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About Supergraphs. Part I

Sebastian Koch
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Summary. Drawing a finite graph is usually done by a finite sequence of
the following three operations.

1. Draw a vertex of the graph.

2. Draw an edge between two vertices of the graph.

3. Draw an edge starting from a vertex of the graph and immediately draw a
vertex at the other end of it.

By this procedure any finite graph can be constructed. This property of graphs
is so obvious that the author of this article has yet to find a reference where
it is mentioned explicitly. In introductionary books (like [10], [5], [9]) as well as
in advanced ones (like [4]), after the initial definition of graphs the examples
are usually given by graphical representations rather than explicit set theoretic
descriptions, assuming a mutual understanding how the representation is to be
translated into a description fitting the definition. However, Mizar [2], [3] does
not possess this innate ability of humans to translate pictures into graphs. The-
refore, if one wants to create graphs in Mizar without directly providing a set
theoretic description (i.e. using the createGraph functor), a rigorous approach
to the constructing operations is required.

In this paper supergraphs are defined as an inverse mode to subgraphs as
given in [8]. The three graph construction operations are defined as modes exten-
ding Supergraph similar to how the various remove operations were introduced
as submodes of Subgraph in [8]. Many theorems are proven that describe how
graph properties are transferred to special supergraphs. In particular, to prove
that disconnected graphs cannot become connected by adding an edge between
two vertices that lie in the same component, the theory of replacing a part of a
walk with another walk is introduced in the preliminaries.
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1. General Preliminaries

Let us consider an even integer n and an odd integer m. Now we state the
propositions:

(1) If n ¬ m, then n+ 1 ¬ m.

(2) If m ¬ n, then m+ 1 ¬ n.

(3) Let us consider natural numbers i, j. If i > i−′ 1 + j, then j = 0.

(4) Let us consider finite sequences f , g, and a natural number i. Suppose
i ¬ len f and mid(f, i, i−′ 1 + len g) = g. Then i−′ 1 + len g ¬ len f . The
theorem is a consequence of (3).

Let us consider a finite sequence p and a natural number n. Now we state
the propositions:

(5) If n ∈ dom p and n+ 1 ¬ len p, then mid(p, n, n+ 1) = 〈p(n), p(n+ 1)〉.
(6) If n ∈ dom p and n + 2 ¬ len p, then mid(p, n, n + 2) = 〈p(n), p(n + 1),

p(n+ 2)〉. The theorem is a consequence of (5).

(7) Let us consider a non empty set D, finite sequences f , g of elements of
D, and a natural number n. Suppose g is a substring of f . Then

(i) len g = 0, or

(ii) 1 ¬ n−′ 1 + len g ¬ len f and n ¬ n−′ 1 + len g.

The theorem is a consequence of (4).

Let D be a non empty set, f , g be finite sequences of elements of D, and n

be a natural number. We say that g is an odd substring of f not starting before
n if and only if

(Def. 1) if len g > 0, then there exists an odd natural number i such that n ¬
i ¬ len f and mid(f, i, i−′ 1 + len g) = g.

We say that g is an even substring of f not starting before n if and only if

(Def. 2) if len g > 0, then there exists an even natural number i such that n ¬
i ¬ len f and mid(f, i, i−′ 1 + len g) = g.

Let us consider a non empty set D, finite sequences f , g of elements of D,
and a natural number n. Now we state the propositions:

(8) If g is an odd substring of f not starting before n, then g is a substring
of f .

(9) If g is an even substring of f not starting before n, then g is a substring
of f .

(10) Let us consider a non empty set D, finite sequences f , g of elements of
D, and natural numbers n, m. Suppose m ­ n. Then
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(i) if g is an odd substring of f not starting before m, then g is an odd
substring of f not starting before n, and

(ii) if g is an even substring of f not starting before m, then g is an even
substring of f not starting before n.

(11) Let us consider a non empty set D, and a finite sequence f of elements
of D. If 1 ¬ len f , then f is an odd substring of f not starting before 0.

(12) Let us consider a non empty set D, finite sequences f , g of elements of
D, and an even element n of N. Suppose g is an odd substring of f not
starting before n. Then g is an odd substring of f not starting before n+1.

(13) Let us consider a non empty set D, finite sequences f , g of elements of
D, and an odd element n of N. Suppose g is an even substring of f not
starting before n. Then g is an even substring of f not starting before
n+ 1.

(14) Let us consider a non empty set D, and finite sequences f , g of elements
of D. Suppose g is an odd substring of f not starting before 0. Then g is
an odd substring of f not starting before 1. The theorem is a consequence
of (12).

2. Graph Preliminaries

Let G be a non-directed-multi graph. Observe that every subgraph of G is
non-directed-multi.

(15) Every graph is a subgraph of G induced by the vertices of G.

(16) Let us consider graphs G1, G3, sets V , E, and a subgraph G2 of G1
induced by V and E. If G2 ≈ G3, then G3 is a subgraph of G1 induced by
V and E.

(17) Let us consider a graph G, a set X, and objects e, y. Suppose e joins a
vertex from X and a vertex from {y} in G. Then there exists an object x
such that

(i) x ∈ X, and

(ii) e joins x and y in G.

(18) Let us consider a graph G, and a set X. Suppose X ∩ (the vertices of
G) = ∅. Then

(i) G.edgesInto(X) = ∅, and

(ii) G.edgesOutOf(X) = ∅, and

(iii) G.edgesInOut(X) = ∅, and
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(iv) G.edgesBetween(X) = ∅.
Proof: G.edgesInto(X) = ∅. G.edgesOutOf(X) = ∅. �

Let us consider a graph G, sets X1, X2, and an object y. Now we state the
propositions:

(19) If X1 misses X2, then G.edgesBetween(X1, {y}) misses G.edgesBetween
(X2, {y}). The theorem is a consequence of (17).

(20) G.edgesBetween(X1 ∪X2, {y}) =
G.edgesBetween(X1, {y}) ∪G.edgesBetween(X2, {y}).
Proof: Set E1 = G.edgesBetween(X1, {y}). Set E2 = G.edgesBetween(X2,
{y}). For every object e such that e ∈ G.edgesBetween(X1∪X2, {y}) holds
e ∈ E1 ∪ E2. �

(21) Let us consider a trivial graph G. Then there exists a vertex v of G such
that

(i) the vertices of G = {v}, and

(ii) the source of G = (the edges of G) 7−→ v, and

(iii) the target of G = (the edges of G) 7−→ v.

