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Summary. In this article, we define Diophantine sets using the Mizar for-
malism. We focus on selected properties of multivariate polynomials, i.e., func-
tions of several variables to show finally that the class of Diophantine sets is
closed with respect to the operations of union and intersection.

This article is the next in a series [1], [5] aiming to formalize the proof of
Matiyasevich’s negative solution of Hilbert’s tenth problem.
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0. Introduction

Multivariate polynomials are often interpreted in informal mathematical
practice as a finite sum of terms with each term being a product of a non-
zero coefficient c ∈ F \ {0} and a monomial xe11 · x

e2
2 · . . . · xenn determined by an

exponent vector 〈e1, e2, . . . , en〉 ∈ Nn where n is a given natural number.
Formal interpretation of multivariate polynomials developed in the Mizar

Mathematical Library [4] can be considered as a generalization of the informal
approach, where the natural number n is replaced by an ordinal number λ.
Additionally, to avoid problems that occur when multiplying an infinite number
of nonzero factors, each exponent vector e : λ 7→ N has only a finite number of
nonzero coordinates. Such exponent vectors are called bags of λ and the set of all
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bags for a given λ is denoted by Bags λ. It is important to note that for a finite
λ, each bag b corresponds to a finite sequence (with 0-based numbering). Using
bags, multivariate polynomials have been defined in [6] as functions that assign
a coefficient (an element of F) to each bag of λ and are zero almost everywhere.
Moreover, the evaluation for a multivariate polynomial p and vector x : λ 7→ F

has been defined as

eval(p, x) =
∑

b∈Bags λ
p(b) ·

∏
i∈λ

x(i)b(i). (0.1)

Based on this approach we define Diophantine sets in Def. 6 as follows. Let
us consider a natural number n that plays the role of the dimension and a subset
D of all finite sequences of length n numbered from 0 (see Def. 5). We call D
Diophantine if there exist a natural number k and a n+k–variable polynomial
p such that each coefficient is an integer number and

∀x:n7→N x ∈ D ⇐⇒ ∃y:k 7→N eval(p, xay) = 0. (0.2)

The main aim of our article is to show that the union and intersection of
two n–dimension Diophantine sets D1, D2 is also Diophantine. The informal
proof of these facts as presented by Z. Adamowicz and P. Zbierski in [2] or C.
Smorynski [7] is quite obvious. Suppose that pi is n + ki–variable polynomial
which determines Di for i = 1, 2. Then p′1·p′2 determines D1∩D2 and (p′1)

2+(p′2)
2

determines D1 ∪ D2 where p′i is the n + k1 + k2–variable polynomial obtained
from pi by modifying the order of variables and adding insignificant variables.
The property of p′1, p

′
2, used in [2] can be formally formulated as follows:

eval(p′1, x
ay1

ay2) = eval(p1, xay1) ∧ eval(p′2, x
ay1

ay2) = eval(p2, xay2) (0.3)

for arbitrary x : n 7→ N, y1 : k1 7→ N, y2 : k2 7→ N. The existence of such polyno-
mials have been showed in Th. 27, 28. The construction of these polynomials
is useful for the further development of multivariate polynomials in the Mizar
Mathematical Library. Therefore we define and provide basic properties of two
transformations that

• add an additional variable to the polynomial, preserving its value, i.e.

∀x:n7→N,a∈N eval(p extended by 0, xa〈a〉) = eval(p, x), (0.4)

• permute the order of variables, preserving its value, i.e.

∀x:n7→N eval(p permuted by σ, x) = eval(p, x · σ−1). (0.5)
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1. Preliminaries

From now on i, j, k, n, m denote natural numbers and b, b1, b2 denote bags
of n.

Let X be a non empty set and n be a natural number. Note that there exists
a finite 0-sequence of X which is n-element and there exists a finite 0-sequence
which is n-element and real-valued.

Let n, m be natural numbers, p be an n-element finite 0-sequence, and q be
an m-element finite 0-sequence. One can check that p a q is (n+m)-element.

Let p be a real-valued finite 0-sequence and q be a real-valued finite 0-
sequence. Let us observe that p a q is real-valued.

Let n be a natural number and p be an n-element, real-valued finite 0-
sequence. The functor @p yielding a function from n into RF is defined by the
term

(Def. 1) p.

Let X be a non empty set and p be a function from n into X. The functor
@p yielding an n-element finite 0-sequence of X is defined by the term

(Def. 2) p.

