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Summary. In this article, we define Diophantine sets using the Mizar for-
malism. We focus on selected properties of multivariate polynomials, i.e., func-
tions of several variables to show finally that the class of Diophantine sets is
closed with respect to the operations of union and intersection.

This article is the next in a series [I], [5] aiming to formalize the proof of
Matiyasevich’s negative solution of Hilbert’s tenth problem.
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0. INTRODUCTION

Multivariate polynomials are often interpreted in informal mathematical
practice as a finite sum of terms with each term being a product of a non-

zero coefficient ¢ € §\ {0} and a monomial z{' - z5* - ... - 2% determined by an
exponent vector (ej,es,...,e,) € N” where n is a given natural number.

Formal interpretation of multivariate polynomials developed in the Mizar
Mathematical Library [4] can be considered as a generalization of the informal
approach, where the natural number n is replaced by an ordinal number .
Additionally, to avoid problems that occur when multiplying an infinite number
of nonzero factors, each exponent vector e : A — N has only a finite number of
nonzero coordinates. Such exponent vectors are called bags of A and the set of all
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bags for a given \ is denoted by Bags A. It is important to note that for a finite
A, each bag b corresponds to a finite sequence (with 0-based numbering). Using
bags, multivariate polynomials have been defined in [6] as functions that assign
a coefficient (an element of §) to each bag of A and are zero almost everywhere.
Moreover, the evaluation for a multivariate polynomial p and vector x : A — §
has been defined as

eval(p,z) = Z p(b) - Hw(i)b(i). (0.1)

beBags A 1EA

Based on this approach we define Diophantine sets in Def. [6] as follows. Let
us consider a natural number n that plays the role of the dimension and a subset
D of all finite sequences of length n numbered from 0 (see Def. . We call D
Diophantine if there exist a natural number k and a n+ k—variable polynomial
p such that each coefficient is an integer number and

VemsNT € D <= Jypneval(p, 27y) = 0. (0.2)

The main aim of our article is to show that the union and intersection of
two n—dimension Diophantine sets D, D> is also Diophantine. The informal
proof of these facts as presented by Z. Adamowicz and P. Zbierski in [2] or C.
Smorynski [7] is quite obvious. Suppose that p; is n + k;—variable polynomial
which determines D; for i = 1,2. Then p-p) determines D1N Dy and (p} )%+ (ph)?
determines Dy U Dy where pg is the n 4+ ki + ko—variable polynomial obtained
from p; by modifying the order of variables and adding insignificant variables.
The property of pl,ph, used in [2] can be formally formulated as follows:

eval(p|, 27y "y2) = eval(pr, 27y1) A eval(ph, " y1"y2) = eval(pa, 27y2) (0.3)

for arbitrary x : n— N, y1 : k1 — N, yo : ko — N. The existence of such polyno-
mials have been showed in Th. 27] 28] The construction of these polynomials
is useful for the further development of multivariate polynomials in the Mizar
Mathematical Library. Therefore we define and provide basic properties of two
transformations that

e add an additional variable to the polynomial, preserving its value, i.e.

Vapm—N,qen eval(p extended by 0,27 (a)) = eval(p, x), (0.4)

e permute the order of variables, preserving its value, i.e.

Vemn eval(p permuted by o, z) = eval(p,z - o~ 1). (0.5)
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1. PRELIMINARIES

From now on i, j, k, n, m denote natural numbers and b, b1, bo denote bags
of n.

Let X be a non empty set and n be a natural number. Note that there exists
a finite 0-sequence of X which is n-element and there exists a finite 0-sequence
which is n-element and real-valued.

Let n, m be natural numbers, p be an n-element finite 0-sequence, and g be
an m-element finite 0-sequence. One can check that p ™ ¢ is (n + m)-element.

Let p be a real-valued finite 0-sequence and ¢ be a real-valued finite 0-
sequence. Let us observe that p ™~ ¢ is real-valued.

Let n be a natural number and p be an n-element, real-valued finite 0O-
sequence. The functor @ yielding a function from n into Ry is defined by the
term

(Def. 1) p.

