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Summary. In contrast to other proving systems Mizar Mathematical Li-
brary, considered as one of the largest formal mathematical libraries [4], is ma-
intained as a single base of theorems, which allows the users to benefit from
earlier formalized items [3], [2]. This eventually leads to a development of certain
branches of articles using common notation and ideas. Such formalism for finite
sequences has been developed since 1989 [1] and further developed despite of the
controversy over indexing which excludes zero [6], also for some advanced and
new mathematics [5].

The article aims to add some new machinery for dealing with finite sequences,
especially those of short length.
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1. Preliminaries

One can verify that every binary relation which is empty is also positive
yielding and every binary relation which is empty is also negative yielding and
every binary relation which is natural-valued is also N-valued.

Let f be a complex-valued function and k be an object. Note that (0 · f)(k)
reduces to 0.

Let us observe that 1 · f reduces to f and (−1) · (−f) reduces to f . One can
verify that 0 · f is empty yielding and f − f is empty yielding.
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Let D be a set. Observe that there exists a D-valued finite sequence which is
empty yielding and every finite sequence which is empty yielding is also N-valued
and there exists an empty yielding finite sequence which is non empty.

Let n be a natural number. One can verify that there exists an empty yiel-
ding, N-valued finite sequence which is n-element and min(n, 0) is zero.

One can verify that max(n, 0) reduces to n.
Let a be a non zero natural number. One can verify that min(a, 1) reduces

to 1 and max(a, 1) reduces to a.
Let a be a non trivial natural number. One can verify that min(a, 2) reduces

to 2 and max(a, 2) reduces to a.
Let a be a positive real number and b be a positive natural number. One

can verify that b 7→ a is positive and every binary relation which is empty
yielding is also function-like and every function which is empty yielding is also
natural-valued and every real-valued function which is empty yielding is also
non-positive yielding.

Every real-valued function which is empty yielding is also non-negative yiel-
ding and every non empty, real-valued function which is empty yielding is also
non positive yielding and every non empty, real-valued function which is empty
yielding is also non negative yielding and every non empty, real-valued function
which is positive yielding is also non non-positive yielding and every non empty,
real-valued function which is negative yielding is also non non-negative yielding.

Let f be an empty yielding function and c be a complex number. Note that
c · f is empty yielding.

Let g be a complex-valued function. Note that f · g is empty yielding.

2. The Length of Finite Sequences

Let f be a complex-valued finite sequence and x be a complex number. Note
that f+x is (len f)-element and f−x is (len f)-element and |f | is (len f)-element
and −f is (len f)-element and f−1 is (len f)-element.

Let n, m be natural numbers, f be an n-element, complex-valued finite
sequence, and g be anm-element, complex-valued finite sequence. One can verify
that f + g is (min(n,m))-element and f · g is (min(n,m))-element and f − g is
(min(n,m))-element and f/g is (min(n,m))-element.

Let g be an (n+m)-element, empty yielding, complex-valued finite sequence.
Observe that f + g reduces to f .

Let n be a natural number and g be an n-element, empty yielding, complex-
valued finite sequence. One can verify that f + g reduces to f .

Let X be a non empty set. Observe that there exists an X-defined, empty
yielding function which is total.
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Let f be a total, X-defined, complex-valued function and g be a total,
X-defined, empty yielding function. Let us observe that f + g reduces to f .

Let f be a binary relation. Let us observe that there exists a binary rela-
tion which is (dom f)-defined and f null f is (dom f)-defined and there exists
a (dom f)-defined binary relation which is total.

Let f be a complex-valued function. Observe that there exists a (dom f)-
defined, empty yielding function which is total and −f is (dom f)-defined and
−f is total and f−1 is (dom f)-defined and f−1 is total and |f | is (dom f)-defined
and |f | is total.

Let c be a complex number. Let us note that c+f is (dom f)-defined and c+f
is total and f−c is (dom f)-defined and f−c is total and c ·f is (dom f)-defined
and c · f is total.

Let f be a finite sequence. Let us observe that every finite sequence which
is (len f)-element is also (dom f)-defined.

Let n be a natural number. Let us observe that every finite sequence which
is n-element is also (Seg n)-defined and every finite sequence which is total and
(Seg n)-defined is also n-element.

Now we state the proposition:

(1) Let us consider a complex-valued finite sequence f . Then 0 ·f = len f 7→
0.

Let f be a complex-valued finite sequence. Note that f + len f 7→ 0 reduces
to f .

Let n be a natural number, D be a non empty set, and X be a non empty
subset ofD. One can verify that there exists anX-valued finite sequence which is
n-element and there exists a finite sequence of elements of X which is n-element.

3. On Positive and Negative Yielding Functions

Let f be a real-valued function. Let us note that f + |f | is non-negative
yielding and |f | − f is non-negative yielding.

Let f be a non-negative yielding, real-valued function and x be an object.
Observe that f(x) is non negative.

Let f be a non-positive yielding, real-valued function. Let us observe that
f(x) is non positive.

Let f be a non-negative yielding, real-valued function and r be a non negative
real number. One can verify that r · f is non-negative yielding and (−r) · f is
non-positive yielding and −f is non-positive yielding.

Let f be a non-positive yielding, real-valued function and r be a non negative
real number. Let us observe that r ·f is non-positive yielding and (−r) ·f is non-
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negative yielding and −f is non-negative yielding and every Z-valued function
which is non-negative yielding is also natural-valued.

Let f be a Z-valued function. Let us observe that 12 ·(f+|f |) is natural-valued
and 12 · (|f | − f) is natural-valued.

Let us consider a binary relation f . Now we state the propositions:

(2) rng f is natural-membered if and only if f is natural-valued.
Proof: If rng f is natural-membered, then f is natural-valued. �

(3) f is N-valued if and only if rng f is natural-membered. The theorem is
a consequence of (2).

(4) rng f is integer-membered if and only if f is Z-valued.
Proof: If rng f is integer-membered, then f is Z-valued. �

(5) rng f is rational-membered if and only if f is Q-valued.
Proof: If rng f is rational-membered, then f is Q-valued. �

(6) rng f is real-membered if and only if f is real-valued.
Proof: If rng f is real-membered, then f is real-valued. �

(7) f is R-valued if and only if rng f is real-membered. The theorem is
a consequence of (6).

(8) rng f is complex-membered if and only if f is complex-valued.
Proof: If rng f is complex-membered, then f is complex-valued. �

(9) f is C-valued if and only if rng f is complex-membered. The theorem is
a consequence of (8).

(10) dom f is natural-membered if and only if f is N-defined.
Proof: If dom f is natural-membered, then f is N-defined. �

Let f be a Z-defined binary relation. Observe that dom f is integer-membered.
Now we state the proposition:

(11) Let us consider a binary relation f . Then dom f is integer-membered if
and only if f is Z-defined.
Proof: If dom f is integer-membered, then f is Z-defined. �

Let f be a Q-defined binary relation. Let us note that dom f is rational-
membered.

Now we state the proposition:

(12) Let us consider a binary relation f . Then dom f is rational-membered if
and only if f is Q-defined.
Proof: If dom f is rational-membered, then f is Q-defined. �

Let f be a R-defined binary relation. Note that dom f is real-membered.
Now we state the proposition:

(13) Let us consider a binary relation f . Then dom f is real-membered if and
only if f is R-defined.
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Proof: If dom f is real-membered, then f is R-defined. �

Let f be a C-defined binary relation. One can check that dom f is complex-
membered.

Now we state the propositions:

(14) Let us consider a binary relation f . Then dom f is complex-membered
if and only if f is C-defined.
Proof: If dom f is complex-membered, then f is C-defined. �

(15) Let us consider a set D, and a function f . Then f is D-valued if and
only if f is a function from dom f into D.
Proof: If f is D-valued, then f is a function from dom f into D. �

(16) Let us consider a set C. Then every total, C-defined function is a function
from C into rng f .

(17) Let us consider sets C, D, and a total, C-defined function f . Then f
is a function from C into D if and only if f is D-valued. The theorem is
a consequence of (16) and (15).

(18) Every real-valued function is a function from dom f into R.

(19) Let us consider a complex-valued finite sequence f . Then

(i) f − f = 0 · f , and

(ii) f − f = len f 7→ 0.

The theorem is a consequence of (1).

(20) Let us consider a complex number a, a finite sequence f , and a natural
number k. If k ∈ dom f , then (len f 7→ a)(k) = a.

Let a be a real number, k be a non zero natural number, l be a natural
number, and f be a (k+ l)-element finite sequence. One can verify that (len f 7→
a)(k) reduces to a.

Let f be a complex-valued function. The functors: delneg f , delpos f , and
delall f yielding complex-valued functions are defined by terms

(Def. 1) 1
2 · (f + |f |),

(Def. 2) 1
2 · (|f | − f),

(Def. 3) 0 · f ,
respectively. Now we state the propositions:

(21) Let us consider a complex-valued function f . Then

(i) dom f = dom(delpos f), and

(ii) dom f = dom(delneg f), and

(iii) dom f = dom(delall f).
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(22) Let us consider a complex-valued function f , and an object x. Then
f(x) = (delneg f)(x) − (delpos f)(x). The theorem is a consequence of
(21).

(23) Let us consider a complex-valued function f . Then f = delneg f −
delpos f . The theorem is a consequence of (21) and (22).

Let us consider a real-valued function f and an object x. Now we state the
propositions:

(24) (i) f(x) = (delneg f)(x), or

(ii) f(x) = −(delpos f)(x).
The theorem is a consequence of (21).

(25) (i) (delneg f)(x) = 0, or

(ii) (delpos f)(x) = 0.
The theorem is a consequence of (22) and (24).

