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Summary. Even and odd numbers appear early in history of mathematics
[9], as they serve to describe the property of objects easily noticeable by human
eye [7]. Although the use of parity allowed to discover irrational numbers [6],
there is a common opinion that this property is “not rich enough to become the
main content focus of any particular research” [9].

On the other hand, due to the use of decimal system, divisibility by 2 is often
regarded as the property of the last digit of a number (similarly to divisibility by
5, but not to divisibility by any other primes), which probably restricts its use
for any advanced purposes.

The article aims to extend the definition of parity towards its notion in binary
representation of integers, thus making an alternative to the articles grouped in
[5], [4], and [3] branches, formalized in Mizar [1], [2].
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Let a be an integer. One can check that a mod a is zero and a mod 2 is
natural.

Let a, b be integers. Observe that gcd(a · b, |a|) reduces to |a|.
Let a be an odd natural number. Note that a mod 2 is non zero.
Let a be an even integer. One can check that a mod 2 is zero.
Note that a+ 1 mod 2 reduces to 1.
Let a, b be real numbers. Let us observe that max(a, b) − min(a, b) is non

negative.
Let a be a natural number and b be a non zero natural number. Note that

a mod (a+ b) reduces to a. One can check that a div(a+ b) is zero.
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Let a be a non trivial natural number. Let us observe that a-count(1) is zero
and a-count(−1) is zero.

Let b be a natural number. One can check that a-count(ab) reduces to b and
a-count(−ab) reduces to b.

Now we state the proposition:

(1) Let us consider integers a, b. If a | b, then ba is integer.

Note that there exists an even integer which is non zero and every natural
number which is non zero and trivial is also odd and there exists an odd natural
number which is non trivial.

Let a be an integer and b be an even integer. One can verify that lcm(a, b)
is even.

Let a, b be odd integers. Let us observe that lcm(a, b) is odd.
Let a, b be integers. Observe that a+b

gcd(a,b) is integer and a−b
gcd(a,b) is integer.

Let us consider real numbers a, b. Now we state the propositions:

(2) (i) |a+ b| = |a|+ |b|, or

(ii) |a− b| = |a|+ |b|.
(3) (i) ||a| − |b|| = |a+ b|, or

(ii) ||a| − |b|| = |a− b|.
(4) ||a| − |b|| = |a+ b| if and only if |a− b| = |a|+ |b|.
(5) |a + b| = |a| + |b| if and only if |a − b| = ||a| − |b||. The theorem is

a consequence of (4).

(6) Let us consider non zero real numbers a, b. Then ||a| − |b|| = |a+ b| and
|a − b| = |a| + |b| if and only if it is not true that ||a| − |b|| = |a − b| and
|a+ b| = |a|+ |b|.
Proof: ||a| − |b|| = |a + b| iff |a − b| = |a| + |b|. ||a| − |b|| = |a − b| iff
|a+ b| = |a|+ |b|. |a+ b| = |a|+ |b| iff |a− b| 6= |a|+ |b|. �

Let us consider positive real numbers a, b and a natural number n. Now we
state the propositions:

(7) min(an, bn) = (min(a, b))n.

(8) max(an, bn) = (max(a, b))n.

Let us consider a non zero natural number a and natural numbers m, n.
Now we state the propositions:

(9) min(an, am) = amin(n,m).

(10) max(an, am) = amax(n,m).

(11) Let us consider natural numbers a, b. Then a mod b ¬ a.
Let us consider a natural number a and non zero natural numbers b, c. Now

we state the propositions:
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(12) (a mod c) + (b mod c) ­ a+ b mod c. The theorem is a consequence of
(11).

(13) (a mod c) · (b mod c) ­ a · b mod c. The theorem is a consequence of
(11).

Let us consider a natural number a and non zero natural numbers b, n. Now
we state the propositions:

(14) (a mod b)n ­ an mod b. The theorem is a consequence of (11).

(15) If a mod b = 1, then an mod b = 1.

