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1. PRELIMINARIES

Now we state the proposition:

(1) Let us consider an object r. Then r € Ry oy \ {0} if and only if 7 is
a positive real number.

Note that there exists a rational number which is positive.

The functor Q4 yielding a non empty subset of R, gy is defined by the
term

(Def. 1) the set of all » where r is a positive rational number.
Now we state the propositions:

(2) Let us consider an object r. Then r is an element of Q if and only if r
is a positive rational number.

(3) Quupy €Q
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The functor Ry yielding a non empty subset of R o) is defined by the
term

(Def. 2) R0\ {O}.
Now we state the propositions:
(4) Ny < Q.
(5) Ny C Ry. The theorem is a consequence of (1).
(6) Q4 C R4. The theorem is a consequence of (2) and (1).

2. REAL FREQUENCY

We consider structures of music which extend 1-sorted structures and are
Systems
(a carrier, an equidistance, a Ratio)

where the carrier is a set, the equidistance is a relation between (the carrier) x
(the carrier) and (the carrier) x (the carrier), the Ratio is a function from (the
carrier) X (the carrier) into the carrier.
Let S be a structure of music and a, b, ¢, d be elements of S. We say that
ab = cd if and only if
(Def. 3)  {({(a, b), {c, d)) € the equidistance of S.
Let x, y be elements of Ry. The functor R-ratio(x,y) yielding an element
of R} is defined by
(Def. 4) there exist positive real numbers r, s such that z = r and s = y and
it = 2.
Now we state the proposition:

(7) Let us consider elements a, b, ¢, d of Ry . Then R-ratio(a, b) = R -ratio(c, d)
if and only if R-ratio(b, a) = R-ratio(d, c).
The functor R -ratio yielding a function from Ry x Ry into R, is defined by
(Def. 5) for every element = of Ry x R4, there exist elements y, z of Ry such
that x = (y, z) and it(z) = R-ratio(y, 2).
The functor eq- R -ratio yielding a relation between Ry x R4 and Ry x R
is defined by

(Def. 6) for every elements z, y of Ry x Ry, (z, y) € it iff there exist elements
a, b, ¢, d of Ry such that z = (a, b) and y = (¢, d) and R-ratio(a,b) =
R -ratio(c, d).
The functor R-music yielding a structure of music is defined by the term
(Def. 7) (R4, eq-R-ratio, R-ratio ).

Now we state the propositions:
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(8) (i) R-music is not empty, and
(ii) the carrier of R-music C Ry, and

(iii) for every elements f1, fa, f3, f1 of R-music, fi fo = f3f4 iff (the Ratio
of R-music)(f1, f2) = (the Ratio of R-music)(fs, f1).
(9) Let us consider elements fi, fa, f3 of R-music. Suppose (the Ratio of
R -music)(f1, f2) = (the Ratio of R-music)(f1, f3). Then fa = fs.

(10) N4 C the carrier of R-music.

(11) Let us consider an element fr of R-music, and a non zero natural number
n. Then there exists an element h of R -music such that {fr, h) € [(1, n)],,
where « is the equidistance of R-music. The theorem is a consequence of
(1) and ().

(12) Let us consider elements f1, f2, f3 of R-music. Suppose (the Ratio of
R -music)(f1, f1) = (the Ratio of R-music)(fo, f3). Then fo = fs.

(13) Let us consider elements fi, fa, fs, fs, fo, fr of R-music, positive real
numbers 1, r3, and non zero natural numbers n, m. Suppose fg =n -]
and f¢ = m -7 and fg = n-re and fr = m - ro. Then fsfs = fof7. The
theorem is a consequence of (8).

(14) Let us consider elements f1, f2, f3, fa of R-music. Then (the Ratio of
R -music)(f1, f2) = (the Ratio of R-music)(f3, f1) if and only if (the Ratio
of R-music)( f2, f1) = (the Ratio of R-music)( fs, f3). The theorem is a con-
sequence of (7).

3. RATIONAL FREQUENCY

Let x, y be elements of Q4. The functor Q-ratio(x,y) yielding an element
of Q is defined by

(Def. 8) there exist positive rational numbers r, s such that x = r and s = y and
it = 7.
Now we state the proposition:
(15) Let us consider elements a, b, ¢, d of Q. Then Q-ratio(a, b) = Q -ratio(c, d)
if and only if Q-ratio(b,a) = Q-ratio(d, c).
The functor Q-ratio yielding a function from Q4 x Q4 into Q4 is defined
by
(Def. 9) for every element z of Q4 x Q, there exist elements y, z of Q4 such
that x = (y, z) and it(z) = Q-ratio(y, 2).
The functor eq- Q-ratio yielding a relation between Q4 x Q4 and Q4 x Q4
is defined by
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(Def. 10) for every elements z, y of Q4+ x Q4, (z, y) € it iff there exist elements
a, b, ¢, d of Q4 such that z = (a, b) and y = (c, d) and Q-ratio(a,b) =
Q-ratio(c, d).

The functor Q -music yielding a structure of music is defined by the term

(Def. 11) (Q, eq- Q-ratio, Q-ratio ).

Now we state the propositions:
(16) (i) Q-music is not empty, and
(ii) the carrier of Q-music C Ry, and

(iii) for every elements fi, fa, f3, f4 of Q-music, f1fo = f3f4 iff (the Ratio
of Q-music)(f1, f2) = (the Ratio of Q-music)(fs, f1).
The theorem is a consequence of (6).

(17) Let us consider elements fi, fa, f3 of Q-music. Suppose (the Ratio of
Q-music)(f1, f2) = (the Ratio of Q-music)(f1, f3). Then fo = fs.

(18) Ni C the carrier of Q-music.

(19) Let us consider an element fr of Q -music, and a non zero natural number
n. Then there exists an element A of Q -music such that {fr, h) € [(1, n)],,
where « is the equidistance of Q-music. The theorem is a consequence of
(2) and (16).

(20) Let us consider elements fi, fa, f3 of Q-music. Suppose (the Ratio of
Q-music)(f1, f1) = (the Ratio of Q-music)(f2, f3). Then fo = fs.

(21) Let us consider an element fr of Q-music. Then there exists a positive
real number 7 such that

(i) fr=r, and
(ii) for every non zero natural number n, n - r is an element of Q-music.

The theorem is a consequence of (2).

(22) Let us consider elements f1, fa, fs, f6, f9, f7 of Q-music, positive rational
numbers 71, ro, and non zero natural numbers n, m. Suppose fs =n -]
and f¢ = m -7 and fog = n-re and fr = m - r9. Then fsfs = fof7. The
theorem is a consequence of (16).

(23) Let us consider elements fi, fa, f3, f1 of Q-music. Then (the Ratio of
Q-music)(f1, f2) = (the Ratio of Q-music)( f3, f1) if and only if (the Ratio

of Q-music)(fe, f1) = (the Ratio of Q-music)(fy, f3). The theorem is
a consequence of (15).
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4. MUSICAL STRUCTURE AND SOME AXIOMS

Let S be a structure of music. We say that S is satisfying real if and only if
(Def. 12) the carrier of S C R..
We say that S is equidistant-ratio equivalent if and only if
(Def. 13) for every elements fi, fo, f3, f1 of S, fifo = f3fs iff (the Ratio of
S)(f1, f2) = (the Ratio of S)(fs, f4).
We say that S is satisfying interval if and only if

(Def. 14) for every elements fi, fa, f3 of S such that (the Ratio of S)(f1, f2) =
(the Ratio of S)(f1, f3) holds fo = fs.

We say that S is unison-ratio stable if and only if

(Def. 15) for every elements f1, fa, f3 of S such that (the Ratio of S)(f1, f1) =
(the Ratio of S)(fz, f3) holds fo = fs.

We say that S is ratio symmetric if and only if

(Def. 16) for every elements f1, fo, f3, fa of S, (the Ratio of S)(f1, f2) = (the Ratio
of S)(fs, fa) iff (the Ratio of S)(f2, f1) = (the Ratio of S)(f4, f3).

We say that S is natural if and only if
(Def. 17) Ny C the carrier of S.
We say that S is harmonic closed if and only if

(Def. 18) for every element fr of S and for every non zero natural number n,
there exists an element h of S such that (fr, h) € [(1, n)]
the equidistance of S.

o Where a is

Note that there exists a structure of music which is harmonic closed, na-
tural, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-ratio
equivalent, satisfying real, and non empty.

Let us note that the functor R -music yields a harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music. Observe that the functor
@Q-music yields a harmonic closed, natural, ratio symmetric, unison-ratio sta-
ble, satisfying interval, equidistant-ratio equivalent, satisfying real, non empty
structure of music. Now we state the propositions:

(24) Let us consider a natural structure of music S. Then every non zero
natural number is an element of S.

(25) Let us consider an equidistant-ratio equivalent structure of music M,
and elements a, b of M. Then ab =2 ab.

(26) Let us consider an equidistant-ratio equivalent structure of music M,
and elements a, b, ¢, d of M. Then ab = cd if and only if c¢d = ab.
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(27) Let us consider an equidistant-ratio equivalent structure of music M,
and elements a, b, ¢, d, e, f of M. Suppose ab = ¢d and c¢d = ef. Then
ab>ef.

(28) Let us consider a satisfying interval, equidistant-ratio equivalent struc-
ture of music S, and elements a, b, ¢ of S. Then ab = ac if and only if
b = c. The theorem is a consequence of (25).

From now on M denotes an equidistant-ratio equivalent structure of music
and a, b, ¢, d, e, f denote elements of M.
Now we state the propositions:

(29) aa = aa.
(30) The equidistance of M is reflexive in (the carrier of M) x (the carrier
of M). The theorem is a consequence of (25).
(31) Suppose M is not empty. Then
(i) the equidistance of M is reflexive, and
(ii) field(the equidistance of M) = (the carrier of M) x (the carrier of
The theorem is a consequence of (30).

(32) The equidistance of M is symmetric in (the carrier of M) x (the carrier
of M). The theorem is a consequence of (26).

(33) The equidistance of M is transitive in (the carrier of M) x (the carrier
of M). The theorem is a consequence of (27).

(34) The equidistance of M is an equivalence relation of (the carrier of M) x
(the carrier of M). The theorem is a consequence of (30), (32), and (33).

(35) Let us consider a ratio symmetric, equidistant-ratio equivalent structure
of music M, and elements a, b, ¢, d of M. Then ab = cd if and only if
ba = dc.