Let f be a real-valued function. One can verify that delneg f · delpos f is
empty yielding.

Now we state the proposition:

(26) Let us consider a real-valued function f . Then delall f = delneg f ·
delpos f . The theorem is a consequence of (21).

Let f be a complex-valued function and f1 be a total, (dom f)-defined, emp-
ty yielding function. Let us observe that f + f1 reduces to f and f − f1 reduces
to f .

Let f1 be a total, (dom f)-defined, complex-valued function and f2 be a to-
tal, (dom f)-defined, empty yielding function. One can verify that f1+f2 reduces
to f1 and f1 − f2 reduces to f1.

Observe that f − f is (dom f)-defined and f − f is total.
Now we state the proposition:

(27) Let us consider a complex-valued function f . Then |f | = delneg f +
delpos f .

Let f be an empty finite sequence. Let us note that
∏
f is natural and

∏
f

is non zero.
Let f be a positive yielding, real-valued finite sequence. One can check that∏
f is positive.
Let f be a complex-valued finite sequence. Let us note that delneg f is

(len f)-element and delpos f is (len f)-element.
Now we state the proposition:

(28) Let us consider a complex-valued function f . Then delneg f = delpos(−f).
Let f be a non-negative yielding, real-valued function. Note that |f | reduces

to f and delneg f reduces to f . We identify delall f with delpos f . We identify
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delpos f with delall f . Let f be a non-positive yielding, real-valued function.
Observe that −delpos f reduces to f . One can verify that delneg f is empty
yielding.

We identify delall f with delneg f . We identify delneg f with delall f . Now
we state the proposition:

(29) Let us consider a finite sequence f of elements of Z. Then there exist
finite sequences f1, f2 of elements of N such that f = f1−f2. The theorem
is a consequence of (23).

Let a be an integer and n be a natural number. Note that n 7→ a is Z-valued.
Let f be a non empty, empty yielding finite sequence. Observe that

∏
f is

zero.
Now we state the propositions:

(30) Let us consider finite sequences f1, f2 of elements of R. Suppose len f1 =
len f2 and for every element k of N such that k ∈ dom f1 holds f1(k) ­
f2(k) > 0. Then

∏
f1 ­

∏
f2.

Proof: For every element k of N such that k ∈ dom f2 holds f1(k) ­
f2(k) > 0. �

(31) Let us consider a real number a, and a finite sequence f of elements of R.
Suppose for every element k of N such that k ∈ dom f holds 0 < f(k) ¬ a.
Then

∏
f ¬
∏

(len f 7→ a). The theorem is a consequence of (20).

(32) Let us consider a non negative real number a, and a finite sequence f of
elements of R. Suppose for every natural number k such that k ∈ dom f
holds f(k) ­ a. Then

∏
f ­ alen f . The theorem is a consequence of (20).

(33) Let us consider non-negative yielding finite sequences f1, f2 of elements
of R. Suppose len f1 = len f2 and for every element k of N such that
k ∈ dom f2 holds f1(k) ­ f2(k). Then

∏
f1 ­

∏
f2.

(34) Let us consider finite sequences f1, f2 of elements of R. Suppose len f1 =
len f2 and for every element k of N such that k ∈ dom f2 holds f1(k) ­
f2(k) ­ 0. Then

∏
f1 ­

∏
f2.

Proof: For every real number r such that r ∈ rng f2 holds r ­ 0. For
every real number r such that r ∈ rng f1 holds r ­ 0. �

(35) Let us consider a positive real number a, and a non-negative yielding
finite sequence f of elements of R. Suppose for every element k of N
such that k ∈ dom f holds f(k) ¬ a. Then

∏
f ¬ alen f . The theorem is

a consequence of (20) and (33).
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4. Basic Operations on Short Finsequences

Let a be a complex number. Let us note that (−〈−a〉)(1) reduces to a and
(〈a−1〉−1)(1) reduces to a.

Let us consider complex numbers a, b. Now we state the propositions:

(36) 〈a〉+ 〈b〉 = 〈a+ b〉.
(37) 〈a〉 − 〈b〉 = 〈a− b〉. The theorem is a consequence of (36).

(38) 〈a〉 · 〈b〉 = 〈a · b〉.
(39) 〈a〉/〈b〉 = 〈a · (b−1)〉. The theorem is a consequence of (38).

Let n be a natural number, f be an n-element finite sequence, and a be
a complex number. One can verify that (fa〈a〉)(n+1) reduces to a and (fa〈a〉)�n
reduces to f .

Let a, b, c, d be complex numbers. Let us observe that 〈a, b, c, d〉 is complex-
valued.

Let a, b be complex numbers. Let us observe that (−〈−a, b〉)(1) reduces
to a and (−〈a,−b〉)(2) reduces to b and (〈a−1, b〉−1)(1) reduces to a and (〈a,
b−1〉−1)(2) reduces to b.

Let a, b, c be complex numbers. Note that 〈a, b, c〉(1) reduces to a and 〈a, b,
c〉(2) reduces to b and (−〈−a, b, c〉)(1) reduces to a and (−〈a,−b, c〉)(2) reduces
to b and (−〈a, b,−c〉)(3) reduces to c and (〈a−1, b, c〉−1)(1) reduces to a and (〈a,
b−1, c〉−1)(2) reduces to b and (〈a, b, c−1〉−1)(3) reduces to c.

Now we state the propositions:

(40) Let us consider complex numbers a, b, a natural number n, and n-
element, complex-valued finite sequences f , g. Then f a 〈a〉 + g a 〈b〉 =
(f + g) a 〈a+ b〉.
Proof: Reconsider f3 = f a 〈a〉 as an (n + 1)-element finite sequence
of elements of C. Reconsider g1 = g a 〈b〉 as an (n + 1)-element finite
sequence of elements of C. For every object k such that k ∈ dom(f3 + g1)
holds (f3 + g1)(k) = ((f + g) a 〈a+ b〉)(k). �

(41) Let us consider complex numbers a, b, x, y. Then 〈a, b〉+ 〈x, y〉 = 〈a+x,
b+ y〉. The theorem is a consequence of (40) and (36).

(42) Let us consider complex numbers a, b, c, x, y, z. Then 〈a, b, c〉 + 〈x, y,
z〉 = 〈a+ x, b+ y, c+ z〉. The theorem is a consequence of (40) and (41).

(43) Let us consider complex numbers a, b, c, d, x, y, z, v. Then 〈a, b, c,
d〉+ 〈x, y, z, v〉 = 〈a+ x, b+ y, c+ z, d+ v〉. The theorem is a consequence
of (40) and (42).

(44) Let us consider complex numbers a, b, a natural number n, and n-
element, complex-valued finite sequences f , g. Then (f a 〈a〉) · (g a 〈b〉) =
(f · g) a 〈a · b〉.



Arithmetic operations on short finite sequences 207

Proof: Reconsider f3 = f a 〈a〉 as an (n + 1)-element finite sequence
of elements of C. Reconsider g1 = g a 〈b〉 as an (n + 1)-element finite
sequence of elements of C. For every object k such that k ∈ dom(f3 · g1)
holds (f3 · g1)(k) = ((f · g) a 〈a · b〉)(k). �

(45) Let us consider complex numbers a, b, x, y. Then 〈a, b〉 · 〈x, y〉 = 〈a · x,
b · y〉. The theorem is a consequence of (44) and (38).

(46) Let us consider complex numbers a, b, c, x, y, z. Then 〈a, b, c〉 · 〈x, y,
z〉 = 〈a · x, b · y, c · z〉. The theorem is a consequence of (44) and (45).

(47) Let us consider complex numbers a, b, c, d, x, y, z, v. Then 〈a, b, c, d〉·〈x,
y, z, v〉 = 〈a · x, b · y, c · z, d · v〉. The theorem is a consequence of (44) and
(46).

(48) Let us consider a complex number a, a non zero natural number n, and
an n-element, complex-valued finite sequence f . Then 〈a〉+f = 〈a+f(1)〉.

(49) Let us consider complex numbers a, b, a non trivial natural number n,
and an n-element, complex-valued finite sequence f . Then 〈a, b〉 + f =
〈a+ f(1), b+ f(2)〉.

(50) Let us consider a complex number a, a non zero natural number n, and
an n-element, complex-valued finite sequence f . Then 〈a〉 · f = 〈a · f(1)〉.

(51) Let us consider complex numbers a, b, a non trivial natural number
n, and an n-element, complex-valued finite sequence f . Then 〈a, b〉 · f =
〈a · f(1), b · f(2)〉.
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Summary. This article covers some technical aspects about the product
topology which are usually not given much of a thought in mathematics and
standard literature like [7] and [6], not even by Bourbaki in [4].

Let {Ti}i∈I be a family of topological spaces. The prebasis of the product
space T =

∏
i∈I Ti is defined in [5] as the set of all π−1i (V ) with i ∈ I and V

open in Ti. Here it is shown that the basis generated by this prebasis consists
exactly of the sets

∏
i∈I Vi with Vi open in Ti and for all but finitely many i ∈ I

holds Vi = Ti. Given I = {a} we have T ∼= Ta, given I = {a, b} with a 6= b we
have T ∼= Ta × Tb. Given another family of topological spaces {Si}i∈I such that
Si ∼= Ti for all i ∈ I, we have S =

∏
i∈I Si ∼= T . If instead Si is a subspace of Ti

for each i ∈ I, then S is a subspace of T .
These results are obvious for mathematicians, but formally proven here by

means of the Mizar system [3], [2].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider a one-to-one function f , and an object y. Suppose rng f =
{y}. Then dom f = {(f−1)(y)}.
Proof: Consider x0 being an object such that x0 ∈ dom f and f(x0) = y.
For every object x, x ∈ dom f iff x = (f−1)(y). �
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(2) Let us consider a one-to-one function f , and objects y1, y2. Suppose
rng f = {y1, y2}. Then dom f = {(f−1)(y1), (f−1)(y2)}.
Proof: Consider x1 being an object such that x1 ∈ dom f and f(x1) = y1.
Consider x2 being an object such that x2 ∈ dom f and f(x2) = y2. For
every object x, x ∈ dom f iff x = (f−1)(y1) or x = (f−1)(y2). �

LetX, Y be sets. Note that there exists a function which is empty,X-defined,
Y -valued, and one-to-one.