(16) Let us consider natural numbers a, b, and a non zero natural number c.
Then (amod c)·(bmod c) < c if and only if a·bmod c = (amod c)·(bmod c).

(17) Let us consider natural numbers a, b, c. Suppose (amod c)·(bmod c) = c.
Then a · b mod c = 0.

(18) Let us consider natural numbers a, b, and a non zero natural number c.
Suppose (a mod c) · (b mod c) ­ c. Then a mod c > 1.

(19) Let us consider integers a, b, and a non zero natural number c. Then

(i) if a+ b mod c = b mod c, then a mod c = 0, and

(ii) if a+ b mod c 6= b mod c, then a mod c > 0.

Proof: If a+ b mod c = b mod c, then a mod c = 0 by [8, (7)]. �

(20) Let us consider a natural number a, and non zero natural numbers b, c.
Suppose a · b mod c = b. Then a · (gcd(b, c)) mod c = gcd(b, c).

(21) Let us consider integers a, b. Then a ≡ b (mod gcd(a, b)).

Let us consider odd, a square integers k, l. Now we state the propositions:

(22) k − l mod 8 = 0.

(23) k + l mod 8 = 2. The theorem is a consequence of (22).

Let a be an integer. The functor parity(a) yielding a trivial natural number
is defined by the term

(Def. 1) a mod 2.

Note that the functor parity(a) yields a trivial natural number and is defined
by the term

(Def. 2) 2− (gcd(a, 2)).

Let a be an even integer. Let us observe that parity(a) is zero.
Let a be an odd integer. One can check that parity(a) is non zero.
Let a be an integer. The functor Parity(a) yielding a natural number is

defined by the term

(Def. 3)

{
0, if a = 0,
22-count(a), otherwise.
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Let a be a non zero integer. Observe that Parity(a) is non zero.
Let a be a non zero, even integer. One can verify that Parity(a) is non trivial

and Parity(a) is even.
Let a be an even integer. Observe that Parity(a) is even and Parity(a + 1)

is odd.
Let a be an odd integer. Note that Parity(a) is trivial.
Let n be a natural number. Observe that Parity(2n) reduces to 2n.
Note that Parity(1) reduces to 1 and Parity(2) reduces to 2.
Now we state the propositions:

(24) Let us consider an integer a. Then Parity(a) | a.
(25) Let us consider integers a, b. Then Parity(a·b) = (Parity(a))·(Parity(b)).

Let a be an integer. The functor Oddity(a) yielding an integer is defined by
the term

(Def. 4) a
Parity(a) .

Now we state the proposition:

(26) Let us consider a non zero integer a. Then a
Parity(a) = adiv Parity(a).

The theorem is a consequence of (24).

Let a be an integer. One can check that (Parity(a)) · (Oddity(a)) reduces to
a and Parity(Parity(a)) reduces to Parity(a) and Oddity(Oddity(a)) reduces to
Oddity(a). Observe that Parity(Oddity(a)) is trivial and a + Parity(a) is even
and a− Parity(a) is even and a

Parity(a) is integer.
Now we state the propositions:

(27) Let us consider a non zero integer a. Then Oddity(Parity(a)) = 1.

(28) Let us consider integers a, b. Then Oddity(a·b) = (Oddity(a))·(Oddity(b)).
The theorem is a consequence of (25).

Let a be a non zero integer. Observe that a
Parity(a) is odd and a div Parity(a)

is odd.
Now we state the proposition:

(29) Let us consider integers a, b. Then

(i) Parity(a) | Parity(b), or

(ii) Parity(b) | Parity(a).

Let us consider non zero integers a, b. Now we state the propositions:

(30) Parity(a) | Parity(b) if and only if Parity(b) ­ Parity(a).
Proof: If Parity(b) ­ Parity(a), then Parity(a) | Parity(b). �

(31) If Parity(a) > Parity(b), then 2 · (Parity(b)) | Parity(a).

