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Summary. Even and odd numbers appear early in history of mathematics
[9], as they serve to describe the property of objects easily noticeable by human
eye [7]. Although the use of parity allowed to discover irrational numbers [6],
there is a common opinion that this property is “not rich enough to become the
main content focus of any particular research” [9].

On the other hand, due to the use of decimal system, divisibility by 2 is often
regarded as the property of the last digit of a number (similarly to divisibility by
5, but not to divisibility by any other primes), which probably restricts its use
for any advanced purposes.

The article aims to extend the definition of parity towards its notion in binary
representation of integers, thus making an alternative to the articles grouped in
[5], [4], and [3] branches, formalized in Mizar [1], [2].
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Let a be an integer. One can check that a mod a is zero and a mod 2 is
natural.

Let a, b be integers. Observe that gcd(a · b, |a|) reduces to |a|.
Let a be an odd natural number. Note that a mod 2 is non zero.
Let a be an even integer. One can check that a mod 2 is zero.
Note that a+ 1 mod 2 reduces to 1.
Let a, b be real numbers. Let us observe that max(a, b) − min(a, b) is non

negative.
Let a be a natural number and b be a non zero natural number. Note that

a mod (a+ b) reduces to a. One can check that a div(a+ b) is zero.
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Let a be a non trivial natural number. Let us observe that a-count(1) is zero
and a-count(−1) is zero.

Let b be a natural number. One can check that a-count(ab) reduces to b and
a-count(−ab) reduces to b.

Now we state the proposition:

(1) Let us consider integers a, b. If a | b, then b
a is integer.

Note that there exists an even integer which is non zero and every natural
number which is non zero and trivial is also odd and there exists an odd natural
number which is non trivial.

Let a be an integer and b be an even integer. One can verify that lcm(a, b)
is even.

Let a, b be odd integers. Let us observe that lcm(a, b) is odd.
Let a, b be integers. Observe that a+b

gcd(a,b) is integer and a−b
gcd(a,b) is integer.

Let us consider real numbers a, b. Now we state the propositions:

(2) (i) |a+ b| = |a|+ |b|, or

(ii) |a− b| = |a|+ |b|.
(3) (i) ||a| − |b|| = |a+ b|, or

(ii) ||a| − |b|| = |a− b|.
(4) ||a| − |b|| = |a+ b| if and only if |a− b| = |a|+ |b|.
(5) |a + b| = |a| + |b| if and only if |a − b| = ||a| − |b||. The theorem is

a consequence of (4).

(6) Let us consider non zero real numbers a, b. Then ||a| − |b|| = |a+ b| and
|a − b| = |a| + |b| if and only if it is not true that ||a| − |b|| = |a − b| and
|a+ b| = |a|+ |b|.
Proof: ||a| − |b|| = |a + b| iff |a − b| = |a| + |b|. ||a| − |b|| = |a − b| iff
|a+ b| = |a|+ |b|. |a+ b| = |a|+ |b| iff |a− b| 6= |a|+ |b|. �

Let us consider positive real numbers a, b and a natural number n. Now we
state the propositions:

(7) min(an, bn) = (min(a, b))n.

(8) max(an, bn) = (max(a, b))n.

Let us consider a non zero natural number a and natural numbers m, n.
Now we state the propositions:

(9) min(an, am) = amin(n,m).

(10) max(an, am) = amax(n,m).

(11) Let us consider natural numbers a, b. Then a mod b ¬ a.

Let us consider a natural number a and non zero natural numbers b, c. Now
we state the propositions:
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(12) (a mod c) + (b mod c) ­ a+ b mod c. The theorem is a consequence of
(11).

(13) (a mod c) · (b mod c) ­ a · b mod c. The theorem is a consequence of
(11).

Let us consider a natural number a and non zero natural numbers b, n. Now
we state the propositions:

(14) (a mod b)n ­ an mod b. The theorem is a consequence of (11).

(15) If a mod b = 1, then an mod b = 1.

(16) Let us consider natural numbers a, b, and a non zero natural number c.
Then (amod c)·(bmod c) < c if and only if a·bmod c = (amod c)·(bmod c).

(17) Let us consider natural numbers a, b, c. Suppose (amod c)·(bmod c) = c.
Then a · b mod c = 0.

(18) Let us consider natural numbers a, b, and a non zero natural number c.
Suppose (a mod c) · (b mod c) ­ c. Then a mod c > 1.

(19) Let us consider integers a, b, and a non zero natural number c. Then

(i) if a+ b mod c = b mod c, then a mod c = 0, and

(ii) if a+ b mod c 6= b mod c, then a mod c > 0.

Proof: If a+ b mod c = b mod c, then a mod c = 0 by [8, (7)]. �

(20) Let us consider a natural number a, and non zero natural numbers b, c.
Suppose a · b mod c = b. Then a · (gcd(b, c)) mod c = gcd(b, c).

(21) Let us consider integers a, b. Then a ≡ b (mod gcd(a, b)).

Let us consider odd, a square integers k, l. Now we state the propositions:

(22) k − l mod 8 = 0.

(23) k + l mod 8 = 2. The theorem is a consequence of (22).

Let a be an integer. The functor parity(a) yielding a trivial natural number
is defined by the term

(Def. 1) a mod 2.

Note that the functor parity(a) yields a trivial natural number and is defined
by the term

(Def. 2) 2− (gcd(a, 2)).

Let a be an even integer. Let us observe that parity(a) is zero.
Let a be an odd integer. One can check that parity(a) is non zero.
Let a be an integer. The functor Parity(a) yielding a natural number is

defined by the term

(Def. 3)

{
0, if a = 0,
22-count(a), otherwise.
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Let a be a non zero integer. Observe that Parity(a) is non zero.
Let a be a non zero, even integer. One can verify that Parity(a) is non trivial

and Parity(a) is even.
Let a be an even integer. Observe that Parity(a) is even and Parity(a + 1)

is odd.
Let a be an odd integer. Note that Parity(a) is trivial.
Let n be a natural number. Observe that Parity(2n) reduces to 2n.
Note that Parity(1) reduces to 1 and Parity(2) reduces to 2.
Now we state the propositions:

(24) Let us consider an integer a. Then Parity(a) | a.

(25) Let us consider integers a, b. Then Parity(a·b) = (Parity(a))·(Parity(b)).

Let a be an integer. The functor Oddity(a) yielding an integer is defined by
the term

(Def. 4) a
Parity(a) .

Now we state the proposition:

(26) Let us consider a non zero integer a. Then a
Parity(a) = adiv Parity(a).

The theorem is a consequence of (24).

Let a be an integer. One can check that (Parity(a)) · (Oddity(a)) reduces to
a and Parity(Parity(a)) reduces to Parity(a) and Oddity(Oddity(a)) reduces to
Oddity(a). Observe that Parity(Oddity(a)) is trivial and a + Parity(a) is even
and a− Parity(a) is even and a

Parity(a) is integer.
Now we state the propositions:

(27) Let us consider a non zero integer a. Then Oddity(Parity(a)) = 1.

(28) Let us consider integers a, b. Then Oddity(a·b) = (Oddity(a))·(Oddity(b)).
The theorem is a consequence of (25).

Let a be a non zero integer. Observe that a
Parity(a) is odd and a div Parity(a)

is odd.
Now we state the proposition:

(29) Let us consider integers a, b. Then

(i) Parity(a) | Parity(b), or

(ii) Parity(b) | Parity(a).

Let us consider non zero integers a, b. Now we state the propositions:

(30) Parity(a) | Parity(b) if and only if Parity(b) ­ Parity(a).
Proof: If Parity(b) ­ Parity(a), then Parity(a) | Parity(b). �

(31) If Parity(a) > Parity(b), then 2 · (Parity(b)) | Parity(a).

Let us consider an integer a. Now we state the propositions:

(32) Parity(a) = Parity(−a).
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(33) Parity(a) = Parity(|a|). The theorem is a consequence of (32).

(34) Parity(a) ¬ |a|. The theorem is a consequence of (24) and (33).

(35) Let us consider integers a, b. If a and b are relatively prime, then a is
odd or b is odd.

Let us consider odd integers a, b. Now we state the propositions:

(36) If |a| 6= |b|, then min(Parity(a − b),Parity(a + b)) = 2. The theorem is
a consequence of (33), (9), (2), and (4).

(37) min(Parity(a − b),Parity(a + b)) ¬ 2. The theorem is a consequence of
(3), (33), and (36).

(38) Let us consider integers a, b. Suppose a and b are relatively prime. Then
min(Parity(a − b),Parity(a + b)) ¬ 2. The theorem is a consequence of
(35) and (37).

(39) Let us consider non zero integers a, b, and a non trivial natural number
c. Then c-count(gcd(a, b)) = min(c-count(a), c-count(b)).

(40) Let us consider non zero integers a, b.
Then Parity(gcd(a, b)) = min(Parity(a),Parity(b)). The theorem is a con-
sequence of (39) and (9).

(41) Let us consider integers a, b. Then gcd(Parity(a),Parity(b)) =
Parity(gcd(a, b)). The theorem is a consequence of (33), (29), and (40).

(42) Let us consider a natural number a. Then Parity(2 · a) = 2 · (Parity(a)).
The theorem is a consequence of (25).

(43) Let us consider integers a, b. Then lcm(Parity(a),Parity(b)) =
Parity(lcm(a, b)). The theorem is a consequence of (25), (33), and (41).

(44) Let us consider non zero integers a, b.
Then Parity(lcm(a, b)) = max(Parity(a),Parity(b)). The theorem is a con-
sequence of (41), (40), and (43).

(45) Let us consider integers a, b. Then Parity(a + b) = (Parity(gcd(a, b))) ·
(Parity( a+b

gcd(a,b))). The theorem is a consequence of (25).

(46) Let us consider an integer a, and a natural number n. Then Parity(an) =
(Parity(a))n.
Proof: Define P[natural number] ≡ Parity(a$1) = (Parity(a))$1 . P[0].
For every natural number k such that P[k] holds P[k + 1]. For every
natural number x, P[x]. �

(47) Let us consider non zero integers a, b, and a natural number n. Then
min(Parity(an),Parity(bn)) = (min(Parity(a),Parity(b)))n. The theorem
is a consequence of (40) and (46).

Let a be an odd integer. We identify parity(a) with Parity(a). We identify
Parity(a) with parity(a). Let us observe that aparity(a) reduces to a.
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Let a be an even integer. Let us observe that aparity(a) is trivial and non zero.
Let a be an integer. One can check that parity(parity(a)) reduces to parity(a)

and Parity(parity(a)) reduces to parity(a).
Now we state the proposition:

(48) Let us consider an integer a. Then

(i) a is even iff parity(a) is even, and

(ii) parity(a) is even iff Parity(a) is even.

Let a be an integer. Note that parity(a) + Parity(a) is even and Parity(a)−
parity(a) is even and Parity(a)− parity(a) is natural and a+ parity(a) is even
and a− parity(a) is even.

Let us consider an integer a. Now we state the propositions:

(49) parity(Parity(a)) = parity(a).

(50) parity(a) = parity(−a).

Let us consider integers a, b. Now we state the propositions:

(51) parity(a− b) = | parity(a)− parity(b)|.
(52) parity(a+ b) = parity(parity(a) + parity(b)).

(53) parity(a+ b) = parity(a− b). The theorem is a consequence of (50).

(54) parity(a+ b) = | parity(a)− parity(b)|. The theorem is a consequence of
(53) and (51).

(55) Let us consider natural numbers a, b. Then

(i) if parity(a+ b) = parity(b), then parity(a) = 0, and

(ii) if parity(a+ b) 6= parity(b), then parity(a) = 1.

The theorem is a consequence of (19).

Let us consider integers a, b. Now we state the propositions:

(56) (i) parity(a + b) = parity(a) + parity(b) − 2 · (parity(a)) · (parity(b)),
and

(ii) parity(a)− parity(b) = parity(a+ b)− 2 · (parity(a+ b)) · (parity(b)),
and

(iii) parity(a)− parity(b) = 2 · (parity(a)) · (parity(a+ b))− parity(a+ b).

(57) a+ b is even if and only if parity(a) = parity(b). The theorem is a con-
sequence of (54).

(58) parity(a · b) = (parity(a)) · (parity(b)).

(59) parity(lcm(a, b)) = parity(a · b).
(60) parity(gcd(a, b)) = max(parity(a),parity(b)).

(61) parity(a · b) = min(parity(a), parity(b)).
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(62) Let us consider an integer a, and a non zero natural number n. Then
parity(an) = parity(a).

(63) Let us consider non zero integers a, b. Suppose Parity(a+b) ­ Parity(a)+
Parity(b). Then Parity(a) = Parity(b).

(64) Let us consider integers a, b. Suppose Parity(a + b) > Parity(a) +
Parity(b). Then Parity(a) = Parity(b). The theorem is a consequence of
(63).

(65) Let us consider odd integers a, b, and an odd natural number m. Then
Parity(am + bm) = Parity(a+ b).

(66) Let us consider odd integers a, b, and an even natural number m. Then
Parity(am + bm) = 2.

Let us consider non zero integers a, b. Now we state the propositions:

(67) If a+b 6= 0, then if Parity(a) = Parity(b), then Parity(a+b) ­ Parity(a)+
Parity(b).

(68) Parity(a + b) = Parity(b) if and only if Parity(a) > Parity(b). The the-
orem is a consequence of (67).

(69) Let us consider non zero natural numbers a, b. Suppose Parity(a+ b) <
Parity(a)+Parity(b). Then Parity(a+b) = min(Parity(a),Parity(b)). The
theorem is a consequence of (67).

(70) Let us consider non zero integers a, b. Suppose a+b 6= 0. If Parity(a+b) =
Parity(a), then Parity(a) < Parity(b). The theorem is a consequence of
(67).

Let us consider an integer a. Now we state the propositions:

(71) (i) Parity(a+ Parity(a)) = (Parity(Oddity(a) + 1)) · (Parity(a)), and

(ii) Parity(a− Parity(a)) = (Parity(Oddity(a)− 1)) · (Parity(a)).
The theorem is a consequence of (25).

(72) (i) 2 · (Parity(a)) | Parity(a+ Parity(a)), and

(ii) 2 · (Parity(a)) | Parity(a− Parity(a)).
The theorem is a consequence of (71).

(73) Let us consider integers a, b. Suppose Parity(a) = Parity(b). Then
Parity(a+ b) = Parity(a+ Parity(a) + (b− Parity(b))).

Let us consider a natural number a. Now we state the propositions:

(74) Parity(a+ Parity(a)) ­ 2 · (Parity(a)). The theorem is a consequence of
(72).

(75) (i) Parity(a− Parity(a)) ­ 2 · (Parity(a)), or

(ii) a = Parity(a).
The theorem is a consequence of (71).
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Let us consider odd integers a, b. Now we state the propositions:

(76) Parity(a+ b) 6= Parity(a− b). The theorem is a consequence of (25).

(77) If Parity(a+1) = Parity(b−1), then a 6= b. The theorem is a consequence
of (76).

(78) Let us consider an odd natural number a, and a non trivial, odd natural
number b. Then

(i) Parity(a+ b) = min(Parity(a+ 1),Parity(b− 1)), or

(ii) Parity(a+ b) ­ 2 · (Parity(a+ 1)).

The theorem is a consequence of (67).

Let us consider non zero integers a, b. Now we state the propositions:

(79) If Parity(a) > Parity(b), then a div Parity(b) is even. The theorem is
a consequence of (31) and (24).

(80) Parity(a) > Parity(b) if and only if Parity(a) div Parity(b) is non zero
and even. The theorem is a consequence of (31).

(81) Let us consider an odd natural number a. Then Parity(a − 1) = 2 ·
(Parity(a div 2)). The theorem is a consequence of (25).

(82) Let us consider non zero integers a, b. Then

(i) min(Parity(a),Parity(b)) | a, and

(ii) min(Parity(a),Parity(b)) | b.

The theorem is a consequence of (30) and (24).

Let a, b be non zero integers. Note that a+b
min(Parity(a),Parity(b)) is integer.

Let p be a non square integer and n be an odd natural number. Let us note
that pn is non square.

Let a be an integer and n be an even natural number. Let us note that an

is a square.
Let p be a prime natural number and a be a non zero, a square integer. Let

us observe that p-count(a) is even.
Let a be an odd integer. Note that 2 · a is non square.
Let a be square integer. One can check that Parity(a) is a square and

Oddity(a) is a square.
Let a be a non zero, a square integer. One can check that 2-count(a) is even.
Now we state the propositions:

(83) Let us consider non negative real numbers a, b. Then max(a, b)−min(a, b)
= |a− b|.

(84) Let us consider an even integer a. If 4 - a, then a is not square.
Proof: 2 - a2 by [10, (2)]. �
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(85) Let us consider odd integers a, b. If a − b is a square, then a + b is not
a square. The theorem is a consequence of (2), (5), (83), (84), and (4).

Let us consider non zero integers a, b. Now we state the propositions:

(86) Parity(a+b) = (min(Parity(a),Parity(b)))·(Parity( a+b
min(Parity(a),Parity(b)))).

The theorem is a consequence of (30) and (25).

(87) (i) Parity(a) and Oddity(b) are relatively prime, and

(ii) gcd(Parity(a),Oddity(b)) = 1.

(88) Let us consider an integer a. Then |Oddity(a)| = Oddity(|a|). The the-
orem is a consequence of (33).

(89) Let us consider integers a, b.
Then gcd(Oddity(a),Oddity(b)) = Oddity(gcd(a, b)). The theorem is a con-
sequence of (87), (28), (41), (27), and (88).

(90) Let us consider non zero integers a, b.
Then gcd(a, b) = (gcd(Parity(a),Parity(b))) · (gcd(Oddity(a),Oddity(b))).
The theorem is a consequence of (87).

(91) Let us consider an odd natural number a. Then Parity(a+ 1) = 2 if and
only if parity(adiv 2) = 0. The theorem is a consequence of (78), (76), and
(25).

(92) Let us consider an even integer a. Then a div 2 = a+ 1 div 2.

(93) Let us consider integers a, b. Then a + b = 2 · ((adiv 2) + (bdiv 2)) +
parity(a) + parity(b).

Let us consider odd integers a, b. Now we state the propositions:

(94) Parity(a + b) = 2 · (Parity((a div 2) + (bdiv 2) + 1)). The theorem is
a consequence of (93) and (25).

(95) Parity(a + b) = 2 if and only if parity(a div 2) = parity(bdiv 2). The
theorem is a consequence of (94) and (57).

Let us consider non zero integers a, b. Now we state the propositions:

(96) Parity(a+ b) = Parity(a) + Parity(b) if and only if Parity(a) = Parity(b)
and parity(Oddity(a) div 2) = parity(Oddity(b) div 2). The theorem is a con-
sequence of (63), (25), and (95).

(97) Suppose a+b 6= 0 and Parity(a) = Parity(b) and parity(Oddity(a) div 2) 6=
parity(Oddity(b) div 2). Then Parity(a + b) > Parity(a) + Parity(b). The
theorem is a consequence of (67) and (96).

Acknowledgement: Ad Maiorem Dei Gloriam



100 rafał ziobro

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[3] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix-2k signed-digit number and
its adder algorithm. Formalized Mathematics, 9(1):71–75, 2001.

[4] Adam Naumowicz. On the representation of natural numbers in positional numeral sys-
tems. Formalized Mathematics, 14(4):221–223, 2006. doi:10.2478/v10037-006-0025-9.

[5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[6] Lucio Russo and Silvio Levy (translator). The forgotten revolution: how science was born
in 300 BC and why it had to be reborn. Springer Science & Business Media, 2013.

[7] Walter Warwick Sawyer. Vision in elementary mathematics. Courier Corporation, 2003.
[8] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3):

247–252, 2008. doi:10.2478/v10037-008-0029-8.
[9] Rina Zazkis. Odds and ends of odds and evens: An inquiry into students’ understanding

of even and odd numbers. Educational Studies in Mathematics, 36(1):73–89, Jun 1998.
doi:10.1023/A:1003149901409.

[10] Rafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized
Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.

Accepted June 29, 2018

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://fm.mizar.org/2001-9/pdf9-1/radix_1.pdf
http://fm.mizar.org/2001-9/pdf9-1/radix_1.pdf
http://dx.doi.org/10.2478/v10037-006-0025-9
http://fm.mizar.org/1993-4/pdf4-1/binarith.pdf
http://dx.doi.org/10.2478/v10037-008-0029-8
https://doi.org/10.1023/A:1003149901409
https://doi.org/10.1023/A:1003149901409
http://dx.doi.org/10.1023/A:1003149901409
http://dx.doi.org/10.1515/forma-2015-0018


FORMALIZED MATHEMATICS

Vol. 26, No. 2, Pages 101–124, 2018
DOI: 10.2478/forma-2018-0009 https://www.sciendo.com/

About Supergraphs. Part I

Sebastian Koch
Johannes Gutenberg University

Mainz, Germany1

Summary. Drawing a finite graph is usually done by a finite sequence of
the following three operations.

1. Draw a vertex of the graph.

2. Draw an edge between two vertices of the graph.

3. Draw an edge starting from a vertex of the graph and immediately draw a
vertex at the other end of it.

By this procedure any finite graph can be constructed. This property of graphs
is so obvious that the author of this article has yet to find a reference where
it is mentioned explicitly. In introductionary books (like [10], [5], [9]) as well as
in advanced ones (like [4]), after the initial definition of graphs the examples
are usually given by graphical representations rather than explicit set theoretic
descriptions, assuming a mutual understanding how the representation is to be
translated into a description fitting the definition. However, Mizar [2], [3] does
not possess this innate ability of humans to translate pictures into graphs. The-
refore, if one wants to create graphs in Mizar without directly providing a set
theoretic description (i.e. using the createGraph functor), a rigorous approach
to the constructing operations is required.

In this paper supergraphs are defined as an inverse mode to subgraphs as
given in [8]. The three graph construction operations are defined as modes exten-
ding Supergraph similar to how the various remove operations were introduced
as submodes of Subgraph in [8]. Many theorems are proven that describe how
graph properties are transferred to special supergraphs. In particular, to prove
that disconnected graphs cannot become connected by adding an edge between
two vertices that lie in the same component, the theory of replacing a part of a
walk with another walk is introduced in the preliminaries.
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1. General Preliminaries

Let us consider an even integer n and an odd integer m. Now we state the
propositions:

(1) If n ¬ m, then n+ 1 ¬ m.

(2) If m ¬ n, then m+ 1 ¬ n.

(3) Let us consider natural numbers i, j. If i > i−′ 1 + j, then j = 0.

(4) Let us consider finite sequences f , g, and a natural number i. Suppose
i ¬ len f and mid(f, i, i−′ 1 + len g) = g. Then i−′ 1 + len g ¬ len f . The
theorem is a consequence of (3).

Let us consider a finite sequence p and a natural number n. Now we state
the propositions:

(5) If n ∈ dom p and n+ 1 ¬ len p, then mid(p, n, n+ 1) = 〈p(n), p(n+ 1)〉.
(6) If n ∈ dom p and n + 2 ¬ len p, then mid(p, n, n + 2) = 〈p(n), p(n + 1),

p(n+ 2)〉. The theorem is a consequence of (5).

(7) Let us consider a non empty set D, finite sequences f , g of elements of
D, and a natural number n. Suppose g is a substring of f . Then

(i) len g = 0, or

(ii) 1 ¬ n−′ 1 + len g ¬ len f and n ¬ n−′ 1 + len g.

The theorem is a consequence of (4).

Let D be a non empty set, f , g be finite sequences of elements of D, and n

be a natural number. We say that g is an odd substring of f not starting before
n if and only if

(Def. 1) if len g > 0, then there exists an odd natural number i such that n ¬
i ¬ len f and mid(f, i, i−′ 1 + len g) = g.

We say that g is an even substring of f not starting before n if and only if

(Def. 2) if len g > 0, then there exists an even natural number i such that n ¬
i ¬ len f and mid(f, i, i−′ 1 + len g) = g.

