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Summary. In the article we formalize in the Mizar system [4] preliminary

facts needed to prove the Basel problem [7, [I]. Facts that are independent from

the notion of structure are included here.
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1. PRELIMINARIES

From now on X denotes a set, k, m, n denote natural numbers, ¢ denotes

an integer, a, b, ¢, d, e, g, p, 7, x, y denote real numbers, and z denotes a complex.

Now we state the proposition:

(1) If 0 < a, then there exists m such that 0 < a-m + b.

Let f be a real-valued finite sequence. Let us consider n. Observe that f[n

is R-valued.

Let f be a complex-valued finite sequence. Let us observe that f2 is (len f)-

element and f~! is (len f)-element.

Let ¢ be a complex. Note that ¢+ f is (len f)-element.

Now we state the propositions:

(2) Let us consider complexes ¢, z. Then ¢+ (z) = (¢ + z).

(3) Let us consider complex-valued finite sequences f, g, and a complex c.

Thenc+ f~g=(c+ )" (c+g)
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(4) Let us consider a complex-valued finite sequence f, and a complex c.
Then Y (c+ f)=c-len f+ 3 f.
PROOF: Define P[complex-valued finite sequence] = Y (c+9$1) = c-len $;+
>~ $;1. For every finite sequence p of elements of C and for every element x
of C such that P[p] holds Plp ™ (z)] by [3l, (39), (22)], (2), [I7, (32)]. For
every finite sequence p of elements of C, P[p| from [5, Sch. 2]. O

an+b
2. LIMITS OF SEQUENCES ontd

Let a, b, ¢, d be complexes. The functor Rat-Exp-Seq(a,b,c,d) yielding
a complex sequence is defined by

. Polynom(a,b,
(Def. 1) it(n) = 7p31§n2m5?,d,zg-

Let us consider a, b, ¢, and d. The functor rseq(a, b, ¢, d) yielding a sequence
of real numbers is defined by the term

(Def. 2) R(Rat-Exp-Seq(a, b, ¢, d)).
Now we state the propositions:

(5) (rseq(a,b,c,d))(n) = Z:er_g

(6) (rseq(0,b,0,d))(n) = g. The theorem is a consequence of (5).
Let us consider a and b. Let us note that rseq(a, b,0,0) is constant.
Let us consider d. One can verify that rseq(0, b, 0, d) is constant.
Now we state the propositions:

(7) (i) rseq(0,b,¢,d) =b-rseq(0,1,¢,d), and

(ii) rseq(0,b,c,d) = (—b) - rseq(0, 1, —c, —d).
The theorem is a consequence of (5).

(8) (i) rseq(a,0,¢,d) = a-rseq(1,0,¢,d), and

(ii) rseq(a,0,¢,d) = (—a) - rseq(1,0, —c, —d).
The theorem is a consequence of (5).

Let us consider b, ¢, and d. Let us observe that rseq(0, b, ¢,d) is convergent.
Now we state the propositions:

(9) limrseq(0,b,0,d) = g. The theorem is a consequence of (6).

(10) Let us consider a non zero real number c. Then limrseq(0, b, c,d) = 0.
The theorem is a consequence of (5).
Let ¢ be a non zero real number. Let us consider a, b, and d. Note that
rseq(a, b, ¢, d) is convergent.

Let a, d be positive real numbers and b be a real number. Let us observe
that rseq(a, b,0,d) is non upper bounded.
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Let a, d be negative real numbers. Let us consider . One can check that
rseq(a, b,0,d) is non upper bounded.

Let a be a positive real number and d be a negative real number. Note that
rseq(a, b, 0,d) is non lower bounded.

Let a be a negative real number and d be a positive real number. Let us
note that rseq(a, b, 0, d) is non lower bounded.

Let a, d be non zero real numbers. One can check that rseq(a, b, 0, d) is non
bounded and rseq(a, b, 0, d) is non convergent.

Now we state the propositions:

(11) Let us consider a non zero real number ¢. Then limrseq(a,b,c,d) =
The theorem is a consequence of (5) and (10).

ol

(12) Let us consider a non zero real number a. Then limrseq(a,b,a,d) = 1.
The theorem is a consequence of (11).

3. TRIGONOMETRY

Now we state the propositions:
(13) sin(w-14) = 0.
(14) cos(§ + (m-i)) = 0.
(15) (i) tanr = (cotr)~!, and
(ii) cotr = (tanr)~L.
(16) dom(the function tan) = (Jthe set of all |5 + (7 - 1), § + (7 - 7)[ where
¢ is an integer.
PROOF: Set S = the set of all |—§ +(7-4), 5 +(7-7)[ where i is an integer.
Set T' = dom(the function tan). 7' C [J S by (14), [24, (29)]. For every set
X such that X € S holds X C T by [16, (11)], [8 (9)], [21}, (1)], [16, (13)].
[l
Observe that dom(the function tan) is open as a subset of R.
Now we state the propositions:

(17) If 0 < r, then (the function sin)(r) < r.
PROOF: Reconsider A = [0, 7] as a non empty, closed interval subset of R.
Reconsider ¢ = (the function cos) | A as a function from A into R. ¢[A4 is
bounded and c is integrable by [IT), (11), (10)]. integral ¢ = (the function
sin)(r) by [11, (19)], [22, (24)], [26, (30)]. Set Zy = (°. Reconsider Z3 =
Zy | A as a function from A into R. Z3[A is bounded and Zs3 is integrable
[11, (11), (10)]. integral Z3 = r by [14, (21)], [19] (35)], [11, (19)], [22
(30)]. For every r such that r € A holds ¢(r) < Zs(r) by [6, (49)], [19,
(34)], 13, (6)). O

by
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(18) If 0 <7 < 7, then r < (the function tan)(r).