Let us consider an integer a. Now we state the propositions:

(32) Parity(a) = Parity(−a).
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(33) Parity(a) = Parity(|a|). The theorem is a consequence of (32).

(34) Parity(a) ¬ |a|. The theorem is a consequence of (24) and (33).

(35) Let us consider integers a, b. If a and b are relatively prime, then a is
odd or b is odd.

Let us consider odd integers a, b. Now we state the propositions:

(36) If |a| 6= |b|, then min(Parity(a − b),Parity(a + b)) = 2. The theorem is
a consequence of (33), (9), (2), and (4).

(37) min(Parity(a − b),Parity(a + b)) ¬ 2. The theorem is a consequence of
(3), (33), and (36).

(38) Let us consider integers a, b. Suppose a and b are relatively prime. Then
min(Parity(a − b),Parity(a + b)) ¬ 2. The theorem is a consequence of
(35) and (37).

(39) Let us consider non zero integers a, b, and a non trivial natural number
c. Then c-count(gcd(a, b)) = min(c-count(a), c-count(b)).

(40) Let us consider non zero integers a, b.
Then Parity(gcd(a, b)) = min(Parity(a),Parity(b)). The theorem is a con-
sequence of (39) and (9).

(41) Let us consider integers a, b. Then gcd(Parity(a),Parity(b)) =
Parity(gcd(a, b)). The theorem is a consequence of (33), (29), and (40).

(42) Let us consider a natural number a. Then Parity(2 · a) = 2 · (Parity(a)).
The theorem is a consequence of (25).

(43) Let us consider integers a, b. Then lcm(Parity(a),Parity(b)) =
Parity(lcm(a, b)). The theorem is a consequence of (25), (33), and (41).

(44) Let us consider non zero integers a, b.
Then Parity(lcm(a, b)) = max(Parity(a),Parity(b)). The theorem is a con-
sequence of (41), (40), and (43).

(45) Let us consider integers a, b. Then Parity(a + b) = (Parity(gcd(a, b))) ·
(Parity( a+b

gcd(a,b))). The theorem is a consequence of (25).

(46) Let us consider an integer a, and a natural number n. Then Parity(an) =
(Parity(a))n.
Proof: Define P[natural number] ≡ Parity(a$1) = (Parity(a))$1 . P[0].
For every natural number k such that P[k] holds P[k + 1]. For every
natural number x, P[x]. �

(47) Let us consider non zero integers a, b, and a natural number n. Then
min(Parity(an),Parity(bn)) = (min(Parity(a),Parity(b)))n. The theorem
is a consequence of (40) and (46).

Let a be an odd integer. We identify parity(a) with Parity(a). We identify
Parity(a) with parity(a). Let us observe that aparity(a) reduces to a.



96 rafał ziobro

Let a be an even integer. Let us observe that aparity(a) is trivial and non zero.
Let a be an integer. One can check that parity(parity(a)) reduces to parity(a)

and Parity(parity(a)) reduces to parity(a).
Now we state the proposition:

(48) Let us consider an integer a. Then

(i) a is even iff parity(a) is even, and

(ii) parity(a) is even iff Parity(a) is even.

Let a be an integer. Note that parity(a) + Parity(a) is even and Parity(a)−
parity(a) is even and Parity(a)− parity(a) is natural and a+ parity(a) is even
and a− parity(a) is even.

Let us consider an integer a. Now we state the propositions:

(49) parity(Parity(a)) = parity(a).

(50) parity(a) = parity(−a).
Let us consider integers a, b. Now we state the propositions:

(51) parity(a− b) = | parity(a)− parity(b)|.
(52) parity(a+ b) = parity(parity(a) + parity(b)).

(53) parity(a+ b) = parity(a− b). The theorem is a consequence of (50).

(54) parity(a+ b) = | parity(a)− parity(b)|. The theorem is a consequence of
(53) and (51).