Let us consider a non empty set D, finite sequences f , g of elements of D,
and a natural number n. Now we state the propositions:

(8) If g is an odd substring of f not starting before n, then g is a substring
of f .

(9) If g is an even substring of f not starting before n, then g is a substring
of f .

(10) Let us consider a non empty set D, finite sequences f , g of elements of
D, and natural numbers n, m. Suppose m ­ n. Then
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(i) if g is an odd substring of f not starting before m, then g is an odd
substring of f not starting before n, and

(ii) if g is an even substring of f not starting before m, then g is an even
substring of f not starting before n.

(11) Let us consider a non empty set D, and a finite sequence f of elements
of D. If 1 ¬ len f , then f is an odd substring of f not starting before 0.

(12) Let us consider a non empty set D, finite sequences f , g of elements of
D, and an even element n of N. Suppose g is an odd substring of f not
starting before n. Then g is an odd substring of f not starting before n+1.

(13) Let us consider a non empty set D, finite sequences f , g of elements of
D, and an odd element n of N. Suppose g is an even substring of f not
starting before n. Then g is an even substring of f not starting before
n+ 1.

(14) Let us consider a non empty set D, and finite sequences f , g of elements
of D. Suppose g is an odd substring of f not starting before 0. Then g is
an odd substring of f not starting before 1. The theorem is a consequence
of (12).

2. Graph Preliminaries

Let G be a non-directed-multi graph. Observe that every subgraph of G is
non-directed-multi.

(15) Every graph is a subgraph of G induced by the vertices of G.

(16) Let us consider graphs G1, G3, sets V , E, and a subgraph G2 of G1

induced by V and E. If G2 ≈ G3, then G3 is a subgraph of G1 induced by
V and E.

(17) Let us consider a graph G, a set X, and objects e, y. Suppose e joins a
vertex from X and a vertex from {y} in G. Then there exists an object x
such that

(i) x ∈ X, and

(ii) e joins x and y in G.

(18) Let us consider a graph G, and a set X. Suppose X ∩ (the vertices of
G) = ∅. Then

(i) G.edgesInto(X) = ∅, and

(ii) G.edgesOutOf(X) = ∅, and

(iii) G.edgesInOut(X) = ∅, and
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(iv) G.edgesBetween(X) = ∅.
Proof: G.edgesInto(X) = ∅. G.edgesOutOf(X) = ∅. �

Let us consider a graph G, sets X1, X2, and an object y. Now we state the
propositions:

(19) If X1 misses X2, then G.edgesBetween(X1, {y}) misses G.edgesBetween
(X2, {y}). The theorem is a consequence of (17).

(20) G.edgesBetween(X1 ∪X2, {y}) =
G.edgesBetween(X1, {y}) ∪G.edgesBetween(X2, {y}).
Proof: Set E1 = G.edgesBetween(X1, {y}). Set E2 = G.edgesBetween(X2,

{y}). For every object e such that e ∈ G.edgesBetween(X1∪X2, {y}) holds
e ∈ E1 ∪ E2. �

(21) Let us consider a trivial graph G. Then there exists a vertex v of G such
that

(i) the vertices of G = {v}, and

(ii) the source of G = (the edges of G) 7−→ v, and

(iii) the target of G = (the edges of G) 7−→ v.

Proof: Consider v being a vertex of G such that the vertices of G = {v}.
For every object e such that e ∈ dom(the source of G) holds (the source
of G)(e) = v. For every object e such that e ∈ dom(the target of G) holds
(the target of G)(e) = v. �

Let G be a graph. Let us note that every walk of G which is closed, trail-like,
and non trivial is also circuit-like and every walk of G which is closed, path-like,
and non trivial is also cycle-like.

Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2. Now
we state the propositions:

(22) If W1 = W2, then if W1 is trail-like, then W2 is trail-like.

(23) If W1 = W2, then if W1 is path-like, then W2 is path-like. The theorem
is a consequence of (22).

(24) If W1 = W2, then if W1 is cycle-like, then W2 is cycle-like. The theorem
is a consequence of (23).

(25) If W1 = W2, then if W1 is vertex-distinct, then W2 is vertex-distinct.

(26) Let us consider a graph G, a walk W of G, and a vertex v of G. If
v ∈W.vertices(), then G.walkOf(v) is a substring of W .

(27) Let us consider a graph G, a walk W of G, and an odd element n of N.
Suppose n+ 2 ¬ lenW . Then G.walkOf(W (n),W (n+ 1),W (n+ 2)) is an
odd substring of W not starting before 0. The theorem is a consequence
of (6).
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Let us consider a graph G, a walk W of G, and objects u, e, v. Now we state
the propositions:

(28) Suppose e joins u and v in G and e ∈W.edges(). Then

(i) G.walkOf(u, e, v) is an odd substring of W not starting before 0, or

(ii) G.walkOf(v, e, u) is an odd substring of W not starting before 0.

The theorem is a consequence of (27).

(29) If e joins u and v in G and G.walkOf(u, e, v) is an odd substring of W
not starting before 0, then e ∈ W.edges() and u, v ∈ W.vertices(). The
theorem is a consequence of (14), (8), and (7).

Let G be a graph and W1, W2 be walks of G.
The functor W1.findFirstVertex(W2) yielding an odd element of N is defined

by

(Def. 3) (i) it ¬ lenW1 and there exists an even natural number k such that
it = k + 1 and for every natural number n such that 1 ¬ n ¬ lenW2

holds W1(k + n) = W2(n) and for every even natural number l such
that for every natural number n such that 1 ¬ n ¬ lenW2 holds
W1(l + n) = W2(n) holds k ¬ l, if W2 is an odd substring of W1 not
starting before 0,

(ii) it = lenW1, otherwise.

The functor W1.findLastVertex(W2) yielding an odd element of N is defined by

(Def. 4) (i) it ¬ lenW1 and there exists an even natural number k such that
it = k + lenW2 and for every natural number n such that 1 ¬ n ¬
lenW2 holds W1(k + n) = W2(n) and for every even natural number
l such that for every natural number n such that 1 ¬ n ¬ lenW2

holds W1(l + n) = W2(n) holds k ¬ l, if W2 is an odd substring of
W1 not starting before 0,

(ii) it = lenW1, otherwise.

Let us consider a graph G and walks W1, W2 of G. Now we state the pro-
positions:

(30) Suppose W2 is an odd substring of W1 not starting before 0. Then

(i) W1(W1.findFirstVertex(W2)) = W2.first(), and

(ii) W1(W1.findLastVertex(W2)) = W2.last().

(31) Suppose W2 is an odd substring of W1 not starting before 0. Then

(i) 1 ¬W1.findFirstVertex(W2) ¬ lenW1, and

(ii) 1 ¬W1.findLastVertex(W2) ¬ lenW1.

(32) Let us consider a graph G, and a walk W of G. Then
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(i) 1 = W.findFirstVertex(W ), and

(ii) W.findLastVertex(W ) = lenW .

The theorem is a consequence of (11).

(33) Let us consider a graph G, and walks W1, W2 of G. Suppose W2 is an
odd substring of W1 not starting before 0. Then W1.findFirstVertex(W2) ¬
W1.findLastVertex(W2).

LetG be a graph andW1,W2,W3 be walks ofG. The functorW1.replaceWith
(W2,W3) yielding a walk of G is defined by the term

(Def. 5)



((W1.cut(1,W1.findFirstVertex(W2))).append(W3)).append((W1.cut
(W1.findLastVertex(W2), lenW1))),

if W2 is an odd substring of W1 not starting before 0 and W2.first()
= W3.first() and W2.last() = W3.last(),W1,

otherwise.
Let W1, W3 be walks of G and e be an object.
The functor W1.replaceEdgeWith(e,W3) yielding a walk of G is defined by

the term

(Def. 6)


W1.replaceWith(G.walkOf(W3.first(), e,W3.last()),W3),
if e joins W3.first() and W3.last() in G and G.walkOf(W3.first(), e,

W3.last()) is an odd substring of W1 not starting before 0,W1,

otherwise.
Let W1, W2 be walks of G. The functor W1.replaceWithEdge(W2, e) yielding

a walk of G is defined by the term

(Def. 7)


W1.replaceWith(W2, G.walkOf(W2.first(), e,W2.last())),
if W2 is an odd substring of W1 not starting before 0 and e joins

W2.first() and W2.last() in G,W1,

otherwise.
Let us consider a graph G and walks W1, W2, W3 of G. Now we state the

propositions:

(34) Suppose W2 is an odd substring of W1 not starting before 0 and
W2.first() = W3.first() and W2.last() = W3.last(). Then

(i) (W1.cut(1,W1.findFirstVertex(W2))).first() = W1.first(), and

(ii) (W1.cut(1,W1.findFirstVertex(W2))).last() = W3.first(), and

(iii) ((W1.cut(1,W1.findFirstVertex(W2))).append(W3)).first() =

W1.first(), and

(iv) ((W1.cut(1,W1.findFirstVertex(W2))).append(W3)).last() =

W3.last(), and

(v) (W1.cut(W1.findLastVertex(W2), lenW1)).first() = W3.last(), and
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(vi) (W1.cut(W1.findLastVertex(W2), lenW1)).last() = W1.last().

The theorem is a consequence of (31) and (30).

(35) (i) W1.first() = (W1.replaceWith(W2,W3)).first(), and

(ii) W1.last() = (W1.replaceWith(W2,W3)).last().
The theorem is a consequence of (34).

(36) SupposeW2 is an odd substring ofW1 not starting before 0 andW2.first()
= W3.first() and W2.last() = W3.last(). Then (W1.replaceWith(W2,W3))
.vertices() = ((W1.cut(1,W1.findFirstVertex(W2))).vertices() ∪W3

.vertices())∪(W1.cut(W1.findLastVertex(W2), lenW1)).vertices(). The the-
orem is a consequence of (34).

(37) SupposeW2 is an odd substring ofW1 not starting before 0 andW2.first()
= W3.first() and W2.last() = W3.last(). Then (W1.replaceWith(W2,W3))
.edges() = ((W1.cut(1,W1.findFirstVertex(W2))).edges() ∪W3.edges()) ∪
(W1.cut(W1.findLastVertex(W2), lenW1)).edges(). The theorem is a con-
sequence of (34).

(38) Let us consider a graph G, walks W1, W3 of G, and an object e. Suppose
e joins W3.first() and W3.last() in G and G.walkOf(W3.first(), e,W3.last())
is an odd substring of W1 not starting before 0.
Then e ∈ (W1.replaceEdgeWith(e,W3)).edges() if and only if e ∈ (W1.cut
(1,W1.findFirstVertex(G.walkOf(W3.first(), e,W3.last())))).edges() or e ∈
W3.edges() or e ∈ (W1.cut(W1.findLastVertex(G.walkOf(W3.first(), e,W3

.last())), lenW1)).edges(). The theorem is a consequence of (37).

(39) Let us consider a graph G, walks W1, W3 of G, and an object e. Suppose
e joins W3.first() and W3.last() in G and e /∈W3.edges() and G.walkOf(W3

.first(), e,W3.last()) is an odd substring of W1 not starting before 0 and for
every even natural numbers n, m such that n, m ∈ domW1 and W1(n) = e

and W1(m) = e holds n = m.
Then e /∈ (W1.replaceEdgeWith(e,W3)).edges().
Proof: Set W2 = G.walkOf(W3.first(), e,W3.last()). W2 is an odd sub-
string of W1 not starting before 1. Define P[natural number] ≡ $1 is odd
and 1 ¬ $1 ¬ lenW1 and mid(W1, $1, $1 −′ 1 + lenW2) = W2. Consider
i being a natural number such that P[i] and for every natural number
n such that P[n] holds i ¬ n. Set j = i −′ 1 + lenW2. W2 is a sub-
string of W1. 1 ¬ j ¬ lenW1 and i ¬ j. Set n1 = i + 1. Reconsider
k = i − 1 as an even natural number. For every natural number n such
that 1 ¬ n ¬ lenW2 holds W1(k + n) = W2(n). For every even natural
number l such that for every natural number n such that 1 ¬ n ¬ lenW2

holds W1(l+ n) = W2(n) holds k ¬ l. i ¬ lenW1 and there exists an even
natural number k such that i = k + 1 and for every natural number n



108 sebastian koch

such that 1 ¬ n ¬ lenW2 holds W1(k + n) = W2(n) and for every even
natural number l such that for every natural number n such that 1 ¬ n ¬
lenW2 holds W1(l + n) = W2(n) holds k ¬ l. W1.findFirstVertex(W2) <
n1. n1 ∈ domW1. e /∈ (W1.cut(1,W1.findFirstVertex(W2))).edges(). e /∈
(W1.cut(W1.findLastVertex(W2), lenW1)).edges() by [1, (4)], [6, (99)]. �

(40) Let us consider a graph G, a trail T1 of G, a walk W3 of G, and an object
e. Suppose e joins W3.first() and W3.last() in G and e /∈ W3.edges() and
G.walkOf(W3.first(), e,W3.last()) is an odd substring of T1 not starting
before 0. Then e /∈ (T1.replaceEdgeWith(e,W3)).edges().
Proof: For every even natural numbers n, m such that n, m ∈ domT1

and T1(n) = e and T1(m) = e holds n = m. �

(41) Let us consider a graph G, and walks W1, W2 of G. Suppose W1.first() =
W2.first() and W1.last() = W2.last(). Then W1.replaceWith(W1,W2) =
W2. The theorem is a consequence of (11), (32), and (31).

(42) Let us consider a graph G, walks W1, W3 of G, and an object e. Suppose
e joins W3.first() and W3.last() in G and G.walkOf(W3.first(), e,W3.last())
is an odd substring ofW1 not starting before 0. Then there exists a walkW2

of G such that W1.replaceEdgeWith(e,W3) = W1.replaceWith(W2,W3).

(43) Let us consider a graph G, walks W1, W2 of G, and an object e. Sup-
pose W2 is an odd substring of W1 not starting before 0 and e joins
W2.first() and W2.last() in G. Then there exists a walk W3 of G such
that W1.replaceWithEdge(W2, e) = W1.replaceWith(W2,W3).

(44) Let us consider a graph G, walks W1, W3 of G, and an object e. Then

(i) W1.first() = (W1.replaceEdgeWith(e,W3)).first(), and

(ii) W1.last() = (W1.replaceEdgeWith(e,W3)).last().

The theorem is a consequence of (42) and (35).

(45) Let us consider a graph G, walks W1, W2 of G, and an object e. Then

(i) W1.first() = (W1.replaceWithEdge(W2, e)).first(), and

(ii) W1.last() = (W1.replaceWithEdge(W2, e)).last().

The theorem is a consequence of (43) and (35).

(46) Let us consider a graph G, walks W1, W2, W3 of G, and objects u, v.
Then W1 is walk from u to v if and only if W1.replaceWith(W2,W3) is
walk from u to v. The theorem is a consequence of (35).

(47) Let us consider a graph G, walks W1, W3 of G, and objects e, u, v. Then
W1 is walk from u to v if and only if W1.replaceEdgeWith(e,W3) is walk
from u to v. The theorem is a consequence of (42) and (46).



About supergraphs. Part I 109

(48) Let us consider a graph G, walks W1, W2 of G, and objects e, u, v. Then
W1 is walk from u to v if and only if W1.replaceWithEdge(W2, e) is walk
from u to v. The theorem is a consequence of (43) and (46).

(49) Let us consider a graph G, and vertices v1, v2 of G. Suppose v1 is isolated
and v1 6= v2. Then v2 /∈ G.reachableFrom(v1).

(50) Let us consider a graph G, and vertices v1, v2 of G.
If v1 ∈ G.reachableFrom(v2), then v2 ∈ G.reachableFrom(v1).

(51) Let us consider a graph G, and a vertex v of G. If v is isolated, then
{v} = G.reachableFrom(v).
Proof: For every object x, x ∈ {v} iff x ∈ G.reachableFrom(v) by [7,
(9)], (49). �

(52) Let us consider a graph G, a vertex v of G, and a subgraph C of G
induced by {v}. If v is isolated, then C is a component of G. The theorem
is a consequence of (51).

(53) Let us consider a non trivial graph G1, a vertex v of G1, and a subgraph
G2 of G1 with vertex v removed. Suppose v is isolated. Then

(i) G1.componentSet() = G2.componentSet() ∪ {{v}}, and

(ii) G1.numComponents() = G2.numComponents() + 1.

Proof: For every object V , V ∈ G1.componentSet() iff V ∈ G2

.componentSet() ∪ {{v}}. {v} /∈ G2.componentSet() by [8, (47)]. �

Let G be a graph. Let us observe that every vertex of G which is isolated is
also non cut-vertex.

Now we state the propositions:

(54) Let us consider a graph G1, a subgraph G2 of G1, a walk W1 of G1, and
a walk W2 of G2. If W1 = W2, then W1 is cycle-like iff W2 is cycle-like.

(55) Let us consider a connected graph G1, and a component G2 of G1. Then
G1 ≈ G2.

Observe that every graph which is complete is also connected and there
exists a graph which is non non-directed-multi, non non-multi, non loopless,
non directed-simple, non simple, non acyclic, and non finite.

From now on G denotes a graph.
Let us consider G. The functor G.endVertices() yielding a subset of the ver-

tices of G is defined by

(Def. 8) for every object v, v ∈ it iff there exists a vertex w of G such that v = w

and w is endvertex.

Now we state the proposition:

(56) Let us consider a vertex v of G. Then v ∈ G.endVertices() if and only if
v is endvertex.
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3. Supergraphs

Let us consider G.
A supergraph of G is a graph defined by

(Def. 9) the vertices of G ⊆ the vertices of it and the edges of G ⊆ the edges
of it and for every set e such that e ∈ the edges of G holds (the source
of G)(e) = (the source of it)(e) and (the target of G)(e) = (the target of
it)(e).

Let us consider graphs G1, G2. Now we state the propositions:

(57) G2 is a subgraph of G1 if and only if G1 is a supergraph of G2.

(58) G2 is subgraph of G1 and supergraph of G1 if and only if G1 ≈ G2. The
theorem is a consequence of (57).

(59) G1 is a supergraph of G2 and G2 is a supergraph of G1 if and only if
G1 ≈ G2. The theorem is a consequence of (57).

(60) G1 is a supergraph of G2 if and only if G2 ⊆ G1. The theorem is a con-
sequence of (57).

(61) G is a supergraph of G.

(62) Let us consider a graph G3, and a supergraph G2 of G3. Then every
supergraph of G2 is a supergraph of G3. The theorem is a consequence of
(57).

In the sequel G2 denotes a graph and G1 denotes a supergraph of G2.

(63) Let us consider graphs G1, G2. Suppose the vertices of G2 ⊆ the vertices
of G1 and the source of G2 ⊆ the source of G1 and the target of G2 ⊆
the target of G1. Then G1 is a supergraph of G2.

Let us consider G2 and G1. Now we state the propositions:

(64) (i) the source of G2 ⊆ the source of G1, and

(ii) the target of G2 ⊆ the target of G1.

(65) Suppose the vertices of G2 = the vertices of G1 and the edges of G2 =
the edges of G1. Then G1 ≈ G2. The theorem is a consequence of (64).

(66) Let us consider graphs G1, G2. Suppose the vertices of G2 = the vertices
of G1 and the edges of G2 = the edges of G1 and the source of G2 ⊆
the source of G1 and the target of G2 ⊆ the target of G1. Then G1 ≈ G2.
The theorem is a consequence of (63) and (65).

(67) Let us consider a set x. Then

(i) if x ∈ the vertices of G2, then x ∈ the vertices of G1, and

(ii) if x ∈ the edges of G2, then x ∈ the edges of G1.

The theorem is a consequence of (57).
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Let us consider G2 and G1. Now we state the propositions:

(68) Every vertex of G2 is a vertex of G1.

(69) (i) the source of G2 = (the source of G1)�(the edges of G2), and

(ii) the target of G2 = (the target of G1)�(the edges of G2).
The theorem is a consequence of (57).

(70) Let us consider sets x, y, and an object e. Then

(i) if e joins x and y in G2, then e joins x and y in G1, and

(ii) if e joins x to y in G2, then e joins x to y in G1, and

(iii) if e joins a vertex from x and a vertex from y in G2, then e joins a
vertex from x and a vertex from y in G1, and

(iv) if e joins a vertex from x to a vertex from y in G2, then e joins a
vertex from x to a vertex from y in G1.

The theorem is a consequence of (57).

Let us consider G2, G1, and objects e, v1, v2. Now we state the propositions:

(71) If e joins v1 to v2 in G1, then e joins v1 to v2 in G2 or e /∈ the edges of
G2.

(72) If e joins v1 and v2 in G1, then e joins v1 and v2 in G2 or e /∈ the edges
of G2. The theorem is a consequence of (71).

Let G be a finite graph. Observe that there exists a supergraph of G which
is finite.

Now we state the propositions:

(73) (i) G2.order() ⊆ G1.order(), and

(ii) G2.size() ⊆ G1.size().

(74) Let us consider a finite graph G2, and a finite supergraph G1 of G2. Then

(i) G2.order() ¬ G1.order(), and

(ii) G2.size() ¬ G1.size().

The theorem is a consequence of (57).

(75) Every walk of G2 is a walk of G1. The theorem is a consequence of (57).

(76) Let us consider a walkW2 ofG2, and a walkW1 ofG1. SupposeW1 = W2.
Then

(i) W1 is closed iff W2 is closed, and

(ii) W1 is directed iff W2 is directed, and

(iii) W1 is trivial iff W2 is trivial, and

(iv) W1 is trail-like iff W2 is trail-like, and

(v) W1 is path-like iff W2 is path-like, and
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(vi) W1 is vertex-distinct iff W2 is vertex-distinct, and

(vii) W1 is cycle-like iff W2 is cycle-like.

The theorem is a consequence of (57) and (54).

Let G be a non trivial graph. Note that every supergraph of G is non trivial.
Let G be a non non-directed-multi graph. Observe that every supergraph of

G is non non-directed-multi.
Let G be a non non-multi graph. One can verify that every supergraph of G

is non non-multi.
Let G be a non loopless graph. Let us note that every supergraph of G is

non loopless.
Let G be a non directed-simple graph. Observe that every supergraph of G

is non directed-simple.
Let G be a non simple graph. One can check that every supergraph of G is

non simple.
Let G be a non acyclic graph. One can verify that every supergraph of G is

non acyclic.
Every supergraph of a non finite graph G is non finite.
In the sequel V denotes a set. Let us consider G and V .
A supergraph of G extended by the vertices from V is a supergraph of G

defined by

(Def. 10) the vertices of it = (the vertices ofG)∪V and the edges of it = the edges
of G and the source of it = the source of G and the target of it =
the target of G.

Now we state the propositions:

(77) Let us consider supergraphs G1, G2 of G extended by the vertices from
V . Then G1 ≈ G2.

(78) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G1 ≈ G2 if and only if V ⊆ the vertices of G2.

(79) Let us consider graphs G1, G2, and a set V . Suppose G1 ≈ G2 and
V ⊆ the vertices of G2. Then G1 is a supergraph of G2 extended by the
vertices from V . The theorem is a consequence of (59).

(80) Let us consider a supergraph G1 of G extended by the vertices from V .
Suppose G1 ≈ G2. Then G2 is a supergraph of G extended by the vertices
from V . The theorem is a consequence of (58) and (62).

(81) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G1.edgesBetween(the vertices of G2) = the edges of G1.
Proof: Set E1 = the edges of G1. Set V2 = the vertices of G2. For every
object e, e ∈ E1 iff e ∈ G1.edgesInto(V2) ∩G1.edgesOutOf(V2). �
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(82) Let us consider a graph G3, sets V1, V2, and a supergraph G2 of G3

extended by the vertices from V2. Then every supergraph of G2 extended
by the vertices from V1 is a supergraph of G3 extended by the vertices
from V1 ∪ V2. The theorem is a consequence of (62).