PROOF: Reconsider A = [0, 7] as a non empty, closed interval subset of R.
Set Zy = [0°. Reconsider Z3 = Zy | A as a function from A into R. Z3[A
is bounded and Z3 is integrable by [I1], (11), (10)]. integral Z3 = r by [14,
(21)], [19 (35)], [11, (19)], [22 (30)]. Set T' = dom(the function tan). Set
¢z = (the function cos) - (the function cos). Set ¢35 = [T Set Z; = f—;
c3~1({0}) = 0 by [6l (47)]. Reconsider Zs = Z; | A as a function from A
into R. Z1[A is continuous and Z3[A is bounded and Z5 is integrable by
[20, (24)], [I1L (11), (10)]. For every real number s such that s € 7" holds
Zi(s) = o —L oz and (the function cos)(s) # 0 by [19, (34)], [6,
(47)]. integral Zy = (the function tan)(r) by [12, (19)], [18, (59)], [15} (41)].
For every r such that » € A holds Z3(r) < Za(r) by [6, (49)], [19, (34)],
[16, (11)], [13} (6)]. O

4. SOME SPECIAL FUNCTIONS AND SEQUENCES

Let f be a real-valued function. The functors: cot f and cosec f yielding
functions are defined by conditions
(Def. 3) domcot f = dom f and for every object x such that z € dom f holds
cot f(z) = cot(f(x)),
(Def. 4) dom cosec f = dom f and for every object x such that z € dom f holds
cosec f(x) = cosec(f(z)),
respectively. Note that cot f is R-valued and cosec f is R-valued.
Let f be a real-valued finite sequence. Let us observe that cot f is finite
sequence-like and cosec f is finite sequence-like.
Let us consider a real-valued finite sequence f. Now we state the proposi-
tions:
(19) lencot f =len f.
(20) lencosec f =len f.
Let f be a real-valued finite sequence. Note that cot f is (len f)-element and
cosec f is (len f)-element.
Let us consider m. The functor x-r-seq(m) yielding a finite sequence is defi-
ned by the term
(Def. 5) 57 - idseq(m).
Now we state the propositions:
(21) (i) lenx-r-seq(m) = m, and
(ii) for every k such that 1 < k < m holds (x-r-seq(m))(k) = 52T

2:m—+1-°
(22) rngx-r-seq(m) C |0, 5[. The theorem is a consequence of (21).
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Let us consider m. Let us note that x-r-seq(m) is R-valued.
Now we state the proposition:

(23) If 1 <k <m, then 0 < (x-r-seq(m))(k) < 5. The theorem is a consequ-
ence of (22) and (21).
Note that x-r-seq(0) is empty.
(24) If1 <k < m, then £ 4 (x-r-seq(m)) ' (k) = (x-r-seq(m+1))~! (k). The
theorem is a consequence of (21).

(25) If 1 <k < m,then 2-m+1- (x1-seq(m))(k) = k - . The theorem is
a consequence of (21).

(26) 2cosecx-1-seq(m) = 1 + 2cot x-r-seq(m). The theorem is a consequence
of (21) and (23).

(27) x-r-seq(n) is one-to-one. The theorem is a consequence of (21).

(28) 2cot x-r-seq(n) is one-to-one.
PROOF: Set f = x-r-seq(n). f is one-to-one. 0 < f(x1) < § and 0 <

f(x2) < 5 and § < 7. cot(f(x1)) = cot(f(x2)) by 23, (40)]. f(21) = f(z2)
by [15, (2)], [25, (57)], [6, (47)], [15, (10)]. O

(29) 3 (%cotx-r-seq(m)) < . (*x-1-seq(m))~!. The theorem is a consequence
of (21), (19), (15), (23), (16), and (18).

(30) Y (3-1-seq(m))~! < Y (%cosec x-r-seq(m)). The theorem is a consequen-
ce of (21), (20), (23), and (17).

The functors: Basel-seq, Basel-seq!, and Basel-seq? yielding sequences of real
numbers are defined by terms

(Def. 6) 1seq(0,1,1,0) - rseq(0,1,1,0),
(Def. 7) (% - rseq(2,0,2,1)) - rseq(2, 1,2, 1),
(Def. 8) (% -rseq(2,0,2,1)) - rseq(2, 2,2, 1),
respectively. Now we state the propositions:
(31) (Basel-seq)(n) = -
(32) (Basel-seq!)(n) =
(33) (Basel-seq?)(n) = 5 2%% . 3213

Let us observe that Basel-seq is convergent and Basel-seq! is convergent and

4

. 2n  2n—1
2n+1 2n+1

. The theorem is a consequence of (5).

o

. The theorem is a consequence of (5).

Basel-seq? is convergent.

(34) lim Basel-seq! = % = lim Basel-seq?.

(35) S (*x-1-seq(m))~! = (2"7:7?1)2 <>, Basel-seq(k).
PROOF: Set a = 72. Set b = (2-m + 1)2. Set B = Basel-seq. Set S =
Shift(B|Zm1,1). Set M = x-r-seq(m). Set G = (*M)~L. Set F = (0) "~ G.
B(0) =g F=2.8by[9 (3), 2 (11)], [0, (47)], (31). O
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