(36) Let us consider a unison-ratio stable, equidistant-ratio equivalent struc-
ture of music S, and elements a, b, ¢ of S. If aa = be, then b = c.

Let S be a natural, satisfying interval, harmonic closed, equidistant-ratio
equivalent structure of music, fr be an element of S, and n be a non zero natural
number. The n-harmonic of fr in S yielding an element of S is defined by

(Def. 19) (fr, it) € [(1, n)],, where « is the equidistance of S.
We say that S is harmonic linear if and only if
(Def. 20) for every element fr of S and for every non zero natural number n, there
exists a positive real number f such that fr = f and the n-harmonic of

frin S=n-f.

Now we state the propositions:
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(37) R-music is harmonic linear. The theorem is a consequence of (1) and
(24).

(38) Q-music is harmonic linear. The theorem is a consequence of (2) and
(24).

One can check that there exists a harmonic closed, natural, ratio symmetric,
unison-ratio stable, satisfying interval, equidistant-ratio equivalent, satisfying
real, non empty structure of music which is harmonic linear.

One can check that the functor R-music yields a harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music. Let
us note that the functor QQ-music yields a harmonic linear, harmonic closed,
natural, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-
ratio equivalent, satisfying real, non empty structure of music.

Let M be a harmonic closed, natural, satisfying interval, equidistant-ratio
equivalent structure of music. We say that M is harmonic stable if and only if

(Def. 21) for every elements fi, fo of M and for every non zero natural numbers

n, m, the n-harmonic of f; in M the m-harmonic of f; in M =

the n-harmonic of fo in M the m-harmonic of fs in M.
Now we state the propositions:

(39) R-music is harmonic stable. The theorem is a consequence of (1) and
(13).

(40) Q-music is harmonic stable. The theorem is a consequence of (2) and
(22).

Observe that there exists a harmonic linear, harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equivalent,
satisfying real, non empty structure of music which is harmonic stable.

One can verify that the functor R-music yields a harmonic stable, harmonic
linear, harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfy-
ing interval, equidistant-ratio equivalent, satisfying real, non empty structure
of music. Observe that the functor Q-music yields a harmonic stable, harmonic
linear, harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfy-
ing interval, equidistant-ratio equivalent, satisfying real, non empty structure
of music.

Let M be a harmonic closed, natural, satisfying interval, equidistant-ratio
equivalent structure of music and fr be an element of M. The functors: the set
of unison of fr in M, the set of octave of fr in M, the set of fifth of fr in M,
the set of fourth of fr in M, and the set of major sixth of fr in M yielding
subsets of (the carrier of M) x (the carrier of M) are defined by terms
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(Def. 22)  [(the 1-harmonic of fr in M, the 1-harmonic of fr in M)] , where « is
the equidistance of M,

(Def. 23) [(the 1-harmonic of fr in M, the 2-harmonic of fr in M)] , where « is
the equidistance of M,

(Def. 24) [(the 2-harmonic of fr in M, the 3-harmonic of fr in M)],, where « is
the equidistance of M,

(Def. 25) [(the 3-harmonic of fr in M, the 4-harmonic of fr in M)] , where « is
the equidistance of M,

(Def. 26) [(the 3-harmonic of fr in M, the 5-harmonic of fr in M)] , where « is
the equidistance of M,

respectively. The functors: the set of major third of fr in M, the set of minor
third of fr in M, the set of minor sixth of fr in M, the set of major tone of fr
in M, and the set of minor tone of fr in M yielding subsets of (the carrier of
M) x (the carrier of M) are defined by terms
(Def. 27)  [(the 4-harmonic of fr in M, the 5-harmonic of fr in M)] , where « is
the equidistance of M,
(Def. 28) [{the 5-harmonic of fr in M, the 6-harmonic of fr in M)] , where « is
the equidistance of M,
(Def. 29) [(the 5-harmonic of fr in M, the 8-harmonic of fr in M)] , where « is
the equidistance of M,
(Def. 30) [(the 8-harmonic of fr in M, the 9-harmonic of fr in M)], where « is
the equidistance of M,
(Def. 31) [(the 9-harmonic of fr in M, the 10-harmonic of fr in M)] , where o is
the equidistance of M,
respectively. The functors: the set of unison of M, the set of octave of M, the set
of fifth of M, the set of fourth of M, and the set of major sixth of M yielding
subsets of (the carrier of M) X (the carrier of M) are defined by terms

(Def. 32) [(1, 1)],, where « is the equidistance of M,
(Def. 33) [{1, 2)],, where « is the equidistance of M,
(Def. 34) [(2, 3)],, where « is the equidistance of M,
(Def. 35) [(3, 4)],, where « is the equidistance of M,
(Def. 36) [(3, 5)],, where « is the equidistance of M,

respectively. The functors: the set of major third of M, the set of minor third
of M, the set of minor sixth of M, the set of major tone of M, and the set of
minor tone of M yielding subsets of (the carrier of M) x (the carrier of M) are
defined by terms

(Def. 37) [{4, 5)],, where « is the equidistance of M,
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(Def. 38) [(5, 6)],, where « is the equidistance of M,
(Def. 39) [(5, 8)],, where « is the equidistance of M,
(Def. 40) [(8, 9)],, where « is the equidistance of M,
(Def. 41) [(9, 10)],,, where « is the equidistance of M,

respectively. Let S be a harmonic closed, natural, satisfying interval, equidistant-
ratio equivalent structure of music. We say that S is fifth constructible if and
only if
(Def. 42) for every element fr of S, there exists an element g of S such that (fr,
q) € the set of fifth of S.
Now we state the propositions:

(41) Let us consider an element fr of R-music. Then there exist positive real
numbers f, ¢; such that

() f = fr, and
(ii) q = (3 qua re;l number) f’ and
(iii) (f, q1) € the set of fifth of R-music.

The theorem is a consequence of (1) and (24).

(42) R-music is fifth constructible. The theorem is a consequence of (41) and
(1).
(43) Let us consider an element fr of Q-music. Then there exist positive
rational numbers f, g1 such that
(i) f=fr,and

. 3 qua rational number
(11) ql:(q ) )~f,and

(iii) (f, q1) € the set of fifth of Q-music.

The theorem is a consequence of (2) and (24).

(44) Q-music is fifth constructible. The theorem is a consequence of (43) and
(2).

Let us observe that there exists a harmonic stable, harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music which
is fifth constructible.

Let us note that the functor R-music yields a fifth constructible, harmonic
stable, harmonic linear, harmonic closed, natural, ratio symmetric, unison-
ratio stable, satisfying interval, equidistant-ratio equivalent, satisfying real,
non empty structure of music. Let us note that the functor Q-music yields
a fifth constructible, harmonic stable, harmonic linear, harmonic closed, natu-
ral, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-ratio
equivalent, satisfying real, non empty structure of music.
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Let M be a fifth constructible, harmonic closed, natural, satisfying inte-
rval, equidistant-ratio equivalent structure of music and fr be an element of
M. The fifth of fr in M yielding an element of M is defined by

(Def. 43) (fr, it) € the set of fifth of M.

Now we state the propositions:

(45) Let us consider a fifth constructible, harmonic stable, harmonic linear,
harmonic closed, natural, satisfying interval, equidistant-ratio equivalent
structure of music M, and an element fr of M. Then the set of fifth of fr
in M = the set of fifth of M. The theorem is a consequence of (24) and
(27).

(46) Let us consider an element fr of R-music. Then there exists a positive
real number f such that

() Jr = f. and
(i) the fifth of fr in R-music = &-aua real number) | ¢

The theorem is a consequence of (1) and (41).

(47) Let us consider an element fr of Q-music. Then there exists a positive
rational number f such that

(i) fr=f, and
(ii) the fifth of fr in Q-music = (3 qua ratioznal number) f.

The theorem is a consequence of (2) and (43).

Let M be a fifth constructible, harmonic closed, natural, satisfying interval,
equidistant-ratio equivalent structure of music. We say that M is classical fifth
if and only if

(Def. 44) for every element fr of M, there exists a positive real number f such

that fr = f and the fifth of fr in M = {3.auareal number) ¢

One can verify that there exists a fifth constructible, harmonic stable, har-
monic linear, harmonic closed, natural, ratio symmetric, unison-ratio stable,
satisfying interval, equidistant-ratio equivalent, satisfying real, non empty
structure of music which is classical fifth.

One can verify that the functor R-music yields a classical fifth, fifth con-
structible, harmonic stable, harmonic linear, harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music.

One can check that the functor QQ-music yields a classical fifth, fifth con-
structible, harmonic stable, harmonic linear, harmonic closed, natural, ratio
symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music.
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5. HARMONIC

Now we state the propositions:

(48) Let us consider a harmonic closed, natural, unison-ratio stable, sa-
tisfying interval, equidistant-ratio equivalent structure of music M, and
an element fr of M. Then the 1-harmonic of fr in M = fr. The theorem
is a consequence of (36).

(49) Let us consider a harmonic stable, harmonic closed, natural, unison-
ratio stable, satisfying interval, equidistant-ratio equivalent structure

of music M, and elements a, b of M. Then aa = bb. The theorem is
a consequence of (48).

(50) Let us consider a harmonic stable, harmonic linear, harmonic closed,
natural, unison-ratio stable, satisfying interval, equidistant-ratio equ-
ivalent structure of music M, and an element fr of M. Then the set of
octave of fr in M = the set of octave of M. The theorem is a consequence
of (48), (27), and (24).

(51) Let us consider a fifth constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent, non empty structure of music M,
and an element fr of M. Then there exists a sequence s11 of M such that

(i) s11(0) = fr, and

(ii) for every natural number n, (s11(n), si1(n+ 1)) € the set of fifth of
M.

PROOF: Define P[set, set, set] = there exist positive real numbers x, y such
that ($2, $3) € the set of fifth of M. For every natural number n and for
every element = of M, there exists an element y of M such that P[n,z, y].
Consider s1; being a sequence of M such that s11(0) = fr and for every
natural number n, P[n, s11(n), s11(n+1)]. O
Let M be a structure of music and a, b, ¢ be elements of M. We say that b
is between a and c if and only if

(Def. 45) there exist positive real numbers r1, r2, 73 such that a = r; and b = 79
and ¢ =rg and r; <19 < 73.

Let S be a harmonic closed, natural, satisfying interval, equidistant-ratio
equivalent structure of music. We say that S is octave constructible if and only
if

(Def. 46) for every element fr of S, there exists an element o of S such that (fr,
0) € the set of octave of S.