(83) Let us consider a graph G3, sets V1, V2, and a supergraph G1 of G3

extended by the vertices from V1 ∪ V2. Then there exists a supergraph G2

of G3 extended by the vertices from V2 such that G1 is a supergraph of
G2 extended by the vertices from V1.

(84) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G2 is a subgraph of G1 induced by the vertices of G2. The theorem
is a consequence of (57) and (81).

(85) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
and objects x, y, e. Then e joins x to y in G1 if and only if e joins x to y
in G2.

(86) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
and an object v. If v ∈ V , then v is a vertex of G1.

(87) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
and objects x, y, e. Then e joins x and y in G1 if and only if e joins x and
y in G2. The theorem is a consequence of (85).

(88) Let us consider a supergraph G1 of G2 extended by the vertices from
V , and a vertex v of G1. Suppose v ∈ V \ (the vertices of G2). Then v is
isolated and non cut-vertex.
Proof: v.edgesInOut() = ∅. �

(89) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Suppose V \ (the vertices of G2) 6= ∅. Then G1 is non trivial, non
connected, non tree-like, and non complete.
Proof: Consider v1 being an object such that v1 ∈ V \ (the vertices of
G2). α 6= 1, where α is the vertices of G1. v1 is isolated. �

Let G be a non-directed-multi graph and V be a set. Note that every super-
graph of G extended by the vertices from V is non-directed-multi.

Let G be a non-multi graph. One can verify that every supergraph of G
extended by the vertices from V is non-multi.

Let G be a loopless graph. Observe that every supergraph of G extended by
the vertices from V is loopless.

Let G be a directed-simple graph. Let us note that every supergraph of G
extended by the vertices from V is directed-simple.

Let G be a simple graph. Let us note that every supergraph of G extended
by the vertices from V is simple.
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Let us consider G2, V , a supergraph G1 of G2 extended by the vertices from
V , and a walk W of G1. Now we state the propositions:

(90) (i) W.vertices() misses V \ (the vertices of G2), or

(ii) W is trivial.
The theorem is a consequence of (85).

(91) If W.vertices() misses V \ (the vertices of G2), then W is a walk of G2.
The theorem is a consequence of (57).

Let G be an acyclic graph and V be a set. Let us note that every supergraph
of G extended by the vertices from V is acyclic.

(92) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G2 is chordal if and only if G1 is chordal.
Proof: IfG2 is chordal, thenG1 is chordal.G2 is a subgraph ofG1 induced
by the vertices of G2. �

Let G be a chordal graph and V be a set. Let us observe that every super-
graph of G extended by the vertices from V is chordal.

From now on v denotes an object.
Let us consider G and v.
A supergraph of G extended by v is a supergraph of G extended by the

vertices from {v}.
Let us consider G2, v, and a supergraph G1 of G2 extended by v. Now we

state the propositions:

(93) G1 ≈ G2 if and only if v ∈ the vertices of G2.

(94) v is a vertex of G1. The theorem is a consequence of (86).

Let us consider G. One can verify that every supergraph of G extended by
the vertices of G is non trivial, non connected, and non complete and there
exists a graph which is non trivial, non connected, and non complete.

Let G be a non connected graph and V be a set. Note that every supergraph
of G extended by the vertices from V is non connected.

Now we state the propositions:

(95) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then

(i) G1.size() = G2.size(), and

(ii) G1.order() = G2.order() + V \ α ,

where α is the vertices of G2.

(96) Let us consider a finite graph G2, a finite set V , and a supergraph G1

of G2 extended by the vertices from V . Then G1.order() = G2.order() +

V \ α , where α is the vertices of G2.



About supergraphs. Part I 115

(97) Let us consider a graphG2, an object v, and a supergraphG1 ofG2 exten-
ded by v. Suppose v /∈ the vertices of G2. Then G1.order() = G2.order()+
1. The theorem is a consequence of (95).

(98) Let us consider a finite graph G2, an object v, and a supergraph G1 of
G2 extended by v. Suppose v /∈ the vertices of G2. Then G1.order() =
G2.order() + 1. The theorem is a consequence of (96).

Let G be a finite graph and V be a finite set. Note that every supergraph of
G extended by the vertices from V is finite.

Let v be an object. Note that every supergraph of G extended by v is finite.
Let G be a graph and V be a non finite set. Note that every supergraph of

G extended by the vertices from V is non finite.
Let us consider G. Let v1, e, v2 be objects.
A supergraph of G extended by e between vertices v1 and v2 is a supergraph

of G defined by

(Def. 11) (i) the vertices of it = the vertices ofG and the edges of it = (the edges
of G) ∪ {e} and the source of it = (the source of G)+·(e 7−→. v1) and
the target of it = (the target ofG)+·(e 7−→. v2), if v1, v2 ∈ the vertices
of G and e /∈ the edges of G,

(ii) it ≈ G, otherwise.

Now we state the propositions:

(99) Let us consider objects v1, e, v2, and supergraphs G1, G2 of G extended
by e between vertices v1 and v2. Then G1 ≈ G2.

(100) Let us consider vertices v1, v2 of G2, an object e, and a supergraph G1

of G2 extended by e between vertices v1 and v2. Then G1 ≈ G2 if and only
if e ∈ the edges of G2.

(101) Let us consider objects v1, e, v2, and a supergraph G1 of G extended by e
between vertices v1 and v2. Suppose G1 ≈ G2. Then G2 is a supergraph of
G extended by e between vertices v1 and v2. The theorem is a consequence
of (58) and (62).

Let us consider G2, vertices v1, v2 of G2, an object e, and a supergraph G1

of G2 extended by e between vertices v1 and v2. Now we state the propositions:

(102) The vertices of G1 = the vertices of G2.

(103) G1.edgesBetween(the vertices of G2) = the edges of G1. The theorem is
a consequence of (102).

(104) Every vertex of G1 is a vertex of G2.

(105) If e /∈ the edges of G2, then e joins v1 to v2 in G1.

Let us consider G2, vertices v1, v2 of G2, an object e, a supergraph G1 of G2

extended by e between vertices v1 and v2, and objects e1, w1, w2. Now we state
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the propositions:

(106) Suppose e /∈ the edges of G2. Then if e1 joins w1 and w2 in G1 and
e1 /∈ the edges of G2, then e1 = e.

(107) Suppose e /∈ the edges of G2. Then suppose e1 joins w1 and w2 in G1

and e1 /∈ the edges of G2. Then

(i) w1 = v1 and w2 = v2, or

(ii) w1 = v2 and w2 = v1.

The theorem is a consequence of (106) and (105).

(108) Let us consider vertices v1, v2 of G2, a set e, and a supergraph G1 of
G2 extended by e between vertices v1 and v2. Suppose e /∈ the edges of
G2. Then G2 is a subgraph of G1 with edge e removed. The theorem is
a consequence of (57).

(109) Let us consider vertices v1, v2 of G2, an object e, a supergraph G1 of G2

extended by e between vertices v1 and v2, and a walk W of G1. Suppose
if e ∈ W.edges(), then e ∈ the edges of G2. Then W is a walk of G2. The
theorem is a consequence of (57).

Let G be a trivial graph and v1, e, v2 be objects. Let us note that every
supergraph of G extended by e between vertices v1 and v2 is trivial.

Let G be a connected graph. Let us note that every supergraph of G extended
by e between vertices v1 and v2 is connected.

Let G be a complete graph. Note that every supergraph of G extended by e
between vertices v1 and v2 is complete.

Now we state the propositions:

(110) Let us consider vertices v1, v2 of G2, an object e, and a supergraph G1

of G2 extended by e between vertices v1 and v2. Suppose e /∈ the edges
of G2. Then

(i) G1.order() = G2.order(), and

(ii) G1.size() = G2.size() + 1.

(111) Let us consider a finite graph G2, vertices v1, v2 of G2, an object e, and
a supergraph G1 of G2 extended by e between vertices v1 and v2. Suppose
e /∈ the edges of G2. Then G1.size() = G2.size() + 1.

Let G be a finite graph and v1, e, v2 be objects. Observe that every super-
graph of G extended by e between vertices v1 and v2 is finite.

(112) Let us consider vertices v1, v2 of G2, an object e, and a supergraph G1 of
G2 extended by e between vertices v1 and v2. If G2 is loopless and v1 6= v2,
then G1 is loopless. The theorem is a consequence of (105).
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(113) Let us consider a vertex v of G2, an object e, and a supergraph G1 of
G2 extended by e between vertices v and v. Suppose G2 is not loopless or
e /∈ the edges of G2. Then G1 is not loopless. The theorem is a consequence
of (105).

Let us consider G. Let v be a vertex of G. Let us note that every supergraph
of G extended by the edges of G between vertices v and v is non loopless.

Let us consider G2, vertices v1, v2 of G2, an object e, and a supergraph G1

of G2 extended by e between vertices v1 and v2. Now we state the propositions:

(114) If G2 is non-directed-multi and there exists no object e3 such that e3 joins
v1 to v2 inG2, thenG1 is non-directed-multi. The theorem is a consequence
of (71) and (105).

(115) Suppose e /∈ the edges of G2 and there exists an object e2 such that e2

joins v1 to v2 in G2. Then G1 is not non-directed-multi. The theorem is
a consequence of (105) and (70).

(116) If G2 is non-multi and v1 and v2 are not adjacent, then G1 is non-multi.
The theorem is a consequence of (72) and (105).

(117) If e /∈ the edges of G2 and v1 and v2 are adjacent, then G1 is not non-
multi.
Proof: There exist objects e1, e2, u1, u2 such that e1 joins u1 and u2 in
G1 and e2 joins u1 and u2 in G1 and e1 6= e2. �

(118) If G2 is acyclic and v2 /∈ G2.reachableFrom(v1), then G1 is acyclic. The
theorem is a consequence of (57), (54), and (105).

(119) If e /∈ the edges of G2 and v2 ∈ G2.reachableFrom(v1), then G1 is not
acyclic. The theorem is a consequence of (75), (105), and (113).

(120) If G2 is not connected and v2 ∈ G2.reachableFrom(v1), then G1 is not
connected. The theorem is a consequence of (68), (109), (27), (105), (75),
(47), and (40).

(121) Suppose e /∈ the edges of G2 and for every vertices v3, v4 of G2 such that
v3 and v4 are not adjacent holds v3 = v4 or v1 = v3 and v2 = v4 or v1 = v4

and v2 = v3. Then G1 is complete.
Proof: For every vertices u1, u2 of G1 such that u1 6= u2 holds u1 and u2

are adjacent. �

(122) If G2 is not complete and v1 and v2 are adjacent, then G1 is not complete.
The theorem is a consequence of (68), (72), and (105).

Let us consider G. Let v1, e, v2 be objects.
A supergraph of G extended by v1, v2 and e between them is a supergraph

of G defined by

(Def. 12) (i) the vertices of it = (the vertices of G) ∪ {v2} and the edges of
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it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v1 ∈ the vertices of G and v2 /∈ the vertices of G and e /∈ the edges
of G,

(ii) the vertices of it = (the vertices of G) ∪ {v1} and the edges of
it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v1 /∈ the vertices of G and v2 ∈ the vertices of G and e /∈ the edges
of G,

(iii) it ≈ G, otherwise.

Let v1 be a vertex of G and e, v2 be objects.
One can check that a supergraph of G extended by v1, v2 and e between

them can equivalently be formulated as follows:

(Def. 13) (i) the vertices of it = (the vertices of G) ∪ {v2} and the edges of
it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v2 /∈ the vertices of G and e /∈ the edges of G,

(ii) it ≈ G, otherwise.

Let v1, e be objects and v2 be a vertex of G.
Let us note that a supergraph of G extended by v1, v2 and e between them

can equivalently be formulated as follows:

(Def. 14) (i) the vertices of it = (the vertices of G) ∪ {v1} and the edges of
it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v1 /∈ the vertices of G and e /∈ the edges of G,

(ii) it ≈ G, otherwise.

Now we state the propositions:

(123) Let us consider objects v1, e, v2, and supergraphs G1, G2 of G extended
by v1, v2 and e between them. Then G1 ≈ G2.

(124) Let us consider objects v1, e, v2, and a supergraph G1 of G extended by
v1, v2 and e between them. Suppose G1 ≈ G2. Then G2 is a supergraph of
G extended by v1, v2 and e between them. The theorem is a consequence
of (58) and (62).

(125) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1

of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of
G2 and v2 /∈ the vertices of G2. Then there exists a supergraph G3 of G2

extended by v2 such that G1 is a supergraph of G3 extended by e between
vertices v1 and v2. The theorem is a consequence of (94).



About supergraphs. Part I 119

(126) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1

of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of
G2 and v1 /∈ the vertices of G2. Then there exists a supergraph G3 of G2

extended by v1 such that G1 is a supergraph of G3 extended by e between
vertices v1 and v2. The theorem is a consequence of (94).

(127) Let us consider a graph G3, a vertex v1 of G3, objects e, v2, a supergraph
G2 ofG3 extended by v2, and a supergraphG1 ofG2 extended by e between
vertices v1 and v2. Suppose e /∈ the edges of G3 and v2 /∈ the vertices of
G3. Then G1 is a supergraph of G3 extended by v1, v2 and e between
them. The theorem is a consequence of (62), (68), and (94).

(128) Let us consider a graph G3, objects v1, e, a vertex v2 of G3, a supergraph
G2 ofG3 extended by v1, and a supergraphG1 ofG2 extended by e between
vertices v1 and v2. Suppose e /∈ the edges of G3 and v1 /∈ the vertices of
G3. Then G1 is a supergraph of G3 extended by v1, v2 and e between
them. The theorem is a consequence of (62), (68), and (94).

(129) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices of
G2 and e /∈ the edges of G2. Then v2 is a vertex of G1.

(130) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices of
G2 and e /∈ the edges of G2. Then v1 is a vertex of G1.

(131) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices of
G2 and e /∈ the edges of G2. Then

(i) e joins v1 to v2 in G1, and

(ii) e joins v1 and v2 in G1.

(132) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices of
G2 and e /∈ the edges of G2. Then

(i) e joins v1 to v2 in G1, and

(ii) e joins v1 and v2 in G1.

(133) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices of
G2 and e /∈ the edges of G2. Let us consider objects e1, w. If w 6= v1 or
e1 6= e, then e1 does not join w and v2 in G1. The theorem is a consequence
of (72) and (131).

(134) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices of
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G2 and e /∈ the edges of G2. Let us consider objects e1, w. If w 6= v2 or
e1 6= e, then e1 does not join v1 and w in G1. The theorem is a consequence
of (72) and (132).

Let us consider G2, objects v1, e, v2, and a supergraph G1 of G2 extended
by v1, v2 and e between them. Now we state the propositions:

(135) G1.edgesBetween(the vertices of G2) = the edges of G2. The theorem is
a consequence of (131), (70), and (132).

(136) G2 is a subgraph of G1 induced by the vertices of G2. The theorem is
a consequence of (57), (135), (15), and (16).

(137) Let us consider a vertex v1 of G2, an object e, a set v2, and a supergraph
G1 of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges
of G2 and v2 /∈ the vertices of G2. Then G2 is a subgraph of G1 with vertex
v2 removed. The theorem is a consequence of (136).

(138) Let us consider a set v1, an object e, a vertex v2 of G2, and a supergraph
G1 of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges
of G2 and v1 /∈ the vertices of G2. Then G2 is a subgraph of G1 with vertex
v1 removed. The theorem is a consequence of (136).

(139) Let us consider a non trivial graph G, a vertex v1 of G, objects e, v2,
a supergraph G1 of G extended by v1, v2 and e between them, a subgraph
G2 of G1 with vertex v1 removed, and a subgraph G3 of G with vertex v1

removed. Suppose e /∈ the edges of G and v2 /∈ the vertices of G. Then G2

is a supergraph of G3 extended by v2.
Proof: v1 is a vertex of G1 and v1 6= v2. For every object e1, e1 ∈
G1.edgesBetween((the vertices of G1)\{v1}) iff e1 ∈ G.edgesBetween((the
vertices of G)\{v1}). For every object e1 such that e1 ∈ dom(the source of
G2) holds (the source of G2)(e1) = (the source of G3)(e1). For every object
e1 such that e1 ∈ dom(the target of G2) holds (the target of G2)(e1) =
(the target of G3)(e1). �

(140) Let us consider a non trivial graph G, objects v1, e, a vertex v2 of G,
a supergraph G1 of G extended by v1, v2 and e between them, a subgraph
G2 of G1 with vertex v2 removed, and a subgraph G3 of G with vertex v2

removed. Suppose e /∈ the edges of G and v1 /∈ the vertices of G. Then G2

is a supergraph of G3 extended by v1.
Proof: v2 is a vertex of G1 and v1 6= v2. For every object e1, e1 ∈
G1.edgesBetween((the vertices of G1)\{v2}) iff e1 ∈ G.edgesBetween((the
vertices of G)\{v2}). For every object e1 such that e1 ∈ dom(the source of
G2) holds (the source of G2)(e1) = (the source of G3)(e1). For every object
e1 such that e1 ∈ dom(the target of G2) holds (the target of G2)(e1) =
(the target of G3)(e1). �



About supergraphs. Part I 121

(141) Let us consider a vertex v1 of G2, objects e, v2, a supergraph G1 of G2

extended by v1, v2 and e between them, and a vertex w of G1. Suppose
e /∈ the edges of G2 and v2 /∈ the vertices of G2 and w = v2. Then w is
endvertex.
Proof: There exists an object e1 such that w.edgesInOut() = {e1} and
e1 does not join w and w in G1. �

(142) Let us consider objects v1, e, a vertex v2 of G2, a supergraph G1 of G2

extended by v1, v2 and e between them, and a vertex w of G1. Suppose
e /∈ the edges of G2 and v1 /∈ the vertices of G2 and w = v1. Then w is
endvertex.
Proof: There exists an object e1 such that w.edgesInOut() = {e1} and
e1 does not join w and w in G1. �

(143) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1

of G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices
of G2 and e /∈ the edges of G2. Then G1 is not trivial. The theorem is
a consequence of (125) and (89).

(144) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1

of G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices
of G2 and e /∈ the edges of G2. Then G1 is not trivial. The theorem is
a consequence of (126) and (89).

Let G be a graph and v be a vertex of G. Let us note that every supergraph
of G extended by v, the vertices of G and the edges of G between them is non
trivial and every supergraph of G extended by the vertices of G, v and the edges
of G between them is non trivial.

Let G be a trivial graph. Note that every supergraph of G extended by
v, the vertices of G and the edges of G between them is complete and every
supergraph of G extended by the vertices of G, v and the edges of G between
them is complete.

Let G be a loopless graph and v1, e, v2 be objects. One can verify that every
supergraph of G extended by v1, v2 and e between them is loopless.

Let G be a non-directed-multi graph. One can check that every supergraph
of G extended by v1, v2 and e between them is non-directed-multi.

Let G be a non-multi graph. One can check that every supergraph of G
extended by v1, v2 and e between them is non-multi.

Let G be a directed-simple graph. One can check that every supergraph of
G extended by v1, v2 and e between them is directed-simple.

Let G be a simple graph. One can check that every supergraph of G extended
by v1, v2 and e between them is simple.

Now we state the propositions:
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(145) Let us consider a vertex v1 of G2, objects e, v2, a supergraph G1 of G2

extended by v1, v2 and e between them, and a walk W of G1. Suppose
e /∈ the edges of G2 and v2 /∈ the vertices of G2 and (e /∈W.edges() and W
is not trivial or v2 /∈W.vertices()). Then W is a walk of G2. The theorem
is a consequence of (125), (68), (94), (108), (90), (91), (137), (129), and
(143).

(146) Let us consider objects v1, e, a vertex v2 of G2, a supergraph G1 of G2

extended by v1, v2 and e between them, and a walk W of G1. Suppose
e /∈ the edges of G2 and v1 /∈ the vertices of G2 and (e /∈W.edges() and W
is not trivial or v1 /∈W.vertices()). Then W is a walk of G2. The theorem
is a consequence of (126), (68), (94), (108), (90), (91), (138), (130), and
(144).

(147) Let us consider objects v1, e, v2, a supergraph G1 of G2 extended by v1,
v2 and e between them, and a trail T of G1. Suppose e /∈ the edges of
G2 and T .first(), T .last() ∈ the vertices of G2. Then e /∈ T .edges(). The
theorem is a consequence of (129), (141), (145), (130), (142), and (146).

Let G be a connected graph and v1, e, v2 be objects. Let us observe that
every supergraph of G extended by v1, v2 and e between them is connected.

Let G be a non connected graph. One can check that every supergraph of G
extended by v1, v2 and e between them is non connected.

Let G be an acyclic graph. Note that every supergraph of G extended by v1,
v2 and e between them is acyclic.

Let G be a tree-like graph. One can verify that every supergraph of G exten-
ded by v1, v2 and e between them is tree-like.

Now we state the propositions:

(148) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2

and v2 /∈ the vertices of G2 and G2 is not trivial. Then G1 is not complete.
Proof: There exist vertices u, v of G1 such that u 6= v and u and v are
not adjacent. �

(149) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2

and v1 /∈ the vertices of G2 and G2 is not trivial. Then G1 is not complete.
Proof: There exist vertices u, v of G1 such that u 6= v and u and v are
not adjacent. �

Let G be a non complete graph and v1, e, v2 be objects. Observe that every
supergraph of G extended by v1, v2 and e between them is non complete.

Let v be a vertex of G. Observe that every supergraph of G extended by v,
the vertices of G and the edges of G between them is non complete and every
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supergraph of G extended by the vertices of G, v and the edges of G between
them is non complete.

Now we state the propositions:

(150) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2

and v2 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

(151) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2

and v1 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

(152) Let us consider a finite graph G2, a vertex v1 of G2, objects e, v2, and
a supergraph G1 of G2 extended by v1, v2 and e between them. Suppose
e /∈ the edges of G2 and v2 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

(153) Let us consider a finite graph G2, objects v1, e, a vertex v2 of G2, and
a supergraph G1 of G2 extended by v1, v2 and e between them. Suppose
e /∈ the edges of G2 and v1 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

Let G be a finite graph and v1, e, v2 be objects. One can verify that every
supergraph of G extended by v1, v2 and e between them is finite.
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(ii) it ≈ G, otherwise.

A graph given by reversing directions of the edges of G is a graph given by
reversing directions of the edges of G of G. Now we state the propositions:

(1) Let us consider graphs G1, G2 given by reversing directions of the edges
E of G. Then G1 ≈ G2.

(2) Let us consider a graph G1 given by reversing directions of the edges E
of G. Suppose G1 ≈ G2. Then G2 is a graph given by reversing directions
of the edges E of G.

Let us consider G2, E, and a graph G1 given by reversing directions of the
edges E of G2. Now we state the propositions:

(3) G2 is a graph given by reversing directions of the edges E of G1.

(4) (i) the vertices of G1 = the vertices of G2, and

(ii) the edges of G1 = the edges of G2.

(5) Let us consider a graph G1 given by reversing directions of the edges of
G2. Then G2 is a graph given by reversing directions of the edges of G1.
The theorem is a consequence of (4) and (3).

(6) Let us consider a trivial graph G2, a set E, and a graph G1. Then
G1 ≈ G2 if and only if G1 is a graph given by reversing directions of the
edges E of G2.

Let us consider G2, E, a graph G1 given by reversing directions of the edges
E of G2, and objects v1, e, v2. Now we state the propositions:

(7) If E ⊆ the edges of G2 and e ∈ E, then e joins v1 to v2 in G2 iff e joins
v2 to v1 in G1. The theorem is a consequence of (3) and (4).

(8) If E ⊆ the edges of G2 and e /∈ E, then e joins v1 to v2 in G2 iff e joins
v1 to v2 in G1. The theorem is a consequence of (3) and (4).

(9) e joins v1 and v2 in G2 if and only if e joins v1 and v2 in G1. The theorem
is a consequence of (3).

(10) Let us consider a graph G1 given by reversing directions of the edges E
of G2. Then v is a vertex of G1 if and only if v is a vertex of G2.