Let X be a non empty set and p be a function from n into X. The functor

9 yielding an n-element finite O-sequence of X is defined by the term
(Def. 2) p.

Let X be a set, p be a permutation of X, and M be a many sorted set
indexed by X. Observe that M - p is total.

Let F' be a finite-support function and f be a one-to-one function. Let us
observe that F - f is finite-support.

Now we state the propositions:

(1) Let us consider finite 0-sequences F', G. Suppose F' ™ G is one-to-one.
Then rng F' misses rng G.

(2) Let us consider a set X, an X-defined function f, and a permutation o

of X. Then support f - 0 = support f.
PROOF: Set P = o~!. P°(support f) C support f - o. support f - o C
P°(support f). O
Let X be a set. Observe that Ox(Rp) is natural-valued and 1_(X,Rp) is
natural-valued.
Let = be an element of X. Note that 1_1(z, Rp) is natural-valued and there
exists a series of X, Rr which is Z-valued.
Let O be an ordinal number. Let us note that there exists a polynomial of
O,Rg which is Z-valued.
Let X be a set and p be a Z-valued series of X, Rr. One can check that —p
is Z-valued.
Let ¢ be a Z-valued series of X, Rp. Observe that p+ q is Z-valued and p — ¢
is Z-valued.
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Let X be an ordinal number and p, ¢ be Z-valued series of X, Rg. One can
verify that p * q is Z-valued.

Let X be a set. Let us note that there exists a function from X into Rg
which is natural-valued.

Let O be an ordinal number. One can check that there exists a function from
O into Rg which is Z-valued.

Let b be a bag of O and x be a Z-valued function from O into Rp. Note that
eval(b, x) is integer.

Let p be a Z-valued polynomial of O,Rg. One can check that eval(p,z) is
integer.

2. PoLyNOMIAL EXTENDED BY 0

Now we state the propositions:

(3) Let us consider a many sorted set b indexed by n. If k& < n, then
(b(0),...,b(k)) = blk.

PROOF: For every object x such that = € k holds (b(0),...,b(k))(z) =
(bTk)(z). O

(4) Let us consider a bag b of n+1. Then b = (b(0),...,b(n)) extended by b(n).
PRrROOF: Set C' = (b(0),...,b(n)). Set B = C extended by b(n). C' = b[n.
For every object x such that z € n+ 1 holds B(z) = b(z) by [8, (2)]. O

(5) (bextended by k(0),...,bextended by k(n)) = b. The theorem is a con-
sequence of (3).

Let us consider n. Let L be a non empty zero structure and p be a series of
n, L. The p extended by 0 yielding a series of n + 1, L is defined by
(Def. 3) for every bag b of n + 1, if b(n) # 0, then it(b) = 0r, and if b(n) = 0,
then it(b) = p((b(0),...,b(n))).
Now we state the propositions:

(6) Let us consider a non empty zero structure L, and a series p of n, L. Then
(the p extended by 0)(b extended by 0) = p(b). The theorem is a consequ-
ence of (5).

(7) Let us consider a non empty zero structure L, a series p of n, L, and
a bag b of n+1. Suppose b € Support(the p extended by 0). Then b(n) = 0.

(8) Let us consider a non empty zero structure L, and a series p of n, L.
Then b extended by 0 € Support(the p extended by 0) if and only if b €
Support p. The theorem is a consequence of (5).

(9) Let us consider a non empty zero structure L, a series p of n, L, and
a bag b of n+1. Suppose b(n) = 0. Then b € Support(the p extended by 0)
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if and only if (b(0),...,b(n)) € Support p. The theorem is a consequence
of (4) and (8).
Let us consider n. Let L be a non empty zero structure and p be a polynomial
of n,L. Let us observe that the p extended by 0 is finite-Support.
Now we state the propositions:

(10) Let us consider a non empty zero structure L, and a series p of n, L. Then
{0z} Urngp = rng(the p extended by 0). The theorem is a consequence of
(6).

(11) support b = support(b extended by 0).

PROOF: Set E = b extended by 0. support b C support E. [J

(12) SgmX(&,, support b) = SgmX (S, 1, support(b extended by 0)). The the-
orem is a consequence of (11).