Now we state the propositions:
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(52) Let us consider an element fr of R-music. Then there exist positive real
numbers f, ¢; such that

(i) f = fr, and
(i) g =2-f, and
(iii) (f, q1) € the set of octave of R-music.

The theorem is a consequence of (1) and (24).

(53) R-music is octave constructible. The theorem is a consequence of (52)
and (1).

(54) Let us consider an element fr of Q-music. Then there exist positive
rational numbers f, ¢q; such that

(i) f = fr, and
(11) q1 :2f7 and
(iii) (f, q1) € the set of octave of Q-music.

The theorem is a consequence of (2) and (24).

(55) Q-music is octave constructible. The theorem is a consequence of (54)
and (2).

Let us note that there exists a classical fifth, fifth constructible, harmonic
stable, harmonic linear, harmonic closed, natural, ratio symmetric, unison-
ratio stable, satisfying interval, equidistant-ratio equivalent, satisfying real,
non empty structure of music which is octave constructible.

Let us observe that the functor R -music yields an octave constructible, clas-
sical fifth, fifth constructible, harmonic stable, harmonic linear, harmonic
closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music.
Let us note that the functor Q-music yields an octave constructible, classical
fifth, fifth constructible, harmonic stable, harmonic linear, harmonic closed,
natural, ratio symmetric, unison-ratio stable, satisfying interval, equidistant-
ratio equivalent, satisfying real, non empty structure of music.

Let M be an octave constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent structure of music and fr be an element
of M. The octave of fr in M yielding an element of M is defined by

(Def. 47) (fr, it) € the set of octave of M.

Let M be a satisfying real, non empty structure of music and r be an element
of M. The functor % yielding a positive real number is defined by the term

(Def. 48) r.
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Let M be an octave constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent structure of music. We say that M is
classical octave if and only if

(Def. 49) for every element fr of M, there exists a positive real number f such
that fr = f and the octave of frin M =2 f.

Now we state the propositions:

(56) R-music is classical octave. The theorem is a consequence of (52) and
(1).

(57) Q-music is classical octave. The theorem is a consequence of (54) and
(2).

One can verify that there exists an octave constructible, classical fifth, fifth
constructible, harmonic stable, harmonic linear, harmonic closed, natural,
ratio symmetric, unison-ratio stable, satisfying interval, equidistant-ratio equ-
ivalent, satisfying real, non empty structure of music which is classical octave.

Observe that the functor R-music yields a classical octave, octave construc-
tible, classical fifth, fifth constructible, harmonic stable, harmonic linear,
harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfying
interval, equidistant-ratio equivalent, satisfying real, non empty structure of
music. Observe that the functor Q-music yields a classical octave, octave con-
structible, classical fifth, fifth constructible, harmonic stable, harmonic linear,
harmonic closed, natural, ratio symmetric, unison-ratio stable, satisfying in-
terval, equidistant-ratio equivalent, satisfying real, non empty structure of
music.

Let M be an octave constructible, harmonic closed, natural, satisfying
interval, equidistant-ratio equivalent structure of music. We say that M is
octave descending constructible if and only if

(Def. 50) for every element fr of M, there exists an element o of M such that (o,
fr) € the set of octave of M.

Now we state the propositions:

(58) Let us consider an element fr of R-music. Then there exist positive real
numbers f, g1 such that

(i) f= fr, and

(1 qua re;l number) f, and

(i) @1 =
(iii) {q1, f) € the set of octave of R-music.
The theorem is a consequence of (1), (24), and (35).

(59) R-music is octave descending constructible. The theorem is a consequ-
ence of (58) and (1).
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(60) Let us consider an element fr of Q-music. Then there exist positive
rational numbers f, g1 such that

(i) f = fr, and

o 1 qua rational number
(11) QI:( 2 )'faand

(iii) {q1, f) € the set of octave of Q-music.
The theorem is a consequence of (2), (24), and (35).

(61) Q-music is octave descending constructible. The theorem is a consequ-
ence of (60) and (2).

One can verify that there exists a classical octave, octave constructible,
classical fifth, fifth constructible, harmonic stable, harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music which
is octave descending constructible.

One can verify that the functor R-music yields an octave descending con-
structible, classical octave, octave constructible, classical fifth, fifth construc-
tible, harmonic stable, harmonic linear, harmonic closed, natural, ratio sym-
metric, unison-ratio stable, satisfying interval, equidistant-ratio equivalent,
satisfying real, non empty structure of music. Note that the functor Q-music
yields an octave descending constructible, classical octave, octave constructible,
classical fifth, fifth constructible, harmonic stable, harmonic linear, harmo-
nic closed, natural, ratio symmetric, unison-ratio stable, satisfying interval,
equidistant-ratio equivalent, satisfying real, non empty structure of music.

Let M be an octave descending constructible, octave constructible, fifth
constructible, harmonic closed, natural, ratio symmetric, satisfying inte-
rval, equidistant-ratio equivalent structure of music and fr be an element of
M. The octave descending of fr in M yielding an element of M is defined by

(Def. 51) (it, fr) € the set of octave of M.
Now we state the propositions:

(62) Let us consider an octave descending constructible, classical octave,
octave constructible, fifth constructible, harmonic closed, natural, ratio
symmetric, satisfying interval, equidistant-ratio equivalent, satisfying
real, non empty structure of music M, and an element fr of M. Then
there exists a positive real number r such that

(i) fr=r, and
(ii) the octave descending of fr in M = 3.

The theorem is a consequence of (1).
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(63) Let us consider classical octave, octave constructible, classical fifth, fifth
constructible, harmonic closed, natural, satisfying interval, equidistant-
ratio equivalent structures of music M, Ms, an element f; of M;i, and
an element fy of Ms. Suppose fi = fo. Then

(i) the fifth of f; in M; = the fifth of fy in My, and
(ii) the octave of fi in My = the octave of fy in My.

(64) Let us consider octave descending constructible, classical octave, octave
constructible, fifth constructible, harmonic closed, natural, ratio sym-
metric, satisfying interval, equidistant-ratio equivalent, satisfying real,
non empty structures of music My, Mo, an element fry of M7, and an ele-
ment fro of Ms. Suppose fr; = fra. Then the octave descending of frq in
M; = the octave descending of fro in Ms. The theorem is a consequence
of (62).

Let M be an octave descending constructible, octave constructible, fifth
constructible, harmonic closed, natural, ratio symmetric, satisfying interval,
equidistant-ratio equivalent structure of music and fig, fr be elements of M.
The reduct fifth of the fr with fundamental frequency fig in M yielding an ele-
ment of M is defined by the term

the fifth of fr in M, if the fifth of fr in M is between fi9 and the
(Def. 52) octave of fig in M,
the octave descending of (the fifth of fr in M) in M, otherwise.
Now we state the propositions:

(65) Let us consider octave descending constructible, classical octave, octa-
ve constructible, classical fifth, fifth constructible, harmonic closed,
natural, ratio symmetric, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structures of music My, Ms, elements
fri, fi1 of My, and elements fro, fi2 of Ms. Suppose fri = fro and
fi1 = fi2. Then the reduct fifth of the fr; with fundamental frequency
f11 in My = the reduct fifth of the fro with fundamental frequency fi2 in
Ms. The theorem is a consequence of (63) and (64).

(66) Let us consider a classical fifth, fifth constructible, harmonic closed,
natural, satisfying interval, equidistant-ratio equivalent structure of music
M, and an element fr of M. Then there exist positive real numbers r, s
such that

(i) r = fr, and

(11) 5 — (3 qua regl number)

(ifi) the fifth of fr in M = s.

-r, and
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(67) Let us consider an octave descending constructible, classical octave,
octave constructible, classical fifth, fifth constructible, harmonic clo-
sed, natural, satisfying interval, equidistant-ratio equivalent structure
of music M, and elements fig, fr of M. Suppose fr is between fio and
the octave of fip in M. Then there exist positive real numbers ri, 79, T3
such that

(i) fio =71, and

(ii) fr =re, and
(iii) the octave of fip in M =2 -1, and
(iv) 1 <ry < 2-71q.

(68) Let us consider an octave descending constructible, classical octave,
octave constructible, classical fifth, fifth constructible, harmonic closed,
natural, ratio symmetric, satisfying interval, equidistant-ratio equiva-
lent, satisfying real, non empty structure of music M, and elements fig,
fr of M. Suppose fr is between fig9 and the octave of figp in M. Then
the reduct fifth of the fr with fundamental frequency fig in M is between
fi0 and the octave of fig in M. The theorem is a consequence of (67) and
(62).

A space of music is an octave descending constructible, classical octave,
octave constructible, classical fifth, fifth constructible, harmonic stable, har-
monic linear, harmonic closed, natural, ratio symmetric, unison-ratio stable,
satisfying interval, equidistant-ratio equivalent, satisfying real, non empty
structure of music. Now we state the propositions:

(69) R-music is a space of music.

(70) Q-music is a space of music.

6. SPIRAL OF FIFTHS

Now we state the proposition:

(71) Let us consider an octave descending constructible, octave constructible,
fifth constructible, harmonic closed, natural, ratio symmetric, satisfying
interval, equidistant-ratio equivalent, non empty structure of music M,

and elements fig, fr of M. Then there exists a sequence s11 of M such
that

(i) s11(0) = fr, and

(ii) for every natural number n, sii(n + 1) = the reduct fifth of the
s11(n) with fundamental frequency fig in M.
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PROOF: Define P|[set, set, set] = there exist elements z, y of M such that
x = $3 and y = $3 and y = the reduct fifth of the x with fundamental
frequency fig in M. For every natural number n and for every element x
of M, there exists an element y of M such that P[n,x,y]. Consider si;
being a sequence of M such that s11(0) = fr and for every natural number
n, P[n, s11(n),s11(n+1)]. O
Let M be an octave descending constructible, octave constructible, fifth
constructible, harmonic closed, natural, ratio symmetric, satisfying interval,
equidistant-ratio equivalent, non empty structure of music and fig, fr be ele-
ments of M. The spiral of fifths of fr with fundamental frequency fio in M
yielding a sequence of M is defined by

(Def. 53) it(0) = fr and for every natural number n, it(n + 1) = the reduct fifth
of the it(n) with fundamental frequency fio in M.

From now on M denotes an octave descending constructible, classical octa-
ve, octave constructible, classical fifth, fifth constructible, harmonic closed,
natural, ratio symmetric, satisfying interval, equidistant-ratio equivalent, sa-
tisfying real, non empty structure of music and fig, fr denote elements of M.