Let us consider G2, E, V , and a graph G1 given by reversing directions of
the edges E of G2. Now we state the propositions:

(11) G1.edgesBetween(V ) = G2.edgesBetween(V ).
Proof:
For every object e, e ∈ G1.edgesBetween(V ) iff e ∈ G2.edgesBetween(V ).
�

(12) G1.edgesInOut(V ) = G2.edgesInOut(V ).
Proof: For every object e, e ∈ G1.edgesInOut(V ) iff e ∈ G2.edgesInOut(V ).
�
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(13) Let us consider a graph G1 given by reversing directions of the edges
E of G2, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v1.edgesInOut() = v2.edgesInOut(). The theorem is a consequence of (12).

Let us consider G2, E, and a graph G1 given by reversing directions of the
edges E of G2. Now we state the propositions:

(14) Every walk of G2 is a walk of G1. The theorem is a consequence of (4)
and (9).

(15) Every walk of G1 is a walk of G2. The theorem is a consequence of (3)
and (14).

(16) Let us consider a graph G1 given by reversing directions of the edges E
of G2, a walk W2 of G2, and a walk W1 of G1. Suppose E ⊆ the edges of
G2 and W1 = W2 and W2.edges() ⊆ E. Then W1 is directed if and only if
W2.reverse() is directed.
Proof: For every odd element n of N such that n < lenW1 holds W1(n+1)
joins W1(n) to W1(n+ 2) in G1 by [6, (1)], [7, (12)]. �

(17) Let us consider a graph G1 given by reversing directions of the edges
of G2, a walk W2 of G2, and a walk W1 of G1. Suppose W1 = W2. Then
W1 is directed if and only if W2.reverse() is directed. The theorem is
a consequence of (16).

(18) Let us consider a graph G1 given by reversing directions of the edges E
of G2, a walk W2 of G2, and a walk W1 of G1. If W1 = W2, then W1 is
chordal iff W2 is chordal. The theorem is a consequence of (3).

(19) Let us consider a graph G1 given by reversing directions of the edges E
of G2, and objects v1, v2. Then there exists a walk W1 of G1 such that W1

is walk from v1 to v2 if and only if there exists a walk W2 of G2 such that
W2 is walk from v1 to v2. The theorem is a consequence of (15) and (14).

(20) Let us consider a graph G1 given by reversing directions of the edges
E of G2, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
G1.reachableFrom(v1) = G2.reachableFrom(v2). The theorem is a conse-
quence of (19).

(21) Let us consider a graph G1 given by reversing directions of the edges E
of G2. Then

(i) G1.componentSet() = G2.componentSet(), and

(ii) G1.numComponents() = G2.numComponents().

The theorem is a consequence of (10) and (20).

Let G be a trivial graph and E be a set. Observe that every graph given by
reversing directions of the edges E of G is trivial.
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Let G be a non trivial graph. Let us observe that every graph given by
reversing directions of the edges E of G is non trivial.

Now we state the propositions:

(22) Let us consider a graph G1 given by reversing directions of the edges
E of G2, a set v, and a subgraph G3 of G1 with vertex v removed. Then
every subgraph of G2 with vertex v removed is a graph given by reversing
directions of the edges E \ G1.edgesInOut({v}) of G3. The theorem is
a consequence of (11), (2), (3), and (6).

(23) Let us consider a graph G1 given by reversing directions of the edges E
of G2, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v1 is isolated iff v2 is isolated, and

(ii) v1 is endvertex iff v2 is endvertex, and

(iii) v1 is cut-vertex iff v2 is cut-vertex.

The theorem is a consequence of (3).

Let us consider G2, E, and a graph G1 given by reversing directions of the
edges E of G2. Now we state the propositions:

(24) (i) G1.order() = G2.order(), and

(ii) G1.size() = G2.size().
The theorem is a consequence of (4).

(25) Suppose E ⊆ the edges of G2 and G2 is non-directed-multi and for every
objects e1, e2, v1, v2 such that e1 joins v1 and v2 in G2 and e2 joins v1 and
v2 in G2 holds e1, e2 ∈ E or e1 /∈ E and e2 /∈ E. Then G1 is non-directed-
multi.
Proof: For every objects e1, e2, v1, v2 such that e1 joins v1 to v2 in G1

and e2 joins v1 to v2 in G1 holds e1 = e2. �

Let G be a non-directed-multi graph. Let us note that every graph given by
reversing directions of the edges of G is non-directed-multi.

Let G be a non non-directed-multi graph. Observe that every graph given
by reversing directions of the edges of G is non non-directed-multi.

Let G be a non-multi graph and E be a set. One can verify that every graph
given by reversing directions of the edges E of G is non-multi.

Let G be a non non-multi graph. Let us note that every graph given by
reversing directions of the edges E of G is non non-multi.

Let G be a loopless graph. One can check that every graph given by reversing
directions of the edges E of G is loopless.

Let G be a non loopless graph. One can check that every graph given by
reversing directions of the edges E of G is non loopless.
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Let G be a connected graph. Let us observe that every graph given by
reversing directions of the edges E of G is connected.

Let G be a non connected graph. Observe that every graph given by reversing
directions of the edges E of G is non connected.

Let G be an acyclic graph. Note that every graph given by reversing direc-
tions of the edges E of G is acyclic.

Let G be a non acyclic graph. One can verify that every graph given by
reversing directions of the edges E of G is non acyclic.

Let G be a complete graph. Observe that every graph given by reversing
directions of the edges E of G is complete.

Let G be a non complete graph. Observe that every graph given by reversing
directions of the edges E of G is non complete.

Let G be a chordal graph. Note that every graph given by reversing directions
of the edges E of G is chordal.

Let G be a finite graph. Let us note that every graph given by reversing
directions of the edges E of G is finite.

Let G be a non finite graph. One can verify that every graph given by
reversing directions of the edges E of G is non finite.

Now we state the propositions:

(26) Let us consider a graph G1 given by reversing directions of the edges of
G2. Then

(i) the source of G1 = the target of G2, and

(ii) the target of G1 = the source of G2.

(27) Let us consider a graph G1 given by reversing directions of the edges of
G2, and objects v1, e, v2. Then e joins v1 to v2 in G2 if and only if e joins
v2 to v1 in G1. The theorem is a consequence of (26).

2. Adding a Vertex and Several Edges to a Graph

Let us consider G, v, and V .
A supergraph of G extended by vertex v and edges from v to V of G is

a supergraph of G defined by

(Def. 2) (i) the vertices of it = (the vertices of G) ∪ {v} and the edges of
it = (the edges of G) ∪ (V 7−→ (the edges of G)) and the source
of it = (the source of G)+·((V 7−→ (the edges of G)) 7−→ v) and
the target of it = (the target of G)+·π1(V � {the edges of G}), if
V ⊆ the vertices of G and v /∈ the vertices of G,

(ii) it ≈ G, otherwise.
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A supergraph of G extended by vertex v and edges from V of G to v is
a supergraph of G defined by

(Def. 3) (i) the vertices of it = (the vertices of G) ∪ {v} and the edges of
it = (the edges of G) ∪ (V 7−→ (the edges of G)) and the source of
it = (the source of G)+·π1(V � {the edges of G}) and the target
of it = (the target of G)+·((V 7−→ (the edges of G)) 7−→ v), if
V ⊆ the vertices of G and v /∈ the vertices of G,

(ii) it ≈ G, otherwise.

A supergraph of G extended by vertex v and edges from v to the vertices of
G is a supergraph of G extended by vertex v and edges from v to the vertices
of G of G.

A supergraph of G extended by vertex v and edges from the vertices of G
to v is a supergraph of G extended by vertex v and edges from the vertices of
G of G to v. Now we state the propositions:

(28) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
from v to V of G. Then G1 ≈ G2.

(29) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
from V of G to v. Then G1 ≈ G2.

(30) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G. Suppose G1 ≈ G2. Then G2 is a supergraph of G
extended by vertex v and edges from v to V of G.

(31) Let us consider a supergraph G1 of G extended by vertex v and edges
from V of G to v. Suppose G1 ≈ G2. Then G2 is a supergraph of G
extended by vertex v and edges from V of G to v.

(32) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, and a supergraph G2 of G extended by vertex v and
edges from V of G to v. Then

(i) the vertices of G1 = the vertices of G2, and

(ii) the edges of G1 = the edges of G2.

(33) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then G1.edgesOutOf({v}) = V 7−→ (the edges of G2).
Proof: For every object e, e ∈ G1.edgesOutOf({v}) iff e ∈ V 7−→
(the edges of G2). �

(34) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then G1.edgesInto({v}) = V 7−→ (the edges of G2).
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Proof: For every object e, e ∈ G1.edgesInto({v}) iff e ∈ V 7−→ (the edges
of G2). �

(35) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, and a supergraph G2 of G extended by vertex v and edges
from V of G to v. Suppose V ⊆ the vertices of G and v /∈ the vertices of
G. Then

(i) G2 is a graph given by reversing directions
of the edges G1.edgesOutOf({v}) of G1, and

(ii) G1 is a graph given by reversing directions
of the edges G2.edgesInto({v}) of G2.

The theorem is a consequence of (33) and (34).

(36) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, a supergraph G2 of G extended by vertex v and edges
from V of G to v, and objects v1, e, v2. Then e joins v1 and v2 in G1 if
and only if e joins v1 and v2 in G2. The theorem is a consequence of (35)
and (9).

(37) Let us consider a supergraph G1 of G extended by vertex v and edges
from v to V of G, a supergraph G2 of G extended by vertex v and edges
from V of G to v, and an object w. Then w is a vertex of G1 if and only
if w is a vertex of G2.

(38) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e1, u. Then

(i) e1 does not join u to v in G1, and

(ii) if u /∈ V , then e1 does not join v to u in G1, and

(iii) for every object e2 such that e1 joins v to u in G1 and e2 joins v to
u in G1 holds e1 = e2.

Proof: e1 does not join u to v in G1. If u /∈ V , then e1 does not join v to
u in G1. e1 /∈ the edges of G2 and e2 /∈ the edges of G2. Consider x1, y1

being objects such that x1 ∈ V and y1 ∈ {the edges of G2} and e1 = 〈〈x1,

y1〉〉. Consider x2, y2 being objects such that x2 ∈ V and y2 ∈ {the edges
of G2} and e2 = 〈〈x2, y2〉〉. �

(39) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e1, u. Then

(i) e1 does not join v to u in G1, and

(ii) if u /∈ V , then e1 does not join u to v in G1, and
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(iii) for every object e2 such that e1 joins u to v in G1 and e2 joins u to
v in G1 holds e1 = e2.

Proof: e1 does not join v to u in G1. If u /∈ V , then e1 does not join u to
v in G1. e1 /∈ the edges of G2 and e2 /∈ the edges of G2. Consider x1, y1

being objects such that x1 ∈ V and y1 ∈ {the edges of G2} and e1 = 〈〈x1,

y1〉〉. Consider x2, y2 being objects such that x2 ∈ V and y2 ∈ {the edges
of G2} and e2 = 〈〈x2, y2〉〉. �

(40) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e, v1, v2. Suppose v1 6= v. If e joins v1 to v2

in G1, then e joins v1 to v2 in G2.
Proof: e ∈ the edges of G2. �

(41) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Let us consider objects e, v1, v2. Suppose v2 6= v. If e joins v1 to v2

in G1, then e joins v1 to v2 in G2.
Proof: e ∈ the edges of G2. �

(42) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from v to V of G2, and an object v1. Suppose V ⊆ the vertices of G2 and
v /∈ the vertices of G2 and v1 ∈ V . Then 〈〈v1, the edges of G2〉〉 joins v to
v1 in G1.

(43) Let us consider a supergraph G1 of G2 extended by vertex v and edges
from V of G2 to v, and an object v1. Suppose V ⊆ the vertices of G2 and
v /∈ the vertices of G2 and v1 ∈ V . Then 〈〈v1, the edges of G2〉〉 joins v1 to
v in G1.

Let us consider G, v, V , a supergraph G1 of G extended by vertex v and
edges from v to V of G, and a supergraph G2 of G extended by vertex v and
edges from V of G to v. Now we state the propositions:

(44) Every walk of G1 is a walk of G2. The theorem is a consequence of (35)
and (14).

(45) Every walk of G2 is a walk of G1. The theorem is a consequence of (35)
and (14).

Let us consider G, v, and V .
A supergraph of G extended by vertex v and edges between v and V of G

is a supergraph of G defined by

(Def. 4) (i) the vertices of it = (the vertices of G)∪{v} and for every object e,
e does not join v and v in it and for every object v1, if v1 /∈ V , then e
does not join v1 and v in it and for every object v2 such that v1 6= v
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and v2 6= v and e joins v1 to v2 in it holds e joins v1 to v2 in G and
there exists a set E such that V = E and E misses the edges of G
and the edges of it = (the edges of G) ∪ E and for every object v1

such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1

joins v1 and v in it and for every object e2 such that e2 joins v1 and
v in it holds e1 = e2, if V ⊆ the vertices of G and v /∈ the vertices
of G,

(ii) it ≈ G, otherwise.

A supergraph of G extended by vertex v and edges between v and the vertices
of G is a supergraph of G extended by vertex v and edges between v and
the vertices of G of G.

One can verify that a supergraph of G extended by vertex v and edges from
v to V of G is a supergraph of G extended by vertex v and edges between v and
V of G.

Note that a supergraph of G extended by vertex v and edges from V of G
to v is a supergraph of G extended by vertex v and edges between v and V of
G. Now we state the propositions:

(46) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and ∅ of G2. Then the edges of G2 = the edges of G1.

(47) Let us consider a non empty set V , and a supergraph G1 of G2 extended
by vertex v and edges between v and V of G2. Suppose V ⊆ the vertices
of G2 and v /∈ the vertices of G2. Then the edges of G1 6= ∅.

(48) Let us consider a supergraph G1 of G extended by vertex v and edges
between v and V of G. Suppose G1 ≈ G2. Then G2 is a supergraph of G
extended by vertex v and edges between v and V of G.

(49) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2, and objects v1, e, v2. Suppose V ⊆ the vertices
of G2 and v /∈ the vertices of G2 and v1 6= v and v2 6= v and e joins v1 and
v2 in G1. Then e joins v1 and v2 in G2.

(50) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then v is a vertex of G1.

(51) Let us consider a supergraph G1 of G2 extended by vertex v and ed-
ges between v and V of G2, a set E, and objects v1, e, v2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2 and the edges of
G1 = (the edges of G2) ∪ E and E misses the edges of G2 and e joins v1

and v2 in G1 and e /∈ the edges of G2. Then

(i) e ∈ E, and
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(ii) v1 = v and v2 ∈ V or v2 = v and v1 ∈ V .

(52) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2, and a set E. Suppose V ⊆ the vertices of G2 and
v /∈ the vertices of G2 and the edges of G1 = (the edges of G2) ∪ E and
E misses the edges of G2. Then there exist functions f , g from E into
V ∪ {v} such that

(i) the source of G1 = (the source of G2)+·f , and

(ii) the target of G1 = (the target of G2)+·g, and

(iii) for every object e such that e ∈ E holds e joins f(e) to g(e) in G1

and (f(e) = v iff g(e) 6= v).

Proof: Consider E1 being a set such that V = E1 and E1 misses the ed-
ges of G2 and the edges of G1 = (the edges of G2) ∪ E1 and for every
object v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E1 and
e1 joins v1 and v in G1 and for every object e2 such that e2 joins v1 and
v in G1 holds e1 = e2. Define P[object, object] ≡ there exists an object v2

such that $1 joins $2 to v2 in G1. For every object e such that e ∈ E there
exists an object v1 such that v1 ∈ V ∪ {v} and P[e, v1].

Consider f being a function from E into V ∪ {v} such that for every
object e such that e ∈ E holds P[e, f(e)]. Define Q[object, object] ≡ $1

joins f($1) to $2 in G1. For every object e such that e ∈ E there exists
an object v2 such that v2 ∈ V ∪ {v} and Q[e, v2].

Consider g being a function from E into V ∪ {v} such that for every
object e such that e ∈ E holds Q[e, g(e)]. For every object e such that
e ∈ dom(the source of G1) holds (the source of G1)(e) = ((the source of
G2)+·f)(e). For every object e such that e ∈ dom(the target of G1) holds
(the target of G1)(e) = ((the target of G2)+·g)(e). �

(53) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then the edges of G2 = G1.edgesBetween(the vertices of G2).
Proof: Set B = G1.edgesBetween(the vertices of G2). For every object e,
e ∈ the edges of G2 iff e ∈ B. �

(54) Let us consider a graph G2, sets v, V , and a supergraph G1 of G2

extended by vertex v and edges between v and V of G2. Suppose V ⊆
the vertices of G2 and v /∈ the vertices of G2. Then G2 is a subgraph of
G1 with vertex v removed. The theorem is a consequence of (53).

(55) Every supergraph of G2 extended by vertex v and edges between v and ∅
of G2 is a supergraph of G2 extended by v. The theorem is a consequence
of (46).



About supergraphs. Part II 135

(56) Let us consider an object v1, and a supergraph G1 of G2 extended by
vertex v and edges between v and {v1} of G2. Suppose v1 ∈ the vertices
of G2 and v /∈ the vertices of G2. Then there exists an object e such that

(i) e /∈ the edges of G2, and

(ii) G1 is supergraph of G2 extended by vertices v, v1 and e between
them or supergraph of G2 extended by vertices v1, v and e between
them.

The theorem is a consequence of (52).

(57) Let us consider a subset W of V , and a supergraph G1 of G2 extended
by vertex v and edges between v and V of G2. Suppose V ⊆ the vertices
of G2 and v /∈ the vertices of G2. Then there exists a function f from W

into G1.edgesBetween(W, {v}) such that

(i) f is one-to-one and onto, and

(ii) for every object w such that w ∈W holds f(w) joins w and v in G1.

Proof: Consider E being a set such that V = E and E misses the edges
of G2 and the edges of G1 = (the edges of G2) ∪ E and for every object
v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1

joins v1 and v in G1 and for every object e2 such that e2 joins v1 and v

in G1 holds e1 = e2. Define P[object, object] ≡ $2 joins $1 and v in G1.
For every object w such that w ∈ W there exists an object e such that
e ∈ G1.edgesBetween(W, {v}) and P[w, e].

Consider f being a function from W into G1.edgesBetween(W, {v})
such that for every object w such that w ∈W holds P[w, f(w)]. For every
objects w1, w2 such that w1, w2 ∈ W and f(w1) = f(w2) holds w1 = w2.
For every object e such that e ∈ G1.edgesBetween(W, {v}) holds e ∈ rng f .
�

(58) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2 and E misses the edges of G2 and the edges of G1 = (the edges of
G2) ∪ E. Then E = G1.edgesBetween(V, {v}).
Proof: Consider E1 being a set such that V = E1 and E1 misses the ed-
ges of G2 and the edges of G1 = (the edges of G2)∪E1 and for every object
v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E1 and e1 joins
v1 and v in G1 and for every object e2 such that e2 joins v1 and v in G1

holds e1 = e2. For every object e, e ∈ E iff e ∈ G1.edgesBetween(V, {v}).
�

(59) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
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of G2. Then

(i) G1.edgesBetween(V, {v}) misses the edges of G2, and

(ii) the edges of G1 = (the edges of G2) ∪G1.edgesBetween(V, {v}).

Proof: G1.edgesBetween(V, {v}) ∩ (the edges of G2) = ∅. For every ob-
ject e such that e ∈ the edges of G1 holds e ∈ (the edges of G2) ∪
G1.edgesBetween(V, {v}). �

(60) Let us consider a graph G3, an object v, sets V1, V2, a supergraph G1 of
G3 extended by vertex v and edges between v and V1∪V2 of G3, and a sub-
graph G2 of G1 with edges G1.edgesBetween(V2, {v}) removed. Suppose
V1 ∪ V2 ⊆ the vertices of G3 and v /∈ the vertices of G3 and V1 misses V2.
Then G2 is a supergraph of G3 extended by vertex v and edges between
v and V1 of G3.
Proof: Consider E being a set such that V1 ∪ V2 = E and E misses
the edges of G3 and the edges of G1 = (the edges of G3) ∪ E and for
every object v1 such that v1 ∈ V1 ∪ V2 there exists an object e1 such that
e1 ∈ E and e1 joins v1 and v in G1 and for every object e2 such that e2

joins v1 and v in G1 holds e1 = e2. E = G1.edgesBetween(V1 ∪ V2, {v}).
For every object e such that e ∈ the edges of G3 holds e ∈ (the edges of
G3) \G1.edgesBetween(V2, {v}). G2 is a supergraph of G3. �

(61) Let us consider a graph G3, an object v, a set V , a vertex v1 of G3, and
a supergraph G1 of G3 extended by vertex v and edges between v and
V ∪ {v1} of G3. Suppose V ⊆ the vertices of G3 and v /∈ the vertices of
G3 and v1 /∈ V .

Then there exists a supergraph G2 of G3 extended by vertex v and
edges between v and V of G3 and there exists an object e such that
e /∈ the edges of G3 and G1 is supergraph of G2 extended by e between
vertices v and v1 or supergraph of G2 extended by e between vertices v1

and v.
Proof: Reconsider W = {v1} as a subset of V ∪ {v1}. Consider f being
a function from W into G1.edgesBetween(W, {v}) such that f is one-to-
one and onto and for every object w such that w ∈W holds f(w) joins w
and v in G1. f(v1) /∈ the edges of G3. v is a vertex of G1. �

(62) Let us consider a graph G3, an object v, a set V , a vertex v1 of G3, an ob-
ject e, and a supergraph G2 of G3 extended by vertex v and edges between
v and V of G3. Suppose V ⊆ the vertices of G3 and v /∈ the vertices of G3

and v1 /∈ V and e /∈ the edges of G2.
Let us consider a graph G1. Suppose G1 is supergraph of G2 extended

by e between vertices v1 and v or supergraph of G2 extended by e between
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vertices v and v1. Then G1 is a supergraph of G3 extended by vertex v

and edges between v and V ∪ {v1} of G3.

Proof: Consider E being a set such that V = E and E misses the edges
of G3 and the edges of G2 = (the edges of G3)∪E and for every object v1

such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1 joins
v1 and v in G2 and for every object e2 such that e2 joins v1 and v in G2

holds e1 = e2. Consider f being a function such that f is one-to-one and
dom f = E and rng f = V . Set f1 = f+·(e 7−→. v1). rng f∩rng(e 7−→. v1) = ∅.
For every object w such that w ∈ rng f ∪ rng(e7−→. v1) holds w ∈ rng f1. v
is a vertex of G2 and v1 is a vertex of G3. �

Let us consider G2, v, V , a supergraph G1 of G2 extended by vertex v

and edges between v and V of G2, and a walk W of G1. Now we state the
propositions:

(63) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then

(i) if W.edges() ⊆ the edges of G2 and W is not trivial, then v /∈
W.vertices(), and

(ii) if v /∈W.vertices(), then W.edges() ⊆ the edges of G2.

Proof: Consider E being a set such that V = E and E misses the edges
of G2 and the edges of G1 = (the edges of G2) ∪ E and for every object
v1 such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1

joins v1 and v in G1 and for every object e2 such that e2 joins v1 and v

in G1 holds e1 = e2. For every object e such that e ∈ W.edges() holds
e ∈ the edges of G2. �

(64) Suppose V ⊆ the vertices ofG2 and v /∈ the vertices ofG2 and (W.edges()
⊆ the edges of G2 and W is not trivial or v /∈ W.vertices()). Then W is
a walk of G2. The theorem is a consequence of (63).

(65) If W.vertices() ⊆ the vertices of G2, then W.edges() ⊆ the edges of G2.
The theorem is a consequence of (63).

(66) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
between v and V of G. Then

(i) the vertices of G1 = the vertices of G2, and

(ii) every vertex of G1 is a vertex of G2.