(55) Let us consider natural numbers a, b. Then

(i) if parity(a+ b) = parity(b), then parity(a) = 0, and

(ii) if parity(a+ b) 6= parity(b), then parity(a) = 1.

The theorem is a consequence of (19).

Let us consider integers a, b. Now we state the propositions:

(56) (i) parity(a + b) = parity(a) + parity(b) − 2 · (parity(a)) · (parity(b)),
and

(ii) parity(a)− parity(b) = parity(a+ b)− 2 · (parity(a+ b)) · (parity(b)),
and

(iii) parity(a)− parity(b) = 2 · (parity(a)) · (parity(a+ b))− parity(a+ b).

(57) a+ b is even if and only if parity(a) = parity(b). The theorem is a con-
sequence of (54).

(58) parity(a · b) = (parity(a)) · (parity(b)).

(59) parity(lcm(a, b)) = parity(a · b).
(60) parity(gcd(a, b)) = max(parity(a),parity(b)).

(61) parity(a · b) = min(parity(a), parity(b)).
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(62) Let us consider an integer a, and a non zero natural number n. Then
parity(an) = parity(a).

(63) Let us consider non zero integers a, b. Suppose Parity(a+b) ­ Parity(a)+
Parity(b). Then Parity(a) = Parity(b).

(64) Let us consider integers a, b. Suppose Parity(a + b) > Parity(a) +
Parity(b). Then Parity(a) = Parity(b). The theorem is a consequence of
(63).

(65) Let us consider odd integers a, b, and an odd natural number m. Then
Parity(am + bm) = Parity(a+ b).

(66) Let us consider odd integers a, b, and an even natural number m. Then
Parity(am + bm) = 2.

Let us consider non zero integers a, b. Now we state the propositions:

(67) If a+b 6= 0, then if Parity(a) = Parity(b), then Parity(a+b) ­ Parity(a)+
Parity(b).

(68) Parity(a + b) = Parity(b) if and only if Parity(a) > Parity(b). The the-
orem is a consequence of (67).

(69) Let us consider non zero natural numbers a, b. Suppose Parity(a+ b) <
Parity(a)+Parity(b). Then Parity(a+b) = min(Parity(a),Parity(b)). The
theorem is a consequence of (67).

(70) Let us consider non zero integers a, b. Suppose a+b 6= 0. If Parity(a+b) =
Parity(a), then Parity(a) < Parity(b). The theorem is a consequence of
(67).

Let us consider an integer a. Now we state the propositions:

(71) (i) Parity(a+ Parity(a)) = (Parity(Oddity(a) + 1)) · (Parity(a)), and

(ii) Parity(a− Parity(a)) = (Parity(Oddity(a)− 1)) · (Parity(a)).
The theorem is a consequence of (25).

(72) (i) 2 · (Parity(a)) | Parity(a+ Parity(a)), and

(ii) 2 · (Parity(a)) | Parity(a− Parity(a)).
The theorem is a consequence of (71).

(73) Let us consider integers a, b. Suppose Parity(a) = Parity(b). Then
Parity(a+ b) = Parity(a+ Parity(a) + (b− Parity(b))).

Let us consider a natural number a. Now we state the propositions:

(74) Parity(a+ Parity(a)) ­ 2 · (Parity(a)). The theorem is a consequence of
(72).

(75) (i) Parity(a− Parity(a)) ­ 2 · (Parity(a)), or

(ii) a = Parity(a).
The theorem is a consequence of (71).
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Let us consider odd integers a, b. Now we state the propositions:

(76) Parity(a+ b) 6= Parity(a− b). The theorem is a consequence of (25).

(77) If Parity(a+1) = Parity(b−1), then a 6= b. The theorem is a consequence
of (76).

(78) Let us consider an odd natural number a, and a non trivial, odd natural
number b. Then

(i) Parity(a+ b) = min(Parity(a+ 1),Parity(b− 1)), or

(ii) Parity(a+ b) ­ 2 · (Parity(a+ 1)).

The theorem is a consequence of (67).