Let T , S be sets, f be a function from T into S, and G be a finite family of
subsets of T . Let us note that f◦G is finite.

Now we state the propositions:

(3) Let us consider a set A, a family F of subsets of A, and a binary relation
R. Then R◦(

⋂
F ) ⊆

⋂
{R◦X, where X is a subset of A : X ∈ F}.

(4) Let us consider a set A, a family F of subsets of A, and a one-to-one
function f . Then f◦(

⋂
F ) =

⋂
{f◦X, where X is a subset of A : X ∈ F}.

Proof: Set S = {f◦X, where X is a subset of A : X ∈ F}.
⋂
S ⊆

f◦(
⋂
F ). f◦(

⋂
F ) ⊆

⋂
S. �

(5) Let us consider a set X, a non empty set Y, and a function f from X into
Y. Then {f−1({y}), where y is an element of Y : y ∈ rng f} is a partition
of X.
Proof: Set P = {f−1({y}), where y is an element of Y : y ∈ rng f}. For
every object x, x ∈ X iff there exists a set A such that x ∈ A and A ∈ P .
For every subset A of X such that A ∈ P holds A 6= ∅ and for every subset
B of X such that B ∈ P holds A = B or A misses B. P ⊆ 2X . �

(6) Let us consider a non empty set X, and objects x, y. If X 7−→ x =
X 7−→ y, then x = y.

(7) Let us consider an object i, and a many sorted set J indexed by {i}.
Then J = {i} 7−→ J(i).
Proof: For every object x such that x ∈ dom J holds J(x) = ({i} 7−→
J(i))(x). �

(8) Let us consider a 2-element set I, and elements i, j of I. If i 6= j, then
I = {i, j}.
Proof: For every object x, x = i or x = j iff x ∈ I. �

(9) Let us consider a 2-element set I, a many sorted set f indexed by I, and
elements i, j of I. If i 6= j, then f = [i 7−→ f(i), j 7−→ f(j)]. The theorem
is a consequence of (8).

(10) Let us consider objects a, b, c, d. If a 6= b, then [a 7−→ c, b 7−→ d] =
[b 7−→ d, a 7−→ c].
Proof: For every object x such that x ∈ dom[a 7−→ c, b 7−→ d] holds
[a 7−→ c, b 7−→ d](x) = [b 7−→ d, a 7−→ c](x). �
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(11) Let us consider a function f , and objects i, j. If i, j ∈ dom f , then
f = f+·[i 7−→ f(i), j 7−→ f(j)].

(12) Let us consider objects x, y, z. Then x 7−→. y+·(x 7−→. z) = x 7−→. z.

Let us observe that there exists a function which is non non-empty.
Now we state the propositions:

(13) Let us consider non empty sets X, Y, and an element y of Y. Then
X 7−→ y ∈

∏
(X 7−→ Y ).

Proof: Set f = X 7−→ y. For every object x such that x ∈ dom(X 7−→ Y )
holds f(x) ∈ (X 7−→ Y )(x). �

(14) Let us consider a non empty set X, a set Y, and a subset Z of Y. Then∏
(X 7−→ Z) ⊆

∏
(X 7−→ Y ).

(15) Let us consider a non empty set X, and an object i. Then
∏

({i} 7−→
X) = {{i} 7−→ x, where x is an element of X}.
Proof: Set S = {{i} 7−→ x, where x is an element of X}. For every ob-
ject z, z ∈

∏
({i} 7−→ X) iff z ∈ S. �

(16) Let us consider a non empty set X, and objects i, f . Then f ∈
∏

({i} 7−→
X) if and only if there exists an element x of X such that f = {i} 7−→ x.
The theorem is a consequence of (15).

(17) Let us consider a non empty set X, an object i, and an element x of X.
Then (proj({i} 7−→ X, i))({i} 7−→ x) = x. The theorem is a consequence
of (13).

(18) Let us consider sets X, Y. Then X 6= ∅ and Y = ∅ if and only if
∏

(X 7−→
Y ) = ∅.

Let f be an empty function and x be an object. Let us note that proj(f, x)
is trivial.

Now we state the proposition:

(19) Let us consider a trivial function f , and an object x. If x ∈ dom f , then
proj(f, x) is one-to-one.
Proof: Consider t being an object such that dom f = {t}. Set F =
proj(f, x). For every objects y, z such that y, z ∈ domF and F (y) = F (z)
holds y = z. �

Let x, y be objects. Note that proj(x 7−→. y, x) is one-to-one.
Let I be a 1-element set, J be a many sorted set indexed by I, and i be

an element of I. One can verify that proj(J, i) is one-to-one.
Now we state the propositions:

(20) Let us consider a non empty set X, a subset Y of X, and an object i.
Then (proj({i} 7−→ X, i))◦(

∏
({i} 7−→ Y )) = Y. The theorem is a conse-

quence of (16), (13), and (14).
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(21) Let us consider non-empty functions f , g, and objects i, x. Suppose
x ∈
∏
f ∩
∏

(f+·g). Then (proj(f, i))(x) = (proj(f+·g, i))(x).

(22) Let us consider non-empty functions f , g, an object i, and a set A.
Suppose A ⊆

∏
f ∩
∏

(f+·g). Then (proj(f, i))◦A = (proj(f+·g, i))◦A.
The theorem is a consequence of (21).

(23) Let us consider non-empty functions f , g. Suppose dom g ⊆ dom f and
for every object i such that i ∈ dom g holds g(i) ⊆ f(i). Then

∏
(f+·g) ⊆∏

f .

Let us consider non-empty functions f , g and an object i. Now we state the
propositions:

(24) Suppose dom g ⊆ dom f and for every object i such that i ∈ dom g holds
g(i) ⊆ f(i). Then if i ∈ dom f \dom g, then (proj(f, i))◦(

∏
(f+·g)) = f(i).

The theorem is a consequence of (23) and (22).

(25) Suppose dom g ⊆ dom f and for every object i such that i ∈ dom g holds
g(i) ⊆ f(i). Then if i ∈ dom g, then (proj(f, i))◦(

∏
(f+·g)) = g(i). The

theorem is a consequence of (23) and (22).

(26) Suppose dom g = dom f and for every object i such that i ∈ dom g holds
g(i) ⊆ f(i). Then if i ∈ dom g, then (proj(f, i))◦(

∏
g) = g(i). The theorem

is a consequence of (25).

(27) Let us consider a function f , sets X, Y, and an object i. Suppose X ⊆ Y.
Then

∏
(f+·(i 7−→. X)) ⊆

∏
(f+·(i 7−→. Y )).

(28) Let us consider objects i, j, and sets A, B, C, D. Suppose A ⊆ C and
B ⊆ D. Then

∏
[i 7−→ A, j 7−→ B] ⊆

∏
[i 7−→ C, j 7−→ D]. The theorem is

a consequence of (14).

(29) Let us consider sets X, Y, and objects f , i, j. Suppose i 6= j. Then
f ∈
∏

[i 7−→ X, j 7−→ Y ] if and only if there exist objects x, y such that
x ∈ X and y ∈ Y and f = [i 7−→ x, j 7−→ y].
Proof: If f ∈

∏
[i 7−→ X, j 7−→ Y ], then there exist objects x, y such

that x ∈ X and y ∈ Y and f = [i 7−→ x, j 7−→ y]. Reconsider g = f as
a function. For every object z such that z ∈ dom[i 7−→ X, j 7−→ Y ] holds
g(z) ∈ [i 7−→ X, j 7−→ Y ](z). �

(30) Let us consider a non-empty function f , sets X, Y, objects i, j, x, y,
and a function g. Suppose x ∈ X and y ∈ Y and i 6= j and g ∈

∏
f . Then

g+·[i 7−→ x, j 7−→ y] ∈
∏

(f+·[i 7−→ X, j 7−→ Y ]).
Proof: For every object z such that z ∈ dom(f+·[i 7−→ X, j 7−→ Y ])
holds (g+·[i 7−→ x, j 7−→ y])(z) ∈ (f+·[i 7−→ X, j 7−→ Y ])(z). �

(31) Let us consider a function f , sets A, B, C, D, and objects i, j. Suppose
A ⊆ C and B ⊆ D. Then

∏
(f+·[i 7−→ A, j 7−→ B]) ⊆

∏
(f+·[i 7−→
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C, j 7−→ D]). The theorem is a consequence of (27).

(32) Let us consider a function f , sets A, B, and objects i, j. Suppose i, j ∈
dom f and A ⊆ f(i) and B ⊆ f(j). Then

∏
(f+·[i 7−→ A, j 7−→ B]) ⊆

∏
f .

The theorem is a consequence of (11) and (31).

(33) Let us consider a set I, and many sorted sets f , g indexed by I. Then∏
f ∩
∏
g =
∏

(f ∩ g).
Proof: For every object x, x ∈

∏
f ∩
∏
g iff there exists a function h

such that h = x and domh = dom(f ∩ g) and for every object y such that
y ∈ dom(f ∩ g) holds h(y) ∈ (f ∩ g)(y). �

(34) Let us consider a 2-element set I, a many sorted set f indexed by I,
elements i, j of I, and an object x. Suppose i 6= j. Then

(i) f +· (i, x) = [i 7−→ x, j 7−→ f(j)], and

(ii) f +· (j, x) = [i 7−→ f(i), j 7−→ x].