Let X be a set, p be a permutation of X, and M be a many sorted set
indexed by X. Observe that M · p is total.

Let F be a finite-support function and f be a one-to-one function. Let us
observe that F · f is finite-support.

Now we state the propositions:

(1) Let us consider finite 0-sequences F , G. Suppose F a G is one-to-one.
Then rngF misses rngG.

(2) Let us consider a set X, an X-defined function f , and a permutation σ

of X. Then support f · σ = support f .
Proof: Set P = σ−1. P ◦(support f) ⊆ support f · σ. support f · σ ⊆
P ◦(support f). �

Let X be a set. Observe that 0X(RF) is natural-valued and 1 (X,RF) is
natural-valued.

Let x be an element of X. Note that 1 1(x,RF) is natural-valued and there
exists a series of X, RF which is Z-valued.

Let O be an ordinal number. Let us note that there exists a polynomial of
O,RF which is Z-valued.

Let X be a set and p be a Z-valued series of X, RF. One can check that −p
is Z-valued.

Let q be a Z-valued series of X, RF. Observe that p+q is Z-valued and p−q
is Z-valued.
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Let X be an ordinal number and p, q be Z-valued series of X, RF. One can
verify that p ∗ q is Z-valued.

Let X be a set. Let us note that there exists a function from X into RF
which is natural-valued.

Let O be an ordinal number. One can check that there exists a function from
O into RF which is Z-valued.

Let b be a bag of O and x be a Z-valued function from O into RF. Note that
eval(b, x) is integer.

Let p be a Z-valued polynomial of O,RF. One can check that eval(p, x) is
integer.

2. Polynomial Extended by 0

Now we state the propositions:

(3) Let us consider a many sorted set b indexed by n. If k ¬ n, then
〈b(0), . . . , b(k)〉 = b�k.
Proof: For every object x such that x ∈ k holds 〈b(0), . . . , b(k)〉(x) =
(b�k)(x). �

(4) Let us consider a bag b of n+1. Then b = 〈b(0), . . . , b(n)〉 extended by b(n).
Proof: Set C = 〈b(0), . . . , b(n)〉. Set B = C extended by b(n). C = b�n.
For every object x such that x ∈ n+ 1 holds B(x) = b(x) by [8, (2)]. �

(5) 〈b extended by k(0), . . . , b extended by k(n)〉 = b. The theorem is a con-
sequence of (3).

Let us consider n. Let L be a non empty zero structure and p be a series of
n, L. The p extended by 0 yielding a series of n+ 1, L is defined by

(Def. 3) for every bag b of n + 1, if b(n) 6= 0, then it(b) = 0L and if b(n) = 0,
then it(b) = p(〈b(0), . . . , b(n)〉).

Now we state the propositions:

(6) Let us consider a non empty zero structure L, and a series p of n, L. Then
(the p extended by 0)(b extended by 0) = p(b). The theorem is a consequ-
ence of (5).

(7) Let us consider a non empty zero structure L, a series p of n, L, and
a bag b of n+1. Suppose b ∈ Support(the p extended by 0). Then b(n) = 0.

(8) Let us consider a non empty zero structure L, and a series p of n, L.
Then b extended by 0 ∈ Support(the p extended by 0) if and only if b ∈
Support p. The theorem is a consequence of (5).

(9) Let us consider a non empty zero structure L, a series p of n, L, and
a bag b of n+1. Suppose b(n) = 0. Then b ∈ Support(the p extended by 0)
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if and only if 〈b(0), . . . , b(n)〉 ∈ Support p. The theorem is a consequence
of (4) and (8).

Let us consider n. Let L be a non empty zero structure and p be a polynomial
of n,L. Let us observe that the p extended by 0 is finite-Support.

Now we state the propositions:

(10) Let us consider a non empty zero structure L, and a series p of n, L. Then
{0L}∪ rng p = rng(the p extended by 0). The theorem is a consequence of
(6).

(11) support b = support(b extended by 0).
Proof: Set E = b extended by 0. support b ⊆ supportE. �

(12) SgmX(⊆n, support b) = SgmX(⊆n+1, support(b extended by 0)). The the-
orem is a consequence of (11).