(13) Let us consider a well unital, non trivial double loop structure L, a func-

tion x from n into L, and a function y from n+1 into L. Suppose y[n = .
Then eval(b, x) = eval(b extended by 0, y).
PROOF: Set S = SgmX(,,, support b). Set B = b extended by 0. Set Sy =
SgmX(S,,41,support B). Consider P being a finite sequence of elements
of L such that len P =len S and eval(b, z) = [] P and for every element i
of N such that 1 < i <len P holds P/; = power(z - S);,b-S);). Consider
P, being a finite sequence of elements of L such that len P; = len S and
eval(B,y) = [[ P and for every element ¢ of N such that 1 < i < len P,
holds Pl/i = pOWGI‘L(y : Sl/i,B : Sl/z) S = Sl. b= (B(O), cee ,B(n)> For
every natural number i such that 1 <1 < len P holds P(i) = P;(i). O

(14) by < by if and only if b extended by k < by extended by k.

PROOF: Set B; = by extended by k. Set By = by extended by k. If by < b,
then b extended by k& < b extended by k. Consider o being an ordinal
number such that Bj (o) < Bs(0) and for every ordinal number [ such that
[ € o holds B;(l) = By(l). For every ordinal number [ such that [ € o holds
bi(l) = ba(1). O

(15) Let us consider a non empty set X, a finite subset A of X, and an order

R in X. Suppose R linearly orders A. Suppose 1 < i < k < A. Then
(SgmX(R, rng(SgmX(R, A)[k)))/; = (SgmX(R, A)) ;-
PROOF: Set S; = SgmX(R, A). Define P[natural number| = for every i
such that 1 < i < $; < A holds (SgmX(R,rng(511$1))),; = S1:. For
every k such that P[k] holds P[k + 1] by [3, (83)]. For every k, P[k]. O

(16) Let us consider an ordinal number O, and a finite subset A of BagsO.

Suppose n, m € dom SgmX(BagOrder O, A) and n < m.
Then (SgmX(BagOrder O, A)) /, < (SgmX(BagOrder O, A)) /p,.
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(17)

(18)
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Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and a po-
lynomial p of n,L. Then

(i) len SgmX(BagOrder n, Support p) =
len SgmX(BagOrder(n + 1), Support(the p extended by 0)), and

(ii) for every natural number i such that
1 < ¢ < len SgmX(BagOrder n, Support p) holds
(SgmX(BagOrder(n + 1), Support(the p extended by 0))) ; =
(SgmX(BagOrder n, Support p)) ;; extended by 0.

PrOOF: Set B = BagOrdern. Set B; = BagOrder(n + 1). Set P =
the p extended by 0. Define F(bag of n) = $; extended by 0. Consider
f being a function from Bagsn into Bags(n + 1) such that for every
element x of Bagsn, f(x) = F(x). Set F' = f[|Supportp. Set S; =
SgmX (B, Support p). Set Sy = SgmX(By, Support P). rng F' C Support P.
Support P C rng F'. F' is one-to-one. Define P[natural number] = if 1 <
$1 < len Sy, then for every ¢ such that 1 < 7 < $; holds S/ = S1/; extended
by0. For every natural number k such that P[k] holds P[k + 1]. For every
k, Plk]. O

Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, a polynomial
p of n,L, a function x from n into L, and a function y from n + 1 into L.
Suppose y[n = x. Then eval(p, x) = eval(the p extended by 0, y).
PROOF: Set n; = n + 1. Set S = SgmX(BagOrder n, Support p). Set P =
the p extended by 0. Set S; = SgmX(BagOrder ny, Support P). Consider
T being a finite sequence of elements of L such that lenT = len S and
eval(p,x) = Y. T and for every element i of N such that 1 < i < lenT
holds Ty; = p - S); - eval(S);, ). Consider T being a finite sequence of
elements of L such that len 77 = len S; and eval(P,y) = > T3 and for every
element i of N such that 1 <i <lenTj holds Ty, = P51 ; - eval(S1 /5, y).
len S = len S7 and for every natural number ¢ such that 1 < 7 < len S
holds S1/; = S); extended by 0. For every natural number 7 such that
1 <i<lenS holds T(i) = T1(i). O

3. PoLyNOMIAL PERMUTED BY PERMUTATION

Now we state the propositions:

(19)

Let us consider an ordinal number O, a well unital, commutative, asso-
ciative, non trivial double loop structure L, a function z from O into L,
a bag b of O, and a one-to-one finite sequence S of elements of O. Suppose
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rng S = support b. Then there exists a finite sequence y of elements of L
such that

(i) leny = support b, and
(ii) eval(b,z) =[]y, and
(iii) for every i such that 1 < i <leny holds y,; = powery (z-S);,b-S);).

