field K, and natural numbers n, i. Suppose i ∈ Seg n.
Let us consider a finite sequence s of elements of the n-dimension vector
space over K. Then there exists a finite sequence s1 of elements of K such
that

(i) len s1 = len s, and

(ii) (
∑
s)(i) =

∑
s1, and

(iii) for every natural number k such that k ∈ dom s1 holds s1(k) = sk(i).

Proof: Define P[natural number] ≡ for every finite sequence s of elements
of the n-dimension vector space over K such that len s = $1 there exists
a finite sequence s1 of elements ofK such that len s1 = len s and (

∑
s)(i) =∑

s1 and for every natural number k such that k ∈ dom s1 holds s1(k) =
sk(i). P[0] by [22, (7)], [24, (43)]. For every natural number k such that
P[k] holds P[k+1] by [4, (4)], [6, (3)], [4, (59)], [3, (11)]. For every natural
number k, P[k] from [3, Sch. 2]. �

(70) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then Det GramMatrix(b) 6= 0RF .
Proof: Reconsider M = GramMatrix(b) as a square matrix over FQ of
dimension rankL. DetM = 0FQ . M is one-to-one by [13, (49)], [8, (87)],
(59). Reconsider M1 = M as a finite sequence of elements of the rankL-
dimension vector space over FQ. Consider r being a finite sequence of ele-
ments of FQ, r1 being a finite sequence of elements of the rankL-dimension
vector space over FQ such that len r = rankL and len r1 = rankL and for
every natural number i such that i ∈ dom r1 holds r1(i) = ri ·M1i and∑
r1 = 0α and r 6= Seg len r 7−→ 0FQ , where α is the rankL-dimension

vector space over FQ. Consider K being an integer, K2 being a finite se-
quence of elements of ZR such that K 6= 0 and lenK2 = rankL and for
every natural number i such that i ∈ domK2 holds K2(i) = K · ri. Recon-
sider K1 = K as an element of FQ. Define P[natural number, object] ≡
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there exists an element r2 of the rankL-dimension vector space over FQ
such that r2 = r1($1) and $2 = K1 · r2. For every natural number k such
that k ∈ Seg rankL there exists an element x of the carrier of the rankL-
dimension vector space over FQ such that P[k, x]. Consider K3 being a fini-
te sequence of elements of the carrier of the rankL-dimension vector space
over FQ such that domK3 = Seg rankL and for every natural number k
such that k ∈ Seg rankL holds P[k,K3(k)] from [4, Sch. 5]. For every
natural number i such that i ∈ domK3 there exists an element M2 of
the rankL-dimension vector space over FQ and there exists an element K5

of FQ such that M2 = M1(i) and K5 = K2(i) and K3(i) = K5 ·M2. For eve-
ry natural number k and for every element v of the rankL-dimension vec-
tor space over FQ such that k ∈ domK3 and v = r1(k) holdsK3(k) = K1·v.
K2 6= Seg lenK2 7−→ 0ZR by [22, (7)]. Set S =

∑
K3. For every natural

number n such that n ∈ dom b holds S(n) = 0ZR by [22, (7)]. Define
Q[natural number, object] ≡ $2 = K2$1 · b$1 . Consider K4 being a finite
sequence of elements of the carrier of L such that domK4 = Seg rankL
and for every natural number k such that k ∈ Seg rankL holds Q[k,K4(k)]
from [4, Sch. 5]. For every natural number n such that n ∈ dom b holds
S(n) = 〈〈

∑
K4, bn〉〉 by (69), [19, (102)], [8, (87)], (67). For every natural

number n such that n ∈ dom b holds 〈〈0L, bn〉〉 = 〈〈
∑
K4, bn〉〉 by [9, (12)].∑

K4 = 0L. rng b is linearly dependent. �

Let L be a non trivial, rational, positive definite Z-lattice and b be an ordered
basis of L. Let us observe that GramMatrix(b) is invertible.
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