The theorem is a consequence of (10).

Let us consider a non-empty function f , a set X, and an object i. Now we
state the propositions:

(35) If i ∈ dom f , then f +· (i,X) is non-empty iff X is not empty.
Proof: For every object x such that x ∈ dom(f +· (i,X)) holds (f +·
(i,X))(x) is not empty. �

(36) If i ∈ dom f , then
∏

(f +· (i,X)) = ∅ iff X is empty. The theorem is
a consequence of (35).

(37) Let us consider a non-empty function f , a set X, objects i, x, and a func-
tion g. Suppose i ∈ dom f and x ∈ X and g ∈

∏
f . Then g +· (i, x) ∈∏

(f +· (i,X)).
Proof: For every object y such that y ∈ dom(f +· (i,X)) holds (g +·
(i, x))(y) ∈ (f +· (i,X))(y). �

(38) Let us consider a function f , sets X, Y, and an object i. Suppose i ∈
dom f and X ⊆ Y. Then

∏
(f +· (i,X)) ⊆

∏
(f +· (i, Y )). The theorem is

a consequence of (27).

(39) Let us consider a function f , a set X, and an object i. Suppose i ∈ dom f

and X ⊆ f(i). Then
∏

(f +· (i,X)) ⊆
∏
f . The theorem is a consequence

of (38).

(40) Let us consider a non-empty function f , non empty setsX, Y, and objects
i, j. Suppose i, j ∈ dom f and (X 6⊆ f(i) or f(j) 6⊆ Y ) and

∏
(f+·(i,X)) ⊆∏

(f +· (j, Y )). Then

(i) i = j, and

(ii) X ⊆ Y.
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Proof: f +· (i,X) is non-empty and f +· (j, Y ) is non-empty. i = j. Set
g = the element of

∏
f . g +· (i, x) ∈

∏
(f +· (i,X)). �

(41) Let us consider a non-empty function f , a setX, and an object i. Suppose
i ∈ dom f and

∏
(f +· (i,X)) ⊆

∏
f . Then X ⊆ f(i). The theorem is

a consequence of (37).

(42) Let us consider a non-empty function f , non empty setsX, Y, and objects
i, j. Suppose i, j ∈ dom f and (X 6= f(i) or Y 6= f(j)) and

∏
(f+·(i,X)) =∏

(f +· (j, Y )). Then

(i) i = j, and

(ii) X = Y.

Proof: f +· (i,X) is non-empty and f +· (j, Y ) is non-empty. i = j. �

(43) Let us consider a non-empty function f , a setX, and an object i. Suppose
i ∈ dom f and X ⊆ f(i). Then (proj(f, i))◦(

∏
(f +· (i,X))) = X. The

theorem is a consequence of (25).

(44) Let us consider objects x, y, z. Then x 7−→. y +· (x, z) = x 7−→. z. The
theorem is a consequence of (12).

Let I be a non empty set and J be a 1-sorted yielding, nonempty many
sorted set indexed by I. Let us observe that the support of J is non-empty.

2. Remarks about Product Spaces

Now we state the propositions:

(45) Let us consider topological spaces T , S, and a function f from T into
S. Then f is open if and only if there exists a basis B of T such that for
every subset V of T such that V ∈ B holds f◦V is open.

(46) Let us consider non empty topological spaces T1, T2, S1, S2, a function
f from T1 into S1, and a function g from T2 into S2. If f is open and g is
open, then f × g is open.
Proof: There exists a basis B of T1 × T2 such that for every subset P of
T1 × T2 such that P ∈ B holds (f × g)◦P is open. �

Let us consider non empty topological spaces S, T and a function f from S

into T . Now we state the propositions:

(47) If f is bijective and there exists a basis K of S and there exists a basis
L of T such that f◦K = L, then f is a homeomorphism.
Proof: For every subset W of T such that W ∈ L holds f−1(W ) is open.
For every subset V of S such that V ∈ K holds f◦V is open. f is open. �
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(48) If f is bijective and there exists a prebasis K of S and there exists
a prebasis L of T such that f◦K = L, then f is a homeomorphism.
Proof: Reconsider K0 = FinMeetCl(K) as a basis of S. Reconsider L0 =
FinMeetCl(L) as a basis of T . For every subset W of T , W ∈ L0 iff there
exists a subset V of S such that V ∈ K0 and f◦V = W . �

Let us consider topological spaces S, T . Now we state the propositions:

(49) If there exists a basis K of S and there exists a basis L of T such that
K = L e {ΩS}, then S is a subspace of T .
Proof: For every subset A of S, A ∈ the topology of S iff there exists
a subset B of T such that B ∈ the topology of T and A = B∩ΩS . Consider
B being a subset of T such that B ∈ the topology of T and the carrier of
S = B ∩ ΩS . �

(50) Suppose ΩS ⊆ ΩT and there exists a prebasis K of S and there exists
a prebasis L of T such that K = L e {ΩS}. Then S is a subspace of T .
Proof: Reconsider K0 = FinMeetCl(K) as a basis of S. Reconsider L0 =
FinMeetCl(L) as a basis of T . For every object x, x ∈ K0 iff x ∈ L0e{ΩS}.
�

(51) If there exists a prebasis K of S and there exists a prebasis L of T such
that ΩS ∈ K and K = L e {ΩS}, then S is a subspace of T . The theorem
is a consequence of (50).

(52) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and an element i of I. Then
rng proj(J, i) = the carrier of J(i).

Let X be a set and T be a topological structure. Observe that X 7−→ T is
topological structure yielding.

Let F be a binary relation. We say that F is topological space yielding if
and only if

(Def. 1) for every object x such that x ∈ rngF holds x is a topological space.

Note that every binary relation which is topological space yielding is al-
so topological structure yielding and every function which is topological space
yielding is also 1-sorted yielding.

Let X be a set and T be a topological space. One can verify that X 7−→ T

is topological space yielding.
Let I be a set. One can verify that there exists a many sorted set indexed

by I which is topological space yielding and nonempty.
Let I be a non empty set, J be a topological space yielding, nonempty many

sorted set indexed by I, and i be an element of I. Let us note that the functor
J(i) yields a non empty topological space. Let f be a function. The functor
ProjMap f yielding a many sorted function indexed by dom f is defined by
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(Def. 2) for every object x such that x ∈ dom f holds it(x) = proj(f, x).

Let f be an empty function. One can verify that ProjMap f is empty.
Let f be a non-empty function. Note that ProjMap f is non-empty.
Let f be a non non-empty function. Let us note that ProjMap f is empty

yielding.
Let I be a non empty set and J be a topological structure yielding, nonempty

many sorted set indexed by I. The functor ProjMapJ yielding a many sorted
set indexed by I is defined by the term

(Def. 3) ProjMap(the support of J).

Observe that ProjMap J is function yielding, non empty, and non-empty.
Now we state the proposition:

(53) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and an element i of I. Then
(ProjMap J)(i) = proj(J, i).

Let I be a non empty set, J be a topological structure yielding, nonempty
many sorted set indexed by I, and f be a one-to-one, I-valued function. The
functor ProdBasSel(J, f) yielding a many sorted set indexed by rng f is defined
by the term

(Def. 4) (ProjMap J) ◦ (I -indexing f−1)� rng f .

Let f be an empty, one-to-one, I-valued function. Note that ProdBasSel(J, f)
is empty.

Now we state the propositions:

(54) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, a one-to-one, I-valued function
f , and an element i of I. Suppose i ∈ rng f . Then (ProdBasSel(J, f))(i) =
(proj(J, i))◦(f−1)(i). The theorem is a consequence of (53).

(55) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and a one-to-one, I-valued func-
tion f . Suppose f−1 is non-empty and dom f ⊆ 2

∏
α. Then ProdBasSel(J, f)

is non-empty, where α is the support of J . The theorem is a consequence
of (54).

(56) Let us consider a non empty set I, and a topological space yielding,
nonempty many sorted set J indexed by I. Then ∅ ∈ the product prebasis
for J . The theorem is a consequence of (36).

(57) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, and a non empty subset P of∏

(the support of J). Suppose P ∈ the product prebasis for J . Then there
exists an element i of I such that
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(i) (proj(J, i))◦P is open, and

(ii) for every element j of I such that j 6= i holds (proj(J, j))◦P = ΩJ(j).

Proof: Consider i being a set, T being a topological structure, V being
a subset of T such that i ∈ I and V is open and T = J(i) and P =∏

((the support of J) +· (i, V )). rng proj(J, i) = the carrier of J(i). For
every object x, x ∈ (proj(J, j))◦P iff x ∈ ΩJ(j) by [1, (30), (32)], [9, (8)],
[8, (7)]. �

(58) Let us consider a non empty set I, a topological space yielding, no-
nempty many sorted set J indexed by I, and a non empty subset P of∏

(the support of J). Suppose P ∈ the product prebasis for J . Then

(i) for every element j of I, (proj(J, j))◦P is open, and

(ii) there exists an element i of I such that for every element j of I such
that j 6= i holds (proj(J, j))◦P = ΩJ(j).

The theorem is a consequence of (57).

(59) Let us consider a non empty set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, a one-to-one, I-valued func-
tion f , and a family X of subsets of

∏
(the support of J). Suppose X ⊆

the product prebasis for J and dom f = X and f−1 is non-empty and for
every subset A of

∏
(the support of J) such that A ∈ X holds

(proj(J, f/A))◦A is open. Let us consider an element i of I. Then

(i) if i /∈ rng f , then (proj(J, i))◦(
∏

((the support of J)+·
ProdBasSel(J, f))) = ΩJ(i), and

(ii) if i ∈ rng f , then (proj(J, i))◦(
∏

((the support of J)+·
ProdBasSel(J, f))) is open.

