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Summary. A rigorous elementary proof of the Basel problem [6, 1]

Σ∞n=1
1
n2

=
π2

6

is formalized in the Mizar system [3]. This theorem is item #14 from the “Forma-
lizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.
nl/F.Wiedijk/100/ .
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1. Preliminaries

From now on k, m, n denote natural numbers, R denotes a commutative
ring, p, q denote polynomials over R, and z0, z1 denote elements of R.

Let L be a right zeroed, non empty double loop structure. Let us consider
n. Let us note that n · 0L reduces to 0L.

Now we state the proposition:

(1) Let us consider a complex z, and an element e of CF. If z = e, then
n · z = n · e.

Let e be an element of CF and z be a complex. Let us consider n. We identify
n · z with n · e. Now we state the propositions:
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(2) Let us consider a complex-valued finite sequence Z, and a finite sequence
E of elements of CF. If E = Z, then

∑
Z =

∑
E.

Proof: Consider f being a sequence of CF such that
∑
E = f(lenE) and

f(0) = 0CF and for every natural number j and for every element v of CF

such that j < lenE and v = E(j + 1) holds f(j + 1) = f(j) + v. Define
P[natural number] ≡ if $1 ¬ lenZ, then

∑
(Z�$1) = f($1). If P[n], then

P[n+ 1] by [2, (11)], [15, (25)], [5, (10)], [2, (13)]. P[n] from [2, Sch. 2]. �

(3) (1CF)n = 1CF .

(4) Let us consider a left zeroed, right zeroed, non empty additive loop
structure L, and elements z0, z1 of L. Then 〈z0, z1〉 = 〈z0〉+ 〈0L, z1〉.

(5) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and elements a, b, c, d
of L. Then 〈a, b〉 ∗ 〈c, d〉 = 〈a · c, a · d+ (b · c), b · d〉.

(6) Let us consider an Abelian, add-associative, right zeroed, right comple-
mentable, well unital, commutative, distributive, non empty double loop
structure L. Then 〈0L, 0L, 1L〉 = 〈0L, 1L〉2. The theorem is a consequence
of (5).

(7) Let us consider a right zeroed, add-associative, right complementable,
right distributive, non empty double loop structure L, an element z of L,
and a polynomial p over L. Then (p ∗ 〈z〉)(n) = p(n) · z.
Proof: Set Z = 〈z〉. Consider r being a finite sequence of elements of
the carrier of L such that len r = n+1 and (p∗〈z〉)(n) =

∑
r and for every

element k of N such that k ∈ dom r holds r(k) = p(k−′ 1) ·Z(n+ 1−′ k).
Set l = len r. For every element k of N such that k ∈ dom r and k 6= l

holds rk = 0L by [15, (25)], [2, (14)], [11, (32)]. �

(8) Let us consider an Abelian, add-associative, right zeroed, right com-
plementable, well unital, associative, commutative, distributive, non
empty double loop structure L, and an element x of L. Then 〈x〉n = 〈xn〉.
Proof: Set X = 〈x〉. Define P[natural number] ≡ X$1 = 〈x$1〉. P[0] by
[13, (8)], [2, (14)], [11, (32)], [9, (30)]. For every n such that P[n] holds
P[n+ 1] by [11, (19)], [2, (14)], [11, (32)], [13, (8)]. For every n, P[n] from
[2, Sch. 2]. �

(9) (i) 〈z0, z1〉0(0) = 1R, and

(ii) if n > 0, then 〈0R, z1〉n(n) = z1
n, and

(iii) if k 6= n, then 〈0R, z1〉n(k) = 0R.
Proof: Set P = 〈0R, z1〉. Define P[natural number] ≡ if $1 > 0, then
P $1($1) = z1

$1 and for every k such that k 6= $1 holds P $1(k) = 0R. P[0]
by [11, (15)], [9, (30)]. For every natural number i such that P[i] holds
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P[i+ 1] by [11, (19), (16), (38)], [13, (8)]. For every natural number i, P[i]
from [2, Sch. 2]. �

(10) (i) 〈0R, 0R,1R〉n(2 · n) = 1R, and

(ii) for every k such that k 6= 2 · n holds 〈0R, 0R,1R〉n(k) = 0R.
Proof: Set x1 = 〈0R,1R〉. Set x2 = 〈0R, 0R,1R〉. Define P[natural
number] ≡ x2

$1 = x1
2·$1 . If P[k], then P[k + 1] by (6), [11, (17), (19)], [9,

(33)]. P[k] from [2, Sch. 2]. Define Q[natural number] ≡ (1R)$1 = 1R. If
Q[k], then Q[k + 1]. Q[k] from [2, Sch. 2]. �

(11) Let us consider an integral domain L, and a non-zero polynomial p over

L. Then Roots(p) < len p.
Proof: Define P[natural number] ≡ for every non-zero polynomial p over

L such that len p = $1 holds Roots(p) < len p. For every natural number
n such that n ­ 1 and P[n] holds P[n+1] by [12, (47)], [10, (3)], [12, (50),
(23), (48)]. For every natural number n such that n ­ 1 holds P[n] from
[2, Sch. 8]. �

Let L be an add-associative, right zeroed, right complementable, distri-
butive, non empty double loop structure and a be a polynomial over L. The
functor @a yielding an element of PolyRing(L) is defined by the term

(Def. 1) a.