Let us consider non zero integers a, b. Now we state the propositions:

(79) If Parity(a) > Parity(b), then a div Parity(b) is even. The theorem is
a consequence of (31) and (24).

(80) Parity(a) > Parity(b) if and only if Parity(a) div Parity(b) is non zero
and even. The theorem is a consequence of (31).

(81) Let us consider an odd natural number a. Then Parity(a − 1) = 2 ·
(Parity(a div 2)). The theorem is a consequence of (25).

(82) Let us consider non zero integers a, b. Then

(i) min(Parity(a),Parity(b)) | a, and

(ii) min(Parity(a),Parity(b)) | b.

The theorem is a consequence of (30) and (24).

Let a, b be non zero integers. Note that a+b
min(Parity(a),Parity(b)) is integer.

Let p be a non square integer and n be an odd natural number. Let us note
that pn is non square.

Let a be an integer and n be an even natural number. Let us note that an

is a square.
Let p be a prime natural number and a be a non zero, a square integer. Let

us observe that p-count(a) is even.
Let a be an odd integer. Note that 2 · a is non square.
Let a be square integer. One can check that Parity(a) is a square and

Oddity(a) is a square.
Let a be a non zero, a square integer. One can check that 2-count(a) is even.
Now we state the propositions:

(83) Let us consider non negative real numbers a, b. Then max(a, b)−min(a, b)
= |a− b|.

(84) Let us consider an even integer a. If 4 - a, then a is not square.
Proof: 2 - a2 by [10, (2)]. �
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(85) Let us consider odd integers a, b. If a − b is a square, then a + b is not
a square. The theorem is a consequence of (2), (5), (83), (84), and (4).

Let us consider non zero integers a, b. Now we state the propositions:

(86) Parity(a+b) = (min(Parity(a),Parity(b)))·(Parity( a+b
min(Parity(a),Parity(b)))).

The theorem is a consequence of (30) and (25).

(87) (i) Parity(a) and Oddity(b) are relatively prime, and

(ii) gcd(Parity(a),Oddity(b)) = 1.

(88) Let us consider an integer a. Then |Oddity(a)| = Oddity(|a|). The the-
orem is a consequence of (33).

(89) Let us consider integers a, b.
Then gcd(Oddity(a),Oddity(b)) = Oddity(gcd(a, b)). The theorem is a con-
sequence of (87), (28), (41), (27), and (88).

(90) Let us consider non zero integers a, b.
Then gcd(a, b) = (gcd(Parity(a),Parity(b))) · (gcd(Oddity(a),Oddity(b))).
The theorem is a consequence of (87).

(91) Let us consider an odd natural number a. Then Parity(a+ 1) = 2 if and
only if parity(adiv 2) = 0. The theorem is a consequence of (78), (76), and
(25).

(92) Let us consider an even integer a. Then a div 2 = a+ 1 div 2.

(93) Let us consider integers a, b. Then a + b = 2 · ((adiv 2) + (bdiv 2)) +
parity(a) + parity(b).

Let us consider odd integers a, b. Now we state the propositions:

(94) Parity(a + b) = 2 · (Parity((a div 2) + (bdiv 2) + 1)). The theorem is
a consequence of (93) and (25).

(95) Parity(a + b) = 2 if and only if parity(a div 2) = parity(bdiv 2). The
theorem is a consequence of (94) and (57).

Let us consider non zero integers a, b. Now we state the propositions:

(96) Parity(a+ b) = Parity(a) + Parity(b) if and only if Parity(a) = Parity(b)
and parity(Oddity(a) div 2) = parity(Oddity(b) div 2). The theorem is a con-
sequence of (63), (25), and (95).

(97) Suppose a+b 6= 0 and Parity(a) = Parity(b) and parity(Oddity(a) div 2) 6=
parity(Oddity(b) div 2). Then Parity(a + b) > Parity(a) + Parity(b). The
theorem is a consequence of (67) and (96).
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