(20) Let us consider an ordinal number O, a well unital, commutative, asso-

ciative, non trivial double loop structure L, a function z from O into L,

a bag b of O, and a permutation o of O. Then eval(b, z) = eval(b- o,z - 0).

PROOF: Set S1 = SgmX(<,,, support b). Consider y being a finite sequence

of elements of L such that leny = len S; and eval(b, ) = [[ y and for every

element i of N such that 1 <4 <leny holds y/; = power (x-S1,;,b-S1/;).

Set P = o~ '. rng P-S; C support b-o. support b-o C rng P-S;. Reconsider

S = P - 57 as a one-to-one finite sequence of elements of n. Consider Y

being a finite sequence of elements of L such that lenY = supportb- o

and eval(b- o,z - o) = [[Y and for every natural number i such that

1 <i<lenY holds Y); = powery(x -0 -S),b-0-5)). lenY = leny. For
every natural number 7 such that 1 <4 <lenY holds Y (i) = y(). O

Let O be an ordinal number, L be a non empty zero structure, s be a series

of O, L, and o be a permutation of O. The s permuted by o yielding a series of

O, L is defined by

(Def. 4) for every bag b of O, it(b) = s(b- o).

Let us consider an ordinal number O, a non empty zero structure L, a per-
mutation o of O, a series s of O, L, and a bag b of O. Now we state the
propositions:

(21) b € Support(the s permuted by o) if and only if b- o € Support s.
(22) b-o~! € Support(the s permuted by o) if and only if b € Support s.

(23) Let us consider an ordinal number O, a non empty zero structure L,

a permutation o of O, and a series s of O, L. Then Support s = Support «,
where « is the s permuted by o.
PROOF: Set P = the s permuted by o. Define R[bag of O,bag of O] =
$5 = $1 - 0. For every element z of Bags O, there exists an element y of
Bags O such that R[xz,y]. Consider f being a function from Bags O into
Bags O such that for every element = of Bags O, R[x, f(x)]. f is one-to-one.
f°(Support P) C Support s. Support s C f°(Support P). O

(24) Let us consider an ordinal number O, an Abelian, right zeroed, add-
associative, right complementable, well unital, distributive, non trivial
double loop structure L, a polynomial p of O,L, a function z from O
into L, and a one-to-one finite sequence S of elements of Bags O. Suppose
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rng S = Support p. Then there exists a finite sequence y of elements of L
such that

(i) leny = Support p, and
(i) eval(p,z) = > vy, and

(iii) for every natural number i such that 1 < i < leny holds y,; =
p- Sy -eval(Sy;,x).

Let O be an ordinal number, L be a non empty zero structure, o be a permu-
tation of O, and p be a polynomial of O,L. One can check that the p permuted
by o is finite-Support.

(25) Let us consider an ordinal number O, an Abelian, right zeroed, add-

associative, right complementable, well unital, distributive, commu-
tative, associative, non trivial double loop structure L, a polynomial p
of O,L, a function z from O into L, and a permutation ¢ of O. Then
eval(p, z) = eval(the p permuted by o,z - (c71)).
PROOF: Set Sz = SgmX(BagOrder O, Support p). Consider y being a finite
sequence of elements of L such that leny = len Sy and eval(p,z) = Yy
and for every element i of N such that 1 <7 <leny holds y; =p- Sy, -
eval(Sy);,z). Set P = the p permuted by o. Define R[bag of O,bag of
O] = $2 = $1 -0~ L. For every element z of Bags O, there exists an element
y of Bags O such that Rz, y]. Consider f being a function from Bags O
into Bags O such that for every element x of Bags O, R[z, f(x)]. f is one-
to-one. Reconsider f; = f-S55 as a one-to-one finite sequence of elements of
Bags O. rng fi C Support P. Support P C rng f1. Consider z being a finite
sequence of elements of L such that lenz = Support P and eval(P,z -
o0~1) = 3 z and for every natural number 4 such that 1 < 4 < len z holds
z;; =P fl/z» -eval(fl/i, x-071). leny = len z. For every natural number i
such that 1 < i <leny holds y(i) = z(z). O