Proof: Consider v being a vertex of G such that the vertices of G = {v}.
For every object e such that e ∈ dom(the source of G) holds (the source
of G)(e) = v. For every object e such that e ∈ dom(the target of G) holds
(the target of G)(e) = v. �

Let G be a graph. Let us note that every walk of G which is closed, trail-like,
and non trivial is also circuit-like and every walk of G which is closed, path-like,
and non trivial is also cycle-like.

Let us consider graphs G1, G2, a walk W1 of G1, and a walk W2 of G2. Now
we state the propositions:

(22) If W1 = W2, then if W1 is trail-like, then W2 is trail-like.

(23) If W1 = W2, then if W1 is path-like, then W2 is path-like. The theorem
is a consequence of (22).

(24) If W1 = W2, then if W1 is cycle-like, then W2 is cycle-like. The theorem
is a consequence of (23).

(25) If W1 = W2, then if W1 is vertex-distinct, then W2 is vertex-distinct.

(26) Let us consider a graph G, a walk W of G, and a vertex v of G. If
v ∈W.vertices(), then G.walkOf(v) is a substring of W .

(27) Let us consider a graph G, a walk W of G, and an odd element n of N.
Suppose n+ 2 ¬ lenW . Then G.walkOf(W (n),W (n+ 1),W (n+ 2)) is an
odd substring of W not starting before 0. The theorem is a consequence
of (6).
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Let us consider a graph G, a walk W of G, and objects u, e, v. Now we state
the propositions:

(28) Suppose e joins u and v in G and e ∈W.edges(). Then

(i) G.walkOf(u, e, v) is an odd substring of W not starting before 0, or

(ii) G.walkOf(v, e, u) is an odd substring of W not starting before 0.

The theorem is a consequence of (27).

(29) If e joins u and v in G and G.walkOf(u, e, v) is an odd substring of W
not starting before 0, then e ∈ W.edges() and u, v ∈ W.vertices(). The
theorem is a consequence of (14), (8), and (7).

Let G be a graph and W1, W2 be walks of G.
The functor W1.findFirstVertex(W2) yielding an odd element of N is defined

by

(Def. 3) (i) it ¬ lenW1 and there exists an even natural number k such that
it = k + 1 and for every natural number n such that 1 ¬ n ¬ lenW2
holds W1(k + n) = W2(n) and for every even natural number l such
that for every natural number n such that 1 ¬ n ¬ lenW2 holds
W1(l + n) = W2(n) holds k ¬ l, if W2 is an odd substring of W1 not
starting before 0,

(ii) it = lenW1, otherwise.

The functor W1.findLastVertex(W2) yielding an odd element of N is defined by

(Def. 4) (i) it ¬ lenW1 and there exists an even natural number k such that
it = k + lenW2 and for every natural number n such that 1 ¬ n ¬
lenW2 holds W1(k + n) = W2(n) and for every even natural number
l such that for every natural number n such that 1 ¬ n ¬ lenW2
holds W1(l + n) = W2(n) holds k ¬ l, if W2 is an odd substring of
W1 not starting before 0,

(ii) it = lenW1, otherwise.

Let us consider a graph G and walks W1, W2 of G. Now we state the pro-
positions:

(30) Suppose W2 is an odd substring of W1 not starting before 0. Then

(i) W1(W1.findFirstVertex(W2)) = W2.first(), and

(ii) W1(W1.findLastVertex(W2)) = W2.last().

(31) Suppose W2 is an odd substring of W1 not starting before 0. Then

(i) 1 ¬W1.findFirstVertex(W2) ¬ lenW1, and

(ii) 1 ¬W1.findLastVertex(W2) ¬ lenW1.

(32) Let us consider a graph G, and a walk W of G. Then
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(i) 1 = W.findFirstVertex(W ), and

(ii) W.findLastVertex(W ) = lenW .

The theorem is a consequence of (11).

(33) Let us consider a graph G, and walks W1, W2 of G. Suppose W2 is an
odd substring of W1 not starting before 0. Then W1.findFirstVertex(W2) ¬
W1.findLastVertex(W2).

LetG be a graph andW1,W2,W3 be walks ofG. The functorW1.replaceWith
(W2,W3) yielding a walk of G is defined by the term

(Def. 5)



((W1.cut(1,W1.findFirstVertex(W2))).append(W3)).append((W1.cut
(W1.findLastVertex(W2), lenW1))),

if W2 is an odd substring of W1 not starting before 0 and W2.first()
= W3.first() and W2.last() = W3.last(),W1,

otherwise.
Let W1, W3 be walks of G and e be an object.
The functor W1.replaceEdgeWith(e,W3) yielding a walk of G is defined by

the term

(Def. 6)


W1.replaceWith(G.walkOf(W3.first(), e,W3.last()),W3),
if e joins W3.first() and W3.last() in G and G.walkOf(W3.first(), e,

W3.last()) is an odd substring of W1 not starting before 0,W1,
otherwise.

Let W1, W2 be walks of G. The functor W1.replaceWithEdge(W2, e) yielding
a walk of G is defined by the term

(Def. 7)


W1.replaceWith(W2, G.walkOf(W2.first(), e,W2.last())),
if W2 is an odd substring of W1 not starting before 0 and e joins

W2.first() and W2.last() in G,W1,

otherwise.
Let us consider a graph G and walks W1, W2, W3 of G. Now we state the

propositions:

(34) Suppose W2 is an odd substring of W1 not starting before 0 and
W2.first() = W3.first() and W2.last() = W3.last(). Then

(i) (W1.cut(1,W1.findFirstVertex(W2))).first() = W1.first(), and

(ii) (W1.cut(1,W1.findFirstVertex(W2))).last() = W3.first(), and

(iii) ((W1.cut(1,W1.findFirstVertex(W2))).append(W3)).first() =

W1.first(), and

(iv) ((W1.cut(1,W1.findFirstVertex(W2))).append(W3)).last() =

W3.last(), and

(v) (W1.cut(W1.findLastVertex(W2), lenW1)).first() = W3.last(), and
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(vi) (W1.cut(W1.findLastVertex(W2), lenW1)).last() = W1.last().

The theorem is a consequence of (31) and (30).

(35) (i) W1.first() = (W1.replaceWith(W2,W3)).first(), and

(ii) W1.last() = (W1.replaceWith(W2,W3)).last().
The theorem is a consequence of (34).