Proof: Set g = ProdBasSel(J, f). Set P =
∏

((the support of J)+·g). g
is non-empty. If i /∈ rng f , then (proj(J, i))◦P = ΩJ(i). �

(60) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, a one-to-one, I-valued function f , and
a family X of subsets of

∏
(the support of J). Suppose X ⊆ the product

prebasis for J and dom f = X and f−1 is non-empty and for every subset
A of

∏
(the support of J) such that A ∈ X holds (proj(J, f/A))◦A is open.

Let us consider an element i of I. Then

(i) (proj(J, i))◦(
∏

((the support of J)+·ProdBasSel(J, f))) is open, and

(ii) if i /∈ rng f , then (proj(J, i))◦(
∏

((the support of J)+·
ProdBasSel(J, f))) = ΩJ(i).

The theorem is a consequence of (59).
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(61) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a subset P of

∏
(the support of J).

Then P ∈ FinMeetCl(the product prebasis for J) if and only if there exists
a family X of subsets of

∏
(the support of J) and there exists a one-to-one,

I-valued function f such that X ⊆ the product prebasis for J and X is
finite and P = Intersect(X) and dom f = X and P =

∏
((the support of

J)+·ProdBasSel(J, f)).

Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a non empty subset P of

∏
(the support

of J). Now we state the propositions:

(62) Suppose P ∈ FinMeetCl(the product prebasis for J). Then there exists
a family X of subsets of

∏
(the support of J) and there exists a one-to-one,

I-valued function f such that X ⊆ the product prebasis for J and X is
finite and P = Intersect(X) and dom f = X and for every element i of I,
(proj(J, i))◦P is open and if i /∈ rng f , then (proj(J, i))◦P = ΩJ(i).
Proof: Consider X being a family of subsets of

∏
(the support of J), f

being a one-to-one, I-valued function such that X ⊆ the product prebasis
for J and X is finite and P = Intersect(X) and dom f = X and P =∏

((the support of J)+·ProdBasSel(J, f)). f−1 is non-empty. �

(63) Suppose P ∈ FinMeetCl(the product prebasis for J). Then there exists
a finite subset I0 of I such that for every element i of I, (proj(J, i))◦P is
open and if i /∈ I0, then (proj(J, i))◦P = ΩJ(i). The theorem is a consequ-
ence of (62).

(64) Let us consider a 1-element set I, a topological structure yielding, no-
nempty many sorted set J indexed by I, an element i of I, and a subset P
of
∏

(the support of J). Then P ∈ the product prebasis for J if and only if
there exists a subset V of J(i) such that V is open and P =

∏
({i} 7−→ V ).

The theorem is a consequence of (7) and (44).

(65) Let us consider a 1-element set I, and a topological space yielding, no-
nempty many sorted set J indexed by I. Then the topology of

∏
J =

the product prebasis for J .

(66) Let us consider a 1-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, an element i of I, and a subset P of

∏
J .

Then P is open if and only if there exists a subset V of J(i) such that V
is open and P =

∏
({i} 7−→ V ). The theorem is a consequence of (65) and

(64).

Let I be a non empty set, J be a topological structure yielding, nonempty
many sorted set indexed by I, and i be an element of I. Note that proj(J, i) is
continuous and onto.
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Let J be a topological space yielding, nonempty many sorted set indexed by
I. Note that proj(J, i) is open.

Let us consider a 1-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, and an element i of I. Now we state the
propositions:

(67) proj(J, i) is a homeomorphism. The theorem is a consequence of (7).

(68)
∏
J and J(i) are homeomorphic. The theorem is a consequence of (67).

Let us consider a 2-element set I, a topological space yielding, nonempty ma-
ny sorted set J indexed by I, elements i, j of I, and a subset P of

∏
(the support

of J). Now we state the propositions:

(69) Suppose i 6= j. Then P ∈ the product prebasis for J if and only if
there exists a subset V of J(i) such that V is open and P =

∏
[i 7−→

V, j 7−→ ΩJ(j)] or there exists a subset W of J(j) such that W is open and
P =

∏
[i 7−→ ΩJ(i), j 7−→W ]. The theorem is a consequence of (34).

(70) Suppose i 6= j. Then P ∈ FinMeetCl(the product prebasis for J) if and
only if there exists a subset V of J(i) and there exists a subset W of J(j)
such that V is open and W is open and P =

∏
[i 7−→ V, j 7−→W ].

Proof: There exists a family Y of subsets of
∏

(the support of J) such
that Y ⊆ the product prebasis for J and Y is finite and P = Intersect(Y ).
�

(71) Let us consider a non empty set I, a topological space yielding, no-
nempty many sorted set J indexed by I, and elements i, j of I. Then
〈proj(J, i), proj(J, j)〉 is a function from

∏
J into J(i)× J(j).

(72) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, a subset P of

∏
(the support of J), and

elements i, j of I. Suppose i 6= j and there exists a many sorted set F
indexed by I such that P =

∏
F and for every element k of I, F (k) ⊆

(the support of J)(k). Then 〈proj(J, i), proj(J, j)〉◦P = (proj(J, i))◦P ×
(proj(J, j))◦P . The theorem is a consequence of (26), (30), and (11).

(73) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, elements i, j of I, and a function f from∏
J into J(i)× J(j). Suppose i 6= j and f = 〈proj(J, i),proj(J, j)〉. Then

f is onto and open.
Proof: For every element k of I, (proj(J, k))◦(Ω∏α) = the carrier of
J(k), where α is the support of J . There exists a basis B of

∏
J such that

for every subset P of
∏
J such that P ∈ B holds f◦P is open. �

(74) Let us consider a 2-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, elements i, j of I, and a function f from
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∏
J into J(i)× J(j). Suppose i 6= j and f = 〈proj(J, i), proj(J, j)〉. Then

f is a homeomorphism.
Proof: f is onto and open. For every objects x1, x2 such that x1, x2 ∈
dom f and f(x1) = f(x2) holds x1 = x2. �

(75) Let us consider a 2-element set I, a topological space yielding, nonempty
many sorted set J indexed by I, and elements i, j of I. If i 6= j, then

∏
J

and J(i)×J(j) are homeomorphic. The theorem is a consequence of (74).

Let I1, I2 be non empty sets, J be a topological space yielding, nonempty
many sorted set indexed by I2, and f be a function from I1 into I2. One can
check that J · f is topological space yielding and nonempty.

Let J1 be a topological space yielding, nonempty many sorted set indexed
by I1, J2 be a topological space yielding, nonempty many sorted set indexed
by I2, and p be a function from I1 into I2. Assume p is bijective and for every
element i of I1, J1(i) and (J2 · p)(i) are homeomorphic.

A product homeomorphism of J1, J2 and p is a function from
∏
J1 into

∏
J2

defined by

(Def. 5) there exists a many sorted function F indexed by I1 such that for every
element i of I1, there exists a function f from J1(i) into (J2 · p)(i) such
that F (i) = f and f is a homeomorphism and for every element g of

∏
J1

and for every element i of I1, (it(g))(p(i)) = F (i)(g(i)).

Now we state the proposition:

(76) Let us consider non empty sets I1, I2, a topological space yielding, no-
nempty many sorted set J1 indexed by I1, a topological space yielding,
nonempty many sorted set J2 indexed by I2, a function p from I1 into
I2, a product homeomorphism H of J1, J2 and p, and a many sorted
function F indexed by I1. Suppose p is bijective and for every element
i of I1, there exists a function f from J1(i) into (J2 · p)(i) such that
F (i) = f and f is a homeomorphism and for every element g of

∏
J1

and for every element i of I1, (H(g))(p(i)) = F (i)(g(i)). Let us consider
an element i of I1, and a subset U of J1(i). Then H◦(

∏
((the support of

J1) +· (i, U))) =
∏

((the support of J2) +· (p(i), F (i)◦U)).
Proof: Reconsider j = p(i) as an element of I2. Consider f being a func-
tion from J1(i) into (J2 · p)(i) such that F (i) = f and f is a homeomor-
phism. For every object y, y ∈ H◦(

∏
((the support of J1) +· (i, U))) iff

y ∈
∏

((the support of J2) +· (j, F (i)◦U)). �

Let us consider non empty sets I1, I2, a topological space yielding, nonemp-
ty many sorted set J1 indexed by I1, a topological space yielding, nonempty
many sorted set J2 indexed by I2, a function p from I1 into I2, and a product
homeomorphism H of J1, J2 and p. Now we state the propositions:
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(77) If p is bijective and for every element i of I1, J1(i) and (J2 · p)(i) are
homeomorphic, then H is bijective.
Proof: Consider F being a many sorted function indexed by I1 such that
for every element i of I1, there exists a function f from J1(i) into (J2 ·p)(i)
such that F (i) = f and f is a homeomorphism and for every element
g of

∏
J1 and for every element i of I1, (H(g))(p(i)) = F (i)(g(i)). For

every objects x1, x2 such that x1, x2 ∈ domH and H(x1) = H(x2) holds
x1 = x2. Set i0 = the element of I1. Consider f0 being a function from
J1(i0) into (J2 · p)(i0) such that F (i0) = f0 and f0 is a homeomorphism.
�

(78) If p is bijective and for every element i of I1, J1(i) and (J2 · p)(i) are
homeomorphic, then H is a homeomorphism.
Proof: Consider F being a many sorted function indexed by I1 such that
for every element i of I1, there exists a function f from J1(i) into (J2 ·p)(i)
such that F (i) = f and f is a homeomorphism and for every element g
of
∏
J1 and for every element i of I1, (H(g))(p(i)) = F (i)(g(i)). H is

bijective. There exists a prebasis K of
∏
J1 and there exists a prebasis L

of
∏
J2 such that H◦K = L. �

(79) Let us consider non empty sets I1, I2, a topological space yielding, no-
nempty many sorted set J1 indexed by I1, a topological space yielding,
nonempty many sorted set J2 indexed by I2, and a function p from I1 into
I2. Suppose p is bijective and for every element i of I1, J1(i) and (J2 ·p)(i)
are homeomorphic. Then

∏
J1 and

∏
J2 are homeomorphic. The theorem

is a consequence of (78).