Let n be a natural number. The functor n · a yielding a polynomial over L
is defined by the term

(Def. 2) n · @a.

Now we state the propositions:

(12) Let us consider an add-associative, right zeroed, right complementable,
distributive, non empty double loop structure L, and a polynomial a over
L. Then (n · a)(k) = n · a(k).

(13) 〈z0, z1〉n(k) =
(n
k

)
· (z1

k · z0
n−′k).

Proof: Set Z0 = 〈z0〉. Set Z1 = 〈0R, z1〉. Set C =
(n
k

)
· (z1

k · z0
n−′k). Set

P2 = PolyRing(R). 〈z0, z1〉 = Z0 +Z1. Consider F being a finite sequence
of elements of PolyRing(R) such that 〈z0, z1〉n =

∑
F and lenF = n + 1

and for every natural number k such that k ¬ n holds F (k + 1) =
(n
k

)
·

Z1
k ∗ Z0

n−′k. For every natural number i such that i ¬ n and for every
polynomial F1 over R such that F1 = F (i+1) holds if k 6= i, then F1(k) =
0R and if k = i, then F1(k) = C by (12), (8), (7), (9). Consider f being
a sequence of the carrier of P2 such that

∑
F = f(lenF ) and f(0) = 0P2

and for every natural number j and for every element v of P2 such that
j < lenF and v = F (j+1) holds f(j+1) = f(j)+v. For every polynomial
p over R such that p = f(0) holds p(k) = 0R by [14, (7)]. �
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2. Imaginary Complex Numbers

Let z be a complex. We say that z is imaginary if and only if

(Def. 3) <(z) = 0.

Note that i is imaginary and every complex which is real and imaginary is
also zero and every complex which is zero is also imaginary.

Let z1, z2 be imaginary complexes. One can verify that z1 · z2 is real and
z1 + z2 is imaginary.

Let z be an imaginary complex and r be a real complex. Note that z · r
is imaginary and 0CF is real and imaginary and there exists an element of CF

which is real and imaginary.
Let z be a real element of CF and n be a natural number. Observe that n · z

is real.
Let z be an imaginary element of CF. Observe that n · z is imaginary.
Let z be an imaginary complex and n be an even natural number. Let us

observe that powerCF(z, n) is real.
Let n be an odd natural number. One can check that powerCF(z, n) is ima-

ginary as a complex.
Let r be a real element of CF and n be a natural number. Let us note that

powerCF(r, n) is real and every element of CF which is zero is also imaginary
and real.

Let p be a sequence of CF. We say that p is imaginary if and only if

(Def. 4) for every natural number i, p(i) is imaginary.

Let i1 be an imaginary element of CF. One can check that 〈i1〉 is imaginary.
Let i2 be an imaginary element of CF. Observe that 〈i1, i2〉 is imaginary and

there exists a polynomial over CF which is imaginary.
Now we state the propositions:

(14) Let us consider an imaginary polynomial I over CF, and a real element
r of CF. Then eval(I, r) is imaginary.
Proof: Consider H being a finite sequence of elements of CF such that
eval(I, r) =

∑
H and lenH = len I and for every element n of N such that

n ∈ domH holds H(n) = I(n−′ 1) · powerCF(r, n−′ 1). Consider h being
a sequence of the carrier of CF such that

∑
H = h(lenH) and h(0) = 0CF

and for every natural number j and for every element v of CF such that
j < lenH and v = H(j + 1) holds h(j + 1) = h(j) + v. Define P[natural
number] ≡ if $1 ¬ lenH, then h($1) is imaginary. If P[n], then P[n + 1]
by [2, (11)], [15, (25)], [2, (13)]. P[n] from [2, Sch. 2]. �

(15) Let us consider a real polynomial R over CF, and a real element r of CF.
Then eval(R, r) is real.
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Proof: Consider H being a finite sequence of elements of CF such that
eval(I, r) =

∑
H and lenH = len I and for every element n of N such that

n ∈ domH holds H(n) = I(n−′ 1) · powerCF(r, n−′ 1). Consider h being
a sequence of the carrier of CF such that

∑
H = h(lenH) and h(0) = 0CF

and for every natural number j and for every element v of CF such that
j < lenH and v = H(j + 1) holds h(j + 1) = h(j) + v. Define P[natural
number] ≡ if $1 ¬ lenH, then h($1) is real. If P[n], then P[n + 1] by [2,
(11)], [15, (25)], [2, (13)]. P[n] from [2, Sch. 2]. �

Let us consider an imaginary element i3 of CF and a real element r of CF.