Proof: The vertices of G1 = the vertices of G2. �

(67) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
between v and V of G, and objects v1, e1, v2. Suppose e1 joins v1 and v2

in G1. Then there exists an object e2 such that e2 joins v1 and v2 in G2.
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(68) Let us consider supergraphs G1, G2 of G extended by vertex v and edges
between v and V of G. Then there exists a function f from the edges of
G1 into the edges of G2 such that

(i) f�(the edges of G) = idα, and

(ii) f is one-to-one and onto, and

(iii) for every objects v1, e, v2 such that e joins v1 and v2 in G1 holds f(e)
joins v1 and v2 in G2,

where α is the edges of G. The theorem is a consequence of (67), (47), and
(51).

Let G be a loopless graph. Let us consider v and V . Observe that every
supergraph of G extended by vertex v and edges between v and V of G is
loopless.

Let G be a non-directed-multi graph. Let us note that every supergraph of
G extended by vertex v and edges between v and V of G is non-directed-multi.

Let G be a non-multi graph. Note that every supergraph of G extended by
vertex v and edges between v and V of G is non-multi.

Let G be a directed-simple graph. One can verify that every supergraph of
G extended by vertex v and edges between v and V of G is directed-simple.

Let G be a simple graph. Let us observe that every supergraph of G extended
by vertex v and edges between v and V of G is simple.

Now we state the proposition:

(69) Let us consider a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2, a walk W of G1, and vertices v1, v2 of G2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2 and W.first() = v1 and
W.last() = v2 and v2 /∈ G2.reachableFrom(v1). Then v ∈ W.vertices().
The theorem is a consequence of (64).

Let us consider G2, v, V , and a supergraph G1 of G2 extended by vertex v
and edges between v and V of G2. Now we state the propositions:

(70) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and G2 is
acyclic and for every component G3 of G2 and for every vertices w1, w2 of
G3 such that w1, w2 ∈ V holds w1 = w2. Then G1 is acyclic.
Proof: Consider E being a set such that V = E and E misses the edges
of G2 and the edges of G1 = (the edges of G2)∪E and for every object v1

such that v1 ∈ V there exists an object e1 such that e1 ∈ E and e1 joins
v1 and v in G1 and for every object e2 such that e2 joins v1 and v in G1

holds e1 = e2. There exists no walk W of G1 such that W is cycle-like. �

(71) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and (G2 is
not acyclic or there exists a component G3 of G2 and there exist vertices
w1, w2 of G3 such that w1, w2 ∈ V and w1 6= w2). Then G1 is not acyclic.
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(72) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and for every
component G3 of G2, there exists a vertex w of G3 such that w ∈ V . Then
G1 is connected.
Proof: For every vertex u of G1 such that u 6= v there exists a walk W1

of G1 such that W1 is walk from u to v. For every vertices u, w of G1,
there exists a walk W1 of G1 such that W1 is walk from u to w. �

Let G be a connected graph, v be an object, and V be a non empty set. Note
that every supergraph of G extended by vertex v and edges between v and V

of G is connected.
Let us consider G2, v, V , and a supergraph G1 of G2 extended by vertex v

and edges between v and V of G2. Now we state the propositions:

(73) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and there
exists a component G3 of G2 such that for every vertex w of G3, w /∈ V .
Then G1 is not connected.
Proof: Consider G3 being a component of G2 such that for every vertex
w of G3, w /∈ V . Set v1 = the vertex of G3. There exists no walk W of G1

such that W is walk from v1 to v. �

(74) Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and there
exists a component G3 of G2 such that the vertices of G3 misses V . Then
G1 is not connected. The theorem is a consequence of (73).

Let G be a non connected graph and v be an object. One can check that
every supergraph of G extended by vertex v and edges between v and ∅ of G is
non connected.

(75) Let us consider a supergraph G1 of G2 extended by vertex v and ed-
ges between v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈
the vertices of G2. Then G1 is complete if and only if G2 is complete and
V = the vertices of G2.
Proof: For every vertices u, v of G1 such that u 6= v holds u and v are
adjacent. �

Let G be a complete graph. Observe that every supergraph of G extended
by vertex the vertices of G and edges between the vertices of G and the vertices
of G is complete.

Now we state the propositions:

(76) Let us consider a supergraphG1 ofG2 extended by vertex v and edges be-
tween v and V of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices
of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + V .
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(77) Let us consider a finite graph G2, an object v, a set V , and a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then G1.order() =
G2.order() + 1.

(78) Let us consider a finite graph G2, an object v, a finite set V , and a su-
pergraph G1 of G2 extended by vertex v and edges between v and V of
G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then
G1.size() = G2.size() + V .

Let G be a finite graph, v be an object, and V be a set. One can verify that
every supergraph of G extended by vertex v and edges between v and V of G
is finite.
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Summary. This paper continues formalization in Mizar [2, 1] of basic
notions of the composition-nominative approach to program semantics [13] which
was started in [8, 11].

The composition-nominative approach studies mathematical models of com-
puter programs and data on various levels of abstraction and generality and
provides tools for reasoning about their properties. Besides formalization of se-
mantics of programs, certain elements of the composition-nominative approach
were applied to abstract systems in a mathematical systems theory [4, 6, 7, 5, 3].

In the paper we introduce a definition of the notion of a binominative function
over a setD understood as a partial function which maps elements ofD toD. The
sets of binominative functions and nominative predicates [11] over given sets form
the carrier of the generalized Glushkov algorithmic algebra [14]. This algebra can
be used to formalize algorithms which operate on various data structures (such
as multidimensional arrays, lists, etc.) and reason about their properties.

We formalize the operations of this algebra (also called compositions) which
are valid over uninterpretated data and which include among others the sequ-
ential composition, the prediction composition, the branching composition, the
monotone Floyd-Hoare composition, and the cycle composition. The details on
formalization of nominative data and the operations of the algorithmic algebra
over them are described in [10, 12, 9].
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1. Preliminaries

From now on x denotes an object and n denotes a natural number.
Let X, Y be sets. Observe that every element of X→̇Y is X-defined and

every element of X→̇Y is Y -valued.
Now we state the proposition:

(1) Let us consider sets X, Y, Z, T , objects x, y, z, and a function f from
X ×Y ×Z into T . Suppose x ∈ X and y ∈ Y and z ∈ Z and T 6= ∅. Then
f(x, y, z) ∈ T .

One can verify that there exists a set which is non empty and has not non
empty elements.

LetA,B, C be sets. The functor ·(A,B,C) yielding a function from (A→̇B)×
(B→̇C) into A→̇C is defined by

(Def. 1) for every partial function f from A to B and for every partial function
g from B to C, it(f, g) = g · f .

From now on D denotes a non empty set and p, q denote partial predicates
of D.

Now we state the propositions:

(2) If q is total, then dom p ⊆ dom(p ∨ q).
(3) If q is total, then dom p ⊆ dom(p ∧ q).
(4) If q is total, then dom p ⊆ dom(p⇒ q).

2. Operations in Algebras of Algorithms and Specifications over
Uninterpreted Data

From now on D denotes a set.
Let us consider D. The functor FPrg(D) yielding a set is defined by the term

(Def. 2) D→̇D.

Observe that FPrg(D) is non empty and functional.
A binominative function of D is a partial function from D to D. Now we

state the proposition:

(5) Let us consider a non empty set D, and a binominative function f of D.
Then idfield f is a binominative function of D.

In the sequel p, q denote partial predicates of D and f , g denote binominative
functions of D.

Let us consider D and p. Let F be a function from Pr(D) into Pr(D). One
can check that F (p) is function-like and relation-like.
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Let p be an element of Pr(D). One can check that F (p) is function-like and
relation-like.

Let us consider p and q. Let F be a function from Pr(D)×Pr(D) into Pr(D).
Observe that F (p, q) is function-like and relation-like.

Let p, q be elements of Pr(D). One can check that F (p, q) is function-like
and relation-like.

Let x be an element of Pr(D) × Pr(D). Observe that F (x) is function-like
and relation-like.

Let us consider f . Let F be a function from FPrg(D) into FPrg(D). Let us
observe that F (f) is function-like and relation-like.

Let us consider p and g. Let F be a function from Pr(D)×FPrg(D)×FPrg(D)
into FPrg(D). One can check that F (p, f, g) is function-like and relation-like
and F (〈〈p, f, g〉〉) is function-like and relation-like.

Let us consider q. Let F be a function from Pr(D)× FPrg(D)×Pr(D) into
Pr(D). One can check that F (p, f, q) is function-like and relation-like and F (〈〈p,
f, q〉〉) is function-like and relation-like.

Let D be a set. We introduce the notation idPP(D) as a synonym of idD.
One can verify that the functor idPP(D) yields a binominative function of

D. Let D be a non empty set and d be an element of D. The functor idPP(d)
yielding an element of D is defined by the term

(Def. 3) idPP(D)(d).

Let us consider D. The functor •(D) yielding a function from FPrg(D) ×
FPrg(D) into FPrg(D) is defined by the term

(Def. 4) ·(D,D,D).

Let us consider D, f , and g. The functor f • g yielding a binominative
function of D is defined by the term

(Def. 5) •(D)(f, g).

Let us consider D. The functor ·(D) yielding a function from FPrg(D) ×
Pr(D) into Pr(D) is defined by the term

(Def. 6) ·(D,D,Boolean).

Let us consider D, f , and p. The functor f · p yielding a partial predicate of
D is defined by the term

(Def. 7) ·(D)(f, p).

Let F be a function from Pr(D)× FPrg(D)× FPrg(D) into FPrg(D), p be
a partial predicate of D, and f , g be binominative functions of D. One can check
that F (p, f, g) is function-like and relation-like.

Now we state the proposition:
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(6) If x ∈ dom(f ·p), then x ∈ dom(p ·f) and ((p ·f)(x) = true or (p ·f)(x) =
false).

The scheme PredToNomPredEx deals with a set D and a set D1 and a unary
predicate P and states that

(Sch. 1) There exists a partial predicate p of D such that dom p = D1 and for
every object d such that d ∈ dom p holds if P[d], then p(d) = true and if
not P[d], then p(d) = false

provided

• D1 ⊆ D.

The scheme PredToNomPredUnique deals with a set D and a set D1 and a
unary predicate P and states that

(Sch. 2) For every partial predicates p, q of D such that dom p = D1 and for every
object d such that d ∈ dom p holds if P[d], then p(d) = true and if not
P[d], then p(d) = false and dom q = D1 and for every object d such that
d ∈ dom q holds if P[d], then q(d) = true and if not P[d], then q(d) = false
holds p = q.

Let us consider D. The functor isEmpty(D) yielding a partial predicate of
D is defined by

(Def. 8) dom it = D and for every object d such that d ∈ dom it holds if d = ∅,
then it(d) = true and if d 6= ∅, then it(d) = false.

Let D be a set with non non empty elements. The functor EmptyD yielding
a binominative function of D is defined by the term

(Def. 9) D 7−→ ∅.
Let us consider D. The functor ⊥D yielding a binominative function of D is

defined by the term

(Def. 10) ∅.
In the sequel D denotes a non empty set, p, q denote partial predicates of

D, and f , g, h denote binominative functions of D.
Let us consider D. The functor IF(D) yielding a function from Pr(D) ×

FPrg(D)× FPrg(D) into FPrg(D) is defined by

(Def. 11) for every partial predicate p of D and for every binominative functions f ,
g of D, dom it(p, f, g) = {d, where d is an element of D : d ∈ dom p and
p(d) = true and d ∈ dom f or d ∈ dom p and p(d) = false and d ∈ dom g}
and for every object d, if d ∈ dom p and p(d) = true and d ∈ dom f , then
it(p, f, g)(d) = f(d) and if d ∈ dom p and p(d) = false and d ∈ dom g,
then it(p, f, g)(d) = g(d).



On algebras of algorithms and specifications over ... 145

Let us consider D, p, f , and g. The functor IF(p, f, g) yielding a binominative
function of D is defined by the term

(Def. 12) IF(D)(p, f, g).

Now we state the proposition:

(7) Suppose x ∈ dom(IF(p, f, g)). Then

(i) x ∈ dom p and p(x) = true and x ∈ dom f , or

(ii) x ∈ dom p and p(x) = false and x ∈ dom g.

Let us consider D. The functor FH(D) yielding a function from Pr(D) ×
FPrg(D)× Pr(D) into Pr(D) is defined by

(Def. 13) for every partial predicates p, q of D and for every binominative function
f of D, dom it(p, f, q) = {d, where d is an element of D : d ∈ dom p and
p(d) = false or d ∈ dom(q · f) and (q · f)(d) = true or d ∈ dom p and
p(d) = true and d ∈ dom(q ·f) and (q ·f)(d) = false} and for every object
d, if d ∈ dom p and p(d) = false or d ∈ dom(q ·f) and (q ·f)(d) = true, then
it(p, f, q)(d) = true and if d ∈ dom p and p(d) = true and d ∈ dom(q · f)
and (q · f)(d) = false, then it(p, f, q)(d) = false.

Let us consider D, p, q, and f . The functor FH(p, f, q) yielding a partial
predicate of D is defined by the term

(Def. 14) FH(D)(p, f, q).

Now we state the proposition:

(8) Suppose x ∈ dom(FH(p, f, q)). Then

(i) x ∈ dom p and p(x) = false, or

(ii) x ∈ dom(q · f) and (q · f)(x) = true, or

(iii) x ∈ dom p and p(x) = true and x ∈ dom(q · f) and (q · f)(x) = false.

Let us consider D. The functor WH(D) yielding a function from Pr(D) ×
FPrg(D) into FPrg(D) is defined by

(Def. 15) for every partial predicate p ofD and for every binominative function f of
D, dom it(p, f) = {d, where d is an element of D : there exists a natural
number n such that for every natural number i such that i ¬ n−1 holds
d ∈ dom(p · (f i)) and (p · (f i))(d) = true and d ∈ dom(p · (fn)) and
(p · (fn))(d) = false} and for every object d such that d ∈ dom it(p, f)
there exists a natural number n such that for every natural number i
such that i ¬ n − 1 holds d ∈ dom(p · (f i)) and (p · (f i))(d) = true and
d ∈ dom(p · (fn)) and (p · (fn))(d) = false and it(p, f)(d) = (fn)(d).

Let us consider D, p, and f . The functor WH(p, f) yielding a binominative
function of D is defined by the term

(Def. 16) WH(D)(p, f).
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The functor ∼ D yielding a function from Pr(D) into Pr(D) is defined by

(Def. 17) for every partial predicate p ofD, dom(it(p)) = {d, where d is an element
of D : d /∈ dom p} and for every element d of D such that d /∈ dom p holds
it(p)(d) = true.

Let D be a non empty set and p be a partial predicate of D. The functor
∼ p yielding a partial predicate of D is defined by the term

(Def. 18) (∼ D)(p).

Now we state the propositions:

(9) Let us consider an element d of D. Then d ∈ dom p if and only if d /∈
dom(∼ p).

(10) If p is total, then dom(∼ p) = ∅.
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Summary. This paper continues formalization in the Mizar system [2, 1]
of basic notions of the composition-nominative approach to program semantics
[14] which was started in [8, 12, 10].

The composition-nominative approach studies mathematical models of com-
puter programs and data on various levels of abstraction and generality and pro-
vides tools for reasoning about their properties. In particular, data in computer
systems are modeled as nominative data [15]. Besides formalization of seman-
tics of programs, certain elements of the composition-nominative approach were
applied to abstract systems in a mathematical systems theory [4, 6, 7, 5, 3].

In the paper we give a formal definition of the notions of a binominative
function over given sets of names and values (i.e. a partial function which maps
simple-named complex-valued nominative data to such data) and a nominati-
ve predicate (a partial predicate on simple-named complex-valued nominative
data). The sets of such binominative functions and nominative predicates form
the carrier of the generalized Glushkov algorithmic algebra for simple-named
complex-valued nominative data [15]. This algebra can be used to formalize al-
gorithms which operate on various data structures (such as multidimensional
arrays, lists, etc.) and reason about their properties.

In particular, we formalize the operations of this algebra which require a spe-
cification of a data domain and which include the existential quantifier, the as-
signment composition, the composition of superposition into a predicate, the
composition of superposition into a binominative function, the name checking
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predicate. The details on formalization of nominative data and the operations of
the algorithmic algebra over them are described in [11, 13, 9].
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1. Preliminaries

From now on a, b, c, v, v1, x, y denote objects, V , A denote sets, and d

denotes a nominative data with simple names from V and complex values from
A.

Now we state the proposition:

(1) {a, b, c} ⊆ A if and only if a, b, c ∈ A.

Let a, b, c, d, e, f be objects. One can verify that {〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈e, f〉〉} is
relation-like.

Let us consider objects a, b, c, d, e, f . Now we state the propositions:

(2) dom{〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈e, f〉〉} = {a, c, e}.
(3) rng{〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈e, f〉〉} = {b, d, f}.
Let us consider V . Note that there exists a finite sequence which is one-to-one

and V -valued.

(4) dom〈a, b, c〉 = {1, 2, 3}.
Let us consider V and A. Let us note that NDSS(V,A) is non empty and has

not non empty elements and NDSC(V,A) is non empty and has not non empty
elements.

Now we state the propositions:

(5) If v ∈ V , then {〈〈v, d〉〉} is a non-atomic nominative data of V and A.

(6) Let us consider a finite function D. Suppose domD ⊆ V and rngD ⊆
NDSC(V,A). Then D is a non-atomic nominative data of V and A.
Proof: Define P[set] ≡ $1 is a non-atomic nominative data of V and A.
For every sets x, B such that x ∈ D and B ⊆ D and P[B] holds P[B∪{x}].
P[D]. �

(7) Let us consider nominative data d1, d2 with simple names from V and
complex values from A. Then d2 ⊆ d1∇ad2.

(8) Every non-atomic nominative data of V and A is a nominative data with
simple names from V and complex values from A.
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(9) Let us consider non-atomic nominative data d1, d2 of V and A. Then
d1∇ad2 is a non-atomic nominative data of V and A. The theorem is
a consequence of (8).

Let us consider V and A. Let d1, d2 be non-atomic nominative data of V
and A. Let us observe that d1∇ad2 is function-like and relation-like.

Let us consider v. One can verify that d1∇vad2 is function-like and relation-
like.

Let d1 be a non-atomic nominative data of V and A and d2 be a nominative
data with simple names from V and complex values from A. Let us observe that
d1∇vad2 is function-like and relation-like.

Now we state the propositions:

(10) Suppose v ∈ V . Let us consider nominative data d1, d2 with simple names
from V and complex values from A, and a function L. If L = d1∇vad2, then
L(v) = d2. The theorem is a consequence of (8).

(11) Suppose v ∈ V and v 6= v1. Let us consider a non-atomic nominative
data d1 of V and A, a nominative data d2 with simple names from V

and complex values from A, and a function L. Suppose L = d1∇vad2 and
v1 ∈ dom d1 and d1 /∈ A and ⇒v(d2) /∈ A. Then L(v1) = d1(v1). The
theorem is a consequence of (8).

Let us consider a non-atomic nominative data d1 of V and A and a nomi-
native data d2 with simple names from V and complex values from A. Now we
state the propositions:

(12) Suppose v ∈ V and v /∈ dom d1 and d1 /∈ A and ⇒v(d2) /∈ A. Then
dom(d1∇vad2) = {v} ∪ dom d1.

(13) If v ∈ V and v ∈ dom d1 and d1 /∈ A and⇒v(d2) /∈ A, then dom(d1∇vad2) =
dom d1.

(14) If v ∈ V and d1 /∈ A and⇒v(d2) /∈ A, then dom(d1∇vad2) = {v}∪dom d1.
The theorem is a consequence of (13) and (12).

Let us consider V and A.
A partial predicate over simple-named complex-valued nominative data of V

and A is a partial predicate of NDSC(V,A). In the sequel p, q, r denote partial
predicates over simple-named complex-valued nominative date of V and A.

Now we state the propositions:

(15) dom(p∨ q) = {d, where d is a nominative data with simple names from
V and complex values fromA : d ∈ dom p and p(d) = true or d ∈ dom q and
q(d) = true or d ∈ dom p and p(d) = false and d ∈ dom q and q(d) =
false}.

(16) dom(p∧ q) = {d, where d is a nominative data with simple names from
V and complex values from A : d ∈ dom p and p(d) = false or d ∈
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dom q and q(d) = false or d ∈ dom p and p(d) = true and d ∈ dom q and
q(d) = true}.

(17) dom(p ⇒ q) = {d, where d is a nominative data with simple names
from V and complex values from A : d ∈ dom p and p(d) = false or d ∈
dom q and q(d) = true or d ∈ dom p and p(d) = true and d ∈ dom q and
q(d) = false}.

Let us consider V , A, and v. The functor ∃V,Av yielding a function from
Pr(NDSC(V,A)) into Pr(NDSC(V,A)) is defined by

(Def. 1) for every partial predicate over simple-named complex-valued nomina-
tive data p of V and A, dom(it(p)) = {d, where d is a nominative data
with simple names from V and complex values from A : there exists
a nominative data d1 with simple names from V and complex values from
A such that d∇vad1 ∈ dom p and p(d∇vad1) = true or for every nominative
data d1 with simple names from V and complex values from A, d∇vad1 ∈
dom p and p(d∇vad1) = false} and for every nominative data d with simple
names from V and complex values from A, if there exists a nominative
data d1 with simple names from V and complex values from A such that
d∇vad1 ∈ dom p and p(d∇vad1) = true, then it(p)(d) = true and if for every
nominative data d1 with simple names from V and complex values from
A, d∇vad1 ∈ dom p and p(d∇vad1) = false, then it(p)(d) = false.

Let us consider p. The functor ∃vp yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by the term

(Def. 2) (∃V,Av )(p).

Now we state the propositions:

(18) Suppose x ∈ dom(∃vp). Then

(i) there exists a nominative data d1 with simple names from V and
complex values from A such that x∇vad1 ∈ dom p and p(x∇vad1) =
true, or

(ii) for every nominative data d1 with simple names from V and complex
values from A, x∇vad1 ∈ dom p and p(x∇vad1) = false.

(19) ∃v⊥PP(NDSC(V,A)) = ⊥PP(NDSC(V,A)). The theorem is a consequence
of (18).

(20) Distributivity law:
∃v(p ∨ q) = ∃vp ∨ ∃vq.
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2. On an Algorithmic algebra over Simple-Named Complex-Valued
Nominative Data

From now on n denotes a natural number and X denotes a function.
Let F be a function yielding function and d be an object. We say that d is

in doms F if and only if

(Def. 3) for every object x such that x ∈ domF holds d ∈ dom(F (x)).

Let g be a function yielding function and X be a function. The functor
NDdataSeq(g,X, d) yielding a function is defined by

(Def. 4) dom it = domX and for every x such that x ∈ domX holds it(x) =
〈〈X(x), g(x)(d)〉〉.

Let X be a finite function. Let us note that NDdataSeq(g,X, d) is finite.
Let X be a finite sequence. One can check that NDdataSeq(g,X, d) is finite

sequence-like.
Let X be a function. The functor NDentry(g,X, d) yielding a set is defined

by the term

(Def. 5) rng NDdataSeq(g,X, d).

Now we state the propositions:

(21) Let us consider a function f , and objects a, d. Then NDentry(〈f〉, 〈a〉, d) =
{〈〈a, f(d)〉〉}.

(22) Let us consider functions f , g, and objects a, b, d. Then NDentry(〈f,
g〉, 〈a, b〉, d) = {〈〈a, f(d)〉〉, 〈〈b, g(d)〉〉}.

(23) Let us consider functions f , g, h, and objects a, b, c, d. Then NDentry(〈f,
g, h〉, 〈a, b, c〉, d) = {〈〈a, f(d)〉〉, 〈〈b, g(d)〉〉, 〈〈c, h(d)〉〉}. The theorem is a con-
sequence of (4).

Let g be a function yielding function, X be a function, and d be an object.
Let us note that NDentry(g,X, d) is relation-like.

Let X be a one-to-one function. One can verify that NDentry(g,X, d) is
function-like.

Let X be a finite function. Observe that NDentry(g,X, d) is finite.
Now we state the proposition:

(24) Let us consider a function yielding function g, a function X, and an ob-
ject d. Then dom(NDentry(g,X, d)) = rngX.