(26) Let us consider an ordinal number O, a non empty zero structure L,
a series s of O, L, and a permutation o of O. Then rng(the s permuted
by o) = rngs.

4. MAIN LEMMAS

Now we state the propositions:

(27) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and a po-
lynomial p of n,L. Then there exists a polynomial g of n + m,L such that

(i) rngg C mgpU {0}, and



DIOPHANTINE SETS. PRELIMINARIES

(ii) for every function x from n into L and for every function y from
n 4+ m into L such that y[n = x holds eval(p, z) = eval(q, y).

PROOF: Define P[natural number] = there exists a polynomial g of n+$;,L
such that rngg C rmgp U {05} and for every function z from n into L
and for every function y from n + $; into L such that y[n = z holds
eval(p, z) = eval(q,y). P[0]. If P[k], then Pk + 1]. P[k]|. O

(28) Let us consider an Abelian, right zeroed, add-associative, right com-
plementable, well unital, distributive, commutative, associative, non
trivial double loop structure L, and a polynomial p of n+m,L. Then there
exists a polynomial g of n 4+ k + m,L such that

(i) rngg Crngp U {0}, and

(ii) for every function X; from n + m into L and for every function
Xy from n + k 4+ m into L such that X;[n = Xs[n and (°Xy)), =
(®X2) |4k holds eval(p, X1) = eval(q, Xa).

PRroOOF: Consider P being a polynomial of n 4+ m + k,L such that rng P C
rngp U {0} and for every function z from n + m into L and for every
function y from n+m+k into L such that y[(n+m) = x holds eval(p, ) =
eval(P,y). Reconsider P = P as a polynomial of n + k + m,L. Set [ =
idy 4 kym- Set n1 = n+m. Set Iy = I[ny. rng I> misses rng I, . rng(Il2[n)
misses rng Ia),,. Reconsider Iy = ((I2[n) ™ I|,,) ™ I2),, as a function from
n+k+m into n+k+m. Reconsider R = ©X; "~ (®Xs[(n+k))|, as a function
from n+m+k into L. Reconsider r = R as a function from n+ k+m into
L. eval(Py,r) = eval(T,r - I). For every k such that k& € dom ®X, holds
(% - I) (k) = (°X2) (k). O

5. DIOPHANTINE SETS

From now on x, s denote objects.
Let D be a non empty set and n be a natural number. The n-xtuples of D
yielding a subset of D“ is defined by

(Def. 5) =z € it iff x is an n-element finite 0-sequence of D.
Observe that the n-xtuples of D is non empty and every element of the n-
xtuples of D is n-element and D-valued.
Let A be a subset of the n-xtuples of N. We say that A is diophantine if and
only if
(Def. 6) there exists a natural number m and there exists a Z-valued polynomial
p of n + m,Rg such that for every s, s € A iff there exists an n-element
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finite 0-sequence x of N and there exists an m-element finite O-sequence y
of N such that s = 2 and eval(p, %z " y)) = 0.

One can verify that every subset of the n-xtuples of N which is empty is also
diophantine and Qipe n-xtuples of N is diophantine.

Let n be a zero natural number. One can verify that every subset of the n-
xtuples of N is diophantine.

Let n be a natural number. Let us observe that there exists a subset of the n-
xtuples of N which is non empty and diophantine and there exists a subset of
the n-xtuples of N which is empty and diophantine.

Let A, B be diophantine subsets of the n-xtuples of N. One can check that
AN B is diophantine as a subset of the n-xtuples of N and AU B is diophantine
as a subset of the n-xtuples of N.
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