(36) SupposeW2 is an odd substring ofW1 not starting before 0 andW2.first()
= W3.first() and W2.last() = W3.last(). Then (W1.replaceWith(W2,W3))
.vertices() = ((W1.cut(1,W1.findFirstVertex(W2))).vertices() ∪W3
.vertices())∪(W1.cut(W1.findLastVertex(W2), lenW1)).vertices(). The the-
orem is a consequence of (34).

(37) SupposeW2 is an odd substring ofW1 not starting before 0 andW2.first()
= W3.first() and W2.last() = W3.last(). Then (W1.replaceWith(W2,W3))
.edges() = ((W1.cut(1,W1.findFirstVertex(W2))).edges() ∪W3.edges()) ∪
(W1.cut(W1.findLastVertex(W2), lenW1)).edges(). The theorem is a con-
sequence of (34).

(38) Let us consider a graph G, walks W1, W3 of G, and an object e. Suppose
e joins W3.first() and W3.last() in G and G.walkOf(W3.first(), e,W3.last())
is an odd substring of W1 not starting before 0.
Then e ∈ (W1.replaceEdgeWith(e,W3)).edges() if and only if e ∈ (W1.cut
(1,W1.findFirstVertex(G.walkOf(W3.first(), e,W3.last())))).edges() or e ∈
W3.edges() or e ∈ (W1.cut(W1.findLastVertex(G.walkOf(W3.first(), e,W3
.last())), lenW1)).edges(). The theorem is a consequence of (37).

(39) Let us consider a graph G, walks W1, W3 of G, and an object e. Suppose
e joins W3.first() and W3.last() in G and e /∈W3.edges() and G.walkOf(W3
.first(), e,W3.last()) is an odd substring of W1 not starting before 0 and for
every even natural numbers n, m such that n, m ∈ domW1 and W1(n) = e

and W1(m) = e holds n = m.
Then e /∈ (W1.replaceEdgeWith(e,W3)).edges().
Proof: Set W2 = G.walkOf(W3.first(), e,W3.last()). W2 is an odd sub-
string of W1 not starting before 1. Define P[natural number] ≡ $1 is odd
and 1 ¬ $1 ¬ lenW1 and mid(W1, $1, $1 −′ 1 + lenW2) = W2. Consider
i being a natural number such that P[i] and for every natural number
n such that P[n] holds i ¬ n. Set j = i −′ 1 + lenW2. W2 is a sub-
string of W1. 1 ¬ j ¬ lenW1 and i ¬ j. Set n1 = i + 1. Reconsider
k = i − 1 as an even natural number. For every natural number n such
that 1 ¬ n ¬ lenW2 holds W1(k + n) = W2(n). For every even natural
number l such that for every natural number n such that 1 ¬ n ¬ lenW2
holds W1(l+ n) = W2(n) holds k ¬ l. i ¬ lenW1 and there exists an even
natural number k such that i = k + 1 and for every natural number n
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such that 1 ¬ n ¬ lenW2 holds W1(k + n) = W2(n) and for every even
natural number l such that for every natural number n such that 1 ¬ n ¬
lenW2 holds W1(l + n) = W2(n) holds k ¬ l. W1.findFirstVertex(W2) <
n1. n1 ∈ domW1. e /∈ (W1.cut(1,W1.findFirstVertex(W2))).edges(). e /∈
(W1.cut(W1.findLastVertex(W2), lenW1)).edges() by [1, (4)], [6, (99)]. �

(40) Let us consider a graph G, a trail T1 of G, a walk W3 of G, and an object
e. Suppose e joins W3.first() and W3.last() in G and e /∈ W3.edges() and
G.walkOf(W3.first(), e,W3.last()) is an odd substring of T1 not starting
before 0. Then e /∈ (T1.replaceEdgeWith(e,W3)).edges().
Proof: For every even natural numbers n, m such that n, m ∈ domT1
and T1(n) = e and T1(m) = e holds n = m. �

(41) Let us consider a graph G, and walks W1, W2 of G. Suppose W1.first() =
W2.first() and W1.last() = W2.last(). Then W1.replaceWith(W1,W2) =
W2. The theorem is a consequence of (11), (32), and (31).

(42) Let us consider a graph G, walks W1, W3 of G, and an object e. Suppose
e joins W3.first() and W3.last() in G and G.walkOf(W3.first(), e,W3.last())
is an odd substring ofW1 not starting before 0. Then there exists a walkW2
of G such that W1.replaceEdgeWith(e,W3) = W1.replaceWith(W2,W3).

(43) Let us consider a graph G, walks W1, W2 of G, and an object e. Sup-
pose W2 is an odd substring of W1 not starting before 0 and e joins
W2.first() and W2.last() in G. Then there exists a walk W3 of G such
that W1.replaceWithEdge(W2, e) = W1.replaceWith(W2,W3).

(44) Let us consider a graph G, walks W1, W3 of G, and an object e. Then

(i) W1.first() = (W1.replaceEdgeWith(e,W3)).first(), and

(ii) W1.last() = (W1.replaceEdgeWith(e,W3)).last().

The theorem is a consequence of (42) and (35).

(45) Let us consider a graph G, walks W1, W2 of G, and an object e. Then

(i) W1.first() = (W1.replaceWithEdge(W2, e)).first(), and

(ii) W1.last() = (W1.replaceWithEdge(W2, e)).last().

The theorem is a consequence of (43) and (35).

(46) Let us consider a graph G, walks W1, W2, W3 of G, and objects u, v.
Then W1 is walk from u to v if and only if W1.replaceWith(W2,W3) is
walk from u to v. The theorem is a consequence of (35).

(47) Let us consider a graph G, walks W1, W3 of G, and objects e, u, v. Then
W1 is walk from u to v if and only if W1.replaceEdgeWith(e,W3) is walk
from u to v. The theorem is a consequence of (42) and (46).
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(48) Let us consider a graph G, walks W1, W2 of G, and objects e, u, v. Then
W1 is walk from u to v if and only if W1.replaceWithEdge(W2, e) is walk
from u to v. The theorem is a consequence of (43) and (46).

(49) Let us consider a graph G, and vertices v1, v2 of G. Suppose v1 is isolated
and v1 6= v2. Then v2 /∈ G.reachableFrom(v1).

(50) Let us consider a graph G, and vertices v1, v2 of G.
If v1 ∈ G.reachableFrom(v2), then v2 ∈ G.reachableFrom(v1).