(13) Let us consider a well unital, non trivial double loop structure L, a func-
tion x from n into L, and a function y from n+1 into L. Suppose y�n = x.
Then eval(b, x) = eval(b extended by 0, y).
Proof: Set S = SgmX(⊆n, support b). Set B = b extended by 0. Set S1 =
SgmX(⊆n+1, supportB). Consider P being a finite sequence of elements
of L such that lenP = lenS and eval(b, x) =

∏
P and for every element i

of N such that 1 ¬ i ¬ lenP holds P/i = powerL(x · S/i, b · S/i). Consider
P1 being a finite sequence of elements of L such that lenP1 = lenS1 and
eval(B, y) =

∏
P1 and for every element i of N such that 1 ¬ i ¬ lenP1

holds P1/i = powerL(y · S1/i, B · S1/i). S = S1. b = 〈B(0), . . . , B(n)〉. For
every natural number i such that 1 ¬ i ¬ lenP holds P (i) = P1(i). �

(14) b1 < b2 if and only if b1 extended by k < b2 extended by k.
Proof: Set B1 = b1 extended by k. Set B2 = b2 extended by k. If b1 < b2,
then b1 extended by k < b2 extended by k. Consider o being an ordinal
number such that B1(o) < B2(o) and for every ordinal number l such that
l ∈ o holds B1(l) = B2(l). For every ordinal number l such that l ∈ o holds
b1(l) = b2(l). �

(15) Let us consider a non empty set X, a finite subset A of X, and an order
R in X. Suppose R linearly orders A. Suppose 1 ¬ i ¬ k ¬ A . Then
(SgmX(R, rng(SgmX(R,A)�k)))/i = (SgmX(R,A))/i.
Proof: Set S1 = SgmX(R,A). Define P[natural number] ≡ for every i

such that 1 ¬ i ¬ $1 ¬ A holds (SgmX(R, rng(S1�$1)))/i = S1/i. For
every k such that P[k] holds P[k + 1] by [3, (83)]. For every k, P[k]. �

(16) Let us consider an ordinal number O, and a finite subset A of BagsO.
Suppose n, m ∈ dom SgmX(BagOrderO,A) and n < m.
Then (SgmX(BagOrderO,A))/n < (SgmX(BagOrderO,A))/m.
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(17) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and a po-
lynomial p of n,L. Then

(i) len SgmX(BagOrdern, Support p) =

len SgmX(BagOrder(n+ 1),Support(the p extended by 0)), and

(ii) for every natural number i such that

1 ¬ i ¬ len SgmX(BagOrdern,Support p) holds

(SgmX(BagOrder(n+ 1),Support(the p extended by 0)))/i =

(SgmX(BagOrdern, Support p))/i extended by 0.

Proof: Set B = BagOrdern. Set B1 = BagOrder(n + 1). Set P =
the p extended by 0. Define F(bag of n) = $1 extended by 0. Consider
f being a function from Bagsn into Bags(n + 1) such that for every
element x of Bagsn, f(x) = F(x). Set F = f� Support p. Set S1 =
SgmX(B, Support p). Set S2 = SgmX(B1, SupportP ). rngF ⊆ SupportP .
SupportP ⊆ rngF . F is one-to-one. Define P[natural number] ≡ if 1 ¬
$1 ¬ lenS1, then for every i such that 1 ¬ i ¬ $1 holds S2/i = S1/i extended
by0. For every natural number k such that P[k] holds P[k+ 1]. For every
k, P[k]. �

(18) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, a polynomial
p of n,L, a function x from n into L, and a function y from n+ 1 into L.
Suppose y�n = x. Then eval(p, x) = eval(the p extended by 0, y).
Proof: Set n1 = n + 1. Set S = SgmX(BagOrdern,Support p). Set P =
the p extended by 0. Set S1 = SgmX(BagOrdern1, SupportP ). Consider
T being a finite sequence of elements of L such that lenT = lenS and
eval(p, x) =

∑
T and for every element i of N such that 1 ¬ i ¬ lenT

holds T/i = p · S/i · eval(S/i, x). Consider T1 being a finite sequence of
elements of L such that lenT1 = lenS1 and eval(P, y) =

∑
T1 and for every

element i of N such that 1 ¬ i ¬ lenT1 holds T1/i = P ·S1/i · eval(S1/i, y).
lenS = lenS1 and for every natural number i such that 1 ¬ i ¬ lenS
holds S1/i = S/i extended by 0. For every natural number i such that
1 ¬ i ¬ lenS holds T (i) = T1(i). �

3. Polynomial Permuted by Permutation

Now we state the propositions:

(19) Let us consider an ordinal number O, a well unital, commutative, asso-
ciative, non trivial double loop structure L, a function x from O into L,
a bag b of O, and a one-to-one finite sequence S of elements of O. Suppose
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rngS = support b. Then there exists a finite sequence y of elements of L
such that

(i) len y = support b , and

(ii) eval(b, x) =
∏
y, and

(iii) for every i such that 1 ¬ i ¬ len y holds y/i = powerL(x · S/i, b · S/i).
(20) Let us consider an ordinal number O, a well unital, commutative, asso-

ciative, non trivial double loop structure L, a function x from O into L,
a bag b of O, and a permutation σ of O. Then eval(b, x) = eval(b ·σ, x ·σ).
Proof: Set S1 = SgmX(⊆n, support b). Consider y being a finite sequence
of elements of L such that len y = lenS1 and eval(b, x) =

∏
y and for every

element i of N such that 1 ¬ i ¬ len y holds y/i = powerL(x ·S1/i, b ·S1/i).
Set P = σ−1. rngP ·S1 ⊆ support b·σ. support b·σ ⊆ rngP ·S1. Reconsider
S = P · S1 as a one-to-one finite sequence of elements of n. Consider Y
being a finite sequence of elements of L such that lenY = support b · σ
and eval(b · σ, x · σ) =

∏
Y and for every natural number i such that

1 ¬ i ¬ lenY holds Y/i = powerL(x · σ · S/i, b · σ · S/i). lenY = len y. For
every natural number i such that 1 ¬ i ¬ lenY holds Y (i) = y(i). �

Let O be an ordinal number, L be a non empty zero structure, s be a series
of O, L, and σ be a permutation of O. The s permuted by σ yielding a series of
O, L is defined by

(Def. 4) for every bag b of O, it(b) = s(b · σ).

Let us consider an ordinal number O, a non empty zero structure L, a per-
mutation σ of O, a series s of O, L, and a bag b of O. Now we state the
propositions:

(21) b ∈ Support(the s permuted by σ) if and only if b · σ ∈ Support s.

(22) b · σ−1 ∈ Support(the s permuted by σ) if and only if b ∈ Support s.

(23) Let us consider an ordinal number O, a non empty zero structure L,
a permutation σ of O, and a series s of O, L. Then Support s = Supportα ,
where α is the s permuted by σ.
Proof: Set P = the s permuted by σ. Define R[bag of O,bag of O] ≡
$2 = $1 · σ. For every element x of BagsO, there exists an element y of
BagsO such that R[x, y]. Consider f being a function from BagsO into
BagsO such that for every element x of BagsO,R[x, f(x)]. f is one-to-one.
f◦(SupportP ) ⊆ Support s. Support s ⊆ f◦(SupportP ). �

(24) Let us consider an ordinal number O, an Abelian, right zeroed, add-
associative, right complementable, well unital, distributive, non trivial
double loop structure L, a polynomial p of O,L, a function x from O

into L, and a one-to-one finite sequence S of elements of BagsO. Suppose
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rngS = Support p. Then there exists a finite sequence y of elements of L
such that

(i) len y = Support p , and

(ii) eval(p, x) =
∑
y, and

(iii) for every natural number i such that 1 ¬ i ¬ len y holds y/i =
p · S/i · eval(S/i, x).

Let O be an ordinal number, L be a non empty zero structure, σ be a permu-
tation of O, and p be a polynomial of O,L. One can check that the p permuted
by σ is finite-Support.

(25) Let us consider an ordinal number O, an Abelian, right zeroed, add-
associative, right complementable, well unital, distributive, commu-
tative, associative, non trivial double loop structure L, a polynomial p
of O,L, a function x from O into L, and a permutation σ of O. Then
eval(p, x) = eval(the p permuted by σ, x · (σ−1)).
Proof: Set S2 = SgmX(BagOrderO,Support p). Consider y being a finite
sequence of elements of L such that len y = lenS2 and eval(p, x) =