Let us consider V and A.
A binominative function over simple-named complex-valued nominative data

of V and A is a partial function from NDSC(V,A) to NDSC(V,A). From now
on f , g, h denote binominative functions over simple-named complex-valued
nominative date of V and A.
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Now we state the propositions:

(25) rng NDdataSeq(〈f〉, 〈v〉, d) = v 7−→. f(d).

(26) If a ∈ V and d ∈ dom f , then NDentry(〈f〉, 〈a〉, d) = ⇒a(f(d)). The
theorem is a consequence of (25).

(27) If a ∈ V and d ∈ dom f , then NDentry(〈f〉, 〈a〉, d) is a non-atomic
nominative data of V and A. The theorem is a consequence of (26).

(28) Suppose {a, b} ⊆ V and a 6= b and d ∈ dom f and d ∈ dom g. Then
NDentry(〈f, g〉, 〈a, b〉, d) is a non-atomic nominative data of V and A. The
theorem is a consequence of (22) and (6).

(29) Suppose {a, b, c} ⊆ V and a, b, c are mutually different and d ∈ dom f

and d ∈ dom g and d ∈ domh. Then NDentry(〈f, g, h〉, 〈a, b, c〉, d) is a non-
atomic nominative data of V and A. The theorem is a consequence of (23),
(2), (3), (1), and (6).

Let us consider V and A. Let f be a finite sequence. We say that f is
(V,A)-FPrg-yielding if and only if

(Def. 6) for every n such that 1 ¬ n ¬ len f holds f(n) is a binominative function
over simple-named complex-valued nominative data of V and A.

Let us consider f . Let us note that 〈f〉 is (V,A)-FPrg-yielding.
Let us consider g. Note that 〈f, g〉 is (V,A)-FPrg-yielding.
Let us consider h. Let us observe that 〈f, g, h〉 is (V,A)-FPrg-yielding.
Let us consider n. One can verify that there exists a finite sequence which

is (V,A)-FPrg-yielding and n-element.
Let us consider x. Let g be a (V,A)-FPrg-yielding finite sequence. One can

verify that g(x) is function-like and relation-like and every finite sequence which
is (V,A)-FPrg-yielding is also function yielding.

Now we state the propositions:

(30) Let us consider a (V,A)-FPrg-yielding finite sequence g, and a one-to-
one finite sequence X. Suppose dom g = domX and d is in doms g. Then
rng NDentry(g,X, d) ⊆ NDSC(V,A).

(31) Let us consider a (V,A)-FPrg-yielding finite sequence g, and a one-to-
one, V -valued finite sequence X. Suppose dom g = domX and d is in
doms g. Then NDentry(g,X, d) is a non-atomic nominative data of V and
A. The theorem is a consequence of (24), (30), and (6).

Let us consider V , A, and v. The functor AsgV,A,v yielding a function from
FPrg(NDSC(V,A)) into FPrg(NDSC(V,A)) is defined by

(Def. 7) for every binominative function over simple-named complex-valued no-
minative data f of V and A, dom(it(f)) = dom f and for every nominative
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data d with simple names from V and complex values from A such that
d ∈ dom(it(f)) holds it(f)(d) = d∇vaf(d).

Let us consider V , A, v, and f . The functor Asgv(f) yielding a binominative
function over simple-named complex-valued nominative data of V and A is
defined by the term

(Def. 8) AsgV,A,v(f).

Let d be a non-atomic nominative data of V and A. One can check that
Asgv(f)(d) is function-like and relation-like.

Now we state the proposition:

(32) Let us consider a non-atomic nominative data d of V and A. Sup-
pose v ∈ V and d /∈ A and ⇒v(f(d)) /∈ A and d ∈ dom f . Then
dom((Asgv(f))(d)) = dom d ∪ {v}. The theorem is a consequence of (14).

Let us consider V and A. Let g be a (V,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. Let X be a function. The functor SP(g,X) yielding a function

from Pr(NDSC(V,A))×
∏
g into Pr(NDSC(V,A)) is defined by

(Def. 9) for every partial predicate over simple-named complex-valued nomina-
tive data p of V and A and for every element x of

∏
g, dom it(p, x) =

{d, where d is a nominative data with simple names from V and complex
values from A : d∇a(NDentry(g,X, d)) ∈ dom p and d is in doms g} and
for every nominative data d with simple names from V and complex values
fromA such that d is in doms g holds it(p, x)(d) ∼= p(d∇a(NDentry(g,X, d))).

Let us consider V , A, and p. Let g be a (V,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. Let X be a function and x be an element of

∏
g. The func-

tor SP(p, x,X) yielding a partial predicate over simple-named complex-valued
nominative data of V and A is defined by the term

(Def. 10) SP(g,X)(p, x).

Now we state the proposition:

(33) Let us consider a (V,A)-FPrg-yielding finite sequence g. Suppose
∏
g 6=

∅. Let us consider an element x of
∏
g. Suppose d ∈ dom(SP(p, x,X)).

Then

(i) d is in doms g, and

(ii) SP(p, x,X)(d) = p(d∇a(NDentry(g,X, d))).

Let us consider V , A, and v. The functor SV,A,vP yielding a function from
Pr(NDSC(V,A))× FPrg(NDSC(V,A)) into Pr(NDSC(V,A)) is defined by

(Def. 11) for every partial predicate over simple-named complex-valued nomina-
tive data p of V and A and for every binominative function over simple-
named complex-valued nominative data f of V and A, dom it(p, f) =
{d, where d is a nominative data with simple names from V and complex
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values from A : d∇vaf(d) ∈ dom p and d ∈ dom f} and for every nomina-
tive data d with simple names from V and complex values from A such
that d ∈ dom f holds it(p, f)(d) ∼= p(d∇vaf(d)).

Let us consider V , A, v, p, and f . The functor SP(p, f, v) yielding a partial
predicate over simple-named complex-valued nominative data of V and A is
defined by the term

(Def. 12) (SV,A,vP )(p, f).

Now we state the propositions:

(34) If d ∈ dom(SP(p, f, v)), then SP(p, f, v)(d) = p(d∇vaf(d)) and d ∈ dom f .

(35) Let us consider an element x of
∏
〈f〉. Suppose v ∈ V and

∏
〈f〉 6= ∅.

Then SP(p, f, v) = SP(p, x, 〈v〉). The theorem is a consequence of (26),
(33), and (34).

Let us consider V and A. Let g be a (V,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. Let X be a function. The functor SF(g,X) yielding a function

from FPrg(NDSC(V,A))×
∏
g into FPrg(NDSC(V,A)) is defined by

(Def. 13) for every binominative function over simple-named complex-valued no-
minative data f of V and A and for every element x of

∏
g, dom it(f, x) =

{d, where d is a nominative data with simple names from V and complex
values from A : d∇a(NDentry(g,X, d)) ∈ dom f and d is in doms g} and
for every nominative data d with simple names from V and complex values
fromA such that d is in doms g holds it(f, x)(d) ∼= f(d∇a(NDentry(g,X, d))).

Let us consider V , A, and f . Let g be a (V,A)-FPrg-yielding finite sequence.
Assume

∏
g 6= ∅. Let X be a function and x be an element of

∏
g. The functor

SF(f, x,X) yielding a binominative function over simple-named complex-valued
nominative data of V and A is defined by the term

(Def. 14) SF(g,X)(f, x).

Now we state the proposition:

(36) Let us consider a (V,A)-FPrg-yielding finite sequence g. Suppose
∏
g 6=

∅. Let us consider an element x of
∏
g. Suppose d ∈ dom(SF(f, x,X)).

Then

(i) d is in doms g, and

(ii) SF(f, x,X)(d) = f(d∇a(NDentry(g,X, d))).

Let us consider V , A, and v. The functor SV,A,vF yielding a function from
FPrg(NDSC(V,A))× FPrg(NDSC(V,A)) into FPrg(NDSC(V,A)) is defined by

(Def. 15) for every binominative functions over simple-named complex-valued no-
minative date f , g of V and A, dom it(f, g) = {d, where d is a nominative
data with simple names from V and complex values from A : d∇vag(d) ∈
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dom f and d ∈ dom g} and for every nominative data d with simple na-
mes from V and complex values from A such that d ∈ dom g holds
it(f, g)(d) ∼= f(d∇vag(d)).

Let us consider V , A, v, f , and g. The functor SF(f, g, v) yielding a binomi-
native function over simple-named complex-valued nominative data of V and A
is defined by the term

(Def. 16) (SV,A,vF )(f, g).

Now we state the propositions:

(37) If d ∈ dom(SF(f, g, v)), then SF(f, g, v)(d) = f(d∇vag(d)) and d ∈ dom g.

(38) Let us consider an element x of
∏
〈g〉. Suppose v ∈ V and

∏
〈g〉 6= ∅.

Then SF(f, g, v) = SF(f, x, 〈v〉). The theorem is a consequence of (26),
(36), and (37).

Let us consider V , A, and v. The functor v!V,A yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 17) dom it = NDSC(V,A)\A and for every non-atomic nominative data d of
V and A such that d ∈ dom it holds if v ⇒a d ∈ dom it , then it(d) = true
and if v ⇒a d /∈ dom it , then it(d) = false.
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Summary. In the paper we give a formalization in the Mizar system [2,
1] of the rules of an inference system for an extended Floyd-Hoare logic with
partial pre- and post-conditions which was proposed in [7, 9]. The rules are
formalized on the semantic level. The details of the approach used to implement
this formalization are described in [5].

We formalize the notion of a semantic Floyd-Hoare triple (for an extended
Floyd-Hoare logic with partial pre- and post-conditions) [5] which is a triple of
a pre-condition represented by a partial predicate, a program, represented by
a partial function which maps data to data, and a post-condition, represented by
a partial predicate, which informally means that if the pre-condition on a pro-
gram’s input data is defined and true, and the program’s output after a run on
this data is defined (a program terminates successfully), and the post-condition
is defined on the program’s output, then the post-condition is true.

We formalize and prove the soundness of the rules of the inference system
[9, 7] for such semantic Floyd-Hoare triples. For reasoning about sequential com-
position of programs and while loops we use the rules proposed in [3].

The formalized rules can be used for reasoning about sequential programs,
and in particular, for sequential programs on nominative data [4]. Application
of these rules often requires reasoning about partial predicates representing pre-
and post-conditions which can be done using the formalized results on the Kleene
algebra of partial predicates given in [8].

MSC: 68Q60 68T37 03B70 03B35
c© 2018 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)159

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0002-4565-9082
https://orcid.org/0000-0002-4078-1062
http://zbmath.org/classification/?q=cc:68Q60
http://zbmath.org/classification/?q=cc:68T37
http://zbmath.org/classification/?q=cc:03B70
http://zbmath.org/classification/?q=cc:03B35
http://creativecommons.org/licenses/by-sa/3.0/


160 ievgen ivanov et al.

Keywords: Floyd-Hoare logic; Floyd-Hoare triple; inference rule; program
verification

MML identifier: NOMIN 3, version: 8.1.08 5.53.1335

From now on v, x denote objects, D, V , A denote sets, n denotes a natural
number, p, q denote partial predicates of D, and f , g denote binominative
functions of D.

Let us consider D, f , and p. We say that f coincides with p if and only if

(Def. 1) for every element d of D such that d ∈ dom p holds f(d) ∈ dom p.

Let us consider g and q. We say that f and g coincide with p and q if and
only if

(Def. 2) for every element d of D such that d ∈ rng f and g(d) ∈ dom q holds
d ∈ dom p.

Now we state the propositions:

(1) f coincides with ⊥PP(D).

(2) idPP(D) coincides with p.

Let us consider D, p, and q. We say that p |= q if and only if

(Def. 3) for every element d of D such that d ∈ dom p and p(d) = true holds
d ∈ dom q and q(d) = true.

Observe that the predicate is reflexive.
In the sequel D denotes a non empty set, d denotes an element of D, f , g

denote binominative functions of D, and p, q, r, s denote partial predicates of
D.

Now we state the propositions:

(3) If p |= r, then p ∧ q |= r.

(4) p ∧ q |= p.

(5) If p |= q and r |= s, then p ∧ r |= q ∧ s.
(6) If p ∨ q |= r, then p |= r.

(7) Suppose p |= q ∨ r. If d ∈ dom p and p(d) = true, then d ∈ dom q and
q(d) = true or d ∈ dom r and r(d) = true.

(8) p ∨ p |= p.

(9) If p |= q and r |= s, then p ∨ r |= q ∨ s.
(10) If p ∨ q |= r, then p ∧ q |= r.

Let us consider D. The functor SemanticFloydHoareTriples(D) yielding a set
is defined by the term

(Def. 4) {〈p, f, q〉, where p, q are partial predicates of D, f is a binominative
function of D : for every element d of D such that d ∈ dom p and p(d) =
true and d ∈ dom f and f(d) ∈ dom q holds q(f(d)) = true}.

http://fm.mizar.org/miz/nomin_3.miz
http://ftp.mizar.org/
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We introduce the notation SFHTs(D) as a synonym of
SemanticFloydHoareTriples(D).
Now we state the propositions:

(11) Suppose 〈p, f, q〉 ∈ SFHTs(D). If d ∈ dom p and p(d) = true and d ∈
dom f and f(d) ∈ dom q, then q(f(d)) = true.

(12) 〈∅, f, p〉 ∈ SFHTs(D).

Let us consider D. Observe that SFHTs(D) is non empty.
A semantic Floyd-Hoare triple of D is an element of
SemanticFloydHoareTriples(D).
An SFHT of D is an element of SFHTs(D). Now we state the propositions:

(13) 〈p, iddom p, p〉 is an SFHT of D.

(14) 〈p, idfield f , p〉 is an SFHT of D.

(15) CONS1 rule:
If 〈p, f, q〉 is an SFHT of D and r |= p, then 〈r, f, q〉 is an SFHT of D. The
theorem is a consequence of (11).

(16) CONS2 rule:
Suppose 〈p, f, q〉 is an SFHT of D and q |= r and dom r ⊆ dom q. Then
〈p, f, r〉 is an SFHT of D. The theorem is a consequence of (11).

(17) Skip rule:
〈p, idPP(D), p〉 is an SFHT of D.

(18) 〈falsePP(D), f, p〉 is an SFHT of D.

(19) Inversion rule:
If p is total, then 〈∼ p, f, q〉 is an SFHT of D. The theorem is a consequence
of (18) and (15).

(20) Composition rule:
Suppose 〈p, f, q〉 is an SFHT of D and 〈q, g, r〉 is an SFHT of D and f and
g coincide with q and r. Then 〈p, f • g, r〉 is an SFHT of D.
Proof: Set F = f • g. For every d such that d ∈ dom p and p(d) = true
and d ∈ domF and F (d) ∈ dom r holds r(F (d)) = true. �

(21) IF rule:
Suppose 〈r ∧ p, f, q〉 is an SFHT of D and 〈¬r ∧ p, g, q〉 is an SFHT of D.
Then 〈p, IF(r, f, g), q〉 is an SFHT of D.
Proof: Set F = IF(r, f, g). For every d such that d ∈ dom p and p(d) =
true and d ∈ domF and F (d) ∈ dom q holds q(F (d)) = true. �

(22) If f coincides with p and 〈p, f, p〉 is an SFHT of D, then 〈p, fn, p〉 is
an SFHT of D.
Proof: Define P[natural number] ≡ 〈p, f$1 , p〉 is an SFHT of D. P[0]. For
every natural number k such that P[k] holds P[k + 1]. For every natural
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number k, P[k]. �

(23) WHILE rule:
Suppose f coincides with p and dom p ⊆ dom f and 〈r∧p, f, p〉 is an SFHT
of D. Then 〈p,WH(r, f),¬r ∧ p〉 is an SFHT of D.
Proof: Set F = WH(r, f). Set q = ¬r∧p. For every d such that d ∈ dom p

and p(d) = true and d ∈ domF and F (d) ∈ dom q holds q(F (d)) = true.
�

(24) Unconditional composition rule (USEQ):
Suppose 〈p, f, q〉 is an SFHT of D and 〈q, g, r〉 is an SFHT of D and 〈∼ q,
g, s〉 is an SFHT of D. Then 〈p, f • g, r ∨ s〉 is an SFHT of D.
Proof: Set F = f • g. For every d such that d ∈ dom p and p(d) = true
and d ∈ domF and F (d) ∈ dom(r ∨ s) holds (r ∨ s)(F (d)) = true. �

(25) Unconditional WHILE rule (UWH):
Suppose 〈r∧ p, f, p〉 is an SFHT of D and 〈r∧ ∼ p, f, p〉 is an SFHT of D.
Then 〈p,WH(r, f),¬r ∧ p〉 is an SFHT of D.
Proof: Set F = WH(r, f). Set q = ¬r∧p. For every d such that d ∈ dom p

and p(d) = true and d ∈ domF and F (d) ∈ dom q holds q(F (d)) = true.
�

(26) DP rule:
Suppose 〈p, f, r〉 is an SFHT of D and 〈q, f, r〉 is an SFHT of D. Then
〈p ∨ q, f, r〉 is an SFHT of D.
Proof: Set P = p ∨ q. For every d such that d ∈ domP and P (d) = true
and d ∈ dom f and f(d) ∈ dom r holds r(f(d)) = true. �

In the sequel p, q denote partial predicates over simple-named complex-
valued nominative date of V and A, f , g denote binominative functions over
simple-named complex-valued nominative date of V and A, E denotes a (V,A)-
FPrg-yielding finite sequence, e denotes an element of

∏
E, and d denotes a no-

minative data with simple names from V and complex values from A.
Now we state the proposition:

(27) Suppose for every nominative data d with simple names from V and
complex values from A such that d ∈ dom p and p(d) = true and d ∈ dom f

and f(d) ∈ dom q holds q(f(d)) = true. Then 〈p, f, q〉 is an SFHT of
NDSC(V,A).
Proof: For every element d of NDSC(V,A) such that d ∈ dom p and
p(d) = true and d ∈ dom f and f(d) ∈ dom q holds q(f(d)) = true. �

(28) Assignment rule:
〈SP(p, f, v),Asgv(f), p〉 is an SFHT of NDSC(V,A).
Proof: Set P = SP(p, f, v). Set F = Asgv(f). For every d such that
d ∈ domP and P (d) = true and d ∈ domF and F (d) ∈ dom p holds



An inference system of an extension of Floyd-Hoare ... 163

p(F (d)) = true by [6, 34]. �

(29) SFID1 rule:
〈SP(p, f, v), SF(idPP(NDSC(V,A)), f, v), p〉 is an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set P = SP(p, f, v). Set F = SF(I, f, v).
For every d such that d ∈ domP and P (d) = true and d ∈ domF and
F (d) ∈ dom p holds p(F (d)) = true. �

(30) SFID rule:
Suppose

∏
E 6= ∅. Then 〈SP(p, e, E),SF(idPP(NDSC(V,A)), e, E), p〉 is

an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set P = SP(p, e, E). Set F = SF(I, e, E).
For every d such that d ∈ domP and P (d) = true and d ∈ domF and
F (d) ∈ dom p holds p(F (d)) = true. �

(31) SF1 rule:
Suppose 〈p,SF(idPP(NDSC(V,A)), g, v) • f, q〉 is an SFHT of NDSC(V,A).
Then 〈p,SF(f, g, v), q〉 is an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set F = SF(f, g, v). SetG = SF(I, g, v).
Set C = G • f . For every d such that d ∈ dom p and p(d) = true and
d ∈ domC and C(d) ∈ dom q holds q(C(d)) = true. For every d such
that d ∈ dom p and p(d) = true and d ∈ domF and F (d) ∈ dom q holds
q(F (d)) = true. �

(32) SF rule:
Suppose

∏
E 6= ∅ and 〈p,SF(idPP(NDSC(V,A)), e, E)•f, q〉 is an SFHT of

NDSC(V,A). Then 〈p,SF(f, e, E), q〉 is an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set F = SF(f, e, E). SetG = SF(I, e, E).
Set C = G • f . For every d such that d ∈ dom p and p(d) = true and
d ∈ domC and C(d) ∈ dom q holds q(C(d)) = true. For every d such
that d ∈ dom p and p(d) = true and d ∈ domF and F (d) ∈ dom q holds
q(F (d)) = true. �
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Summary. In this paper we present a formalization in the Mizar system
[2, 1] of the correctness of the subtraction-based version of Euclid’s algorithm
computing the greatest common divisor of natural numbers. The algorithm is
written in terms of simple-named complex-valued nominative data [11, 4].

The validity of the algorithm is presented in terms of semantic Floyd-Hoare
triples over such data [7]. Proofs of the correctness are based on an inference
system for an extended Floyd-Hoare logic with partial pre- and post-conditions
[8, 10, 5, 3].

MSC: 68Q60 68T37 03B70 03B35

Keywords: greatest common divisor; nominative data; program verification

MML identifier: NOMIN 4, version: 8.1.08 5.53.1335

From now on v denotes an object, V , A denote sets, and f denotes a bi-
nominative function over simple-named complex-valued nominative data of V
and A.

Let us consider A. We say that A is complex containing if and only if

(Def. 1) C ⊆ A.

One can verify that there exists a set which is complex containing and every
set which is complex containing is also non empty.

The scheme BinPredToFunEx deals with sets X , Y and a binary predicate
P and states that
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(Sch. 1) There exists a function f from X × Y into Boolean such that for every
objects x, y such that x, y ∈ Y holds if P[x, y], then f(x, y) = true and if
not P[x, y], then f(x, y) = false.

The scheme BinPredToFunUnique deals with sets X , Y and a binary predi-
cate P and states that

(Sch. 2) For every functions f , g from X × Y into Boolean such that for every
objects x, y such that x, y ∈ Y holds if P[x, y], then f(x, y) = true and
if not P[x, y], then f(x, y) = false and for every objects x, y such that
x, y ∈ Y holds if P[x, y], then g(x, y) = true and if not P[x, y], then
g(x, y) = false holds f = g.

The scheme Lambda2Unique deals with sets X , Y, Z and a binary functor
F yielding an object and states that

(Sch. 3) For every functions f , g from X × Y into Z such that for every objects
x, y such that x, y ∈ Y holds f(x, y) = F(x, y) and for every objects x, y
such that x, y ∈ Y holds g(x, y) = F(x, y) holds f = g.

Let us consider V and A. The functor nonatomicsND(V,A) yielding a set is
defined by the term

(Def. 2) the set of all d where d is a non-atomic nominative data of V and A.

Now we state the propositions:

(1) Let us consider an object d. Suppose d ∈ nonatomicsND(V,A). Then d

is a non-atomic nominative data of V and A.

(2) ∅ ∈ nonatomicsND(V,A).

Let us consider V and A. One can verify that nonatomicsND(V,A) is non
empty and functional.

We say that V is without nonatomic nominative data w.r.t. A if and only if

(Def. 3) A misses nonatomicsND(V,A).

Now we state the propositions:

(3) If V is without nonatomic nominative data w.r.t. A, then for every non-
atomic nominative data d of V and A, d /∈ A.

(4) Suppose V is without nonatomic nominative data w.r.t. A and v ∈ V . Let
us consider a non-atomic nominative data d1 of V and A, and a nominative
data d2 with simple names from V and complex values from A. Then
dom(d1∇vad2) = {v} ∪ dom d1. The theorem is a consequence of (3).

(5) Suppose V is without nonatomic nominative data w.r.t. A. Let us con-
sider a non-atomic nominative data d of V and A. Suppose v ∈ V and
d ∈ dom f . Then dom((Asgv(f))(d)) = dom d∪{v}. The theorem is a con-
sequence of (3).
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In the sequel d denotes a nominative data with simple names from V and
complex values from A.

(6) Let us consider a non-atomic nominative data d1 of V and A. Suppo-
se v ∈ V and V is without nonatomic nominative data w.r.t. A. Then
d1∇vad ∈ dom(v ⇒a). The theorem is a consequence of (4).