(80) Let us consider a non empty set I, topological space yielding, nonempty
many sorted sets J1, J2 indexed by I, and a permutation p of I. Suppose
for every element i of I, J1(i) and (J2 ·p)(i) are homeomorphic. Then

∏
J1

and
∏
J2 are homeomorphic.

(81) Let us consider a non empty set I, a topological space yielding, nonempty
many sorted set J indexed by I, and a permutation p of I. Then

∏
J and∏

J · p are homeomorphic. The theorem is a consequence of (79).

(82) Let us consider a non empty set I, and topological space yielding, no-
nempty many sorted sets J1, J2 indexed by I. Suppose for every element
i of I, J1(i) is a subspace of J2(i). Then

∏
J1 is a subspace of

∏
J2.

Proof: There exists a prebasis K1 of
∏
J1 and there exists a prebasis K2

of
∏
J2 such that Ω∏ J1

∈ K1 and K1 = K2 e {Ω∏ J1
}. �
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Summary. Binary representation of integers [5], [3] and arithmetic ope-
rations on them have already been introduced in Mizar Mathematical Library
[8, 7, 6, 4]. However, these articles formalize the notion of integers as mapped
into a certain length tuple of boolean values.

In this article we formalize, by means of Mizar system [2], [1], the binary
representation of natural numbers which maps N into bitstreams.

MSC: 68W01 68T99 03B35

Keywords: algorithms

MML identifier: BINARI 6, version: 8.1.08 5.53.1335

1. Preliminaries

Let us consider a natural number x. Now we state the propositions:

(1) There exists a natural number m such that x < 2m.

(2) If x 6= 0, then there exists a natural number n such that 2n ¬ x < 2n+1.
Proof: Define Q[natural number] ≡ x < 2$1 . There exists a natural num-
ber m such that Q[m]. Consider k being a natural number such that Q[k]
and for every natural number n such that Q[n] holds k ¬ n. Reconsider
k1 = k − 1 as a natural number. 2k1 ¬ x. �

(3) Let us consider a natural number x, and natural numbers n1, n2. If
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(4) 〈0〉 = 〈0, . . . , 0︸ ︷︷ ︸
1

〉.

(5) Let us consider natural numbers n1, n2. Then 〈0, . . . , 0︸ ︷︷ ︸
n1

〉 a 〈0, . . . , 0︸ ︷︷ ︸
n2

〉 =

〈0, . . . , 0︸ ︷︷ ︸
n1+n2

〉.

2. Homomorphism from the Natural Numbers to the Bitstreams

Let x be a natural number. The functor LenBinSeq(x) yielding a non zero
natural number is defined by

(Def. 1) (i) it = 1, if x = 0,

(ii) there exists a natural number n such that 2n ¬ x < 2n+1 and it =
n+ 1, otherwise.

Let us consider a natural number x. Now we state the propositions:

(6) x < 2LenBinSeq(x).

(7) x = AbsVal(LenBinSeq(x) -BinarySequence(x)). The theorem is a con-
sequence of (6).

(8) Let us consider a natural number n, and an (n+ 1)-tuple x of Boolean.
If x(n+ 1) = 1, then 2n ¬ AbsVal(x) < 2n+1.

(9) There exists a function F from Boolean∗ into N such that for every
element x of Boolean∗, there exists a (lenx)-tuple x0 of Boolean such that
x = x0 and F (x) = AbsVal(x0).
Proof: Define P[element of Boolean∗, object] ≡ there exists a (len $1)-
tuple x0 of Boolean such that $1 = x0 and $2 = AbsVal(x0). For every
element x of Boolean∗, there exists an element y of N such that P[x, y].
Consider f being a function from Boolean∗ into N such that for every
element x of Boolean∗, P[x, f(x)]. �

The functor Nat2BinLen yielding a function from N into Boolean∗ is defined
by

(Def. 2) for every element x of N, it(x) = LenBinSeq(x) -BinarySequence(x).

Now we state the propositions:

(10) Let us consider an element x of N, and a (LenBinSeq(x))-tuple y of
Boolean. If (Nat2BinLen)(x) = y, then AbsVal(y) = x. The theorem is
a consequence of (7).

(11) rng Nat2BinLen = {x, where x is an element of Boolean∗ : x(lenx) =
1} ∪ {〈0〉}.
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Proof: For every object z, z ∈ rng Nat2BinLen iff z ∈ {x, where x is
an element of Boolean∗ : x(lenx) = 1} ∪ {〈0〉}. �

(12) Nat2BinLen is one-to-one.

Let x, y be elements of Boolean∗. Assume lenx 6= 0 and len y 6= 0. The
functor MaxLen(x, y) yielding a non zero natural number is defined by the term

(Def. 3) max(lenx, len y).

Let K be a natural number and x be an element of Boolean∗. The functor
ExtBit(x,K) yielding a K-tuple of Boolean is defined by the term

(Def. 4)


x a 〈0, . . . , 0︸ ︷︷ ︸

K−′lenx

〉, if lenx ¬ K,

x�K, otherwise.
Now we state the propositions:

(13) Let us consider a natural number K, and an element x of Boolean∗.
Suppose lenx ¬ K. Then ExtBit(x,K + 1) = ExtBit(x,K) a 〈0〉.

(14) Let us consider a non zero natural number K, and an element x of
Boolean∗. If lenx = K, then ExtBit(x,K) = x.

(15) Let us consider a non zero natural number K, K-tuples x, y of Boolean,
and (K+1)-tuples x1, y1 of Boolean. Suppose x1 = xa〈0〉 and y1 = ya〈0〉.
Then x1 and y1 are summable.

(16) Let us consider a non zero natural number K, and a K-tuple y of
Boolean. Suppose y = 〈0, . . . , 0︸ ︷︷ ︸

K

〉. Let us consider a non zero natural num-

ber n. If n ¬ K, then y/n = 0.

(17) Let us consider a non zero natural number K, and K-tuples x, y of
Boolean. Then carry(x, y) = carry(y, x).

(18) Let us consider a non zero natural number K, and K-tuples x, y of
Boolean. Suppose y = 〈0, . . . , 0︸ ︷︷ ︸

K

〉. Let us consider a non zero natural num-

ber n. Suppose n ¬ K. Then

(i) (carry(x, y))/n = 0, and

(ii) (carry(y, x))/n = 0.

Proof: Define P[natural number] ≡ if 1 ¬ $1 ¬ K, then (carry(x, y))/$1 =
0. For every non zero natural number i such that P[i] holds P[i+ 1]. For
every non zero natural number k, P[k]. �

Let us consider a non zero natural number K and K-tuples x, y of Boolean.
Now we state the propositions:

(19) x+ y = y + x. The theorem is a consequence of (17).
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(20) If y = 〈0, . . . , 0︸ ︷︷ ︸
K

〉, then x+ y = x and y + x = x.

Proof: For every natural number i such that i ∈ SegK holds (x+y)(i) =
x(i). �

(21) Let us consider a non zero natural number K, and K-tuples x, y of
Boolean. If x(lenx) = 1 and y(len y) = 1, then x and y are not summable.

Let us consider a non zero natural number K and K-tuples x, y of Boolean.
Now we state the propositions:

(22) If x and y are summable, then y and x are summable. The theorem is
a consequence of (17).

(23) If x and y are summable and (x(lenx) = 1 or y(len y) = 1), then (x +
y)(len(x+ y)) = 1. The theorem is a consequence of (19) and (22).

(24) Let us consider a non zero natural number K, K-tuples x, y of Boolean,
and (K + 1)-tuples x1, y1 of Boolean. Suppose x and y are not summable
and x1 = x a 〈0〉 and y1 = y a 〈0〉. Then (x1 + y1)(len(x1 + y1)) = 1.
Proof: Set K1 = K + 1. Reconsider S = carry(x, y) a 〈1〉 as a K1-tuple
of Boolean. S/1 = false. For every natural number i such that 1 ¬ i < K1
holds S/i+1 = (x1/i ∧ y1/i ∨ x1/i ∧ S/i) ∨ y1/i ∧ S/i. �

Let x, y be elements of Boolean∗. The functor x+ y yielding an element of
Boolean∗ is defined by the term

(Def. 5)



y, if lenx = 0,
x, if len y = 0,
ExtBit(x,MaxLen(x, y)) + ExtBit(y,MaxLen(x, y)),
if ExtBit(x,MaxLen(x, y)) and ExtBit(y,MaxLen(x, y))
are summable and lenx 6= 0 and len y 6= 0,

ExtBit(x,MaxLen(x, y) + 1) + ExtBit(y,MaxLen(x, y) + 1),
otherwise.

Let F be a function from N into Boolean∗ and x be an element of N. Let
us note that the functor F (x) yields an element of Boolean∗. Now we state the
propositions:

(25) Let us consider an element x of Boolean∗. If x ∈ rng Nat2BinLen, then
1 ¬ lenx.