(51) Let us consider a graph G, and a vertex v of G. If v is isolated, then
{v} = G.reachableFrom(v).
Proof: For every object x, x ∈ {v} iff x ∈ G.reachableFrom(v) by [7,
(9)], (49). �

(52) Let us consider a graph G, a vertex v of G, and a subgraph C of G
induced by {v}. If v is isolated, then C is a component of G. The theorem
is a consequence of (51).

(53) Let us consider a non trivial graph G1, a vertex v of G1, and a subgraph
G2 of G1 with vertex v removed. Suppose v is isolated. Then

(i) G1.componentSet() = G2.componentSet() ∪ {{v}}, and

(ii) G1.numComponents() = G2.numComponents() + 1.

Proof: For every object V , V ∈ G1.componentSet() iff V ∈ G2
.componentSet() ∪ {{v}}. {v} /∈ G2.componentSet() by [8, (47)]. �

Let G be a graph. Let us observe that every vertex of G which is isolated is
also non cut-vertex.

Now we state the propositions:

(54) Let us consider a graph G1, a subgraph G2 of G1, a walk W1 of G1, and
a walk W2 of G2. If W1 = W2, then W1 is cycle-like iff W2 is cycle-like.

(55) Let us consider a connected graph G1, and a component G2 of G1. Then
G1 ≈ G2.

Observe that every graph which is complete is also connected and there
exists a graph which is non non-directed-multi, non non-multi, non loopless,
non directed-simple, non simple, non acyclic, and non finite.

From now on G denotes a graph.
Let us consider G. The functor G.endVertices() yielding a subset of the ver-

tices of G is defined by

(Def. 8) for every object v, v ∈ it iff there exists a vertex w of G such that v = w

and w is endvertex.

Now we state the proposition:

(56) Let us consider a vertex v of G. Then v ∈ G.endVertices() if and only if
v is endvertex.
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3. Supergraphs

Let us consider G.
A supergraph of G is a graph defined by

(Def. 9) the vertices of G ⊆ the vertices of it and the edges of G ⊆ the edges
of it and for every set e such that e ∈ the edges of G holds (the source
of G)(e) = (the source of it)(e) and (the target of G)(e) = (the target of
it)(e).

Let us consider graphs G1, G2. Now we state the propositions:

(57) G2 is a subgraph of G1 if and only if G1 is a supergraph of G2.

(58) G2 is subgraph of G1 and supergraph of G1 if and only if G1 ≈ G2. The
theorem is a consequence of (57).

(59) G1 is a supergraph of G2 and G2 is a supergraph of G1 if and only if
G1 ≈ G2. The theorem is a consequence of (57).

(60) G1 is a supergraph of G2 if and only if G2 ⊆ G1. The theorem is a con-
sequence of (57).

(61) G is a supergraph of G.

(62) Let us consider a graph G3, and a supergraph G2 of G3. Then every
supergraph of G2 is a supergraph of G3. The theorem is a consequence of
(57).

In the sequel G2 denotes a graph and G1 denotes a supergraph of G2.

(63) Let us consider graphs G1, G2. Suppose the vertices of G2 ⊆ the vertices
of G1 and the source of G2 ⊆ the source of G1 and the target of G2 ⊆
the target of G1. Then G1 is a supergraph of G2.

Let us consider G2 and G1. Now we state the propositions:

(64) (i) the source of G2 ⊆ the source of G1, and

(ii) the target of G2 ⊆ the target of G1.

(65) Suppose the vertices of G2 = the vertices of G1 and the edges of G2 =
the edges of G1. Then G1 ≈ G2. The theorem is a consequence of (64).

(66) Let us consider graphs G1, G2. Suppose the vertices of G2 = the vertices
of G1 and the edges of G2 = the edges of G1 and the source of G2 ⊆
the source of G1 and the target of G2 ⊆ the target of G1. Then G1 ≈ G2.
The theorem is a consequence of (63) and (65).

(67) Let us consider a set x. Then

(i) if x ∈ the vertices of G2, then x ∈ the vertices of G1, and

(ii) if x ∈ the edges of G2, then x ∈ the edges of G1.

The theorem is a consequence of (57).
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Let us consider G2 and G1. Now we state the propositions:

(68) Every vertex of G2 is a vertex of G1.

(69) (i) the source of G2 = (the source of G1)�(the edges of G2), and

(ii) the target of G2 = (the target of G1)�(the edges of G2).
The theorem is a consequence of (57).

(70) Let us consider sets x, y, and an object e. Then

(i) if e joins x and y in G2, then e joins x and y in G1, and

(ii) if e joins x to y in G2, then e joins x to y in G1, and

(iii) if e joins a vertex from x and a vertex from y in G2, then e joins a
vertex from x and a vertex from y in G1, and

(iv) if e joins a vertex from x to a vertex from y in G2, then e joins a
vertex from x to a vertex from y in G1.

The theorem is a consequence of (57).

Let us consider G2, G1, and objects e, v1, v2. Now we state the propositions:

(71) If e joins v1 to v2 in G1, then e joins v1 to v2 in G2 or e /∈ the edges of
G2.

(72) If e joins v1 and v2 in G1, then e joins v1 and v2 in G2 or e /∈ the edges
of G2. The theorem is a consequence of (71).

Let G be a finite graph. Observe that there exists a supergraph of G which
is finite.

Now we state the propositions:

(73) (i) G2.order() ⊆ G1.order(), and

(ii) G2.size() ⊆ G1.size().

(74) Let us consider a finite graph G2, and a finite supergraph G1 of G2. Then

(i) G2.order() ¬ G1.order(), and

(ii) G2.size() ¬ G1.size().

The theorem is a consequence of (57).

(75) Every walk of G2 is a walk of G1. The theorem is a consequence of (57).

(76) Let us consider a walkW2 ofG2, and a walkW1 ofG1. SupposeW1 = W2.
Then

(i) W1 is closed iff W2 is closed, and

(ii) W1 is directed iff W2 is directed, and

(iii) W1 is trivial iff W2 is trivial, and

(iv) W1 is trail-like iff W2 is trail-like, and

(v) W1 is path-like iff W2 is path-like, and
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(vi) W1 is vertex-distinct iff W2 is vertex-distinct, and

(vii) W1 is cycle-like iff W2 is cycle-like.

The theorem is a consequence of (57) and (54).