(16) If n is even, then the even part of 〈i3, r〉n is real and the odd part of
〈i3, r〉n is imaginary. The theorem is a consequence of (13).

(17) If n is odd, then the even part of 〈i3, r〉n is imaginary and the odd part
of 〈i3, r〉n is real. The theorem is a consequence of (13).

(18) Let us consider a non empty zero structure L, and a polynomial p over
L. Suppose len(the even part of p) 6= 0. Then len(the even part of p) is
odd.
Proof: Set E = the even part of p. Consider n such that 2 · n = lenE.
Reconsider n1 = n − 1 as a natural number. The length of E is at most
n+ n1 by [2, (13)]. �

3. Main Facts

Let L be a non empty set, p be a sequence of L, and m be a natural number.
The functor sievem(p) yielding a sequence of L is defined by

(Def. 5) for every natural number i, it(i) = p(m · i).
Let L be a non empty zero structure, p be a finite-Support sequence of L, and

m be a non zero natural number. Let us observe that sievem(p) is finite-Support.
Now we state the propositions:

(19) Let us consider a non empty zero structure L, and a sequence p of L.
Then sieve(2·k)(p) = sieve(2·k)(the even part of p).

(20) Let us consider a non empty zero structure L, and a polynomial p over L.
Suppose len(the even part of p) is odd. Then 2·len sieve2(p) = len(the even
part of p) + 1.
Proof: Set E = the even part of p. Set C = sieve2(E). Consider n such
that lenE = 2 ·n+ 1. Set n1 = n+ 1. The length of C is at most n1 by [2,
(13)]. For every natural number m such that the length of C is at most m
holds n1 ¬ m by [2, (13)]. C = sieve2(p). �
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(21) Let us consider a non empty zero structure L, and a polynomial p over
L. Suppose len(the even part of p) = 0. Let us consider a non zero natural
number n. Then len sieve(2·n)(p) = 0.

(22) Let us consider a field L, and a polynomial p over L. Then the even
part of p = (sieve2(p))[〈0L, 0L,1L〉]. The theorem is a consequence of (10),
(18), (20), and (21).

(23) (sieve2(〈iCF , 1CF〉2·n+1))(n) =
(2·n+1

1

)
· iCF . The theorem is a consequence

of (3) and (13).

(24) Suppose n ­ 1. Then (sieve2(〈iCF , 1CF〉2·n+1))(n − 1) =
(2·n+1

3

)
· −iCF .

The theorem is a consequence of (3) and (13).

(25) len sieve2(〈iCF , 1CF〉2·n+1) = n+ 1.
Proof: Set P1 = 〈iCF , 1CF〉

2·n+1. The length of sieve2(P1) is at most n+1.
For every m such that the length of sieve2(P1) is at most m holds n+1 ¬ m
by [2, (13)], (23). �

Let n be a natural number. Let us note that sieve2(〈iCF , 1CF〉2·n+1) is non-
zero.

(26) rng(2cot x-r-seq(n)) ⊆ Roots(sieve2(〈iCF , 1CF〉2·n+1)).
Proof: Set f = x-r-seq(n). Set f1 = 2cot f . Set P1 = 〈iCF , 1CF〉

2·n+1. Con-
sider x being an object such that x ∈ dom f1 and f1(x) = y. Reconsider
c = cot(f(x)) as an element of CF. Set N = 2 · n+ 1. (cot(f(x)) + i)N is
real by [7, (21)], [15, (29), (25)], [7, (23)]. eval(the even part of P1, c) = 0
by [8, (74)], [4, (6)], [8, (8)], (17). Set X2 = 〈0CF , 0CF ,1CF〉. The even part
of P1 = (sieve2(P1))[X2]. �

(27) Roots(sieve2(〈iCF , 1CF〉2·n+1)) = rng(2cot x-r-seq(n)).
The theorem is a consequence of (26), (11), and (25).

(28)
∑

(2cot x-r-seq(m)) = 2·m·(2·m−1)
6 . The theorem is a consequence of (25),

(27), (23), (24), and (2).

(29)
∑

(2cosec x-r-seq(m)) = 2·m·(2·m+2)
6 . The theorem is a consequence of

(28).

(30) (Basel-seq1)(m) ¬
∑m
κ=0 Basel-seq(κ). The theorem is a consequence of

(28).

(31)
∑m
κ=0 Basel-seq(κ) ¬ (Basel-seq2)(m). The theorem is a consequence of

(29).

(32) Basel problem:∑
Basel-seq = π2

6 . The theorem is a consequence of (30) and (31).

Note that (
∑κ
α=0(Basel-seq)(α))κ∈N is non summable as a sequence of real

numbers.
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