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Summary. In the article we formalize in the Mizar system [4] preliminary
facts needed to prove the Basel problem [7, 1]. Facts that are independent from
the notion of structure are included here.
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1. Preliminaries

From now on X denotes a set, k, m, n denote natural numbers, i denotes
an integer, a, b, c, d, e, g, p, r, x, y denote real numbers, and z denotes a complex.

Now we state the proposition:

(1) If 0 < a, then there exists m such that 0 < a ·m+ b.

Let f be a real-valued finite sequence. Let us consider n. Observe that f�n
is R-valued.

Let f be a complex-valued finite sequence. Let us observe that f2 is (len f)-
element and f−1 is (len f)-element.

Let c be a complex. Note that c+ f is (len f)-element.
Now we state the propositions:

(2) Let us consider complexes c, z. Then c+ 〈z〉 = 〈c+ z〉.
(3) Let us consider complex-valued finite sequences f , g, and a complex c.

Then c+ f a g = (c+ f) a (c+ g).
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(4) Let us consider a complex-valued finite sequence f , and a complex c.
Then

∑
(c+ f) = c · len f +

∑
f .

Proof: Define P[complex-valued finite sequence] ≡
∑

(c+$1) = c·len $1+∑
$1. For every finite sequence p of elements of C and for every element x

of C such that P[p] holds P[p a 〈x〉] by [3, (39), (22)], (2), [17, (32)]. For
every finite sequence p of elements of C, P[p] from [5, Sch. 2]. �

2. Limits of Sequences an+b
cn+d

Let a, b, c, d be complexes. The functor Rat-Exp-Seq(a, b, c, d) yielding
a complex sequence is defined by

(Def. 1) it(n) = Polynom(a,b,n)
Polynom(c,d,n) .

Let us consider a, b, c, and d. The functor rseq(a, b, c, d) yielding a sequence
of real numbers is defined by the term

(Def. 2) <(Rat-Exp-Seq(a, b, c, d)).

Now we state the propositions:

(5) (rseq(a, b, c, d))(n) = a·n+b
c·n+d .

(6) (rseq(0, b, 0, d))(n) = b
d . The theorem is a consequence of (5).

Let us consider a and b. Let us note that rseq(a, b, 0, 0) is constant.
Let us consider d. One can verify that rseq(0, b, 0, d) is constant.
Now we state the propositions:

(7) (i) rseq(0, b, c, d) = b · rseq(0, 1, c, d), and

(ii) rseq(0, b, c, d) = (−b) · rseq(0, 1,−c,−d).
The theorem is a consequence of (5).

(8) (i) rseq(a, 0, c, d) = a · rseq(1, 0, c, d), and

(ii) rseq(a, 0, c, d) = (−a) · rseq(1, 0,−c,−d).
The theorem is a consequence of (5).

Let us consider b, c, and d. Let us observe that rseq(0, b, c, d) is convergent.
Now we state the propositions:

(9) lim rseq(0, b, 0, d) = b
d . The theorem is a consequence of (6).

(10) Let us consider a non zero real number c. Then lim rseq(0, b, c, d) = 0.
The theorem is a consequence of (5).

Let c be a non zero real number. Let us consider a, b, and d. Note that
rseq(a, b, c, d) is convergent.

Let a, d be positive real numbers and b be a real number. Let us observe
that rseq(a, b, 0, d) is non upper bounded.
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Let a, d be negative real numbers. Let us consider b. One can check that
rseq(a, b, 0, d) is non upper bounded.

Let a be a positive real number and d be a negative real number. Note that
rseq(a, b, 0, d) is non lower bounded.

Let a be a negative real number and d be a positive real number. Let us
note that rseq(a, b, 0, d) is non lower bounded.

Let a, d be non zero real numbers. One can check that rseq(a, b, 0, d) is non
bounded and rseq(a, b, 0, d) is non convergent.

Now we state the propositions:

(11) Let us consider a non zero real number c. Then lim rseq(a, b, c, d) = a
c .

The theorem is a consequence of (5) and (10).

(12) Let us consider a non zero real number a. Then lim rseq(a, b, a, d) = 1.
The theorem is a consequence of (11).

3. Trigonometry

Now we state the propositions:

(13) sin(π · i) = 0.

(14) cos(π2 + (π · i)) = 0.

(15) (i) tan r = (cot r)−1, and

(ii) cot r = (tan r)−1.

(16) dom(the function tan) =
⋃

the set of all ]−π
2 + (π · i), π2 + (π · i)[ where

i is an integer.
Proof: Set S = the set of all ]−π

2 +(π ·i), π2 +(π ·i)[ where i is an integer.
Set T = dom(the function tan). T ⊆

⋃
S by (14), [24, (29)]. For every set

X such that X ∈ S holds X ⊆ T by [16, (11)], [8, (9)], [21, (1)], [16, (13)].
�

Observe that dom(the function tan) is open as a subset of R.
Now we state the propositions:

(17) If 0 ¬ r, then (the function sin)(r) ¬ r.
Proof: Reconsider A = [0, r] as a non empty, closed interval subset of R.
Reconsider c = (the function cos) � A as a function from A into R. c�A is
bounded and c is integrable by [11, (11), (10)]. integral c = (the function
sin)(r) by [11, (19)], [22, (24)], [26, (30)]. Set Z0 = �0. Reconsider Z3 =
Z0 � A as a function from A into R. Z3�A is bounded and Z3 is integrable
by [11, (11), (10)]. integralZ3 = r by [14, (21)], [19, (35)], [11, (19)], [22,
(30)]. For every r such that r ∈ A holds c(r) ¬ Z3(r) by [6, (49)], [19,
(34)], [13, (6)]. �
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(18) If 0 ¬ r < π
2 , then r ¬ (the function tan)(r).