Let G be a non trivial graph. Note that every supergraph of G is non trivial.
Let G be a non non-directed-multi graph. Observe that every supergraph of

G is non non-directed-multi.
Let G be a non non-multi graph. One can verify that every supergraph of G

is non non-multi.
Let G be a non loopless graph. Let us note that every supergraph of G is

non loopless.
Let G be a non directed-simple graph. Observe that every supergraph of G

is non directed-simple.
Let G be a non simple graph. One can check that every supergraph of G is

non simple.
Let G be a non acyclic graph. One can verify that every supergraph of G is

non acyclic.
Every supergraph of a non finite graph G is non finite.
In the sequel V denotes a set. Let us consider G and V .
A supergraph of G extended by the vertices from V is a supergraph of G

defined by

(Def. 10) the vertices of it = (the vertices ofG)∪V and the edges of it = the edges
of G and the source of it = the source of G and the target of it =
the target of G.

Now we state the propositions:

(77) Let us consider supergraphs G1, G2 of G extended by the vertices from
V . Then G1 ≈ G2.

(78) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G1 ≈ G2 if and only if V ⊆ the vertices of G2.

(79) Let us consider graphs G1, G2, and a set V . Suppose G1 ≈ G2 and
V ⊆ the vertices of G2. Then G1 is a supergraph of G2 extended by the
vertices from V . The theorem is a consequence of (59).

(80) Let us consider a supergraph G1 of G extended by the vertices from V .
Suppose G1 ≈ G2. Then G2 is a supergraph of G extended by the vertices
from V . The theorem is a consequence of (58) and (62).

(81) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G1.edgesBetween(the vertices of G2) = the edges of G1.
Proof: Set E1 = the edges of G1. Set V2 = the vertices of G2. For every
object e, e ∈ E1 iff e ∈ G1.edgesInto(V2) ∩G1.edgesOutOf(V2). �
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(82) Let us consider a graph G3, sets V1, V2, and a supergraph G2 of G3
extended by the vertices from V2. Then every supergraph of G2 extended
by the vertices from V1 is a supergraph of G3 extended by the vertices
from V1 ∪ V2. The theorem is a consequence of (62).

(83) Let us consider a graph G3, sets V1, V2, and a supergraph G1 of G3
extended by the vertices from V1 ∪ V2. Then there exists a supergraph G2
of G3 extended by the vertices from V2 such that G1 is a supergraph of
G2 extended by the vertices from V1.

(84) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G2 is a subgraph of G1 induced by the vertices of G2. The theorem
is a consequence of (57) and (81).

(85) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
and objects x, y, e. Then e joins x to y in G1 if and only if e joins x to y
in G2.

(86) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
and an object v. If v ∈ V , then v is a vertex of G1.

(87) Let us consider a supergraph G1 of G2 extended by the vertices from V ,
and objects x, y, e. Then e joins x and y in G1 if and only if e joins x and
y in G2. The theorem is a consequence of (85).

(88) Let us consider a supergraph G1 of G2 extended by the vertices from
V , and a vertex v of G1. Suppose v ∈ V \ (the vertices of G2). Then v is
isolated and non cut-vertex.
Proof: v.edgesInOut() = ∅. �

(89) Let us consider a supergraph G1 of G2 extended by the vertices from
V . Suppose V \ (the vertices of G2) 6= ∅. Then G1 is non trivial, non
connected, non tree-like, and non complete.
Proof: Consider v1 being an object such that v1 ∈ V \ (the vertices of
G2). α 6= 1, where α is the vertices of G1. v1 is isolated. �

Let G be a non-directed-multi graph and V be a set. Note that every super-
graph of G extended by the vertices from V is non-directed-multi.

Let G be a non-multi graph. One can verify that every supergraph of G
extended by the vertices from V is non-multi.

Let G be a loopless graph. Observe that every supergraph of G extended by
the vertices from V is loopless.

Let G be a directed-simple graph. Let us note that every supergraph of G
extended by the vertices from V is directed-simple.

Let G be a simple graph. Let us note that every supergraph of G extended
by the vertices from V is simple.
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Let us consider G2, V , a supergraph G1 of G2 extended by the vertices from
V , and a walk W of G1. Now we state the propositions:

(90) (i) W.vertices() misses V \ (the vertices of G2), or

(ii) W is trivial.
The theorem is a consequence of (85).

(91) If W.vertices() misses V \ (the vertices of G2), then W is a walk of G2.
The theorem is a consequence of (57).

Let G be an acyclic graph and V be a set. Let us note that every supergraph
of G extended by the vertices from V is acyclic.

(92) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then G2 is chordal if and only if G1 is chordal.
Proof: IfG2 is chordal, thenG1 is chordal.G2 is a subgraph ofG1 induced
by the vertices of G2. �

Let G be a chordal graph and V be a set. Let us observe that every super-
graph of G extended by the vertices from V is chordal.

From now on v denotes an object.
Let us consider G and v.
A supergraph of G extended by v is a supergraph of G extended by the

vertices from {v}.
Let us consider G2, v, and a supergraph G1 of G2 extended by v. Now we

state the propositions:

(93) G1 ≈ G2 if and only if v ∈ the vertices of G2.

(94) v is a vertex of G1. The theorem is a consequence of (86).

Let us consider G. One can verify that every supergraph of G extended by
the vertices of G is non trivial, non connected, and non complete and there
exists a graph which is non trivial, non connected, and non complete.

Let G be a non connected graph and V be a set. Note that every supergraph
of G extended by the vertices from V is non connected.

Now we state the propositions:

(95) Let us consider a supergraph G1 of G2 extended by the vertices from V .
Then

(i) G1.size() = G2.size(), and

(ii) G1.order() = G2.order() + V \ α ,

where α is the vertices of G2.

(96) Let us consider a finite graph G2, a finite set V , and a supergraph G1
of G2 extended by the vertices from V . Then G1.order() = G2.order() +

V \ α , where α is the vertices of G2.
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(97) Let us consider a graphG2, an object v, and a supergraphG1 ofG2 exten-
ded by v. Suppose v /∈ the vertices of G2. Then G1.order() = G2.order()+
1. The theorem is a consequence of (95).

(98) Let us consider a finite graph G2, an object v, and a supergraph G1 of
G2 extended by v. Suppose v /∈ the vertices of G2. Then G1.order() =
G2.order() + 1. The theorem is a consequence of (96).

Let G be a finite graph and V be a finite set. Note that every supergraph of
G extended by the vertices from V is finite.