Now we state the propositions:

(72) Suppose fr is between f19 and the octave of fig in M. Let us consider
a natural number n. Then (the spiral of fifths of fr with fundamental
frequency fi9 in M)(n) is between f1p and the octave of fio in M.
PROOF: Define P[natural number| = (the spiral of fifths of fr with
fundamental frequency fip in M)($;1) is between fi9 and the octave of fig
in M. For every natural number k such that P[k] holds P[k+1]. For every
natural number k, P[k| from [2, Sch. 2]. O

(73) (The spiral of fifths of f1p with fundamental frequency fip in M)(1) =
(3 qua real number)
2

(74) (The spiral of fifths of fip with fundamental frequency fio in M)(2) =
(9 qua regl number) (®f10). The theorem is a consequence of (73), (66), and
(62).

(75) (The spiral of fifths of f19 with fundamental frequency fi9 in M)(3) =
(27 qua rfgl number) (@, ) The theorem is a consequence of (74) and (66).

e spiral of fifths of f19 with fundamental Irequency jfig In =
76) (The spiral of fifths of f1o with fund 1f fi0 in M)(4
(81 qua rgzl number)  (@f, Y The theorem is a consequence of (75), (66), and
(62).

(77)  (The spiral of fifths of f1g with fundamental frequency fi9 in M)(5) =

(243 qua fggl number) (@, ) The theorem is a consequence of (76) and (66).

9(the spiral of fifths of fr with fundamental frequency fr in M)(2)
(78) @fr

(®f10). The theorem is a consequence of (66).
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3-3 qua real number
2:2:2
9(the spiral of fifths of fr with fundamental frequency fr in M)(4)
Q(the spiral of fifths of fr with fundamental frequency fr in M)(2)
1

. The theorem is a consequence of (74).

(79)

33 qua;e;; number The theorem is a consequence of (74) and (76).

(80) Y(the spiral of fifths of fr with fundamental frequency fr in M)(1)
Q(the spiral of fifths of fr with fundamental frequency fr in M)(4)

32 qua TS? mumber The theorem is a consequence of (73) and (76).

(81) 9(the spiral of fifths of fr with fundamental frequency fr in M)(3) _
Q(the spiral of fifths of fr with fundamental frequency fr in M)(1) ~

%lnumber. The theorem is a consequence of (73) and (75).

(82) 9(the octave of fr in M)
Q(the spiral of fifths of fr with fundamental frequency fr in M)(3)

32 qua rS;‘l mumber e theorem is a consequence of (75).

Let M be a space of music and sjp be an element of (the carrier of M)2. We
say that sig is monotonic if and only if

(Def. 54) there exists an element fr of M and there exist positive real numbers rq,
ro such that sijo(1) = fr and s19(1) = r1 and s19(2) = r2 and r; < 3 and
s10(2) = the octave of fr in M.
Let s1p be an element of (the carrier of M)3. We say that siq is ditonic if
and only if

(Def. 55) there exists an element fr of M and there exist positive real numbers
r1, T2, r3 such that sjo(1) = fr and sj0(1) = r1 and s19(2) = 79 and
510(3) =73 and 1 < ro < r3 and s19(3) = the octave of fr in M.
Let s19 be an element of (the carrier of M)*. We say that s1g is tritonic if
and only if

(Def. 56) there exists an element fr of M and there exist positive real numbers
r1, T2, T3, T4 such that sjo(1) = fr and s10(1) = r1 and s10(2) = ro
and s19(3) = r3 and s19(4) = r4 and 11 < 19 < r3 and r3 < 74 and
s10(4) = the octave of fr in M.

Let s10 be an element of (the carrier of M)>. We say that sy is tetratonic if
and only if

(Def. 57) there exists an element fr of M and there exist positive real numbers
r1, T2, T3, r4, 5 such that s19(1) = fr and s10(1) = 1 and s19(2) = ro
and s19(3) = r3 and s10(4) = r4 and s19(5) = r5 and r1 < ro < r3 and
rg < 14 <15 and s19(5) = the octave of fr in M.

Let n be a natural number and sjg be an element of (the carrier of M)". We
say that sig is pentatonic if and only if

(Def. 58) n = 6 and there exists an element fr of M and there exist positive real
numbers r1, ro, r3, T4, 75, 76 such that sio(1) = fr and s19(1) = r and
$10(2) = r9 and s19(3) = r3 and s19(4) = r4 and s19(5) = r5 and s19(6) =
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re and r1 < ro < rg and r3 < rq < r5 and r5 < r¢ and s19(6) = the octave
of fr in M.
Let s19 be an element of (the carrier of M)7. We say that s1q is hexatonic if
and only if

(Def. 59) there exists an element fr of M and there exist positive real numbers rq,
T2, T3, T4, T's, T'e, r7 such that s10(1) = fr and s19(1) = r1 and s10(2) = ro
and s19(3) = r3 and s19(4) = r4 and s10(5) = r5 and s19(6) = ¢ and
s10(7) =ryand r; < 7y < rzand r3 < rg < 15 and r5 < 16 < r7 and
s10(7) = the octave of fr in M.

Let n be a natural number and s19 be an element of (the carrier of M)"™. We
say that sig is heptatonic if and only if

(Def. 60) n = 8 and there exists an element fr of M and there exist positive real
numbers r1, 79, r3, T4, T5, T, T7, g such that s19(1) = fr and s19(1) =
and s10(2) = 7o and s10(3) = 73 and s19(4) = r4 and s19(5) = r5 and
510(6) = r¢ and s19(7) = r7 and s19(8) = rg and 1 < 72 < 73 and
rg < rq <rsand rs < rg <ry; and r; < rg and s19(8) = the octave of fr
in M.

Let s19 be an element of (the carrier of M)?. We say that s1 is octatonic if
and only if

(Def. 61) there exists an element fr of M and there exist positive real numbers
T1, T2, T3, T4, T'5, T6, I'7, T8, 79 such that sjo(1) = fr and s10(1) = 1 and
510(2) = ro and s10(3) = r3 and s10(4) = r4 and s19(5) = r5 and s19(6) =
re¢ and s10(7) = r7 and s19(8) = rg and s10(9) = 19 and 1 < 72 < r3 and
r3 <rg <715 and r5 < rg < ry and r7 < rg < rg and s10(9) = the octave
of frin M.

7. PENTATONIC PYTHAGOREAN SCALE

Let M be a space of music and fr be an element of M. The pentatonic
pythagorean scale of fr in M yielding an element of (the carrier of M)% is
defined by

(Def. 62) it(1) = fr and it(2) = (the spiral of fifths of fr with fundamental
frequency frin M)(2) and it(3) = (the spiral of fifths of frr with fundamental
frequency frin M)(4) and it(4) = (the spiral of fifths of fr with fundamental
frequency frin M)(1) and it(5) = (the spiral of fifths of fr with fundamental
frequency fr in M)(3) and it(6) = the octave of fr in M.

From now on M denotes a space of music and fyg, fr, f1, fo denote elements
of M.

Now we state the proposition:
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(83) The pentatonic pythagorean scale of fr in M is pentatonic. The theorem
is a consequence of (74), (76), (73), and (75).

Let M be a space of music and f1, fo be elements of M. The interval between
f1 and fy yielding a positive real number is defined by

(Def. 63) there exist positive real numbers 71, ro such that r; = f; and ro = fo

and it = 2.
1

The pythagorean tone yielding a positive real number is defined by the term

(9 real number)
(Def. 64) (9-aua real number)

The pythagorean semiditone yielding a positive real number is defined by
the term

32 real number
(Def. 65) (32auare ),

The pythagorean major third yielding a positive real number is defined by
the term

(Def. 66) (the pythagorean tone) - (the pythagorean tone).

The pythagorean pure major third yielding a positive real number is defined
by the term
(5 qua real number)
(Def. 67) 1 .

The syntonic comma yielding a positive real number is defined by the term

the pythagorean major third
<Def' 68) the pythagorean pure major third*

Now we state the propositions:

(81 qua real number)
80

(85) The pythagorean tone < the pythagorean semiditone.

(84) The syntonic comma =

(86) (The pythagorean tone) - (the pythagorean tone) - (the pythagorean
semiditone) - (the pythagorean tone) - (the pythagorean semiditone) = 2.

Let M be a space of music and fr be an element of M. The functors: the first
degree of pentatonic scale of fr in M, the second degree of pentatonic scale of
frin M, the third degree of pentatonic scale of fr in M, the fourth degree of
pentatonic scale of fr in M, and the fifth degree of pentatonic scale of fr in M
yielding elements of M are defined by terms
the pentatonic pythagorean scale of fr in M)(1),
the pentatonic pythagorean scale of fr in M)(2),

the pentatonic pythagorean scale of fr in M)(4),

/\f\e/\/\
[¢]
[}
-3
—_
N
~~ ~ —~~

)(1)
)(2)
the pentatonic pythagorean scale of fr in M)(3),
)(4)
)(5)

Def. 73) (the pentatonic pythagorean scale of fr in M)(5),

respectively. The octave of pentatonic scale of fr in M yielding an element of
M is defined by the term

(Def. 74) the octave of fr in M.
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Now we state the propositions:

(87) There exist elements 71, 72 of Ry such that the interval between f; and
fo= R—ratio(rl, 7“2).

(88) Let us consider positive real numbers ry, 72, 73, T4, T5, rg. Suppose
(the pentatonic pythagorean scale of fr in M)(1) = r; and (the pentatonic
pythagorean scale of fr in M)(2) = ry and (the pentatonic pythagorean
scale of fr in M)(3) = r3 and (the pentatonic pythagorean scale of fr in
M)(4) = rq and (the pentatonic pythagorean scale of fr in M)(5) = rs
and (the pentatonic pythagorean scale of fr in M)(6) = r¢. Then

.\ 7o _ (9 qua real number)
(i) 2= S

- , and

r3 _ (9 qua real number) and

ro 8 ’

r3 27

75 __ (9 qua real number)
ry 8

)
(111) r4 _ (32 qua real number)v and
)

, and

(V) r¢ __ (32 qua real number) )

5 27
The theorem is a consequence of (83), (78), (79), (80), (81), and (82).