From now on a, b, c, x, y, z denote elements of V and p, q, r, s denote partial
predicates over simple-named complex-valued nominative date of V and A.

Let us consider V , A, d, and a. We say that d is an extended real on a if
and only if

(Def. 4) (a⇒a)(d) is extended real.

We say that d is a complex on a if and only if

(Def. 5) (a⇒a)(d) is complex.

We say that d is a value on a if and only if

(Def. 6) (a⇒a)(d) ∈ A.

Now we state the propositions:

(7) If A is complex containing and for every d, d is a complex on a, then for
every d, d is a value on a.

(8) If for every d, d is a value on a, then rng a⇒a⊆ A.

(9) If for every d, d is a value on a and for every d, d is a value on b, then
rng〈a⇒a, b⇒a〉 ⊆ A×A. The theorem is a consequence of (8).

Let us consider V and A. Let a, b be elements of V and p be a function
from A×A into Boolean. The functor lift-binary-pred(p, a, b) yielding a partial
predicate over simple-named complex-valued nominative data of V and A is
defined by the term

(Def. 7) p · 〈a⇒a, b⇒a〉.
Let o1 be a function from A× A into A. The functor lift-binary-op(o1, a, b)

yielding a binominative function over simple-named complex-valued nominative
data of V and A is defined by the term

(Def. 8) o1 · 〈a⇒a, b⇒a〉.
The functor Equality(A) yielding a function from A × A into Boolean is

defined by

(Def. 9) for every objects a, b such that a, b ∈ A holds if a = b, then it(a, b) = true
and if a 6= b, then it(a, b) = false.

Let us consider V . Let x, y be elements of V . The functor Equality(A, x, y)
yielding a partial predicate over simple-named complex-valued nominative data
of V and A is defined by the term

(Def. 10) lift-binary-pred(Equality(A), x, y).
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Let x, y be objects. We say that x is less than y if and only if

(Def. 11) there exist extended reals x1, y1 such that x1 = x and y1 = y and
x1 < y1.

Observe that the predicate is irreflexive and asymmetric.
Now we state the proposition:

(10) Let us consider extended reals x, y. If x is not less than y, then y is less
than x or x = y.

Let us consider A. The functor less(A) yielding a function from A× A into
Boolean is defined by

(Def. 12) for every objects x, y such that x, y ∈ A holds if x is less than y, then
it(x, y) = true and if x is not less than y, then it(x, y) = false.

Let us consider V . Let x, y be elements of V . The functor less(A, x, y) yiel-
ding a partial predicate over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 13) lift-binary-pred(less(A), x, y).

Now we state the propositions:

(11) Suppose for every d, d is a value on a and for every d, d is a value on b.
Then dom(Equality(A, a, b)) = dom(a ⇒a) ∩ dom(b ⇒a). The theorem is
a consequence of (9).

(12) Suppose for every d, d is a value on a and for every d, d is a value on
b. Then dom(less(A, a, b)) = dom(a ⇒a) ∩ dom(b ⇒a). The theorem is
a consequence of (9).

(13) Suppose for every d, d is a value on a and for every d, d is a value on b

and for every d, d is an extended real on a and for every d, d is an extended
real on b. Then ¬Equality(A, a, b) = less(A, a, b) ∨ less(A, b, a).

(14) Suppose for every d, d is a value on a and for every d, d is a value
on b and d is an extended real on a and d is an extended real on b and
d ∈ dom(¬Equality(A, a, b)) and (¬Equality(A, a, b))(d) = true. Then

(i) d ∈ dom(less(A, a, b)) and (less(A, a, b))(d) = true, or

(ii) d ∈ dom(less(A, b, a)) and (less(A, b, a))(d) = true.

The theorem is a consequence of (10) and (12).

Let x, y be objects. Assume x is a complex number and y is a complex
number. The functor x− y yielding a complex number is defined by

(Def. 14) there exist complex numbers x1, y1 such that x1 = x and y1 = y and
it = x1 − y1.

Let us considerA. AssumeA is complex containing. The functor subtractionA
yielding a function from A×A into A is defined by
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(Def. 15) for every objects x, y such that x, y ∈ A holds it(x, y) = x− y.

Let us consider V . Let x, y be elements of V . The functor subtraction(A, x, y)
yielding a binominative function over simple-named complex-valued nominative
data of V and A is defined by the term

(Def. 16) lift-binary-op(subtractionA, x, y).

Let us consider a and b. The functor gcd-conditional-step(V,A, a, b) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 17) IF(less(A, b, a),Asga(subtraction(A, a, b)), idPP(NDSC(V,A))).

The functor gcd-loop-body(V,A, a, b) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 18) gcd-conditional-step(V,A, a, b) • gcd-conditional-step(V,A, b, a).

The functor gcd-main-loop(V,A, a, b) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 19) WH(¬Equality(A, a, b), gcd-loop-body(V,A, a, b)).

Let us consider x and y. The functor gcd-var-init(V,A, a, b, x, y) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 20) Asga(x⇒a) •Asgb(y ⇒a).

The functor gcd-main-part(V,A, a, b, x, y) yielding a binominative function
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 21) gcd-var-init(V,A, a, b, x, y) • gcd-main-loop(V,A, a, b).

Let us consider z. The functor gcd-program(V,A, a, b, x, y, z) yielding a bi-
nominative function over simple-named complex-valued nominative data of V
and A is defined by the term

(Def. 22) gcd-main-part(V,A, a, b, x, y) •Asgz(a⇒a).

From now on x0, y0 denote natural numbers.
Let us consider V , A, x, y, x0, and y0. Let d be an object. We say that x0,

y0 and d constitute a valid input for the gcd w.r.t. V , A, x and y if and only if

(Def. 23) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and x, y ∈ dom d1 and d1(x) = x0 and d1(y) = y0.

The functor valid-gcd-input(V,A, x, y, x0, y0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by
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(Def. 24) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0 and d constitute a valid input for the gcd w.r.t. V , A, x and y,
then it(d) = true and if x0, y0 and d do not constitute a valid input for
the gcd w.r.t. V , A, x and y, then it(d) = false.

One can check that valid-gcd-input(V,A, x, y, x0, y0) is total.
Let us consider z. Let d be an object. We say that x0, y0 and d constitute

a valid output for the gcd w.r.t. V , A and z if and only if

(Def. 25) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and z ∈ dom d1 and d1(z) = gcd(x0, y0).

The functor valid-gcd-output(V,A, z, x0, y0) yielding a partial predicate over
simple-named complex-valued nominative data of V and A is defined by

(Def. 26) dom it = {d, where d is a nominative data with simple names from V

and complex values from A : d ∈ dom(z ⇒a)} and for every object d such
that d ∈ dom it holds if x0, y0 and d constitute a valid output for the gcd
w.r.t. V , A and z, then it(d) = true and if x0, y0 and d do not constitute
a valid output for the gcd w.r.t. V , A and z, then it(d) = false.

Let us consider a and b. Let d be an object. We say that x0, y0 and d

constitute a valid invariant for the gcd w.r.t. V , A, a and b if and only if

(Def. 27) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and a, b ∈ dom d1 and there exist natural numbers x, y such that
x = d1(a) and y = d1(b) and gcd(x, y) = gcd(x0, y0).

The functor gcd-inv(V,A, a, b, x0, y0) yielding a partial predicate over simple-
named complex-valued nominative data of V and A is defined by

(Def. 28) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0 and d constitute a valid invariant for the gcd w.r.t. V , A, a and
b, then it(d) = true and if x0, y0 and d do not constitute a valid invariant
for the gcd w.r.t. V , A, a and b, then it(d) = false.

Observe that gcd-inv(V,A, a, b, x0, y0) is total.
Now we state the propositions:

(15) 〈∼ SP(p, x⇒a, a),Asga(x⇒a), p〉 is an SFHT of NDSC(V,A).

(16) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and a 6= y.
Then 〈valid-gcd-input(V,A, x, y, x0, y0), gcd-var-init(V,A, a, b, x, y), gcd-inv
(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: Set D3 = x⇒a. Set D4 = y ⇒a. Set p = gcd-inv(V,A, a, b, x0, y0).
Set Q = SP(p,D4, b). Set P = SP(Q,D3, a). Set G = Asgb(D4). Set I =
valid-gcd-input(V,A, x, y, x0, y0). 〈∼ Q,G, p〉 is an SFHT of NDSC(V,A).
I |= P . �
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(17) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈less(A, b, a) ∧ gcd-inv(V,A, a, b, x0, y0),Asga(subtraction(A, a, b)),
gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: Set i = gcd-inv(V,A, a, b, x0, y0). Set l = less(A, b, a). Set D =
subtraction(A, a, b). Set f = Asga(D). Set p = l ∧ i. For every d such
that d ∈ dom p and p(d) = true and d ∈ dom f and f(d) ∈ dom i holds
i(f(d)) = true. �

(18) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈less(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0),Asgb(subtraction(A, b, a)),
gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: Set i = gcd-inv(V,A, a, b, x0, y0). Set l = less(A, a, b). Set D =
subtraction(A, b, a). Set f = Asgb(D). Set p = l ∧ i. For every d such
that d ∈ dom p and p(d) = true and d ∈ dom f and f(d) ∈ dom i holds
i(f(d)) = true by [6, (23)], [9, (9),(10)]. �

(19) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈gcd-inv(V,A, a, b, x0, y0), gcd-conditional-step(V,A, a, b), gcd-inv
(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem is a consequ-
ence of (17).

(20) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈gcd-inv(V,A, a, b, x0, y0), gcd-conditional-step(V,A, b, a), gcd-inv
(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem is a consequ-
ence of (18).

(21) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is a com-
plex on a and for every d, d is a complex on b. Then 〈gcd-inv(V,A, a, b, x0, y0),
gcd-loop-body(V,A, a, b), gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,
A). The theorem is a consequence of (19) and (20).

(22) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is
a complex on a and for every d, d is a complex on b.
Then 〈∼ gcd-inv(V,A, a, b, x0, y0), gcd-loop-body(V,A, a, b), gcd-inv
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(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem is a consequ-
ence of (20).

(23) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and A is complex containing and for every d, d is a com-
plex on a and for every d, d is a complex on b. Then 〈gcd-inv(V,A, a, b, x0, y0),
gcd-main-loop(V,A, a, b),Equality(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0)〉 is
an SFHT of NDSC(V,A). The theorem is a consequence of (21) and (22).

(24) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and a 6= b and a 6= y and A is complex containing and for
every d, d is a complex on a and for every d, d is a complex on b. Then
〈valid-gcd-input(V,A, x, y, x0, y0), gcd-main-part(V,A, a, b, x, y),Equality
(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0)〉 is an SFHT of NDSC(V,A). The the-
orem is a consequence of (16) and (23).

(25) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and for every d, d is a value on a and for every d, d is a va-
lue on b. Then 〈Equality(A, a, b) ∧ gcd-inv(V,A, a, b, x0, y0),Asgz(a ⇒a),
valid-gcd-output(V,A, z, x0, y0)〉 is an SFHT of NDSC(V,A).
Proof: SetD1 = a⇒a. Set q = Equality(A, a, b)∧gcd-inv(V,A, a, b, x0, y0).
Set r = valid-gcd-output(V,A, z, x0, y0). Set s3 = SP(r,D1, z). q |= s3. �

(26) Partial correctness of GCD algorithm:
Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and a 6= b and a 6= y and A is complex containing and
for every d, d is a complex on a and for every d, d is a complex on
b. Then 〈valid-gcd-input(V,A, x, y, x0, y0), gcd-program(V,A, a, b, x, y, z),
valid-gcd-output(V,A, z, x0, y0)〉 is an SFHT of NDSC(V,A). The theorem
is a consequence of (7), (24), (25), and (11).
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Let X be a set, p be a Z-valued series of X, RF, and a be an integer element
of RF. Observe that a · p is Z-valued.

Now we state the propositions:

(1) Let us consider a non empty ordinal numberO, an element i ofO, an add-
associative, right zeroed, right complementable, well unital, distributive,
non trivial double loop structure L, and a function x from O into L. Then
eval(1 1(i, L), x) = x(i).

(2) i1 is an element of n+ k.

(3) If k < m, then n+ k ∈ n+m.

(4) Let us consider an (n + k)-element finite 0-sequence p. If n 6= 0 and
k 6= 0, then (p�n)(i1) = p(i1).

2. Basic Diophantine Relations

Now we state the propositions:

(5) Let us consider a diophantine subset A of the n-xtuples of N, and k.
Suppose k ¬ n. Then {p�k : p ∈ A} is a diophantine subset of the k-
xtuples of N.
Proof: Consider k1 being a natural number, Q being a Z-valued poly-
nomial of n + k1,RF such that for every object s, s ∈ A iff there exists
an n-element finite 0-sequence x of N and there exists a k1-element finite
0-sequence y of N such that s = x and eval(Q,@(x a y)) = 0.

Set D = {p�k, where p is an n-element finite 0-sequence of N : p ∈ A}.
D ⊆ the k-xtuples of N. Reconsider k2 = n − k as a natural number.
Reconsider P = Q as a Z-valued polynomial of k+(k2 +k1),RF. For every
object s, s ∈ D iff there exists a k-element finite 0-sequence x of N and
there exists a (k2 + k1)-element finite 0-sequence y of N such that s = x

and eval(P,@(x a y)) = 0 by [5, (13)], [8, (54),(17),(27)]. �

(6) Let us consider integers a, b, c, i1, and i2. Then {p : a·p(i1) = b·p(i2)+c}
is a diophantine subset of the n-xtuples of N. The theorem is a consequence
of (1).

(7) {p : a · p(i1) > b · p(i2) + c} is a diophantine subset of the n-xtuples of
N. The theorem is a consequence of (2) and (1).

The scheme UnionDiophantine deals with a natural number n and a unary
predicate P, Q and states that

(Sch. 1) {p, where p is an n-element finite 0-sequence of N : P[p] or Q[p]} is
a diophantine subset of the n-xtuples of N

provided
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• {p, where p is an n-element finite 0-sequence of N : P[p]} is a diophantine
subset of the n-xtuples of N and

• {p, where p is an n-element finite 0-sequence of N : Q[p]} is a diophantine
subset of the n-xtuples of N.

The scheme Eq deals with a natural number n and a unary predicate P, Q
and states that

(Sch. 2) {p, where p is an n-element finite 0-sequence of N : P[p]} = {q, where
q is an n-element finite 0-sequence of N : Q[q]}

provided

• for every n-element finite 0-sequence p of N, P[p] iff Q[p].

Now we state the propositions:

(8) {p : a · p(i1) ­ b · p(i2) + c} is a diophantine subset of the n-xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) + c. Define
Q[finite 0-sequence of N] ≡ a · $1(i1) = b · $1(i2) + c. Define R[finite
0-sequence of N] ≡ P[$1] or Q[$1]. Define S[finite 0-sequence of N] ≡
a ·$1(i1) ­ b ·$1(i2) + c. {p : P[p]} is a diophantine subset of the n-xtuples
of N. {p : Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p]
or Q[p]} is a diophantine subset of the n-xtuples of N. {p : R[p]} = {q
: S[q]}. �

(9) {p : a · p(i1) = b · p(i2) · p(i3)} is a diophantine subset of the n-xtuples of
N. The theorem is a consequence of (1).

(10) {p : there exists a natural number z such that a·p(i1) = b·p(i2)+z·c·p(i3)}
is a diophantine subset of the n-xtuples of N. The theorem is a consequence
of (2) and (1).

The scheme IntersectionDiophantine deals with a natural number n and a
unary predicate P, Q and states that

(Sch. 3) {p, where p is an n-element finite 0-sequence of N : P[p] and Q[p]} is
a diophantine subset of the n-xtuples of N

provided

• {p, where p is an n-element finite 0-sequence of N : P[p]} is a diophantine
subset of the n-xtuples of N and

• {p, where p is an n-element finite 0-sequence of N : Q[p]} is a diophantine
subset of the n-xtuples of N.

The scheme Substitution deals with a 6-ary predicate P and a ternary functor
F yielding a natural object and states that
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(Sch. 4) For every i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5)), p(i3),
p(i4), p(i5)]} is a diophantine subset of the n-xtuples of N

provided

• for every i1, i2, i3, i4, i5, and i6, {p : P[p(i1), p(i2), p(i3), p(i4), p(i5), p(i6)]}
is a diophantine subset of the n-xtuples of N and

• for every i1, i2, i3, and i4, {p : F(p(i1), p(i2), p(i3)) = p(i4)} is a diophan-
tine subset of the n-xtuples of N.

The scheme SubstitutionInt deals with a ternary predicate P and a ternary
functor F yielding an integer and states that

(Sch. 5) For every i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]}
is a diophantine subset of the n-xtuples of N

provided

• for every i1, i2, i3, and a, {p : P[p(i1), p(i2), a · p(i3)]} is a diophantine
subset of the n-xtuples of N and

• for every i1, i2, i3, i4, and a, {p : F(p(i1), p(i2), p(i3)) = a · p(i4)} is
a diophantine subset of the n-xtuples of N.

Now we state the propositions:

(11) {p : a·p(i1) = b·p(i2)+c·p(i3)+d} is a diophantine subset of the n-xtuples
of N. The theorem is a consequence of (1).

(12) {p : p(i1) = a · p(i2)} is a diophantine subset of the n-xtuples of N. The
theorem is a consequence of (6).

(13) {p : a · p(i1) = b} is a diophantine subset of the n-xtuples of N.
Proof: Set i2 = the element of n. Define P[finite 0-sequence of N] ≡
a · $1(i1) = b. Define Q[finite 0-sequence of N] ≡ a · $1(i1) = 0 · $1(i2) + b.
{p : P[p]} = {q : Q[q]}. �

(14) {p : p(i1) = a} is a diophantine subset of the n-xtuples of N.
Proof: Set i2 = the element of n. Define P[finite 0-sequence of N] ≡
$1(i1) = a. Define Q[finite 0-sequence of N] ≡ 1 · $1(i1) = 0 · $1(i2) + a. {p
: P[p]} = {q : Q[q]}. �

(15) {p : p(i1) = a · p(i2) + b} is a diophantine subset of the n-xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ $1(i1) = a · $1(i2) + b. Define
Q[finite 0-sequence of N] ≡ 1 ·$1(i1) = a ·$1(i2)+b. {p : P[p]} = {q : Q[q]}.
�

(16) {p : a · p(i1) 6= b · p(i2) + c} is a diophantine subset of the n-xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) + c. Define
Q[finite 0-sequence of N] ≡ a · $1(i1) + −c < b · $1(i2). Define R[finite
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0-sequence of N] ≡ P[$1] or Q[$1]. Define S[finite 0-sequence of N] ≡
a ·$1(i1) 6= b ·$1(i2) + c. {p : P[p]} is a diophantine subset of the n-xtuples
of N. {p : Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p]
or Q[p]} is a diophantine subset of the n-xtuples of N. R[p] iff S[p]. {p
: R[p]} = {q : S[q]}. �

(17) {p : a · p(i1) > b · p(i2) · p(i3)} is a diophantine subset of the n-xtuples
of N.
Proof: Define P[natural number, natural number, integer] ≡ a ·$1 > $3 +
0. Define F(natural number, natural number,natural number) = b ·$2 ·$3.
Define Q[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) · $1(i3) + 0. Define
R[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) · $1(i3).

For every n, i1, i2, i3, and c, {p : P[p(i1), p(i2), c · p(i3)]} is a diophan-
tine subset of the n-xtuples of N. For every n, i1, i2, i3, i4, and c, {p :
F(p(i1), p(i2), p(i3)) = c ·p(i4)} is a diophantine subset of the n-xtuples of
N. For every n, i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]}
is a diophantine subset of the n-xtuples of N. {p : Q[p]} = {q : R[q]}. �

Let us consider a, b, c, i1, i2, and i3. Now we state the propositions:

(18) {p : a ·p(i1) < b ·p(i2)+ c ·p(i3)} is a diophantine subset of the n-xtuples
of N.
Proof: Define P[natural number, natural number, integer] ≡ a · $1 + 0 <
$3. Define F(natural number, natural number, natural number) = b · $2 +
c · $3 + 0. Define Q[finite 0-sequence of N] ≡ a · $1(i1) + 0 < b · $1(i2) + c ·
$1(i3)+0. Define R[finite 0-sequence of N] ≡ a·$1(i1) < b·$1(i2)+c·$1(i3).
For every n, i1, i2, i3, and d, {p : P[p(i1), p(i2), d · p(i3)]} is a diophantine
subset of the n-xtuples of N.

For every n, i1, i2, i3, i4, and d, {p : F(p(i1), p(i2), p(i3)) = d · p(i4)}
is a diophantine subset of the n-xtuples of N. For every n, i1, i2, i3, i4,
and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]} is a diophantine subset of
the n-xtuples of N. {p : Q[p]} = {q : R[q]}. �

(19) {p : a ·p(i1) = b ·p(i2)−′ c ·p(i3)} is a diophantine subset of the n-xtuples
of N.
Proof: Define P[finite 0-sequence of N] ≡ a · $1(i1) = b · $1(i2) + (−c) ·
$1(i3)+0. Define Q[finite 0-sequence of N] ≡ b·$1(i2) ­ c·$1(i3)+0. Define
R[finite 0-sequence of N] ≡ a · $1(i1) = 0 · $1(i2) · $1(i3). Define S[finite
0-sequence of N] ≡ b · $1(i2) + 0 < c · $1(i3). Define U [finite 0-sequence of
N] ≡ P[$1] and Q[$1]. {p : P[p]} is a diophantine subset of the n-xtuples
of N. {p : Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p]
and Q[p]} is a diophantine subset of the n-xtuples of N.

Define W[finite 0-sequence of N] ≡ R[$1] and S[$1]. {p : R[p]} is
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a diophantine subset of the n-xtuples of N. {p : S[p]} is a diophantine
subset of the n-xtuples of N. {p : R[p] and S[p]} is a diophantine subset
of the n-xtuples of N. Define V[finite 0-sequence of N] ≡ U [$1] or W[$1].
Define T [finite 0-sequence of N] ≡ a · $1(i1) = b · $1(i2) −′ c · $1(i3). {p :
U [p] or W[p]} is a diophantine subset of the n-xtuples of N. V[p] iff T [p].
{p : V[p]} = {q : T [q]}. �

(20) {p : a ·p(i1) = b ·p(i2)−′ c} is a diophantine subset of the n-xtuples of N.
Proof: Define P[natural number,natural number, integer] ≡ a · $1 =
b·$2−′$3. For every n, i1, i2, i3, and d, {p : P[p(i1), p(i2), d·p(i3)]} is a dio-
phantine subset of the n-xtuples of N. Define F(natural number, natural
number, natural number) = c. For every n, i1, i2, i3, i4, and d, {p :
F(p(i1), p(i2), p(i3)) = d ·p(i4)} is a diophantine subset of the n-xtuples of
N. For every n, i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]}
is a diophantine subset of the n-xtuples of N. �

(21) {p : a · p(i1) ≡ b · p(i2) (mod c · p(i3))} is a diophantine subset of the n-
xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ there exists a natural number
z such that a · $1(i1) = b · $1(i2) + z · c · $1(i3). Define Q[finite 0-sequence
of N] ≡ there exists a natural number z such that b · $1(i2) = a · $1(i1) +
z · c · $1(i3). {p : P[p]} is a diophantine subset of the n-xtuples of N. {p
: Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p] or Q[p]}
is a diophantine subset of the n-xtuples of N. Set P = {p : a · p(i1) ≡
b · p(i2) (mod c · p(i3))}. P ⊆ {p : P[p] or Q[p]}. {p : P[p] or Q[p]} ⊆ P . �

(22) {p : 〈〈a·p(i1), b·p(i2)〉〉 is Pell’s solution of (c·p(i3))2−′1} is a diophantine
subset of the n-xtuples of N. The theorem is a consequence of (2), (3), (9),
(20), (6), (5), and (4).