Let v be an object. Note that every supergraph of G extended by v is finite.
Let G be a graph and V be a non finite set. Note that every supergraph of

G extended by the vertices from V is non finite.
Let us consider G. Let v1, e, v2 be objects.
A supergraph of G extended by e between vertices v1 and v2 is a supergraph

of G defined by

(Def. 11) (i) the vertices of it = the vertices ofG and the edges of it = (the edges
of G) ∪ {e} and the source of it = (the source of G)+·(e 7−→. v1) and
the target of it = (the target ofG)+·(e 7−→. v2), if v1, v2 ∈ the vertices
of G and e /∈ the edges of G,

(ii) it ≈ G, otherwise.

Now we state the propositions:

(99) Let us consider objects v1, e, v2, and supergraphs G1, G2 of G extended
by e between vertices v1 and v2. Then G1 ≈ G2.

(100) Let us consider vertices v1, v2 of G2, an object e, and a supergraph G1
of G2 extended by e between vertices v1 and v2. Then G1 ≈ G2 if and only
if e ∈ the edges of G2.

(101) Let us consider objects v1, e, v2, and a supergraph G1 of G extended by e
between vertices v1 and v2. Suppose G1 ≈ G2. Then G2 is a supergraph of
G extended by e between vertices v1 and v2. The theorem is a consequence
of (58) and (62).

Let us consider G2, vertices v1, v2 of G2, an object e, and a supergraph G1
of G2 extended by e between vertices v1 and v2. Now we state the propositions:

(102) The vertices of G1 = the vertices of G2.

(103) G1.edgesBetween(the vertices of G2) = the edges of G1. The theorem is
a consequence of (102).

(104) Every vertex of G1 is a vertex of G2.

(105) If e /∈ the edges of G2, then e joins v1 to v2 in G1.

Let us consider G2, vertices v1, v2 of G2, an object e, a supergraph G1 of G2
extended by e between vertices v1 and v2, and objects e1, w1, w2. Now we state
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the propositions:

(106) Suppose e /∈ the edges of G2. Then if e1 joins w1 and w2 in G1 and
e1 /∈ the edges of G2, then e1 = e.

(107) Suppose e /∈ the edges of G2. Then suppose e1 joins w1 and w2 in G1
and e1 /∈ the edges of G2. Then

(i) w1 = v1 and w2 = v2, or

(ii) w1 = v2 and w2 = v1.

The theorem is a consequence of (106) and (105).

(108) Let us consider vertices v1, v2 of G2, a set e, and a supergraph G1 of
G2 extended by e between vertices v1 and v2. Suppose e /∈ the edges of
G2. Then G2 is a subgraph of G1 with edge e removed. The theorem is
a consequence of (57).

(109) Let us consider vertices v1, v2 of G2, an object e, a supergraph G1 of G2
extended by e between vertices v1 and v2, and a walk W of G1. Suppose
if e ∈ W.edges(), then e ∈ the edges of G2. Then W is a walk of G2. The
theorem is a consequence of (57).

Let G be a trivial graph and v1, e, v2 be objects. Let us note that every
supergraph of G extended by e between vertices v1 and v2 is trivial.

Let G be a connected graph. Let us note that every supergraph of G extended
by e between vertices v1 and v2 is connected.

Let G be a complete graph. Note that every supergraph of G extended by e
between vertices v1 and v2 is complete.

Now we state the propositions:

(110) Let us consider vertices v1, v2 of G2, an object e, and a supergraph G1
of G2 extended by e between vertices v1 and v2. Suppose e /∈ the edges
of G2. Then

(i) G1.order() = G2.order(), and

(ii) G1.size() = G2.size() + 1.

(111) Let us consider a finite graph G2, vertices v1, v2 of G2, an object e, and
a supergraph G1 of G2 extended by e between vertices v1 and v2. Suppose
e /∈ the edges of G2. Then G1.size() = G2.size() + 1.

Let G be a finite graph and v1, e, v2 be objects. Observe that every super-
graph of G extended by e between vertices v1 and v2 is finite.

(112) Let us consider vertices v1, v2 of G2, an object e, and a supergraph G1 of
G2 extended by e between vertices v1 and v2. If G2 is loopless and v1 6= v2,
then G1 is loopless. The theorem is a consequence of (105).
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(113) Let us consider a vertex v of G2, an object e, and a supergraph G1 of
G2 extended by e between vertices v and v. Suppose G2 is not loopless or
e /∈ the edges of G2. Then G1 is not loopless. The theorem is a consequence
of (105).

Let us consider G. Let v be a vertex of G. Let us note that every supergraph
of G extended by the edges of G between vertices v and v is non loopless.

Let us consider G2, vertices v1, v2 of G2, an object e, and a supergraph G1
of G2 extended by e between vertices v1 and v2. Now we state the propositions:

(114) If G2 is non-directed-multi and there exists no object e3 such that e3 joins
v1 to v2 inG2, thenG1 is non-directed-multi. The theorem is a consequence
of (71) and (105).

(115) Suppose e /∈ the edges of G2 and there exists an object e2 such that e2
joins v1 to v2 in G2. Then G1 is not non-directed-multi. The theorem is
a consequence of (105) and (70).

(116) If G2 is non-multi and v1 and v2 are not adjacent, then G1 is non-multi.
The theorem is a consequence of (72) and (105).

(117) If e /∈ the edges of G2 and v1 and v2 are adjacent, then G1 is not non-
multi.
Proof: There exist objects e1, e2, u1, u2 such that e1 joins u1 and u2 in
G1 and e2 joins u1 and u2 in G1 and e1 6= e2. �

(118) If G2 is acyclic and v2 /∈ G2.reachableFrom(v1), then G1 is acyclic. The
theorem is a consequence of (57), (54), and (105).

(119) If e /∈ the edges of G2 and v2 ∈ G2.reachableFrom(v1), then G1 is not
acyclic. The theorem is a consequence of (75), (105), and (113).

(120) If G2 is not connected and v2 ∈ G2.reachableFrom(v1), then G1 is not
connected. The theorem is a consequence of (68), (109), (27), (105), (75),
(47), and (40).

(121) Suppose e /∈ the edges of G2 and for every vertices v3, v4 of G2 such that
v3 and v4 are not adjacent holds v3 = v4 or v1 = v3 and v2 = v4 or v1 = v4
and v2 = v3. Then G1 is complete.
Proof: For every vertices u1, u2 of G1 such that u1 6= u2 holds u1 and u2
are adjacent. �

(122) If G2 is not complete and v1 and v2 are adjacent, then G1 is not complete.
The theorem is a consequence of (68), (72), and (105).