(89) There exist positive real numbers r1, 7o, 73, r4, 75, 76 such that

(i) (the pentatonic pythagorean scale of fr in M)(1) = ry, and

(ii) (the pentatonic pythagorean scale of fr in M)(2) = rq, and

(iii) (the pentatonic pythagorean scale of fr in M)(3) = r3, and

)
i) (
(iv)
(v)
(vi)
)
)
)
)

the pentatonic pythagorean scale of fr in M)(5) = rs5, and

)(2) =
)(3) =
(the pentatonic pythagorean scale of fr in M)(4) = r4, and
( )(5) =
(the pentatonic pythagorean scale of fr in M)(6) = ¢, and

1

(Vll re _ (9 qua rea number)’ and
T1 8
1

(Vlll T3 _ (9 qua rea number)’ and
T2 8

( ix) T4 — (32 qua real number) and

T3 27 )

1

(X s (9 qua rea number)j and
T4 8

(Xl) r¢ __ (32 qua real number) )

s 27

The theorem is a consequence of (1) and (88).
90 (9 qua real number) _ (9 qua rational number)
(90) o number) _ : |

(91) (i) the interval between the first degree of pentatonic scale of fr in M
and (the second degree of pentatonic scale of fr in M) =

the pythagorean tone, and
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(ii) the interval between the second degree of pentatonic scale of fr in
M and (the third degree of pentatonic scale of fr in M) =

the pythagorean tone, and

(iii) the interval between the third degree of pentatonic scale of fr in M
and (the fourth degree of pentatonic scale of fr in M) =
the pythagorean semiditone, and

(iv) the interval between the fourth degree of pentatonic scale of fr in M
and (the fifth degree of pentatonic scale of fr in M) =
the pythagorean tone, and

(v) the interval between the fifth degree of pentatonic scale of fr in M
and (the octave of pentatonic scale of fr in M) = the pythagorean
semiditone.

The theorem is a consequence of (89).

(92) the fifth of fr in M is between fr and the octave of fr in M.

Let us consider positive real numbers r1, 2. Now we state the propositions:
_ (4 qua regl number) -71. Then

(93) Suppose fi =71 and fo =19 and ro =
(i) the fifth of fo in M =2-r;, and
(i) the fifth of fy in M is not between f; and the octave of f; in M.

(94) Suppose f1 =11 and fo =79 and 79 = (4 qua regl number) -71. Then

(i) if the fifth of fo in M is between f1p and the octave of fig in M, then
the octave descending of (the reduct fifth of the fo with fundamental
frequency fip in M) in M = f;, and

(ii) if the fifth of fo in M is not between fio and the octave of fip in
M, then the reduct fifth of the fo with fundamental frequency fig
in M= fl-

The theorem is a consequence of (62).
(4 qua real number)  Then

(95) Suppose fi = r; and fo = 7o and ro =
the reduct fifth of the fo with fundamental frequency fiin M = f1 The
theorem is a consequence of (94) and (93).

8. HEPTATONIC PYTHAGOREAN SCALE

Let S be a space of music. We say that S is fourth constructible if and only
if
(Def. 75) for every element fr of S, there exists an element ¢ of S such that (fr,
q) € the set of fourth of S.
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Now we state the propositions:

(96) Let us consider a space of music M. Suppose M = R-music. Let us
consider an element fr of M. Then there exist positive real numbers f, q;
such that

(i) f=fr, and
(11) q = (4 qua re;l number) f, and
(iii) (f, q1) € the set of fourth of M.

The theorem is a consequence of (1) and (24).

(97) R-music is fourth constructible. The theorem is a consequence of (96)
and (1).
One can verify that there exists a space of music which is fourth constructi-
ble.
Let M be a fourth constructible space of music and fr be an element of M.
The fourth of fr in M yielding an element of M is defined by
(Def. 76) (fr, it) € the set of fourth of M.
We say that M is classical fourth if and only if
(Def. 77) for every element fr of M, there exists a positive real number f such

that fr = f and the fourth of fr in M = (4-auareal number) ¢

Now we state the proposition:
(98) Let us consider a fourth constructible space of music M. Suppose M =
R -music. Let us consider an element fr of M. Then there exists a positive
real number f such that

(i) fr = f, and

(i) the fourth of fr in M = (4 qua regl number) f.

The theorem is a consequence of (1) and (96).

Let us note that there exists a fourth constructible space of music which is
classical fourth.

Let M be a satisfying real, non empty structure of music. We say that M is
euclidean if and only if

(Def. 78) for every elements f1, fo of M, (the Ratio of M)(f1, f2) = 2}?
One can verify that there exists a satisfying real, non empty structure of
music which is euclidean and every satisfying real, non empty structure of mu-

sic which is euclidean is also satisfying interval and every satisfying real, non

empty structure of music which is euclidean is also unison-ratio stable and eve-
ry satisfying real, non empty structure of music which is euclidean is also ratio
symmetric and there exists a classical fourth, fourth constructible space of music
which is euclidean.
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A heptatonic pythagorean score is a classical fourth, fourth constructible
space of music. From now on H denotes a heptatonic pythagorean score and fr
denotes an element of H.

Let H be a heptatonic pythagorean score and fr be an element of H.
The heptatonic pythagorean scale of fr in H yielding an element of (the carrier
of H)3 is defined by

(Def. 79) it(1) = (the spiral of fifths of (the fourth of fr in H) with fundamental
frequency fr in H)(1) and it(2) = (the spiral of fifths of (the fourth of
frin H) with fundamental frequency fr in H)(3) and it(3) = (the spiral
of fifths of (the fourth of fr in H) with fundamental frequency fr in
H)(5) and it(4) = the fourth of fr in H and it(5) = (the spiral of fifths
of (the fourth of fr in H) with fundamental frequency fr in H)(2) and
it(6) = (the spiral of fifths of (the fourth of fr in H) with fundamental
frequency frin H)(4) and i(7) = (the spiral of fifths of (the fourth of fr
in H) with fundamental frequency fr in H)(6) and 4¢(8) = the octave of
(the spiral of fifths of (the fourth of fr in H) with fundamental frequency
frin H)(1) in H.

Now we state the propositions:
(99) the fourth of fr in H is between fr and the octave of fr in H.

(100) Let us consider a natural number n. Then (the spiral of fifths of (the fourth
of fr in H) with fundamental frequency fr in H)(n) is between fr and
the octave of fr in H.

(101) (The spiral of fifths of (the fourth of fr in H) with fundamental frequency
frin H)(1) = fr. The theorem is a consequence of (66) and (62).

(102) (The spiral of fifths of (the fourth of fr in H) with fundamental frequency
frin H)(2) = Baua regl number) (@) The theorem is a consequence of
(101) and (66).

(103) (The spiral of fifths of (the fourth of fr in H) with fundamental frequency
frin H)(3) = (Qaua regl number) (@) The theorem is a consequence of
(102), (66), and (62).

(104) (The spiral of fifths of (the fourth of fr in H) with fundamental frequency
frin H)(4) = 3T aua r‘fgl number) . (@f.) The theorem is a consequence of
(103) and (66).

(105) (The spiral of fifths of (the fourth of fr in H) with fundamental frequency
frin H)(5) = Laua rgzl number) . (@f) The theorem is a consequence of
(104), (66), and (62).

(106) (The spiral of fifths of (the fourth of fr in H) with fundamental frequency

frin H)(6) = (243 qua {g;l number) (@) The theorem is a consequence of
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(105) and (66).

(107) (i) (the heptatonic pythagorean scale of fr in H)(1) = 1 - (®fr), and
(i) (the heptatonic pythagorean scale of fr in H)(2) = (2aua regl number)
(®fr), and
(iii) (the heptatonic pythagorean scale of fr in H)(3) = (8Laua rgzl number)
(°fr), and
(iv) (the heptatonic pythagorean scale of fr in H)(4) = (4 qua real number),
(®fr), and
(v) (the heptatonic pythagorean scale of fr in H)(5) = (3-9qua real number)
(°fr), and
(vi) (the heptatonic pythagorean scale of fr in H)(6) = 27-4ua rfgl number)
(°fr), and
(vii) (the heptatonic pythagorean scale of frin H)(7) = (243 qua {;gl number),
(®fr), and
(viii) (the heptatonic pythagorean scale of fr in H)(8) = 2- (*fr).
The theorem is a consequence of (101), (103), (105), (102), (104), and
(106).

(108) The heptatonic pythagorean scale of fr in H is heptatonic. The theorem
is a consequence of (107).
The pythagorean semitone yielding a positive real number is defined by the

term

256 qua real number
(Def. g0) (256 qua rea ),

Now we state the propositions:
the pythagorean tone
(109) 5

< the pythagorean semitone.

(110) (The pythagorean tone) - (the pythagorean tone) - (the pythagorean
semitone)-(the pythagorean tone)-(the pythagorean tone)-(the pythagorean
tone) - (the pythagorean semitone) = 2.

Let H be a heptatonic pythagorean score and fr be an element of H. The
functors: the first degree of heptatonic scale of fr in H, the second degree of
heptatonic scale of fr in H, the third degree of heptatonic scale of fr in H,
the fourth degree of heptatonic scale of fr in H, and the fifth degree of heptatonic
scale of fr in H yielding elements of H are defined by terms
( (the heptatonic pythagorean scale of fr in H)(1),

( ) (the heptatonic pythagorean scale of fr in H)(2),

(Def. 83) (the heptatonic pythagorean scale of fr in H)(3),

( ) (the heptatonic pythagorean scale of fr in H)(4),
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(Def. 85) (the heptatonic pythagorean scale of fr in H)(5),

respectively. The functors: the sixth degree of heptatonic scale of fr in H, the se-
venth degree of heptatonic scale of fr in H, and the eight degree of heptatonic
scale of fr in H yielding elements of H are defined by terms

(Def. 86) (the heptatonic pythagorean scale of fr in H)(6),
(Def. 87) (the heptatonic pythagorean scale of fr in H)(7),
(Def. 88) the octave of fr in H,
respectively. Now we state the proposition:
(111) (i) the interval between the first degree of heptatonic scale of fr in H
and (the second degree of heptatonic scale of fr in H) =
the pythagorean tone, and
(ii) the interval between the second degree of heptatonic scale of fr in
H and (the third degree of heptatonic scale of fr in H) =
the pythagorean tone, and
(iii) the interval between the third degree of heptatonic scale of fr in H
and (the fourth degree of heptatonic scale of fr in H) =
the pythagorean semitone, and
(iv) the interval between the fourth degree of heptatonic scale of fr in H
and (the fifth degree of heptatonic scale of fr in H) =
the pythagorean tone, and
(v) the interval between the fifth degree of heptatonic scale of fr in H
and (the sixth degree of heptatonic scale of fr in H) =
the pythagorean tone, and
(vi) the interval between the sixth degree of heptatonic scale of fr in H
and (the seventh degree of heptatonic scale of fr in H) =
the pythagorean tone, and
(vii) the interval between the seventh degree of heptatonic scale of fr in
H and (the eight degree of heptatonic scale of fr in H) =
the pythagorean semitone.
The theorem is a consequence of (107).