Proof: Reconsider A = [0, r] as a non empty, closed interval subset of R.
Set Z0 = �0. Reconsider Z3 = Z0 � A as a function from A into R. Z3�A
is bounded and Z3 is integrable by [11, (11), (10)]. integralZ3 = r by [14,
(21)], [19, (35)], [11, (19)], [22, (30)]. Set T = dom(the function tan). Set
c2 = (the function cos) · (the function cos). Set c3 = c2�T . Set Z1 = Z0

c3
.

c3
−1({0}) = ∅ by [6, (47)]. Reconsider Z2 = Z1 � A as a function from A

into R. Z1�A is continuous and Z2�A is bounded and Z2 is integrable by
[20, (24)], [11, (11), (10)]. For every real number s such that s ∈ T holds
Z1(s) = 1

(the function cos)(s)2 and (the function cos)(s) 6= 0 by [19, (34)], [6,
(47)]. integralZ2 = (the function tan)(r) by [12, (19)], [18, (59)], [15, (41)].
For every r such that r ∈ A holds Z3(r) ¬ Z2(r) by [6, (49)], [19, (34)],
[16, (11)], [13, (6)]. �

4. Some Special Functions and Sequences

Let f be a real-valued function. The functors: cot f and cosec f yielding
functions are defined by conditions

(Def. 3) dom cot f = dom f and for every object x such that x ∈ dom f holds
cot f(x) = cot(f(x)),

(Def. 4) dom cosec f = dom f and for every object x such that x ∈ dom f holds
cosec f(x) = cosec(f(x)),

respectively. Note that cot f is R-valued and cosec f is R-valued.
Let f be a real-valued finite sequence. Let us observe that cot f is finite

sequence-like and cosec f is finite sequence-like.
Let us consider a real-valued finite sequence f . Now we state the proposi-

tions:

(19) len cot f = len f .

(20) len cosec f = len f .

Let f be a real-valued finite sequence. Note that cot f is (len f)-element and
cosec f is (len f)-element.

Let us consider m. The functor x-r-seq(m) yielding a finite sequence is defi-
ned by the term

(Def. 5) π
2·m+1 · idseq(m).

Now we state the propositions:

(21) (i) len x-r-seq(m) = m, and

(ii) for every k such that 1 ¬ k ¬ m holds (x-r-seq(m))(k) = k·π
2·m+1 .

(22) rng x-r-seq(m) ⊆ ]0, π2 [. The theorem is a consequence of (21).
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Let us consider m. Let us note that x-r-seq(m) is R-valued.
Now we state the proposition:

(23) If 1 ¬ k ¬ m, then 0 < (x-r-seq(m))(k) < π
2 . The theorem is a consequ-

ence of (22) and (21).

Note that x-r-seq(0) is empty.

(24) If 1 ¬ k ¬ m, then 2
k·π +(x-r-seq(m))−1(k) = (x-r-seq(m+1))−1(k). The

theorem is a consequence of (21).

(25) If 1 ¬ k ¬ m, then 2 ·m + 1 · (x-r-seq(m))(k) = k · π. The theorem is
a consequence of (21).

(26) 2cosec x-r-seq(m) = 1 + 2cot x-r-seq(m). The theorem is a consequence
of (21) and (23).

(27) x-r-seq(n) is one-to-one. The theorem is a consequence of (21).

(28) 2cot x-r-seq(n) is one-to-one.
Proof: Set f = x-r-seq(n). f is one-to-one. 0 < f(x1) < π

2 and 0 <

f(x2) < π
2 and π

2 < π. cot(f(x1)) = cot(f(x2)) by [23, (40)]. f(x1) = f(x2)
by [15, (2)], [25, (57)], [6, (47)], [15, (10)]. �

(29)
∑

(2cot x-r-seq(m)) ¬
∑

(2x-r-seq(m))−1. The theorem is a consequence
of (21), (19), (15), (23), (16), and (18).

(30)
∑

(2x-r-seq(m))−1 ¬
∑

(2cosec x-r-seq(m)). The theorem is a consequen-
ce of (21), (20), (23), and (17).

The functors: Basel-seq, Basel-seq1, and Basel-seq2 yielding sequences of real
numbers are defined by terms

(Def. 6) rseq(0, 1, 1, 0) · rseq(0, 1, 1, 0),

(Def. 7) (π
2

6 · rseq(2, 0, 2, 1)) · rseq(2,−1, 2, 1),

(Def. 8) (π
2

6 · rseq(2, 0, 2, 1)) · rseq(2, 2, 2, 1),

respectively. Now we state the propositions:

(31) (Basel-seq)(n) = 1
n2

.

(32) (Basel-seq1)(n) = π2

6 ·
2·n

2·n+1 ·
2·n−1
2·n+1 . The theorem is a consequence of (5).

(33) (Basel-seq2)(n) = π2

6 ·
2·n

2·n+1 ·
2·n+2
2·n+1 . The theorem is a consequence of (5).

Let us observe that Basel-seq is convergent and Basel-seq1 is convergent and
Basel-seq2 is convergent.

(34) lim Basel-seq1 = π2

6 = lim Basel-seq2.

(35)
∑

(2x-r-seq(m))−1 = (2·m+1)2

π2
·
∑m
κ=0 Basel-seq(κ).

Proof: Set a = π2. Set b = (2 · m + 1)2. Set B = Basel-seq. Set S =
Shift(B�Zm+1, 1). Set M = x-r-seq(m). Set G = (2M)−1. Set F = 〈0〉aG.
B(0) = 1

02 . F = b
a · S by [9, (3)], [2, (11)], [10, (47)], (31). �
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