(26) Let us consider elements x, y of Boolean∗. Suppose x, y ∈ rng Nat2BinLen.
Then x+y ∈ rng Nat2BinLen. The theorem is a consequence of (11), (25),
(4), (18), (16), (20), (14), (21), (23), (13), and (24).

(27) Let us consider a non zero natural number n, an n-tuple x of Boolean,
natural numbers m, l, and an l-tuple y of Boolean. Suppose y = x a

〈0, . . . , 0︸ ︷︷ ︸
m

〉. Then AbsVal(y) = AbsVal(x).
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Proof: Define P[natural number] ≡ for every natural number l for eve-
ry l-tuple y of Boolean such that y = x a 〈0, . . . , 0︸ ︷︷ ︸

$1

〉 holds AbsVal(y) =

AbsVal(x). For every natural number m such that P[m] holds P[m + 1].
P[0]. For every natural number m, P[m]. �

(28) Let us consider a natural number n, an element x of N, and an n-tuple
y of Boolean. Suppose y = (Nat2BinLen)(x). Then

(i) n = LenBinSeq(x), and

(ii) AbsVal(y) = x, and

(iii) (Nat2BinLen)(AbsVal(y)) = y.

The theorem is a consequence of (6).

(29) Let us consider elements x, y of N. Then (Nat2BinLen)(x+ y) =
(Nat2BinLen)(x)+(Nat2BinLen)(y). The theorem is a consequence of (7),
(27), (26), (28), (13), and (15).

(30) Let us consider elements x, y of Boolean∗. If x, y ∈ rng Nat2BinLen,
then x+ y = y + x. The theorem is a consequence of (29).

(31) Let us consider elements x, y, z of Boolean∗. If x, y, z ∈ rng Nat2BinLen,
then (x+ y) + z = x+ (y + z). The theorem is a consequence of (29).

3. Homomorphism from the Bitstreams to the Natural Numbers

Let x be an element of Boolean∗. The functor ExtAbsVal(x) yielding a na-
tural number is defined by

(Def. 6) there exists a natural number n and there exists an n-tuple y of Boolean
such that y = x and it = AbsVal(y).

Now we state the proposition:

(32) There exists a function F from Boolean∗ into N such that for every
element x of Boolean∗, F (x) = ExtAbsVal(x).
Proof: Define P[element of Boolean∗, object] ≡ $2 = ExtAbsVal($1). For
every element x of Boolean∗, there exists an element y of N such that
P[x, y]. Consider f being a function from Boolean∗ into N such that for
every element x of Boolean∗, P[x, f(x)]. �

The functor BinLen2Nat yielding a function from Boolean∗ into N is defined
by

(Def. 7) for every element x of Boolean∗, it(x) = ExtAbsVal(x).
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Let F be a function from Boolean∗ into N and x be an element of Boolean∗.
Let us observe that the functor F (x) yields an element of N. Observe that
BinLen2Nat is onto.

Now we state the propositions:

(33) Let us consider an element x of Boolean∗, and a natural number K. Sup-
pose lenx 6= 0 and lenx ¬ K. Then ExtAbsVal(x) = AbsVal(ExtBit(x,K)).
The theorem is a consequence of (27).

(34) Let us consider elements x, y of Boolean∗. Then (BinLen2Nat)(x+ y) =
(BinLen2Nat)(x) + (BinLen2Nat)(y). The theorem is a consequence of
(33), (13), and (15).

The functor EqBinLen2Nat yielding an equivalence relation of Boolean∗ is
defined by

(Def. 8) for every objects x, y, 〈〈x, y〉〉 ∈ it iff x, y ∈ Boolean∗ and (BinLen2Nat)(x)
= (BinLen2Nat)(y).

The functor QuBinLen2Nat yielding a function from Classes EqBinLen2Nat
into N is defined by

(Def. 9) for every element A of Classes EqBinLen2Nat, there exists an object x
such that x ∈ A and it(A) = (BinLen2Nat)(x).

Let us observe that QuBinLen2Nat is one-to-one and onto.
Now we state the proposition:

(35) Let us consider an element x of Boolean∗.
Then (QuBinLen2Nat)([x]EqBinLen2Nat) = (BinLen2Nat)(x).

Let A, B be elements of Classes EqBinLen2Nat. The functor A+B yielding
an element of Classes EqBinLen2Nat is defined by

(Def. 10) there exist elements x, y of Boolean∗ such that x ∈ A and y ∈ B and
it = [x+ y]EqBinLen2Nat.

Now we state the proposition:

(36) Let us consider elements A, B of Classes EqBinLen2Nat, and elements
x, y of Boolean∗. If x ∈ A and y ∈ B, then A + B = [x+ y]EqBinLen2Nat.
The theorem is a consequence of (34).

Let us consider elements A, B of Classes EqBinLen2Nat. Now we state the
propositions:

(37) (QuBinLen2Nat)(A+B) = (QuBinLen2Nat)(A)+(QuBinLen2Nat)(B).
The theorem is a consequence of (36), (35), and (34).

(38) A+B = B +A. The theorem is a consequence of (36), (35), and (34).

(39) Let us consider elements A, B, C of Classes EqBinLen2Nat. Then (A+
B) + C = A + (B + C). The theorem is a consequence of (36), (35), and
(34).
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(40) Let us consider a natural number n, and elements z, z1 of Boolean∗.
Suppose z = εBoolean and z1 = 〈0, . . . , 0︸ ︷︷ ︸

n

〉.

Then [z]EqBinLen2Nat = [z1]EqBinLen2Nat.

(41) Let us consider elements A, Z of Classes EqBinLen2Nat, a natural num-
ber n, and an element z of Boolean∗. Suppose Z = [z]EqBinLen2Nat and
z = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. Then

(i) A+ Z = A, and

(ii) Z +A = A.

The theorem is a consequence of (40), (36), and (38).
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Summary. In this article, using the Mizar system [1], [2], we discuss the
continuity of bounded linear operators on normed linear spaces. In the first sec-
tion, it is discussed that bounded linear operators on normed linear spaces are
uniformly continuous and Lipschitz continuous. Especially, a bounded linear ope-
rator on the dense subset of a complete normed linear space has a unique natural
extension over the whole space. In the next section, several basic currying pro-
perties are formalized.

In the last section, we formalized that continuity of bilinear operator is equ-
ivalent to both Lipschitz continuity and local continuity. We referred to [4], [13],
and [3] in this formalization.
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Now we state the propositions:

(1) Let us consider real normed spaces E, F , a subset E1 of E, and a partial
function f from E to F . Suppose E1 is dense and F is complete and
dom f = E1 and f is uniformly continuous on E1. Then

(i) there exists a function g from E into F such that g�E1 = f and
g is uniformly continuous on the carrier of E and for every point
x of E, there exists a sequence s0 of E such that rng s0 ⊆ E1 and
s0 is convergent and lim s0 = x and f∗s0 is convergent and g(x) =
lim(f∗s0) and for every point x of E and for every sequence s0 of E
such that rng s0 ⊆ E1 and s0 is convergent and lim s0 = x holds f∗s0
is convergent and g(x) = lim(f∗s0), and

(ii) for every functions g1, g2 from E into F such that g1�E1 = f and g1
is continuous on the carrier of E and g2�E1 = f and g2 is continuous
on the carrier of E holds g1 = g2.

Proof: For every point x of E and for every sequence s0 of E such that
rng s0 ⊆ E1 and s0 is convergent for every real number s such that 0 < s
there exists a natural number n such that for every natural numberm such
that n ¬ m holds ‖(f∗s0)(m) − (f∗s0)(n)‖ < s. For every point x of E
and for every sequence s0 of E such that rng s0 ⊆ E1 and s0 is convergent
holds f∗s0 is convergent by [12, (5)]. For every point x of E and for every
sequences s1, s2 of E such that rng s1 ⊆ E1 and s1 is convergent and
lim s1 = x and rng s2 ⊆ E1 and s2 is convergent and lim s2 = x holds
lim(f∗s1) = lim(f∗s2) by [7, (14)].

Define P[object, object] ≡ there exists a sequence s0 of E such that
rng s0 ⊆ E1 and s0 is convergent and lim s0 = $1 and f∗s0 is convergent
and $2 = lim(f∗s0). For every element x of E, there exists an element y of
F such that P[x, y]. Consider g being a function from E into F such that
for every element x of E, P[x, g(x)]. For every object x such that x ∈ dom f
holds f(x) = g(x). For every point x of E and for every sequence s0 of
E such that rng s0 ⊆ E1 and s0 is convergent and lim s0 = x holds f∗s0
is convergent and g(x) = lim(f∗s0). For every real number r such that
0 < r there exists a real number s such that 0 < s and for every points
x1, x2 of E such that x1, x2 ∈ the carrier of E and ‖x1 − x2‖ < s holds
‖g/x1 − g/x2‖ < r. For every element x of E, g1(x) = g2(x) by [5, (14)], [9,
(18)]. �

(2) Let us consider real normed spaces E, F , G, a point f of the real norm
space of bounded linear operators from E into F , and a point g of the real
norm space of bounded linear operators from F into G. Then there exists
a point h of the real norm space of bounded linear operators from E into
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G such that

(i) h = g · f , and

(ii) ‖h‖ ¬ ‖g‖ · ‖f‖.