From now on H denotes a heptatonic pythagorean score and fr denotes
an element of H.

Let M be a space of music, n be a natural number, and s19 be an element
of (the carrier of M)™. Assume sj¢ is heptatonic. We say that s1 is perfect fifth
if and only if

(Def. 89) (510(1), 510(5)), (810(2), 810(6)), <310(3), 810(7)), (810(4), 810(8)) S the
set of fifth of M.
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Now we state the proposition:

(112) Let us consider an euclidean heptatonic pythagorean score H, and an ele-
ment fr of H. Then the heptatonic pythagorean scale of fr in H is perfect
fifth. The theorem is a consequence of (108), (107), and (24).

Let H be a heptatonic pythagorean score and fr be an element of H.
The heptatonic pythagorean scale ascending of fr in H yielding an element
of (the carrier of H)® is defined by the term

(Def. 90) the heptatonic pythagorean scale of (the octave of fr in H) in H.
Now we state the propositions:
(113) (i) (the heptatonic pythagorean scale ascending of fr in H)(1) = 2 -
(®fr), and

(ii) (the heptatonic pythagorean scale ascending of fr in H)(2) =

9 1 b
qua rez number (@f?”), and

(iii) (the heptatonic pythagorean scale ascending of fr in H)(3) =

81 1 b
qua rgg number (@fT‘), and

(iv) (the heptatonic pythagorean scale ascending of fr in H)(4) =

8 1 b
qua reg number (@f’f'), and

(v) (the heptatonic pythagorean scale ascending of fr in H)(5) =

(3 qua real number) - (®fr), and

(vi) (the heptatonic pythagorean scale ascending of fr in H)(6) =

27 1 b
qua r%a number (@fr), and

(vii) (the heptatonic pythagorean scale ascending of fr in H)(7) =

243 1 b
qua %Za number (@fl"), and

(viii) (the heptatonic pythagorean scale ascending of fr in H)(8) = 4-(“fr).
The theorem is a consequence of (107).

(114) (The heptatonic pythagorean scale of fr in H)(8) = (the heptatonic
pythagorean scale ascending of fr in H)(1). The theorem is a consequence
of (107) and (113).

(115) (i) the interval between the fifth degree of heptatonic scale of fr in H

and (the second degree of heptatonic scale of (the octave of fr in H)
in H) _ (3 qua real number)
= 2

, and

(ii) the interval between the sixth degree of heptatonic scale of fr in H

and (the third degree of heptatonic scale of (the octave of fr in H)
in H) _ (3qua regl number)

(iii) the interval between the seventh degree of heptatonic scale of fr in
H and (the fourth degree of heptatonic scale of (the octave of fr in
H) in H) 7& (3 qua regl number)’ and

, and
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(iv) the interval between the eight degree of heptatonic scale of fr in H

and (the fifth degree of heptatonic scale of (the octave of fr in H)
in H) __ (3 qua real number)
= 2

The theorem is a consequence of (107) and (113).

(116) Let us consider an euclidean heptatonic pythagorean score H, and ele
ments f1, fo of H. Then the interval between f; and fo = (the Ratio of
H)(f1, f2)-

(117) Let us consider an euclidean heptatonic pythagorean score H, and an ele
ment fr of H. Then

(i) ((the heptatonic pythagorean scale of fr in H)(5), (the heptatonic
pythagorean scale ascending of fr in H)(2)), {((the heptatonic

pythagorean scale of fr in H)(6), (the heptatonic pythagorean scale
ascending of fr in H)(3)) € the set of fifth of H, and

(ii) ((the heptatonic pythagorean scale of fr in H)(7), (the heptatonic
pythagorean scale ascending of fr in H)(4)) ¢ the set of fifth of H.

The theorem is a consequence of (115), (24), and (116).

Let H be a space of music, n be a non zero, natural number, s1g be an element
of (the carrier of H)", and ¢ be a natural number. The functor #;'° yielding
an element of H is defined by the term

s10(1), if ¢ € Segn,
(Def. 91) { the element of H, otherwise.
Assume s1q is heptatonic. We say that sig is dorian if and only if
(Def. 92) there exist positive real numbers ¢1, to such that ¢1 -1 -t - t1 - t1 - to -
to = 2 and the interval between #7'° and #3'° = t; and the interval
between #5'° and #3'° = to and the interval between #3'° and #3'° = t;
and the interval between #;'° and #:'° = ¢; and the interval between
#:1° and #¢§'° = t; and the interval between #¢'° and #3'° = ¢y and
the interval between #:'° and #g'* = t;.
Assume s1g is heptatonic. We say that sig is hypodorian if and only if
(Def. 93) there exist positive real numbers ¢1, t such that ¢; -1 -t - t1 - t1 - to -
to = 2 and the interval between #i and #5'° = t; and the interval
between #5'° and #35'° = ¢y and the interval between #35'° and #,'° = t;
and the interval between #,'° and #:'° = ¢; and the interval between
#2110 and #§'° = to and the interval between #¢'° and #3'° = ¢; and
the interval between #7'° and #3'° = 1.
Assume sjg is heptatonic. We say that sjg is phrygian if and only if
(Def. 94) there exist positive real numbers ¢1, to such that ¢1 -1 -t - t1 - t1 - to -
to = 2 and the interval between #7'° and #3'° = t; and the interval
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between #5'° and #35'° = t2 and the interval between #35'° and #3'° = t;
and the interval between #3'° and #:'° = ¢ and the interval between
#:'° and #¢'° = t1 and the interval between #¢'® and #3'° = ¢; and
the interval between #7'° and #g'° = .
Assume s1g is heptatonic. We say that sig is hypophrygian if and only if
(Def. 95) there exist positive real numbers ¢1, t such that ¢1 -1 -t - t1 - &1 - to -
to = 2 and the interval between #i and #5'° = ty and the interval
between #5'° and #35'° = ¢; and the interval between #35'° and #,'° = t;
and the interval between #,'° and #:'° = ¢ and the interval between
#2110 and #§'° = t; and the interval between #¢'° and #3'° = ¢; and
the interval between #7'° and #3'° = 1.

Assume sig is heptatonic. We say that sig is lydian if and only if

(Def. 96) there exist positive real numbers t1, to such that ¢1 - 1 - 1 - 1 - t1 - to -
to = 2 and the interval between #i' and #5'° = t; and the interval
between #5'° and #35'° = ¢; and the interval between #5'° and #3'° = to
and the interval between #;'° and #:'° = ¢; and the interval between
#2110 and #§'° = t; and the interval between #¢'° and #5'° = ¢ and
the interval between #7'° and #g'° = ;.

Assume s1q is heptatonic. We say that sig is hypolydian if and only if

(Def. 97) there exist positive real numbers ¢1, to such that ¢1 -1 -t - t1 - t1 - to -
to = 2 and the interval between #7'° and #3'° = t; and the interval
between #5'° and #3'° = ¢; and the interval between #5'° and #3'° = to
and the interval between #3'° and #:'° = ¢; and the interval between
#:1° and #§'° = t; and the interval between #¢'° and #3'° = ¢; and
the interval between #:'° and #g'° = ts.

Assume sjq is heptatonic. We say that sjg is mixolydian if and only if

(Def. 98) there exist positive real numbers ¢1, t such that ¢1 -1 -t - t1 - 1 - to -
to = 2 and the interval between #i and #5'° = t; and the interval
between #5'° and #35'° = ¢; and the interval between #5'° and #3'° = to
and the interval between #3'° and #:'° = ¢; and the interval between
#2110 and #§'° = t; and the interval between #¢'° and #3'° = t¢5 and
the interval between #7'° and #g§'° = 1.

Assume s1q is heptatonic. We say that sig is hypomixolydian if and only if

(Def. 99) there exist positive real numbers ¢1, t such that ¢; - ¢1 -t - t1 - t1 - to -
to = 2 and the interval between #i and #5'° = t; and the interval
between #5'° and #35'° = to and the interval between #35'° and #,'° = t;
and the interval between #,'° and #:'° = ¢; and the interval between
#2110 and #§'° = t; and the interval between #¢'° and #3'° = ¢ and
the interval between #7'° and #3'° = ;.

267
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Assume sjg is heptatonic. We say that sjg is eolian if and only if

(Def. 100) there exist positive real numbers t1, ty such that ¢; -t -ty -t; -t - to -
to = 2 and the interval between #i and #5'° = t; and the interval
between #5'° and #35'° = t2 and the interval between #35'° and #,'° = t;
and the interval between #,'° and #:'° = ¢; and the interval between
#2110 and #§'° = to and the interval between #¢'° and #3'° = ¢; and
the interval between #7'° and #3'° = 1.
Assume s1q is heptatonic. We say that sig is hypoeolian if and only if
(Def. 101) there exist positive real numbers t1, to such that ¢1 -t -¢1 - t1 - t1 - to -
to = 2 and the interval between #7'° and #35'° = to and the interval
between #5'° and #35'° = ¢; and the interval between #35'° and #3'° = t;
and the interval between #3'° and #:'° = ¢; and the interval between
#:1° and #¢'° = to and the interval between #¢'° and #3'° = ¢; and
the interval between #3'° and #g'* = t1.
Assume s19 is heptatonic. We say that sig is ionan if and only if
(Def. 102) there exist positive real numbers t1, to such that ¢; -t - €1 -t; -t - t2 -
to = 2 and the interval between #i and #5'° = t; and the interval
between #5'° and #35'° = ¢; and the interval between #5'° and #3'° = to
and the interval between #;'° and #:'° = ¢; and the interval between
#2110 and #§'° = t; and the interval between #¢'° and #5'° = ¢; and
the interval between #7'° and #3'° = t.
Assume sjq is heptatonic. We say that sjg is hypoionan if and only if
(Def. 103) there exist positive real numbers t1, to such that ¢1 -t - ¢1 - t1 -ty - to -
to = 2 and the interval between #i' and #5'° = t; and the interval
between #5'° and #35'° = ¢; and the interval between #5'° and #3'° = to
and the interval between #3'° and #:'° = ¢; and the interval between
#2110 and #§'° = t; and the interval between #¢'° and #3'° = ¢5 and
the interval between #37'° and #g'° = 1.
Now we state the proposition:

(118) The heptatonic pythagorean scale of fr in H is ionan. The theorem is
a consequence of (108), (107), and (111).
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Summary. In the article we continue in the Mizar system [8], [2] the for-
malization of fuzzy implications according to the monograph of Baczynski and
Jayaram “Fuzzy Implications” [I]. We develop a framework of Mizar attributes
allowing us for a smooth proving of basic properties of these fuzzy connectives [9].
We also give a set of theorems about the ordering of nine fundamental implica-
tions: Lukasiewicz (ILk), Godel (Igp), Reichenbach (Irc), Kleene-Dienes (Ikp),
Goguen (Ica), Rescher (Irs), Yager (Ivc), Weber (Iwg), and Fodor (Irp).