3. Main Lemmas

Let us consider i1, i2, and i3. Now we state the propositions:

(23) {p : p(i1) = yp(i2)(p(i3)) and p(i2) > 1} is a diophantine subset of the n-
xtuples of N. The theorem is a consequence of (2), (3), (7), (22), (8), (21),
(14), (12), (9), (5), and (4).

(24) {p : p(i2) = p(i1)p(i3)} is a diophantine subset of the n-xtuples of N. The
theorem is a consequence of (2), (3), (14), (7), (6), (9), (23), (17), (8),
(18), (5), and (4).
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Summary. Rough sets, developed by Pawlak [15], are important tool to
describe situation of incomplete or partially unknown information. In this article
we give the formal characterization of two closely related rough approximations,
along the lines proposed in a paper by Gomolińska [2]. We continue the formali-
zation of rough sets in Mizar [1] started in [6].
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0. Introduction

In the paper [9] published in 2010 we discussed some pros and cons of various
approaches to rough operators dealing with some of the issues raised by Anna
Gomolińska [2]. Even if our chosen formal framework [6] faithfully reflected
Pawlak’s ideas [15], also possibility of other views for the same topic was quite
tempting. Our question was if the Mizar Mathematical Library is ready to do
some formal reasoning without much additional work needed to bridge the gap
between informal knowledge and its formal countepart present in the repository
of automatically verified mathematical knowledge. This expectation is not really
that trivial as we noted after an unsatisfactory – at least from our point of view –
attempt to formalize Rough Concept Analysis in Mizar [12]. On the other hand,
reuse of lattice theory to develop a rough framework [4] according to Järvinen
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[13] or bulding a theory of approximations based on pure set theory in style of
[16], [17] showed the usefulness of automated theorem proving methods [3] in
order to obtain new results, with possibility of theory merging, taking care of
possible duplications [11].

Our main aim was to use the existing implementation of rough sets in Mizar
to provide the formal proof of the following theorem (original notation of [2]):

Theorem 4.1 For any sets x, y ⊆ U , objects u,w ∈ U , and i = 0, 1,
it holds that:

1. fd0 ¬ id ¬ f0.

2. fd1 ¬ id ¬ f1.

3. f0(x) is definable.

4. ∀u ∈ f1(x).κ(I(u), x) > 0.

5. ∀u ∈ fd1 (x).κ(I(u), x) = 1.

6. If τ(u) = τ(w), then u ∈ f0(x) iff w ∈ f0(x); and similarly for
fd0 .

7. If I(u) = I(w), then u ∈ f1(x) iff w ∈ f1(x); and similarly for
fd1 .

8. fi(∅) = ∅ and fi(U) = U ; and similarly for fdi .

9. fi and fdi are monotone.

10. fi(x ∪ y) = fi(x) ∪ fi(y).

11. fdi (x ∪ y) ⊇ fdi (x) ∪ fdi (y).

12. fi(x ∩ y) ⊆ fi(x) ∩ fi(y).

13. fdi (x ∩ y) = fdi (x) ∩ fdi (y).

With the exception of two subitems (4. and 5.) dealing with κ as rough inclusion
operator, we succeeded.

It should be mentioned, that most of the reasoning on the properties of the
generalized approximation operator was done under the assumption

∀u∈U u ∈ I(u),

which we called map-reflexive of the uncertainty mapping I. Another, more
general relational aproach was adopted in [8] which is a Mizar counterpart of
[17]. There the reflexivity of binary indiscernibility relation was assumed where
needed.

Automated math-asistants can offer a new – semiautomated – insight [10]
also for quite elementary notions: in Section 4, we introduced more general Mizar
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functor dealing with arbitrary maps from the universe into its powerset, so that
we could obtain most of properties of mappings f0 and f1 as straightforward
consequences. We kept them both however, to assure full compatibility with [2].

1. Preliminaries: Map-Reflexivity

Let R be a non empty set and I be a function from R into 2R. We say that
I is map-reflexive if and only if

(Def. 1) for every element u of R, u ∈ I(u).

The functor singletonR yielding a function from R into 2R is defined by

(Def. 2) for every element x of R, it(x) = {x}.
Let us observe that singletonR is map-reflexive.
Now we state the proposition:

(1) Let us consider a non empty relational structure R, and a function I from
the carrier of R into 2α. Suppose I is map-reflexive. Then the carrier of
R =

⋃
(I◦(ΩR)), where α is the carrier of R.

From now on f , g denote functions and R denotes a non empty, reflexive
relational structure.

Now we state the propositions:

(2) LAp(R) ⊆̇ id2α , where α is the carrier of R.
Proof: Set f = LAp(R). Set g = id2(the carrier of R) . For every set i such
that i ∈ dom f holds f(i) ⊆ g(i) by [7, (35)]. �

(3) id2α ⊆̇ UAp(R), where α is the carrier of R.
Proof: Set f = id2(the carrier of R) . Set g = UAp(R). For every set i such
that i ∈ dom f holds f(i) ⊆ g(i). �

2. Properties of Flipping Operator fd

From now on R denotes a non empty relational structure.
Now we state the propositions:

(4) Let us consider a map f of R, and subsets x, y of R. Then Flip Flip f = f .

(5) Let us consider maps f , g of R. Then Flip f · g = (Flip f) · (Flip g).
Proof: Set f2 = Flip f · g. Set f1 = Flip f . Set g1 = Flip g. For every
subset x of R, f2(x) = (f1 · g1)(x). �

(6) Let us consider a map f of R. Then f(∅) = ∅ if and only if
(Flip f)(the carrier of R) = the carrier of R.
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3. Uncertainty Mappings I and τ

Let R be a non empty relational structure. The functor IR yielding a function
from the carrier of R into 2(the carrier of R) is defined by

(Def. 3) for every element x of R, it(x) = Coim((the internal relation of R), x).

Now we state the proposition:

(7) Let us consider elements w, u of R. Then 〈〈w, u〉〉 ∈ the internal relation
of R if and only if w ∈ (IR)(u).

Let R be a non empty relational structure. The functor τR yielding a function
from the carrier of R into 2(the carrier of R) is defined by

(Def. 4) for every element u of R, it(u) = (the internal relation of R)◦u.

Now we state the propositions:

(8) Let us consider elements u, w of R. Then u ∈ (the internal relation of
R)◦w if and only if w ∈ Coim((the internal relation of R), u).
Proof: If u ∈ (the internal relation ofR)◦w, then w ∈ Coim((the internal
relation ofR), u). Consider t being an object such that 〈〈w, t〉〉 ∈ the internal
relation of R and t ∈ {u}. �

(9) Let us consider elements w, u of R. Then 〈〈w, u〉〉 ∈ the internal relation
of R if and only if u ∈ (τR)(w).
Proof: If 〈〈w, u〉〉 ∈ the internal relation of R, then u ∈ (τR)(w). w ∈
Coim((the internal relation of R), u). Consider x being an object such
that 〈〈w, x〉〉 ∈ the internal relation of R and x ∈ {u}. �

4. Generalized Approximation Mappings

Let R be a non empty relational structure and f be a function from the car-
rier of R into 2(the carrier of R). The functor UApf yielding a map of R is defined
by

(Def. 5) for every subset x of R, it(x) = {u, where u is an element of R : f(u)
meets x}.

The functors: f0(R) and f1(R) yielding maps of R are defined by terms

(Def. 6) UApτR ,

(Def. 7) UApIR ,

respectively. Now we state the propositions:

(10) If the internal relation of R is symmetric, then IR = τR.
Proof: Set f = IR. Set g = τR. For every element x of R, f(x) = g(x)
by [14, (20)]. �
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(11) If the internal relation of R is symmetric, then f0(R) = f1(R). The
theorem is a consequence of (10).

(12) the internal relation of R is symmetric if and only if for every elements
u, v of R such that u ∈ (τR)(v) holds v ∈ (τR)(u). The theorem is a con-
sequence of (10), (7), and (9).

(13) f0(R) = UAp(R).

(14) Flip f0(R) = LAp(R). The theorem is a consequence of (13).

(15) Let us consider an approximation space R, and a subset x of R. Then
(f0(R))(x) is exact. The theorem is a consequence of (13).

5. The Ordering of Approximation Mappings

Now we state the propositions:

(16) If the internal relation of R is total and reflexive, then id2α ⊆̇ f0(R),
where α is the carrier of R.
Proof: Set f = id2(the carrier of R) . Set g = f0(R). For every set i such that
i ∈ dom f holds f(i) ⊆ g(i) by [5, (1)], (9). �

(17) If R is reflexive, then Flip f0(R) ⊆̇ id2α , where α is the carrier of R. The
theorem is a consequence of (14) and (2).

(18) If the internal relation of R is total and reflexive, then id2α ⊆̇ f1(R),
where α is the carrier of R.
Proof: Set f = id2(the carrier of R) . Set g = f1(R). For every set i such that
i ∈ dom f holds f(i) ⊆ g(i). �

6. Acting on the Empty Set and the Universe

In the sequel f denotes a function from the carrier of R into 2(the carrier of R).
Now we state the proposition:

(19) (UApf )(∅) = ∅.
Let us consider R and f . One can check that UApf preserves empty set.

(20) (f0(R))(∅) = ∅.
(21) (f1(R))(∅) = ∅.

Let R be a non empty, reflexive relational structure. Let us observe that
the internal relation of R is total and reflexive.

(22) If f is map-reflexive, then (UApf )(the carrier of R) = the carrier of R.
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(23) Suppose the internal relation of R is reflexive and total.
Then (f0(R))(the carrier of R) = the carrier of R.
Proof: The carrier of R ⊆ {u, where u is an element of R : (τR)(u)
meets ΩR}. �

(24) Suppose the internal relation of R is reflexive and total.
Then (f1(R))(the carrier of R) = the carrier of R.
Proof: The carrier of R ⊆ {u, where u is an element of R : (IR)(u)
meets ΩR}. �

7. Standard Properties of Approximations

Let us consider elements u, w of R and a subset x of R. Now we state the
propositions:

(25) If f(u) = f(w), then u ∈ (UApf )(x) iff w ∈ (UApf )(x).

(26) If (IR)(u) = (IR)(w), then u ∈ (f1(R))(x) iff w ∈ (f1(R))(x).

(27) If (τR)(u) = (τR)(w), then u ∈ (f0(R))(x) iff w ∈ (f0(R))(x).

(28) Let us consider a function f from the carrier of R into 2α, and a subset x
of R. Then (Flip(UApf ))(x) = {w, where w is an element of R : f(w) ⊆
x}, where α is the carrier of R.
Proof: (Flip(UApf ))(x) ⊆ {w, where w is an element of R : f(w) ⊆ x}.
Consider w being an element of R such that y = w and f(w) ⊆ x. Recon-
sider y1 = y as an element of R. y1 /∈ (UApf )(xc). �

Let us consider a subset x of R. Now we state the propositions:

(29) (Flip f0(R))(x) = {w, where w is an element of R : (τR)(w) ⊆ x}.
Proof: (Flip f0(R))(x) ⊆ {w, where w is an element of R : (τR)(w) ⊆ x}.
Consider w being an element of R such that y = w and (τR)(w) ⊆ x.
Reconsider y1 = y as an element of R. y1 /∈ (f0(R))(xc). �

(30) (Flip f1(R))(x) = {w, where w is an element of R : (IR)(w) ⊆ x}.
Proof: (Flip f1(R))(x) ⊆ {w, where w is an element of R : (IR)(w) ⊆ x}.
Consider w being an element of R such that y = w and (IR)(w) ⊆ x.
Reconsider y1 = y as an element of R. y1 /∈ (f1(R))(xc). �

Let us consider elements u, w of R and a subset x of R. Now we state the
propositions:

(31) If f(u) = f(w), then u ∈ (Flip(UApf ))(x) iff w ∈ (Flip(UApf ))(x). The
theorem is a consequence of (28).

(32) If (τR)(u) = (τR)(w), then u ∈ (Flip f0(R))(x) iff w ∈ (Flip f0(R))(x).
The theorem is a consequence of (29).
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(33) If (IR)(u) = (IR)(w), then u ∈ (Flip f1(R))(x) iff w ∈ (Flip f1(R))(x).
The theorem is a consequence of (30).

Let us consider an element w of R. Now we state the propositions:

(34) If R is reflexive, then w ∈ (IR)(w). The theorem is a consequence of (7).

(35) If R is reflexive, then w ∈ (τR)(w). The theorem is a consequence of (9).

Let R be a reflexive, non empty relational structure. One can verify that IR
is map-reflexive and τR is map-reflexive.

Now we state the propositions:

(36) If R is reflexive, then Flip f1(R) ⊆̇ id2α , where α is the carrier of R. The
theorem is a consequence of (34) and (30).

(37) (f0(R)) · (f0(R)) = f0(R) if and only if (Flip f0(R)) · (Flip f0(R)) =
Flip f0(R). The theorem is a consequence of (5).

(38) If R is reflexive, then
⋃

((IR)◦(ΩR)) = the carrier of R. The theorem is
a consequence of (34).

8. Monotonicity of Approximations

Let R be a non empty relational structure. One can verify that f0(R) is
⊆-monotone and f1(R) is ⊆-monotone.

Now we state the propositions:

(39) Let us consider a map f of R. Suppose f is ⊆-monotone. Then Flip f is
⊆-monotone.
Proof: Set g = Flip f . For every subsets A, B of R such that A ⊆ B

holds g(A) ⊆ g(B). �

(40) Flip f0(R) is ⊆-monotone.

(41) Flip f1(R) is ⊆-monotone.

9. Distributivity wrt. Set-Theoretic Operations

Now we state the proposition:

(42) Let us consider a function f from the carrier of R into 2α, and subsets
x, y of R. Then (UApf )(x ∪ y) = (UApf )(x) ∪ (UApf )(y), where α is
the carrier of R.

Let us consider subsets x, y of R. Now we state the propositions:

(43) (f0(R))(x∪ y) = (f0(R))(x)∪ (f0(R))(y). The theorem is a consequence
of (42).
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(44) (f1(R))(x∪ y) = (f1(R))(x)∪ (f1(R))(y). The theorem is a consequence
of (42).

(45) Let us consider a function f from the carrier of R into 2α, and subsets x,
y of R. Then (Flip(UApf ))(x) ∪ (Flip(UApf ))(y) ⊆ (Flip(UApf ))(x ∪ y),
where α is the carrier of R. The theorem is a consequence of (28).

Let us consider subsets x, y of R. Now we state the propositions:

(46) (Flip f0(R))(x) ∪ (Flip f0(R))(y) ⊆ (Flip f0(R))(x ∪ y). The theorem is
a consequence of (45).

(47) (Flip f1(R))(x) ∪ (Flip f1(R))(y) ⊆ (Flip f1(R))(x ∪ y). The theorem is
a consequence of (45).

(48) Let us consider a function f from the carrier of R into 2α, and subsets
x, y of R. Then (UApf )(x ∩ y) ⊆ (UApf )(x) ∩ (UApf )(y), where α is
the carrier of R.

Let us consider subsets x, y of R. Now we state the propositions:

(49) (f0(R))(x∩ y) ⊆ (f0(R))(x)∩ (f0(R))(y). The theorem is a consequence
of (48).

(50) (f1(R))(x∩ y) ⊆ (f1(R))(x)∩ (f1(R))(y). The theorem is a consequence
of (48).

(51) Let us consider a function f from the carrier of R into 2α, and subsets x,
y of R. Then (Flip(UApf ))(x) ∩ (Flip(UApf ))(y) = (Flip(UApf ))(x ∩ y),
where α is the carrier of R.

Let us consider subsets x, y of R. Now we state the propositions:

(52) (Flip f0(R))(x) ∩ (Flip f0(R))(y) = (Flip f0(R))(x ∩ y). The theorem is
a consequence of (51).

(53) (Flip f1(R))(x) ∩ (Flip f1(R))(y) = (Flip f1(R))(x ∩ y). The theorem is
a consequence of (51).
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Summary. The main result of the article is to prove formally that two sets
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butive lattices, respectively. In our Mizar article we used proof objects generated
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0. Introduction

For years, automated theorem provers have proven to be useful tool to so-
lve quite complex problems dealing with axiomatizations of various systems
appearing in mathematics. Let us recall here the Robbins problem about the
alternative axiomatization of Boolean algebras: this was probably the first ti-
me lots of mathematicians have heard of EQP/Otter [15]. The Mizar system,
via interface ot 2miz [19] allows for the automated translation of Otter (or
Prover9) proof objects to allows such proofs to be included into the Mizar re-
pository. Among the examples of such areas of mathematics within the Mizar
Mathematical Library (MML) [1] explored by means of Prover9 we can give
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either the aforementioned solution of the Robbins problem [7] according to [3],
various short systems for ortholattices [21] inspired by [14], or axiom systems
for Boolean algebras in terms of the Sheffer stroke [13]. An overview of the me-
chanization of lattice theory in MML can be found in [5]. The initial idea of this
development was to provide a formal counterpart of [11] (or, more recently, [12])
or [2] and this Mizar challenge is alive for over thirty years now [9]. This is also
quite feasible taking into account automatic treatment of the equality predicate
in Mizar [10], and the equational axiomatics for lattices is strongly preferred in
the MML over that based on the ordering relation [4], although we created a
common – fully formal – Mizar framework where both can be used in parallel
[8].

In 1951, in his paper [20] Marlow Sholander showed that the necessary and
sufficient condition for an algebra 〈L,t,u〉 to be a distributive lattice is to
satisfy one of the following sets of axioms:

a = a t (a u b),

a t (b u c) = (c t a) u (b t a);

or, dually
a = a u (a t b),

a u (b t c) = (c u a) t (b u a)

for arbitrary elements a, b, c of L.
We call the latter formula the Sholander axiom, and show in the first section,

that together with the other one, which corresponds with the Mizar adjective
join-absorbing, it implies all remaining standard axioms for distributive lat-
tices as defined in [22]. The theorem stating full equivalence of both axiom sets
is under number (11) in the present article.

Ralph McKenzie’s [17] axiomatization of lattices consists of four formulas:

x t (y u (x u z)) = x

x u (y t (x t z)) = x

((y u x) t (x u z)) t x = x

((y t x) u (x t z)) u x = x

where x, y, z are arbitrary elements of the carrier of 〈L,t,u〉. These formulas
were introduced in Section 2 in definitions (Def. 2) – (Def. 5), respectively, and
the full equivalence of these four axioms with the classical axiomatics from [22]
is proven as theorem (15) providing also appropriate registration of clusters
allowing for automated reuse of both sets. Such approach is useful especially in
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the areas which use lattice theory as a kind of metalanguage, e.g., rough sets
[6].

Our work can be seen as a step towards a Mizar support for [16] or [18],
where original proof objects by Otter/Prover9 were used.

1. Sholander Axiom for Distributive Lattices

From now on L denotes a non empty lattice structure and v4, v5, v6, v7, w3,
v, w2, w1, w0, z, y, x denote elements of L.

Let us consider L. We say that L satisfies Sholander axiom if and only if

(Def. 1) for every x, y, and z, x u (y t z) = (z u x) t (y u x).

Let us consider x. Now we state the propositions:

(1) If L is join-absorbing and for every x, z, and y, xu(ytz) = (zux)t(yux),
then x u x = x.

(2) If L is join-absorbing and for every x, z, and y, xu(ytz) = (zux)t(yux),
then x t x = x. The theorem is a consequence of (1).

Let us consider x and y. Now we state the propositions:

(3) If L is join-absorbing and for every x, z, and y, xu(ytz) = (zux)t(yux),
then x u y = y u x. The theorem is a consequence of (2).

(4) If L is join-absorbing and for every x, z, and y, xu(ytz) = (zux)t(yux),
then x t y = y t x. The theorem is a consequence of (1).

(5) Suppose L is join-absorbing and for every x, z, and y, x u (y t z) =
(z u x) t (y u x). (x u y) u z = x u (y u z). The theorem is a consequence
of (1), (2), (4), and (3).

(6) If for every y and x, xu(xty) = x, then for every x and y, xu(xty) = x.

(7) Suppose L is join-absorbing and for every x, z, and y, x u (y t z) =
(z ux)t (yux). xt (xu y) = x. The theorem is a consequence of (1), (3),
and (4).

Let us consider x, y, and z. Now we state the propositions:

(8) Suppose L is join-absorbing and for every x, z, and y, x u (y t z) =
(zux)t(yux). Then (xty)tz = xt(ytz). The theorem is a consequence
of (1), (3), (7), (2), (5), and (4).

(9) Suppose L is join-absorbing and for every x, z, and y, x u (y t z) =
(z u x) t (y u x). Then x u (y t z) = (x u y) t (x u z). The theorem is
a consequence of (4) and (3).

(10) Suppose L is join-absorbing and for every x, z, and y, x u (y t z) =
(z u x) t (y u x). Then x t (y u z) = (x t y) u (x t z). The theorem is
a consequence of (5), (1), (4), (8), (2), and (3).
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From now on L denotes a distributive, join-commutative, meet-commutative,
non empty lattice structure and x, y, z denote elements of L.

Now we state the propositions:

(11) x u (y t z) = (z u x) t (y u x).

(12) Let us consider a non empty lattice structure L. Then L is a distributive
lattice if and only if L is join-absorbing and satisfies Sholander axiom. The
theorem is a consequence of (11), (9), (3), (4), (5), (8), and (7).

Let us observe that every non empty lattice structure which is join-absorbing
and satisfies Sholander axiom is also distributive and lattice-like and every
non empty lattice structure which is distributive, join-commutative, and meet-
commutative satisfies also Sholander axiom.

2. Four Axioms for Lattices Proposed by McKenzie

From now on L denotes a non empty lattice structure and w3, v, w2, w1, w0,
z, y, x denote elements of L.

Let us consider L. We say that L satisfies first McKenzie axiom if and only
if

(Def. 2) for every y, z, and x, x t (y u (x u z)) = x.

We say that L satisfies second McKenzie axiom if and only if

(Def. 3) for every y, z, and x, x u (y t (x t z)) = x.

We say that L satisfies third McKenzie axiom if and only if

(Def. 4) for every z, y, and x, ((x u y) t (y u z)) t y = y.

We say that L satisfies fourth McKenzie axiom if and only if

(Def. 5) for every z, y, and x, ((x t y) u (y t z)) u y = y.

Now we state the propositions:

(13) Suppose L satisfies first McKenzie axiom and second McKenzie axiom
and for every z, y, and x, ((x u y) t (y u z)) t y = y and for every z, y,
and x, ((x t y) u (y t z)) u y = y. Then

(i) for every y and x, x u (x t y) = x, and

(ii) for every y and x, x t (x u y) = x, and

(iii) L is join-commutative, meet-commutative, meet-associative, and join-
associative.

(14) Suppose L is join-commutative, join-associative, meet-commutative, and
meet-associative and for every y and x, x u (x t y) = x and for every y

and x, x t (x u y) = x. Then

(i) for every y, z, and x, x t (y u (x u z)) = x, and
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(ii) for every y, z, and x, x u (y t (x t z)) = x, and

(iii) for every z, y, and x, ((x u y) t (y u z)) t y = y, and

(iv) for every z, y, and x, ((x t y) u (y t z)) u y = y.

Let L be a non empty lattice structure. We say that L satisfies four McKenzie
axioms if and only if

(Def. 6) L satisfies first McKenzie axiom, second McKenzie axiom, third McKen-
zie axiom, and fourth McKenzie axiom.

One can verify that every non empty lattice structure which satisfies four
McKenzie axioms satisfies also first McKenzie axiom, second McKenzie axiom,
third McKenzie axiom, and fourth McKenzie axiom and every non empty lat-
tice structure which satisfies first McKenzie axiom, second McKenzie axiom,
third McKenzie axiom, and fourth McKenzie axiom satisfies also four McKenzie
axioms.

From now on L denotes a non empty lattice structure.
Now we state the proposition:

(15) L is a lattice if and only if L satisfies four McKenzie axioms. The theorem
is a consequence of (14) and (13).

Let us observe that every non empty lattice structure which is lattice-like
satisfies also four McKenzie axioms and every non empty lattice structure which
satisfies four McKenzie axioms is also lattice-like.
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