Let us consider G. Let v1, e, v2 be objects.
A supergraph of G extended by v1, v2 and e between them is a supergraph

of G defined by

(Def. 12) (i) the vertices of it = (the vertices of G) ∪ {v2} and the edges of
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it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v1 ∈ the vertices of G and v2 /∈ the vertices of G and e /∈ the edges
of G,

(ii) the vertices of it = (the vertices of G) ∪ {v1} and the edges of
it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v1 /∈ the vertices of G and v2 ∈ the vertices of G and e /∈ the edges
of G,

(iii) it ≈ G, otherwise.

Let v1 be a vertex of G and e, v2 be objects.
One can check that a supergraph of G extended by v1, v2 and e between

them can equivalently be formulated as follows:

(Def. 13) (i) the vertices of it = (the vertices of G) ∪ {v2} and the edges of
it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v2 /∈ the vertices of G and e /∈ the edges of G,

(ii) it ≈ G, otherwise.

Let v1, e be objects and v2 be a vertex of G.
Let us note that a supergraph of G extended by v1, v2 and e between them

can equivalently be formulated as follows:

(Def. 14) (i) the vertices of it = (the vertices of G) ∪ {v1} and the edges of
it = (the edges of G) ∪ {e} and the source of it = (the source of
G)+·(e7−→. v1) and the target of it = (the target of G)+·(e7−→. v2), if
v1 /∈ the vertices of G and e /∈ the edges of G,

(ii) it ≈ G, otherwise.

Now we state the propositions:

(123) Let us consider objects v1, e, v2, and supergraphs G1, G2 of G extended
by v1, v2 and e between them. Then G1 ≈ G2.

(124) Let us consider objects v1, e, v2, and a supergraph G1 of G extended by
v1, v2 and e between them. Suppose G1 ≈ G2. Then G2 is a supergraph of
G extended by v1, v2 and e between them. The theorem is a consequence
of (58) and (62).

(125) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1
of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of
G2 and v2 /∈ the vertices of G2. Then there exists a supergraph G3 of G2
extended by v2 such that G1 is a supergraph of G3 extended by e between
vertices v1 and v2. The theorem is a consequence of (94).
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(126) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1
of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of
G2 and v1 /∈ the vertices of G2. Then there exists a supergraph G3 of G2
extended by v1 such that G1 is a supergraph of G3 extended by e between
vertices v1 and v2. The theorem is a consequence of (94).

(127) Let us consider a graph G3, a vertex v1 of G3, objects e, v2, a supergraph
G2 ofG3 extended by v2, and a supergraphG1 ofG2 extended by e between
vertices v1 and v2. Suppose e /∈ the edges of G3 and v2 /∈ the vertices of
G3. Then G1 is a supergraph of G3 extended by v1, v2 and e between
them. The theorem is a consequence of (62), (68), and (94).

(128) Let us consider a graph G3, objects v1, e, a vertex v2 of G3, a supergraph
G2 ofG3 extended by v1, and a supergraphG1 ofG2 extended by e between
vertices v1 and v2. Suppose e /∈ the edges of G3 and v1 /∈ the vertices of
G3. Then G1 is a supergraph of G3 extended by v1, v2 and e between
them. The theorem is a consequence of (62), (68), and (94).

(129) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices of
G2 and e /∈ the edges of G2. Then v2 is a vertex of G1.

(130) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices of
G2 and e /∈ the edges of G2. Then v1 is a vertex of G1.

(131) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices of
G2 and e /∈ the edges of G2. Then

(i) e joins v1 to v2 in G1, and

(ii) e joins v1 and v2 in G1.

(132) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices of
G2 and e /∈ the edges of G2. Then

(i) e joins v1 to v2 in G1, and

(ii) e joins v1 and v2 in G1.

(133) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices of
G2 and e /∈ the edges of G2. Let us consider objects e1, w. If w 6= v1 or
e1 6= e, then e1 does not join w and v2 in G1. The theorem is a consequence
of (72) and (131).

(134) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices of



120 sebastian koch

G2 and e /∈ the edges of G2. Let us consider objects e1, w. If w 6= v2 or
e1 6= e, then e1 does not join v1 and w in G1. The theorem is a consequence
of (72) and (132).

Let us consider G2, objects v1, e, v2, and a supergraph G1 of G2 extended
by v1, v2 and e between them. Now we state the propositions:

(135) G1.edgesBetween(the vertices of G2) = the edges of G2. The theorem is
a consequence of (131), (70), and (132).

(136) G2 is a subgraph of G1 induced by the vertices of G2. The theorem is
a consequence of (57), (135), (15), and (16).

(137) Let us consider a vertex v1 of G2, an object e, a set v2, and a supergraph
G1 of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges
of G2 and v2 /∈ the vertices of G2. Then G2 is a subgraph of G1 with vertex
v2 removed. The theorem is a consequence of (136).

(138) Let us consider a set v1, an object e, a vertex v2 of G2, and a supergraph
G1 of G2 extended by v1, v2 and e between them. Suppose e /∈ the edges
of G2 and v1 /∈ the vertices of G2. Then G2 is a subgraph of G1 with vertex
v1 removed. The theorem is a consequence of (136).

(139) Let us consider a non trivial graph G, a vertex v1 of G, objects e, v2,
a supergraph G1 of G extended by v1, v2 and e between them, a subgraph
G2 of G1 with vertex v1 removed, and a subgraph G3 of G with vertex v1
removed. Suppose e /∈ the edges of G and v2 /∈ the vertices of G. Then G2
is a supergraph of G3 extended by v2.
Proof: v1 is a vertex of G1 and v1 6= v2. For every object e1, e1 ∈
G1.edgesBetween((the vertices of G1)\{v1}) iff e1 ∈ G.edgesBetween((the
vertices of G)\{v1}). For every object e1 such that e1 ∈ dom(the source of
G2) holds (the source of G2)(e1) = (the source of G3)(e1). For every object
e1 such that e1 ∈ dom(the target of G2) holds (the target of G2)(e1) =
(the target of G3)(e1). �

(140) Let us consider a non trivial graph G, objects v1, e, a vertex v2 of G,
a supergraph G1 of G extended by v1, v2 and e between them, a subgraph
G2 of G1 with vertex v2 removed, and a subgraph G3 of G with vertex v2
removed. Suppose e /∈ the edges of G and v1 /∈ the vertices of G. Then G2
is a supergraph of G3 extended by v1.
Proof: v2 is a vertex of G1 and v1 6= v2. For every object e1, e1 ∈
G1.edgesBetween((the vertices of G1)\{v2}) iff e1 ∈ G.edgesBetween((the
vertices of G)\{v2}). For every object e1 such that e1 ∈ dom(the source of
G2) holds (the source of G2)(e1) = (the source of G3)(e1). For every object
e1 such that e1 ∈ dom(the target of G2) holds (the target of G2)(e1) =
(the target of G3)(e1). �
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(141) Let us consider a vertex v1 of G2, objects e, v2, a supergraph G1 of G2
extended by v1, v2 and e between them, and a vertex w of G1. Suppose
e /∈ the edges of G2 and v2 /∈ the vertices of G2 and w = v2. Then w is
endvertex.
Proof: There exists an object e1 such that w.edgesInOut() = {e1} and
e1 does not join w and w in G1. �

(142) Let us consider objects v1, e, a vertex v2 of G2, a supergraph G1 of G2
extended by v1, v2 and e between them, and a vertex w of G1. Suppose
e /∈ the edges of G2 and v1 /∈ the vertices of G2 and w = v1. Then w is
endvertex.
Proof: There exists an object e1 such that w.edgesInOut() = {e1} and
e1 does not join w and w in G1. �

(143) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1
of G2 extended by v1, v2 and e between them. Suppose v2 /∈ the vertices
of G2 and e /∈ the edges of G2. Then G1 is not trivial. The theorem is
a consequence of (125) and (89).

(144) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1
of G2 extended by v1, v2 and e between them. Suppose v1 /∈ the vertices
of G2 and e /∈ the edges of G2. Then G1 is not trivial. The theorem is
a consequence of (126) and (89).

Let G be a graph and v be a vertex of G. Let us note that every supergraph
of G extended by v, the vertices of G and the edges of G between them is non
trivial and every supergraph of G extended by the vertices of G, v and the edges
of G between them is non trivial.

Let G be a trivial graph. Note that every supergraph of G extended by
v, the vertices of G and the edges of G between them is complete and every
supergraph of G extended by the vertices of G, v and the edges of G between
them is complete.

Let G be a loopless graph and v1, e, v2 be objects. One can verify that every
supergraph of G extended by v1, v2 and e between them is loopless.

Let G be a non-directed-multi graph. One can check that every supergraph
of G extended by v1, v2 and e between them is non-directed-multi.

Let G be a non-multi graph. One can check that every supergraph of G
extended by v1, v2 and e between them is non-multi.

Let G be a directed-simple graph. One can check that every supergraph of
G extended by v1, v2 and e between them is directed-simple.

Let G be a simple graph. One can check that every supergraph of G extended
by v1, v2 and e between them is simple.

Now we state the propositions:
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(145) Let us consider a vertex v1 of G2, objects e, v2, a supergraph G1 of G2
extended by v1, v2 and e between them, and a walk W of G1. Suppose
e /∈ the edges of G2 and v2 /∈ the vertices of G2 and (e /∈W.edges() and W
is not trivial or v2 /∈W.vertices()). Then W is a walk of G2. The theorem
is a consequence of (125), (68), (94), (108), (90), (91), (137), (129), and
(143).

(146) Let us consider objects v1, e, a vertex v2 of G2, a supergraph G1 of G2
extended by v1, v2 and e between them, and a walk W of G1. Suppose
e /∈ the edges of G2 and v1 /∈ the vertices of G2 and (e /∈W.edges() and W
is not trivial or v1 /∈W.vertices()). Then W is a walk of G2. The theorem
is a consequence of (126), (68), (94), (108), (90), (91), (138), (130), and
(144).

(147) Let us consider objects v1, e, v2, a supergraph G1 of G2 extended by v1,
v2 and e between them, and a trail T of G1. Suppose e /∈ the edges of
G2 and T .first(), T .last() ∈ the vertices of G2. Then e /∈ T .edges(). The
theorem is a consequence of (129), (141), (145), (130), (142), and (146).

Let G be a connected graph and v1, e, v2 be objects. Let us observe that
every supergraph of G extended by v1, v2 and e between them is connected.

Let G be a non connected graph. One can check that every supergraph of G
extended by v1, v2 and e between them is non connected.

Let G be an acyclic graph. Note that every supergraph of G extended by v1,
v2 and e between them is acyclic.

Let G be a tree-like graph. One can verify that every supergraph of G exten-
ded by v1, v2 and e between them is tree-like.

Now we state the propositions:

(148) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2
and v2 /∈ the vertices of G2 and G2 is not trivial. Then G1 is not complete.
Proof: There exist vertices u, v of G1 such that u 6= v and u and v are
not adjacent. �

(149) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2
and v1 /∈ the vertices of G2 and G2 is not trivial. Then G1 is not complete.
Proof: There exist vertices u, v of G1 such that u 6= v and u and v are
not adjacent. �

Let G be a non complete graph and v1, e, v2 be objects. Observe that every
supergraph of G extended by v1, v2 and e between them is non complete.

Let v be a vertex of G. Observe that every supergraph of G extended by v,
the vertices of G and the edges of G between them is non complete and every
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supergraph of G extended by the vertices of G, v and the edges of G between
them is non complete.

Now we state the propositions:

(150) Let us consider a vertex v1 of G2, objects e, v2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2
and v2 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

(151) Let us consider objects v1, e, a vertex v2 of G2, and a supergraph G1 of
G2 extended by v1, v2 and e between them. Suppose e /∈ the edges of G2
and v1 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

(152) Let us consider a finite graph G2, a vertex v1 of G2, objects e, v2, and
a supergraph G1 of G2 extended by v1, v2 and e between them. Suppose
e /∈ the edges of G2 and v2 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

(153) Let us consider a finite graph G2, objects v1, e, a vertex v2 of G2, and
a supergraph G1 of G2 extended by v1, v2 and e between them. Suppose
e /∈ the edges of G2 and v1 /∈ the vertices of G2. Then

(i) G1.order() = G2.order() + 1, and

(ii) G1.size() = G2.size() + 1.

Let G be a finite graph and v1, e, v2 be objects. One can verify that every
supergraph of G extended by v1, v2 and e between them is finite.
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