This work is a continuation of the development of fuzzy sets in Mizar [6]; it
could be used to give a variety of more general operations on fuzzy sets [I3]. The
formalization follows [10], [5], and [4].
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0. INTRODUCTION

There are two fundamental aims of this Mizar article: first of all, I wanted to
introduce in the Mizar Mathematical Library how nine basic fuzzy implications
formally defined in [4] are ordered — and this result is given in Section 2 as
a formal counterpart of Example 1.1.6, p. 3 of [I].

On the other hand, in the final section I prove the formal characterization
of fundamental fuzzy implications in terms of four elementary properties [12]
expressed in Table 1.4 of [I], p. 10 (note the absence of the continuity of the

operators in our version of this presentation). Here
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NP) — the left neutrality property,

(
(EP) — the exchange principle,
(IP) — the identity principle,

e (OP) — the ordering property.

Actually, this is the part of Example 1.3.2, p. 9 from [I]:

Fuzzy implication | (NP) | (EP) | (IP) | (OP)
Tik + | + | + | +
Tan v |+ | T+ | +
Irc + + - -
Ixp + + — —
Iga + + + +
Tns - | - T+ [ +
Ivg + + — —
Iwgs + + + —
Irp + + + +

Additionally, Section 4 contains registrations of clusters of adjectives allo-
wing for further work in more automated framework within fuzzy sets [3] — this
is the Mizar version of Lemma 1.3.3 and 1.3.4 from [I]. Such automatization
can be especially useful in the hybridization of fuzzy and rough approaches [7].

1. PRELIMINARIES

We introduce the notation Itk as a synonym of the Lukasiewicz implication
and Igp as a synonym of the Goédel implication. We introduce Irc as a synonym
of the Reichenbach implication and Ixp as a synonym of the Kleene-Dienes
implication.

We introduce Igg as a synonym of the Goguen implication and Irg as a sy-
nonym of the Rescher implication. We introduce Iy as a synonym of the Yager
implication and Iwp as a synonym of the Weber implication and Irp as a sy-
nonym of the Fodor implication.

From now on z, y denote elements of [0, 1]. Now we state the propositions:

(1) O! = (AffineMap(1,0))]]0, +o0[.
PROOF: Set f = 0. Set g = (AffineMap(1,0))]]0, +oo[. For every object
x such that = € dom f holds f(z) = g(z). O

(2) Let us consider real numbers a, b. Then
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(i) AffineMap(a, b) is differentiable on R, and
(ii) for every real number z, (AffineMap(a,b)) (z) = a.

(3) IfO<z<landO<y<1,then (0" 4 (AffineMap(—z,x — 1)))[]0, 1] is
increasing.
PROOF: Set f1 = 0%. Set fo = AffineMap(—=z,z—1). Reconsider Y =0, 1]
as an open subset of R. Set f = fi+ f2. Set A = ]0, +00]. f2 is differentiable
on A. fi[A is differentiable on A. f, is differentiable on Y. For every real
number y such that y € Y holds 0 < f'(y) by [1I} (21)], (2). O

(4) Let us consider a real number u. Suppose u € ]0, 1].
Then (O 4+ (AffineMap(—z,z — 1)))(u) =u* — 1+ z —x - u.

2. THE ORDERING OF Fuzzy IMPLICATIONS

Now we state the propositions:
(5) (i) if x <y, then (Irk)(z,y) =1, and
(ii) if x >y, then (Iyk)(z,y) =1 —z +y.
(6) (i) if z =0, then (Igg)(z,y) =1, and
(ii) if 2 > 0, then (Igq)(x,y) = min(1, ¥).

(7) Ixp < Ipc < Ik < Iws.
(8) Irs < Igp < Igg < Itk < Iws.
(9) Irc < Ik < Iws.

(10) Ixp < Irp < Itk < Iwg.

(11) Irs < Igp < Irp < Itk < Iws.

3. ADDITIONAL PROPERTIES OF Fuzzy IMPLICATIONS

Let I be a binary operation on [0, 1]. We say that I satisfies (NP) if and only
if
(Def. 1) for every element y of [0,1], I(1,y) = v.
We say that I satisfies (EP) if and only if
(Def. 2) for every elements x, y, z of [0,1], I(z,I(y,2)) = I(y, I(z,z2)).
We say that I satisfies (IP) if and only if
(Def. 3) for every element x of [0, 1], I(x,z) = 1.
We say that I satisfies (OP) if and only if
(Def. 4) for every elements x, y of [0,1], I(z,y) =1 iff x < y.
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In the sequel I denotes a binary operation on [0, 1].

Let I be a binary operation on [0, 1]. We introduce the notation I satisfies
(NC) as a synonym of I is 01-dominant and I satisfies (I1) as a synonym of I
is antitone w.r.t. 1st coordinate.

We introduce I satisfies (I12) as a synonym of I is isotone w.r.t. 2nd coordi-
nate and [ satisfies (I3) as a synonym of [ is 00-dominant and [ satisfies (I4) as
a synonym of I is 11-dominant and I satisfies (I5) as a synonym of [ is 10-weak.

4. DEPENDENCIES BETWEEN CHOSEN PROPERTIES

Now we state the proposition:
(12) If I satisfies (LB), then I satisfies (I3) and (NC).

One can verify that every binary operation on [0,1] which satisfies (LB)
satisfies also (I3) and (NC).

Now we state the proposition:
(13) If I satisfies (RB), then I satisfies (I4) and (NC).

One can check that every binary operation on [0,1] which satisfies (RB)
satisfies also (I4) and (NC).

Now we state the proposition:
(14) If I satisfies (NP), then [ satisfies (I4) and (I5).
Note that every binary operation on [0, 1] which satisfies (NP) satisfies also
(I4) and (I5).
Now we state the proposition:
(15) If I satisfies (IP), then I satisfies (I3) and (I4).
Let us note that every binary operation on [0, 1] which satisfies (IP) satisfies
also (I3) and (I4).
Now we state the proposition:
(16) If I satisfies (OP), then I satisfies (I3), (I4), (NC), (LB), (RB), and (IP).
One can verify that every binary operation on [0,1] which satisfies (OP)
satisfies also (I3), (I4), (NC), (LB), (RB), and (IP).
Now we state the proposition:
(17) If I satisfies (EP) and (OP), then I satisfies (I1), (I3), (I4), (I5), (LB),
(RB), (NC), (NP), and (IP).

One can verify that every binary operation on [0, 1] which satisfies (EP) and
(OP) satisfies also (I1), (I5), and (NP).
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5. PROPERTIES OF NINE CLASSICAL Fuzzy IMPLICATIONS

Let us note that Ik satisfies (NP), (EP), (IP), and (OP).

Igp satisfies (NP), (EP), (IP), and (OP).

Ipc satisfies (NP) and (EP) but does not satisfy (IP) and (OP).

Ixp satisfies (NP) and (EP) but does not satisfy (IP) and (OP).

I satisfies (NP), (EP), (IP), and (OP).

Let us note that Igg satisfies (IP) and (OP) but does not satisfy (NP) and

(EP).

1]
2]

[4]

[5]

[9]
(10]

(11]
(12]

Iy satisfies (NP) and (EP) but does not satisfy (IP) and (OP).
Iwp satisfies (NP), (EP), and (IP) but does not satisfy (OP).
Irp satisfies (NP), (EP), (IP), and (OP).

Iy satisfies (EP) but does not satisfy (NP), (IP), and (OP).

I, satisfies (EP) and (IP) but does not satisfy (NP) and (OP).
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Summary. We formalize in the Mizar system [3], [4] basic definitions of
commutative ring theory such as prime spectrum, nilradical, Jacobson radical,
local ring, and semi-local ring [5], [6], then formalize proofs of some related the-
orems along with the first chapter of [I].

The article introduces the so-called Zariski topology. The set of all prime
ideals of a commutative ring A is called the prime spectrum of A denoted by
Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A
a topological space. A different role is given to Spec as a map from a ring mor-
phism of commutative rings to that of topological spaces by the following manner:
for a ring homomorphism h : A — B, we defined (Spec h) : Spec B — Spec A
by (Spec h)(p) = h~*(p) where p € Spec B.

MSC: 14A05 116D25/ 68T99/ 103B35

Keywords: prime spectrum; local ring; semi-local ring; nilradical; Jacobson
radical; Zariski topology

MML identifier: TOPZARI1, version: 8.1.08 5.53.1335

1. PRELIMINARIES: SOME PROPERTIES OF IDEALS

From now on R denotes a commutative ring, A, B denote non degenerated,
commutative rings, A denotes a function from A into B, I, I;, I> denote ideals
of A, J, J1, Jo denote proper ideals of A, p denotes a prime ideal of A.

S denotes non empty subset of A, E, Fy, Fo denote subsets of A, a, b, f
denote elements of A, n denotes a natural number, and x denotes object.