Proof: Reconsider L1 = f as a Lipschitzian linear operator from E into
F . Reconsider L2 = g as a Lipschitzian linear operator from F into G. Set
L3 = L2 · L1. For every real number t such that t ∈ PreNorms(L3) holds
t ¬ ‖g‖ · ‖f‖ by [11, (16)]. �

(3) Let us consider real normed spaces E, F . Then every Lipschitzian linear
operator from E into F is Lipschitzian on the carrier of E and uniformly
continuous on the carrier of E.
Proof: Consider K being a real number such that 0 ¬ K and for every
vector x of E, ‖L(x)‖ ¬ K · ‖x‖. Set r = K+ 1. Set E0 = the carrier of E.
For every points x1, x2 of E such that x1, x2 ∈ E0 holds ‖L/x1 −L/x2‖ ¬
r · ‖x1 − x2‖. �

(4) Let us consider real normed spaces E, F , a subreal normal space E1 of
E, and a point f of the real norm space of bounded linear operators from
E1 into F . Suppose F is complete and there exists a subset E0 of E such
that E0 = the carrier of E1 and E0 is dense. Then

(i) there exists a point g of the real norm space of bounded linear
operators from E into F such that dom g = the carrier of E and
g�(the carrier of E1) = f and ‖g‖ = ‖f‖ and there exists a partial
function L1 from E to F such that L1 = f and for every point x of
E, there exists a sequence s0 of E such that rng s0 ⊆ the carrier of
E1 and s0 is convergent and lim s0 = x and L1∗s0 is convergent and
g(x) = lim(L1∗s0) and for every point x of E and for every sequence
s0 of E such that rng s0 ⊆ the carrier of E1 and s0 is convergent and
lim s0 = x holds L1∗s0 is convergent and g(x) = lim(L1∗s0), and

(ii) for every points g1, g2 of the real norm space of bounded linear
operators from E into F such that g1�(the carrier of E1) = f and
g2�(the carrier of E1) = f holds g1 = g2.

Proof: Consider E0 being a subset of E such that E0 = the carrier of
E1 and E0 is dense. Reconsider L = f as a Lipschitzian linear operator
from E1 into F . Reconsider L1 = L as a partial function from E to F .
Consider K being a real number such that 0 ¬ K and for every vector x
of E1, ‖L(x)‖ ¬ K · ‖x‖. Set r = K + 1. For every points x1, x2 of E such
that x1, x2 ∈ E0 holds ‖L1/x1 − L1/x2‖ ¬ r · ‖x1 − x2‖.

There exists a function P3 from E into F such that P3�E0 = L1
and P3 is uniformly continuous on the carrier of E and for every point
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x of E, there exists a sequence s0 of E such that rng s0 ⊆ E0 and s0 is
convergent and lim s0 = x and L1∗s0 is convergent and P3(x) = lim(L1∗s0)
and for every point x of E and for every sequence s0 of E such that
rng s0 ⊆ E0 and s0 is convergent and lim s0 = x holds L1∗s0 is convergent
and P3(x) = lim(L1∗s0) and for every functions P1, P2 from E into F such
that P1�E0 = L1 and P1 is continuous on the carrier of E and P2�E0 = L1
and P2 is continuous on the carrier of E holds P1 = P2.

Consider P3 being a function from E into F such that P3�E0 = L1
and P3 is uniformly continuous on the carrier of E and for every point
x of E, there exists a sequence s0 of E such that rng s0 ⊆ E0 and s0 is
convergent and lim s0 = x and L1∗s0 is convergent and P3(x) = lim(L1∗s0)
and for every point x of E and for every sequence s0 of E such that
rng s0 ⊆ E0 and s0 is convergent and lim s0 = x holds L1∗s0 is convergent
and P3(x) = lim(L1∗s0) and for every point x of E, there exists a sequence
s0 of E such that rng s0 ⊆ E0 and s0 is convergent and lim s0 = x and
L1∗s0 is convergent and P3(x) = lim(L1∗s0) and for every point x of E
and for every sequence s0 of E such that rng s0 ⊆ E0 and s0 is convergent
and lim s0 = x holds L1∗s0 is convergent and P3(x) = lim(L1∗s0). For
every points x, y of E, P3(x+ y) = P3(x) + P3(y). For every point x of E
and for every real number a, P3(a · x) = a · P3(x).

Reconsider g = P3 as a point of the real norm space of bounded li-
near operators from E into F . For every real number t such that t ∈
PreNorms(L) holds t ¬ ‖g‖. For every real number t such that t ∈
PreNorms(P3) holds t ¬ ‖f‖. For every points g1, g2 of the real norm
space of bounded linear operators from E into F such that g1�(the carrier
of E1) = f and g2�(the carrier of E1) = f holds g1 = g2 by (3), [8, (7)],
(1). �

2. Basic Properties of Currying

Now we state the propositions:

(5) Let us consider non empty sets E, F , G, a function f from E × F into
G, and an object x. If x ∈ E, then (curry f)(x) is a function from F into
G.

(6) Let us consider non empty sets E, F , G, a function f from E × F into
G, and an object y. If y ∈ F , then (curry′ f)(y) is a function from E into
G.

Let us consider non empty sets E, F , G, a function f from E × F into G,
and objects x, y. Now we state the propositions:
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(7) If x ∈ E and y ∈ F , then (curry f)(x)(y) = f(x, y).

(8) If x ∈ E and y ∈ F , then (curry′ f)(y)(x) = f(x, y).

Let E, F , G be real linear spaces and f be a function from (the carrier of
E) × (the carrier of F ) into the carrier of G. We say that f is bilinear if and
only if

(Def. 1) for every point v of E such that v ∈ dom(curry f) holds (curry f)(v)
is an additive, homogeneous function from F into G and for every point
v of F such that v ∈ dom(curry′ f) holds (curry′ f)(v) is an additive,
homogeneous function from E into G.

3. Equivalence of Some Definitions of Continuity of Bilinear
Operators

Now we state the proposition:

(9) Let us consider real linear spaces E, F , G. Then (the carrier of E) ×
(the carrier of F ) 7−→ 0G is bilinear.
Proof: Set f = (the carrier of E)× (the carrier of F ) 7−→ 0G. For every
point x of E, (curry f)(x) is an additive, homogeneous function from F into
G. For every point x of F such that x ∈ dom(curry′ f) holds (curry′ f)(x)
is an additive, homogeneous function from E into G. �

Let E, F , G be real linear spaces. Observe that there exists a function from
(the carrier of E)× (the carrier of F ) into the carrier of G which is bilinear.

Now we state the proposition:

(10) Let us consider real linear spaces E, F , G, and a function L from
(the carrier of E) × (the carrier of F ) into the carrier of G. Then L is
bilinear if and only if for every points x1, x2 of E and for every point y
of F , L(x1 + x2, y) = L(x1, y) + L(x2, y) and for every point x of E and
for every point y of F and for every real number a, L(a ·x, y) = a ·L(x, y)
and for every point x of E and for every points y1, y2 of F , L(x, y1+y2) =
L(x, y1) + L(x, y2) and for every point x of E and for every point y of
F and for every real number a, L(x, a · y) = a · L(x, y). The theorem is
a consequence of (8) and (7).

Let E, F , G be real linear spaces and f be a function from E × F into G.
We say that f is bilinear if and only if

(Def. 2) there exists a function g from (the carrier of E)× (the carrier of F ) into
the carrier of G such that f = g and g is bilinear.

One can verify that there exists a function from E × F into G which is
bilinear.
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Let f be a function from E × F into G, x be a point of E, and y be a po-
int of F . Note that the functor f(x, y) yields a point of G. Now we state the
proposition:

(11) Let us consider real linear spaces E, F , G, and a function L from E ×
F into G. Then L is bilinear if and only if for every points x1, x2 of E
and for every point y of F , L(x1 + x2, y) = L(x1, y) + L(x2, y) and for
every point x of E and for every point y of F and for every real number a,
L(a · x, y) = a ·L(x, y) and for every point x of E and for every points y1,
y2 of F , L(x, y1+ y2) = L(x, y1) +L(x, y2) and for every point x of E and
for every point y of F and for every real number a, L(x, a ·y) = a ·L(x, y).

Let E, F , G be real linear spaces.
A bilinear operator from E × F into G is a bilinear function from E × F

into G. Let E, F , G be real normed spaces and f be a function from E×F into
G. We say that f is bilinear if and only if

(Def. 3) there exists a function g from (the carrier of E)× (the carrier of F ) into
the carrier of G such that f = g and g is bilinear.

Let us note that there exists a function from E×F into G which is bilinear.
A bilinear operator from E × F into G is a bilinear function from E×F into

G. From now on E, F , G denote real normed spaces, L denotes a bilinear ope-
rator from E × F into G, x denotes an element of E, and y denotes an element
of F .

Let E, F , G be real normed spaces, f be a function from E×F into G, x be
a point of E, and y be a point of F . Note that the functor f(x, y) yields a point
of G. Now we state the propositions:

(12) Let us consider real normed spaces E, F , G, and a function L from E×
F into G. Then L is bilinear if and only if for every points x1, x2 of E
and for every point y of F , L(x1 + x2, y) = L(x1, y) + L(x2, y) and for
every point x of E and for every point y of F and for every real number a,
L(a · x, y) = a ·L(x, y) and for every point x of E and for every points y1,
y2 of F , L(x, y1+ y2) = L(x, y1) +L(x, y2) and for every point x of E and
for every point y of F and for every real number a, L(x, a ·y) = a ·L(x, y).

(13) Let us consider real normed spaces E, F , G, and a bilinear operator f
from E × F into G. Then

(i) f is continuous on the carrier of E × F iff f is continuous in 0E×F ,
and

(ii) f is continuous on the carrier of E ×F iff there exists a real number
K such that 0 ¬ K and for every point x of E and for every point y
of F , ‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖.
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Proof: If f is continuous in 0E×F , then there exists a real number K
such that 0 ¬ K and for every point x of E and for every point y of F ,
‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖ by [9, (7)], [6, (22)], [10, (18)]. If there exists
a real number K such that 0 ¬ K and for every point x of E and for every
point y of F , ‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖, then f is continuous on the carrier
of E × F . �
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