∑
y

and for every element i of N such that 1 ¬ i ¬ len y holds y/i = p · S2/i ·
eval(S2/i, x). Set P = the p permuted by σ. Define R[bag of O,bag of
O] ≡ $2 = $1 ·σ−1. For every element x of BagsO, there exists an element
y of BagsO such that R[x, y]. Consider f being a function from BagsO
into BagsO such that for every element x of BagsO, R[x, f(x)]. f is one-
to-one. Reconsider f1 = f ·S2 as a one-to-one finite sequence of elements of
BagsO. rng f1 ⊆ SupportP . SupportP ⊆ rng f1. Consider z being a finite
sequence of elements of L such that len z = SupportP and eval(P, x ·
σ−1) =

∑
z and for every natural number i such that 1 ¬ i ¬ len z holds

z/i = P · f1/i · eval(f1/i, x · σ−1). len y = len z. For every natural number i
such that 1 ¬ i ¬ len y holds y(i) = z(i). �

(26) Let us consider an ordinal number O, a non empty zero structure L,
a series s of O, L, and a permutation σ of O. Then rng(the s permuted
by σ) = rng s.

4. Main Lemmas

Now we state the propositions:

(27) Let us consider a right zeroed, add-associative, right complementable,
well unital, distributive, non trivial double loop structure L, and a po-
lynomial p of n,L. Then there exists a polynomial q of n+m,L such that

(i) rng q ⊆ rng p ∪ {0L}, and
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(ii) for every function x from n into L and for every function y from
n+m into L such that y�n = x holds eval(p, x) = eval(q, y).

Proof: Define P[natural number] ≡ there exists a polynomial q of n+$1,L
such that rng q ⊆ rng p ∪ {0L} and for every function x from n into L

and for every function y from n + $1 into L such that y�n = x holds
eval(p, x) = eval(q, y). P[0]. If P[k], then P[k + 1]. P[k]. �

(28) Let us consider an Abelian, right zeroed, add-associative, right com-
plementable, well unital, distributive, commutative, associative, non
trivial double loop structure L, and a polynomial p of n+m,L. Then there
exists a polynomial q of n+ k +m,L such that

(i) rng q ⊆ rng p ∪ {0L}, and

(ii) for every function X1 from n + m into L and for every function
X2 from n + k + m into L such that X1�n = X2�n and (@X1)�n =
(@X2)�n+k holds eval(p,X1) = eval(q,X2).

Proof: Consider P being a polynomial of n+m+ k,L such that rngP ⊆
rng p ∪ {0L} and for every function x from n + m into L and for every
function y from n+m+k into L such that y�(n+m) = x holds eval(p, x) =
eval(P, y). Reconsider P1 = P as a polynomial of n + k + m,L. Set I =
idn+k+m. Set n1 = n+m. Set I2 = I�n1. rng I2 misses rng I�n1 . rng(I2�n)
misses rng I2�n. Reconsider I1 = ((I2�n) a I�n1)

a I2�n as a function from
n+k+m into n+k+m. Reconsider R = @X1a(@X2�(n+k))�n as a function
from n+m+k into L. Reconsider r = R as a function from n+k+m into
L. eval(P1, r) = eval(T, r · I1). For every k such that k ∈ dom@X2 holds
(@r · I1)(k) = (@X2)(k). �

5. Diophantine Sets

From now on x, s denote objects.
Let D be a non empty set and n be a natural number. The n-xtuples of D

yielding a subset of Dω is defined by

(Def. 5) x ∈ it iff x is an n-element finite 0-sequence of D.

Observe that the n-xtuples of D is non empty and every element of the n-
xtuples of D is n-element and D-valued.

Let A be a subset of the n-xtuples of N. We say that A is diophantine if and
only if

(Def. 6) there exists a natural number m and there exists a Z-valued polynomial
p of n + m,RF such that for every s, s ∈ A iff there exists an n-element
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finite 0-sequence x of N and there exists an m-element finite 0-sequence y
of N such that s = x and eval(p,@(x a y)) = 0.

One can verify that every subset of the n-xtuples of N which is empty is also
diophantine and Ωthe n-xtuples of N is diophantine.

Let n be a zero natural number. One can verify that every subset of the n-
xtuples of N is diophantine.

Let n be a natural number. Let us observe that there exists a subset of the n-
xtuples of N which is non empty and diophantine and there exists a subset of
the n-xtuples of N which is empty and diophantine.

Let A, B be diophantine subsets of the n-xtuples of N. One can check that
A∩B is diophantine as a subset of the n-xtuples of N and A∪B is diophantine
as a subset of the n-xtuples of N.
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