Let us consider A and S. The functor Ideals(A4,S) yielding a subset of
Ideals A is defined by the term

(Def. 1) {I, where I is an ideal of A : S C I'}.
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Let us observe that Ideals(A, S) is non empty.
Now we state the proposition:
(1) Ideals(A,S) = Ideals(A, S-ideal).
PRrROOF: Ideals(A, S) C Ideals(A, S—ideal). Consider y being an ideal of A
such that z = y and S—ideal C y. [
Let A be a unital, non empty multiplicative loop with zero structure and a
be an element of A. We say that a is nilpotent if and only if
(Def. 2) there exists a non zero natural number k such that a* = 04.
Let us note that 04 is nilpotent and there exists an element of A which is
nilpotent.
Let us consider A. Observe that 14 is non nilpotent.
Let us consider f. The functor MultClSet( f) yielding a subset of A is defined
by the term
(Def. 3) the set of all ¢ where i is a natural number.
Let us observe that MultClSet( f) is multiplicatively closed.
Now we state the propositions:
(2) Let us consider a natural number n. Then (14)" = 14.
PROOF: Define P[natural number] = (1 A)$l = 14. For every natural num-
ber n, Pln]. O
(3) 14 ¢ +/J. The theorem is a consequence of (2).
(4) MultClSet(14) = {14}. The theorem is a consequence of (2).
Let us consider A, J, and f. The functor Ideals(A, J, f) yielding a subset of
Ideals A is defined by the term
(Def. 4) {I, where I is a subset of A : I is a proper ideal of A and J C I and
I N MultClSet(f) = 0}.
Let us consider A, J, and f. Now we state the propositions:
(5) If f ¢ \/J, then J € Ideals(A, J, f).
(6) If f ¢ +/J, then Ideals(A,J, f) has the upper Zorn property w.r.t.
gIdeauls(A,J,f)'
PROOF: Set S = Ideals(4, J, f). Set P = Sg. For every set Y such that
Y C S and P|?Y is a linear order there exists a set x such that z € S
and for every set y such that y € Y holds (y, ) € P. O
(7) If f ¢ /J, then there exists a prime ideal m of A such that f ¢ m and
J Cm.
PROOF: Set S = Ideals(A4, J, f). Set P = Sg. Consider I being a set such
that I is maximal in P. Consider p being a subset of A such that p =T
and p is a proper ideal of A and J C p and p N MultClSet(f) = 0. p is
a quasi-prime ideal of A. [J
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(8) There exists a maximal ideal m of A such that J C m.
PROOF: 14 ¢ v/J. Set S = Ideals(A, J,14). Set P = Sg. Consider I being
a set such that I is maximal in P. Consider p being a subset of A such that
p =1 and p is a proper ideal of A and J C p and p N MultClSet(1,4) = 0.
For every ideal ¢ of A such that p C ¢ holds ¢ = p or ¢ is not proper. O

(9) There exists a prime ideal m of A such that J C m. The theorem is
a consequence of (8).

(10) If a is a non-unit of A, then there exists a maximal ideal m of A such

that a € m. The theorem is a consequence of (8).

2. SPECTRUM OF PRIME IDEALS (SPECTRUM) AND MAXIMAL IDEALS
(M-SPECTRUM)

Let R be a commutative ring. The spectrum of R yielding a family of subsets
of R is defined by the term
{I, where I is an ideal of R : I is quasi-prime and I # Qg},
(Def. 5) if R is not degenerated,
(), otherwise.
Let us consider A. Observe that the spectrum of A yields a family of subsets
of A and is defined by the term
(Def. 6) the set of all I where I is a prime ideal of A.
Observe that the spectrum of A is non empty.
Let us consider R. The functor m-Spectrum(R) yielding a family of subsets
of R is defined by the term
{I, where I is an ideal of R : I is quasi-maximal and I # Qpg},
(Def. 7) if R is not degenerated,
(), otherwise.
Let us consider A. Observe that the functor m-Spectrum(A) yields a family
of subsets of the carrier of A and is defined by the term

(Def. 8) the set of all I where I is a maximal ideal of A.
Observe that m-Spectrum(A) is non empty.

3. LocaL AND SEMI-LocAL RING

Let us consider A. We say that A is local if and only if
(Def. 9) there exists an ideal m of A such that m-Spectrum(A) = {m}.
We say that A is semi-local if and only if

279
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(Def. 10) m-Spectrum(A) is finite.
Now we state the propositions:
(11) If xz € I and I is a proper ideal of A, then z is a non-unit of A.
(12) If for every objects my, mg such that mj, my € m-Spectrum(A) holds
my1 = mo, then A is local.
(13) If for every x such that x € Q4 \ J holds z is a unit of A, then A is local.
The theorem is a consequence of (8), (11), and (12).
In the sequel m denotes a maximal ideal of A. Now we state the propositions:
(14) If a € Q4 \ m, then {a}-ideal + m = Q4.
(15) If for every a such that a € m holds 14 +a is a unit of A, then A is local.
PROOF: For every x such that z € Q4 \ m holds z is a unit of A. O
Let us consider R. Let E be a subset of R. The functor Primeldeals(R, E)
yielding a subset of the spectrum of R is defined by the term
{p, where p is an ideal of R : p is quasi-prime and p # Qg and E C p},
(Def. 11) if R is not degenerated,
(), otherwise.

Let us consider A. Let E be a subset of A. Let us note that the functor
Primeldeals(A, F) yields a subset of the spectrum of A and is defined by the
term

(Def. 12) {p, where p is a prime ideal of A : E C p}.

Let us consider J. Observe that Primeldeals(A, J) is non empty.
From now on p denotes a prime ideal of A and k& denotes a non zero natural
number. Now we state the proposition:

(16) If a ¢ p, then a* ¢ p.

4. NILRADICAL AND JACOBSON RADICAL

Let us consider A. The functor nilrad(A) yielding a subset of A is defined

by the term
(Def. 13) the set of all a where a is a nilpotent element of A.
Now we state the proposition:
(17) nilrad(A4) = /{04}.

Let us consider A. One can verify that nilrad(A) is non empty and nilrad(A)
is closed under addition as a subset of A and nilrad(A) is left and right ideal as
a subset of A.

Now we state the propositions:
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(18) +/J = (Primeldeals(A, .J). The theorem is a consequence of (16), (7),
and (9).

(19) nilrad(A) = N(the spectrum of A). The theorem is a consequence of (17)
and (18).

(20) IC VI

(21) If I CJ, then VT C VJ.
PROOF: Consider s; being an element of A such that s; = s and there
exists an element n of N such that s1™ € I. Consider n; being an element
of N such that s1™ € I. ny # 0 by [7, (8)], [2, (19)]. O

Let us consider A. The functor J-Rad(A) yielding a subset of A is defined
by the term

(Def. 14) (N m-Spectrum(A).

5. CONSTRUCTION OF ZARISKI TOPOLOGY OF THE PRIME SPECTRUM OF A

Now we state the propositions:

(22) Primeldeals(A4, S) C Ideals(A4, S).

(23) Primeldeals(A, S) = Ideals(A, S) N (the spectrum of A). The theorem is
a consequence of (22).

(24) Primeldeals(4, S) = Primeldeals(A, S-ideal). The theorem is a conse-
quence of (23) and (1).

(25) If I C p, then VI C p.
PROOF: Consider s; being an element of A such that s; = s and there

exists an element n of N such that ;" € I. Consider n; being an element
of N such that s;™ € I. ny #0. 0

(26) If v/I Cp,then I C p. The theorem is a consequence of (20).

(27) Primeldeals(A,/S-ideal) = Primeldeals(A, S—ideal). The theorem is
a consequence of (26) and (25).

(28) If Ep C Ey, then Primeldeals(A, E1) C Primeldeals(A, E»).

(29) Primeldeals(A4, J;) = Primeldeals(A, Jo) if and only if \/J; = v/J. The
theorem is a consequence of (18) and (27).

(30) If I; I C p, then Iy Cpor I C p.
PROOF: If it is not true that Iy C p or Is C p, then I x Is € p. O

(31) Primeldeals(4,{14}) = 0.

(32) The spectrum of A = Primeldeals(A4,{04}).

(33) Let us consider non empty subsets Eq, Es of A. Then there exists a non
empty subset Es3 of A such that Primeldeals(A, Fy)UPrimeldeals(A, Es) =
Primeldeals(A, E3).
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PROOF: Set I; = Eq—ideal. Set I, = Es—ideal. Reconsider I3 = I1 * Iy as
an ideal of A. Primeldeals(A, E;1) = Primeldeals(A4, ;). Primeldeals(A4, I3)
C Primeldeals(A, I;)UPrimeldeals(A, I2). Primeldeals(A, I; )UPrimeldeals
(A, Is) C Primeldeals(A, I3). Primeldeals(A, I3) = Primeldeals(A4, E1) U
Primeldeals(A, Es). O
(34) Let us consider a family G of subsets of the spectrum of A. Suppose for
every set S such that S € G there exists a non empty subset F of A such
that S = Primeldeals(A, E). Then there exists a non empty subset F' of A
such that Intersect(G) = Primeldeals(A, F). The theorem is a consequence
of (28).
Let us consider A. The functor Spec(A) yielding a strict topological space is
defined by

(Def. 15) the carrier of it = the spectrum of A and for every subset F' of it,
F is closed iff there exists a non empty subset E& of A such that F' =
Primeldeals(A, E).

Note that Spec(A) is non empty. Now we state the proposition:
(35) Let us consider points P, @ of Spec(A). Suppose P # Q. Then there
exists a subset V' of Spec(A) such that
(i) V is open, and
(i) PeVand Q¢VorQeVand P¢ V.
Note that there exists a commutative ring which is degenerated. Let R be

a degenerated, commutative ring. Let us observe that ADTS(the spectrum of
R) is Tp. Let us consider A. Observe that Spec(A) is Tp.

6. CONTINOUS MAP OF ZARISKI TOPOLOGY ASSOCIATED WITH A RING
HOMOMORPHISM

From now on Mj denotes an ideal of B. Now we state the proposition:
(36) If h inherits ring homomorphism, then h~!(Mj) is an ideal of A.
In the sequel My denotes a prime ideal of B.
(37) If h inherits ring homomorphism, then h=1(Mp) is a prime ideal of A.
PROOF: For every elements x, y of A such that = -y € h~'(Mj) holds
x € h=Y(My) or y € h=Y(My). h™1(Mp) # the carrier of A. O
Let us consider A, B, and h. Assume h inherits ring homomorphism. The
functor Spec(h) yielding a function from Spec(B) into Spec(A) is defined by
(Def. 16) for every point = of Spec(B), it(z) = h™1(z).

Now we state the propositions:
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(38) If h inherits ring homomorphism, then Spec(h)~! Primeldeals(4, E) =
Primeldeals(B, h°E).
PROOF: Spec(h)~! Primeldeals(A, E) C Primeldeals(B, h°E). Consider ¢
being a prime ideal of B such that x = ¢ and h°E C ¢q. h=1(q) is a prime
ideal of A. O

(39) If h inherits ring homomorphism, then Spec(h) is continuous. The the-
orem is a consequence of (38).
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